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Abstract. We consider smooth algebraic varieties with ample either canonical or anticanonical
sheaf.We prove that such a variety is uniquely determined by its derived category of coherent
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0. Introduction

Examples of different varieties X exist which have equivalent derived categories
Db

coh�X � of coherent sheaves. These kind of equivalences were constructed for
Abelian varieties and K3 surfaces by Mukai, Polishchuk and the second author
in [7^10]. In [4] we prove equivalence of the derived categories for varieties connected
by certain kinds of £ops.

Does this mean that Db
coh�X � is a weak invariant of a variety X? In this paper we

will show that this is not the case, at least for some types of algebraic varieties.
We prove that a variety X is uniquely determined by its category Db

coh�X �, if its
anticanonical (Fano case) or canonical (general type case) sheaf is ample.

To reconstruct the variety from the category we use nothing but the graded struc-
ture of the category, i.e. we need only to ¢x the translation functor.

The idea is that for good, in the above sense, varieties we can recognize the
skyscraper sheaves of closed points in Db

coh�X �. The main tool for this is the Serre
functor [3] (see also Section 1), which for Db

coh�X � can be regarded as a categorical
incarnation of the canonical sheaf oX . In this way we ¢nd the variety as a set. Then,
one by one, we reconstruct the set of line bundles, Zariski topology and the structural
sheaf of rings (for details, see the ¢ve steps of the proof of Theorem 2.5).

With respect to the above problem, it is natural to introduce a groupoid with the
objects being the categories Db

coh�X � and with the morphisms being equivalences.
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There are two natural questions related to a groupoid: which objects are
isomorphic and what is the group of automorphisms of an individual object?
The ¢rst problem was addressed within the framework of graded categories. To
tackle the second one, we need the triangulated structure of the category. In Section
3 we prove that for a smooth algebraic variety with either ample canonical or
anticanonical sheaf, the group of exact autoequivalences is the semidirect product
of the group of automorphisms of the variety and the Picard group plus translations.

The answers to the above questions for the case of varieties with non-ample and
nonantiample canonical sheaves seem to be of considerable interest.

1. Preliminaries

Here we collect some facts related to functors in graded and triangulated categories,
with special emphasis on the Serre functor.

In this paper, for simplicity we consider only k-linear additive categories, where k
is an arbitrary ¢eld.

By de¢nition a graded category is a pair �D;TD� consisting of a category D and a
¢xed equivalence functor TD : Dÿ!D, called a translation functor.

Recall that a triangulated category is a graded category with an additional
structure: a distinguished class of exact triangles satisfying certain axioms (see [12]).

A functor F : Dÿ!D0 between two graded categoriesD andD0 is called graded if it
commutes with the translation functor. More precisely, a natural isomorphism of
functors tF : F � TD ÿ!� TD0 � F is assumed to be ¢xed.

In the sequel, we omit the subscripts in the notation of translation functors because
it is always clear from their position in formulas which category they belong to.

While considering graded functors, we use graded natural transformations. A
natural transformation m between graded functors F and G is called graded if
the following diagram is commutative:

F � T ÿ!tF T � F?y mT
?y Tm

G � T ÿ!tG T � G
A graded functor F : Dÿ!D0 between triangulated categories is called exact if it
transforms all exact triangles into exact triangles in the following sense. If
X ! Y ! Z! TX is an exact triangle in D, then one takes FX !
FY ! FZ! FTX and substitutes in this sequence FT �X � by TF �X � using the natu-
ral isomorphism of FT with TF . The result FX ! FY ! FZ! TFX should be an
exact triangle in D0.

A morphism between exact functors is, by de¢nition, a graded natural
transformation.

A functor which is isomorphic to an exact functor can be endowed with a structure
of a graded functor so that it becomes an exact functor. Indeed, if F is exact, then
using the isomorphism m : F ÿ!� G, one constructs the natural isomorphism
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tG : GT ÿ!� TG, tG � mtFmÿ1, which makes G graded. Since any triangle isomorphic
to an exact triangle is again exact, G transforms exact triangles into exact ones.
The natural transformation m becomes a graded transformation of exact functors.

Let F : Dÿ!D0 be a functor. Suppose we ¢x a class C of objects in D and for any
object X 2 C some object X 0 isomorphic to FX in D0. If, for any X 2 C, we
additionally ¢x an isomorphism FX ÿ!� X 0, then there exists a new functor
G : D! D0, which is isomorphic to F and such that

GX � FX ; for X=2C; GX � X 0; for X 2 C; �1�

with the evident action on morphisms.
We shall frequently use this simple fact in the sequel.

PROPOSITION 1.1. (i) Let F : Dÿ!D0 be a graded functor between graded
categories, G : D0ÿ!D its left adjoint, so that the natural transformations are given:

idD0 ÿ!a F � G; G � F ÿ!b idD: �2�

Then G can be canonically endowed with the structure of a graded functor, such that
(2) become morphisms of graded functors.

(ii) If, in addition, F is an exact functor between triangulated categories,then G also
becomes an exact functor.

Proof. (i) Let us make G graded. By the adjointness of G and F and since TD and
TD0 are equivalences, we have the following sequence of bifunctorial isomorphisms:

Hom�GTX ; Y � � Hom�TX ; FY � � Hom�X ; Tÿ1FY �
� Hom�X ; FTÿ1Y � � Hom�GX ; Tÿ1Y �
� Hom�TGX ; Y �

�3�

for any X 2 D0;Y 2 D.
By the well known Brown lemma [2], this gives a functorial isomorphism:

tG : GT ÿ!� TG:
Taking Y � TGX in (3) and carefully tracking the preimage in Hom�GTX ; TGX �

of idTGX in Hom�TGX ; TGX � under the chain of isomorphisms in (3), one obtains a
formula for tG. It is, in fact, canonically given as the composite of the following
sequence of natural transformations:

GT ÿÿÿ!GTa GTFGÿÿÿÿ!Gtÿ1F G
GFTGÿÿÿ!bTG TG: �4�

Here we use morphisms a and b from (2) and the grading isomorphism tF for
F : tF : FT ÿ!� TF :To show that, say, a is an isomorphism of graded functors is equiv-
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alent to proving that the diagram

T ÿ!Ta TFG ÿÿ!tFG FTG
aT
?y aTFG ..

.

..

.
_ aFTG ..

.

..

.
_
x?FbTG

FGT ÿÿÿ!FGTa FGTFG ÿÿÿÿ!FGtFG FGFTG;

being considered without dotted arrows, is commutative. One can split it by the
dotted arrows into two commutative squares and the loop, the latter being com-
mutative due to the fact that, for adjoint functors, the composite F ÿ!aF
FGF ÿ!Fb F equals idF .

Notice that the inverse morphism to (4) is given by the composition

TG ÿÿÿÿÿ!TGTÿ1aT
TGTÿ1FGT ÿÿÿÿÿÿÿÿÿ!TGTÿ1tFTÿ1GT TGFTÿ1GT ÿÿÿÿÿÿ!TbTÿ1GT

GT : �5�
That can be found in the same way as (4) by putting Y � GTX in (3). It is interesting
to note that one needs a great number of commutative diagrams to prove directly,
without use of (3), that (4) and (5) are mutually inverse.

(ii) [3] Let A!a B! C ! TA be an exact triangle in D0. We have to show that G
transforms this exact triangle into an exact one.

Let us insert the morphism G�a� : GA! GB into an exact triangle:

GA! GB! Z! TGA:

Applying functor F to it, we obtain an exact triangle

FGA! FGB! FZ! TFGA:

(Henceforth we make no mention of commutation isomorphisms like TF ÿ!� FT ).
By means of id!FG; we construct a commutative diagram

A ÿ! B ÿ! C ÿ! TA?y ?y ?y
FGA ÿ! FGB ÿ! FZ ÿ! TFGA

By the axioms of triangulated categories there exists a morphism m : C ! FZ that
completes this commutative diagram. By adjunction, we obtain a morphism
n : GC ! Z that makes the following diagram commutative:

GA ÿ! GB ÿ! GC ÿ! TGA
id
?y id

?y o?yn id
?y

GA ÿ! GB ÿ! Z ÿ! TGA

The functors represented by GC and Z are isomorphic via n in view of the 5-lemma,
hence by the Brown lemma, n is an isomorphism. Therefore the upper triangle is
exact. &

If F is a graded autoequivalence in a graded category, then the adjoint functor is its
quasi-inverse.
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We may consider a category with objects being graded (or respectively
triangulated) categories and morphisms being isomorphism classes of graded
(respectively exact) equivalences. The proposition ensures that this category is a
groupoid. In particular, the set of isomorphism classes of graded autoequivalences
in a graded category or of exact autoequivalences in a triangulated category is a
group.

Now we outline the main properties of the Serre functor. Its abstract de¢nition
was introduced in [3].

DEFINITION 1.2. Let D be a k-linear category with ¢nite-dimensional Hom0s. A
covariant additive functor S : D! D is called a Serre functor if it is a category equiv-
alence and there are given bi-functorial isomorphisms jA;B : HomD�A; B� ÿ!�
HomD�B; SA�� for any A;B 2 D.

Remark. It was postulated in [3] that the following diagram is commutative:

HomD�A; B� ÿÿÿ!jA;B
HomD�B; SA��

o?y ox?
HomD�SA; SB� ÿÿÿÿ!

jSA;SB
HomD�SB; S2A��

the vertical isomorphisms in this diagram being induced by S. In fact, this can be
deduced from bi-functoriality of jA;B.

PROPOSITION 1.3.Any autoequivalenceF : Dÿ!D commutes with a Serre functor,
i.e. there exists a natural graded isomorphism of functors F � Sÿ!� S � F.

Proof. For any pair of objectsA;B inDwe have a system of natural isomorphisms:

Hom�FA; FSB� � Hom�A; SB� � Hom�B; A��
� Hom�FB; FA�� � Hom�FA; SFB�: �6�

Since F is an equivalence, the essential image of F covers the whole D, i.e. up to
isomorphism, any object can be presented as FA for some A. This means that
(6) gives rise to an isomorphism, of the contravariant functors represented by objects
FSB and SFB. By the Brown lemma [2], morphisms between representable functors
are in one-to-one correspondence with those between the representation objects.
This yields an isomorphism FSBÿ!� SFB; which is, in fact, natural with respect
to B. &

PROPOSITION 1.4. (i)Any Serre functor in a graded category is graded. (ii)A Serre
functor in a triangulated category is exact.

Proof. (i) This follows from the previous proposition.
(ii) The fact that a Serre functor takes exact triangles into exact ones is proved

in [3].
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PROPOSITION 1.5 [3]. Any two Serre functors are connected by a canonical graded
functorial isomorphism, which commutes with the bifunctorial isomorphisms fA;B

in the de¢nition of Serre functor.
Proof. Let S and S0 be two Serre functors in a categoryD. Then, for any objectA in
D we have natural isomorphisms:

Hom�A; A� � Hom�A; SA�� � Hom�SA; S0A�

Taking the image of the identity morphism idA with respect to this identi¢cation, we
obtain a morphism SA! S0A, which, in fact, gives a graded functorial isomorphism
Sÿ!� S0, which commutes with fA;B. &

Thus, a Serre functor in a category D, if it exists, is unique up to a graded natural
isomorphism. By de¢nition, it is intrinsically related to the structure of the category.
We shall use this later to reconstruct a variety from its derived category and to ¢nd
the group of exact autoequivalences for algebraic varieties with ample or antiample
canonical sheaves.

2. Reconstruction of a Variety from the Derived Category of Coherent
Sheaves

In this Section we show that a variety X can be uniquely reconstructed from the
derived category of coherent sheaves on it, provided X is smooth and has ample
or antiample canonical sheaf. We need only grading from the category, i.e. ¢xed
translation functor.

Roughly, the reconstruction proceeds as follows. First, by means of the Serre
functor, we distinguish the skyscraper sheaves of closed points in the variety. Then
we ¢nd the invertible sheaves and use them to de¢ne the Zariski topology and
the structure sheaf of the variety.

Let D be a k-linear category. Denote by SD the Serre functor in D (for the case it
exists).

Let X be a smooth algebraic variety, n � dimX , D � Db
coh�X � the derived category

of coherent sheaves on X and oX the canonical sheaf. Then the functor

��� 
 oX �n� �7�

is the Serre functor in D, in view of the Serre^Grothendieck duality:

Exti�F ; G� � Extnÿi�G; F 
 oX ��

for any pair F ;G of coherent sheaves on X ([5, 11]).
For derived categories the translation functor we consider is always the usual shift

of grading.
For a closed point x 2 X , we denote by k�x� the residue ¢eld of this point.
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We use the standard notations for the iterated action of the translation functor on
an object P: P�i� :� TiP; i 2 Z; and for the composition of the functors Hom and T :

Homi�P; Q� � Exti�P;Q� :� Hom�P; Q�i��:

DEFINITION 2.1. An object P 2 D is called a point object of codimension s, if

�i� SD�P� ' P�s�;
�ii� Hom<0�P; P� � 0;

�iii� Hom0�P; P� � k�P�;

with k�P� being a ¢eld (which is automatically a ¢nite extension of the ¢eld k).

PROPOSITION 2.2. Let X be a smooth algebraic variety of dimension n with the
ample canonical or anticanonical sheaf. Then an object P 2 Db

coh�X � is a point object,
iff P � Ox�r�, r 2 Z, is isomorphic (up to translation) to the skyscraper sheaf of
a closed point x 2 X.

Remark. Since X has an ample invertible sheaf it is projective.

Proof. Any skyscraper sheaf of a closed point obviously satis¢es the properties of a
point object of the same codimension as the dimension of the variety.

Suppose now that for some objectP 2 Db
coh�X �; properties (i)^(iii) of De¢nition 2.1

are veri¢ed.
LetHi be cohomology sheaves of P. It immediately follows from (i) that s � n and
Hi 
 oX � Hi. Since oX is either an ample or antiample sheaf, we conclude that Hi

are ¢nite length sheaves, i.e. their supports consist of isolated closed points. Sheaves
with the support in different points are homologically orthogonal, therefore any such
object decomposes into the direct sum of those which have the support of all
cohomology sheaves in a single point. By (iii), the object P is indecomposable, hence
all Hi have their support in one single point. Now consider the spectral sequence
which calculates Homm�P; P� by Exti�Hj; Hk�:

Ep;q
2 �

M
kÿj�q

Extp�Hj; Hk� �)Homp�q�P; P�:

Note that for any two ¢nite length sheaves which have the same single point as their
support, there exists a nontrivial homomorphism from one to the other, which sends
the generators of the ¢rst one to the socle of the second.

Considering Hom0�Hj; Hk� with minimal kÿ j, we observe that this nontrivial
space survives at E1, hence by (ii) kÿ j � 0. This means that all but one cohomology
sheaves are trivial. Moreover, (iii) implies that this sheaf is a skyscraper. This con-
cludes the proof. &
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Now, having the skyscrapers, we are able to reconstruct the invertible sheaves.

DEFINITION 2.3. An object L 2 D is called invertible if, for any point objectP 2 D,
there exists s 2 Z such that

�i� Homs�L; P� � k�P�;
�ii� Homi�L; P� � 0; for i 6� s:

PROPOSITION 2.4 Let X be a smooth irreducible algebraic variety. Assume that all
point objects have the form Ox�s� for some x 2 X ; s 2 Z. Then an object L 2 D is
invertible, iff L � L�t� for some invertible sheaf L on X, t 2 Z.

Proof. For an invertible sheaf L we have

Hom�L; Ox� � k�x�; Exti�L; Ox� � 0; if i 6� 0:

Therefore, if L � L�s�, then it is an invertible object.
Now let Hi be the cohomology sheaves for an invertible object L. Consider the

spectral sequence that calculates Hom:�L; Ox� for a point x 2 X by means of
Homi�Hj; Ox�:

Ep;q
2 � Homp�Hq; Ox� �)Extpÿq�L; Ox�:

Let Hq0 be the nontrivial cohomology sheaf with maximal index. Then for any
closed point x 2 X from the support of Hq0 , Hom�Hq0 ; Ox� 6� 0. But both
Hom�Hq0 ; Ox� and Ext1�Hq0 ; Ox� are intact by differentials of the spectral sequence.
Therefore, in view of the de¢nition of an invertible object, we conclude that for any
point x from the support of Hq0

�a� Hom�Hq0 ; Ox� � k�x�;
�b� Ext1�Hq0 ; Ox� � 0:

Since X is smooth and irreducible, it follows from (b) that theHq0 is locally free on
X , while (a) implies it is invertible.

It follows that Exti�Hq0 ; Ox� � 0 for i > 0. Hence, Hom�Hq0ÿ1; Ox� are intact by
differentials of the spectral sequence. This means that Hom�Hq0ÿ1; Ox� � 0, for
any x 2 X , i.e. Hq0ÿ1 � 0. Repeating this argument for Hq with smaller q, we easily
see that all Hq, except q � q0, are trivial. This proves the proposition. &

Now we are ready to prove the reconstruction theorem. Invertible sheaves help us
to `glue' points together.

THEOREM 2.5. Let X be a smooth irreducible projective variety with ample canoni-
cal or anticanonical sheaf. If D � Db

coh�X � is equivalent as a graded category to
Db

coh�X 0� for some other smooth algebraic varietyX 0, then X is isomorphic to X 0.
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Note that this theorem is stronger than just a reconstruction for a variety with an
ample canonical or anticanonical sheaf from its derived category: since X 0 might
not have an ample canonical or anticanonical sheaf, the situation is not symmetric
with respect to X and X 0.

We divide the proof in several steps, so that the reconstruction procedure will be
transparent.

Proof. During the proof, while saying that two isomorphism classes of objects, one
in Db

coh�X � and the other one in Db
coh�X 0�, are equal, we mean that the former is taken

to the latter by the primary equivalence Db
coh�X � ÿ!� Db

coh�X 0�.
Step 1. Denote PD the set of isomorphism classes of the point objects in D, PX the

set of isomorphism classes of objects in Db
coh�X �

PX :�
n
Ox�k�

���x 2 X ; k 2 Z
o
:

By Proposition 2.2, PD � PX . Obviously, PX 0 � PD. Suppose that there is an object
P 2 PD,which is not contained in PX 0 . Since PD � PX , any two objects in PD either
are homologically mutually orthogonal or belong to a common orbit with respect
to the translation functor. It follows that P 2 Db

coh�X 0� is orthogonal to any
skyscraper sheaf Ox0 ; x0 2 X 0. Hence, P is zero. Therefore, PX 0 � PD � PX .

Step 2. Denote by LD the set of isomorphism classes of invertible objects in D, LX
the set of isomorphism classes of objects in Db

coh�X � de¢ned by

LX :�
n
L�k�

���L being an invertible sheaf on X ; k 2 Z
o
:

By Step 1, both varieties X and X 0 satisfy the assumptions of Proposition 2.4. It
follows that LX � LD � LX 0 .

Step 3. Let us ¢x some invertible object L0 in D which is an invertible sheaf on X .
By Step 2, L0 can be regarded, up to translation, as an invertible sheaf on X 0.
Moreover, changing, if necessary, the equivalence Db

coh�X � ' Db
coh�X 0� by the trans-

lation functor, we can assume that L0, regarded as an object on X 0, is a genuine
invertible sheaf. (Formally speaking, L0 is taken by the equivalence
Db

coh�X � ÿ!� Db
coh�X 0� to an object which is isomorphic to an invertible sheaf on

X 0. But as was explained in Section 1 (formula (1)) we can adjust this equivalence
so that it takes L0 into the invertible sheaf on X 0.)

Obviously, by Step 1, the set pD � PD

pD :�
n
P 2 PD

���Hom�L0; P� � k�P�
o

coincides with both sets pX � fOx; x 2 Xg and pX 0 � fOx0 ; x0 2 X 0g. This gives us a
pointwise identi¢cation of X with X 0.

Step 4. Now let lX (resp., lX 0 ) be the subset in LD of isomorphism classes of
invertible sheaves on X (resp., on X 0).
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They can be recognized from the graded category structure in D as follows:

lX 0 � lX � lD :�
n
L 2 LD

���Hom�L; P� � k�P� for any P 2 pD
o
:

For a 2 Hom�L1; L2�, where L1;L2 2 lD, and P 2 pD, denote by a�P the induced
morphism:

a�P : Hom�L2; P� ÿ!Hom�L1; P�
and by Ua the subset of those objects P in pD for which a�P 6� 0. By [6], any algebraic
variety has an ample system of invertible sheaves. This means that Ua, where a runs
over all elements in Hom�L1; L2� and L1 and L2 run over all elements in lD,constitute
a basis for the Zariski topologies on both X and X 0. It follows that the topologies on
X and X 0 coincide.

Step 5. Since codimensions of all point objects are equal to the dimensions of X
and of X 0, we have dimX � dimX 0. Then, formula (7) for the Serre functor
SD � S shows that the operations of twisting by the canonical sheaf on X and
on X 0 induce equal transformations on the set lD.

Let Li � SiL0�ÿni�. Then fLig is the orbit of L0 with respect to twisting by the
canonical sheaf on X . Changing, if necessary, the equivalence Db

coh�X � ÿ!�
Db

coh�X 0�, we can assume that fLig is the orbit of L0 with respect to twisting by
the canonical sheaf on X 0 too.

Since the canonical sheaf oX is either ample or antiample, the set of allUa, where a
runs over all elements in Hom�Li; Lj�; i; j 2 Z, is the basis of the Zariski topology on
X , hence, by Step 4, onX 0. This means that the canonical sheaf onX 0 is also ample or,
respectively, antiample (see [6]).

For all pairs �i; j� there are natural isomorphisms:

Hom�Li; Lj� � Hom�SiL0�ÿni�; SjL0�ÿnj��
� Hom�L0; SjÿiL0�ÿn�j ÿ i��� � Hom�L0; Ljÿi�:

They induce a ring structure in the graded algebra A over k with graded components
Ai � Hom�L0; Li�:

This algebra, being de¢ned intrinsically by the graded category structure, is
isomorphic to the coordinate algebra B of the canonical sheaf for X , i.e. to the
algebra with graded components Bi � HomX �OX ;o
iX �:

Indeed, Li � L0 
 o
iX , the isomorphism being given by tensoring by L0. It is a ring
homomorphism, because the functor of tensoring by L0 commutes with the Serre
functor by Proposition 1.3.

The same is true for the coordinate algebra B0 of the canonical sheaf for X 0. Even-
tually, we obtain an isomorphism Bÿ!� B0 of the canonical algebras on X and X 0.
Since the canonical sheaves on both X and X 0 are ample ( or antiample), both var-
ieties can be obtained by projectivization from the canonical algebras
X ÿ!� ProjBÿ!� ProjB0 ÿ!� X 0 This gives a biregular isomorphism between X
and X 0 as algebraic varieties. &
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3. Group of Exact Autoequivalences

It was explained in Section 1 that the set of isomorphism classes of exact
autoequivalences in a triangulated category D is a group. We denote this group
by AutD.

The problem of reconstructing of a variety from its derived category is closely
related to the problem of computing the group of exact autoequivalences for
Db

coh�X �. For ample canonical or anticanonical sheaf we have the following.

THEOREM 3.1. Let X be a smooth irreducible projective variety with an ample
canonical or anticanonical sheaf. Then the group of isomorphism classes of exact
autoequivalences Db

coh�X � ! Db
coh�X � is generated by the automorphisms of the

variety, the twists by invertible sheaves and the translations.
Proof. Assume for de¢niteness that the canonical sheaf is ample. Choose an

autoequivalence F . Since the class of invertible objects is de¢ned intrinsically with
respect to the graded structure of the category, it is preserved by any
autoequivalence. Moreover, the set of isomorphism classes of invertible objects
is transitive with respect to the action of the subgroup AutDb

coh�X � generated by
translations and twists. Indeed, by Propositions 2.2 and .4, all invertible objects
in Db

coh�X � are invertible sheaves up to translations. Any invertible sheaf can be
obtained from the trivial sheaf O by applying the functor of tensoring with this
invertible sheaf. Therefore, using twists with invertible sheaves and translations
we can assume that our functor F takes O to O. It follows that F takes any tensor
powero
iX of the canonical sheaf into itself, because, by Proposition 1.3, it commutes
with the Serre functor.

Therefore, our functor induces an automorphism of the graded coordinate algebra
A of the canonical sheaf, i.e. algebra with graded components Ai �
Hom�O; o
iX � � H0�o
iX �:

Any graded automorphism of the canonical algebra induces an automorphism of
the variety. Adjusting our functor F by an autoequivalence induced by an
automorphism of the variety we can assume that the automorphism of the canonical
algebra induces the trivial automorphism of the variety.

Such an automorphism is actually a scaling, i.e. it takes an element a 2 H0�o
iX � to
lia, for some ¢xed scalar l. Indeed, the graded ideal generated by any element
a 2 H0�o
iX � is stable with respect to the automorphism. It follows that a is multiplied
by a scalar. Then the linear operator in the graded component H0�o
iX � induced by
the automorphism should be scalar, say li. Since our automorphism is an algebra
homomorphism, it follows that li � li, for l � l1 (in case H0�oX � � 0, i.e. when
l1 is not de¢ned, we may substitute in the above argument Serre functor by a suf-
¢cient jth power of it such that H0�o
jX � 6� 0 and, respectively, the canonical algebra
by the corresponding Veronese subalgebra) .

To kill the scaling of the canonical algebra, we substitute functor F by an
isomorphic one. For this we take the subclass C of objects in D consisting of powers
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of the canonical sheaf C � fo
iX g; i 2 Z:As in Section 1, for any objectC in Cwe need
to choose an isomorphism of its image with some other object C 0. Our functor
preserves all objects from C. We choose C0 � C for any C in C and the nontrivial
isomorphism: if C � o
iX , then the isomorphism is lÿi � idC .

Then the new functor constructed by formula (1) induces the trivial automorphism
of the canonical ring.

Thus we have a functor, which takes the trivial invertible sheaf and any power of
the canonical sheaf to themselves and preserves the homomorphisms between all
these sheaves. Let us now show that such a functor is isomorphic to the identity
functor.

First, our functor takes pure sheaves to objects, isomorphic to pure sheaves,
because such objects can be characterized as the objects G in Db

coh�X � which have
trivial Homk�o
iX ;G�, for k 6� 0 and for suf¢ciently negative i. Again we can substi-
tute our functor by an isomorphic one which takes sheaves to pure sheaves. By Serre
theorem [11], the Abelian category of pure sheaves is equivalent to the category of
graded ¢nitely generated modules over the canonical algebra A modulo the sub-
category of ¢nite-dimensional modules. The equivalence takes a sheaf G into a mod-
uleM�G� with graded componentsMi�G� � Hom�o
ÿiX ; G�: Our functor F gives the
isomorphisms:

Hom�o
ÿiX ; G�ÿ!� Hom�F �o
ÿiX �; F �G�� � Hom�o
ÿiX ; F �G��:

Since F induces trivial action on the canonical algebra, these isomorphisms form
an isomorphism of A-modules M�G�ÿ!� M�F �G��:

It is natural with respect to G. Hence, we obtain an isomorphism of functors
Mÿ!� M� F .

Since modulo the subcategory of ¢nite-dimensional modulesM is an equivalence,
we have a functorial isomorphism idÿ!� Fon the subcategory of coherent sheaves.

Our system of objects fo
iX g has some nice properties with respect to the Abelian
category of coherent sheaves on X which allow us to extend the natural
transformation id ! F , from the core of the t-structure to a natural isomorphism
in the whole derived category. It was done in Proposition A.3 of the Appendix.

This ¢nishes the proof of the theorem. &

In the hypothesis of Theorem 3.1 the group AutDb
coh�X � is the semi-direct product

of its subgroups G1 � PicX �Z and G2 � AutX , Z being generated by the trans-
lation functor:

AutDb
coh�X � � AutX .< �PicX �Z�:

Indeed, during the course of the proof of the theorem, we in fact showed that any
element from AutDb

coh�X � could be decomposed as g � g1g2 with g1 2 G1 and
g2 2 G2. The subgroups G1 and G2 meet trivially in G, because the elements from
the latter take the structure sheaf O to itself, while those from the former do not.
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Group G1 is obviously preserved by conjugation by elements from G1and G2, hence
normal in G.

Appendix

This appendix is devoted to describing the conditions under which one can extend to
the whole category a natural isomorphism between the identity functor and an exact
autoequivalence in the bounded derived category Db�A�, provided one has such an
isomorphism in an Abelian category A (or even in a smaller subcategory, see
the proposition below).

To ¢nd our way through the technical details, we need a sequence of objects in the
Abelian category with some remarkable properties. For the case when the sequence
consists of powers of an invertible sheaf, these properties result from ampleness
of this sheaf. For this reason, we postulate them under the name of ampleness.

DEFINITION A.1. Let A be an Abelian category. We call a sequence of objects
fPig; i 2 ZW 0, ample if for every object X 2 A, there exists N such that for all
i < N the following conditions hold:

(a) the canonical morphism Hom�Pi; X � 
 Piÿ!X is surjective,
(b) Ext j�Pi; X � � 0 for any j 6� 0,
(c) Hom�X ; Pi� � 0.

Denote by Db�A� the bounded derived category of A. Let us consider A as a full
subcategory j : A ,!Db�A� in Db�A� in the usual way. We also consider a full sub-
category q : C ,!Db�A� with ObC � fPigi2ZW 0

. We shall show that if there exists
an exact autoequivalence F : Db�A�ÿ!Db�A� and an isomorphism of its restriction
to C with the identity functor idC, then this isomorphism can be uniquely extended
to an isomorphism of F with the identity functor idDb�A� in the whole Db�A�.

The idea is in reducing the number of nonzero cohomologies for an object by
killing the highest one by means of a surjective morphism from �Pi for suf¢ciently
negative i.

In the proof, we shall repeatedly use the following lemma (see [1]).

LEMMA A.2. Let g be a morphism from Y to Y 0 and suppose that these objects are
included into the following two exact triangles:

X ÿ!u Y ÿ!u Z ÿ!w X �1�
..
.
..
.
_ f

?yg ..
.
..
.
_h

..

.

..

.
_ f �1�

X 0 ÿ!u
0

Y 0 ÿ!u
0

Z0 ÿ!w
0

X 0�1�
If u0gu � 0, then there exist morphisms f : X ! X 0 and h : Z! Z0 such that the triple
�f ; g; h� is a morphism of triangles.
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If, in addition, Hom�X �1�; Z0� � 0, then the morphisms f and h, making com-
mutative the ¢rst and, respectively, the second square of the diagram, are unique.

PROPOSITIONA.3. LetA be an Abelian category possessing an ample sequencefPig
and let F : Db�A�ÿ!Db�A� be an exact autoequivalence. Suppose there exists an
isomorphism f : qÿ!� F jC (where q : C ,!Db�A� is the natural embedding). Then this
isomorphism can be uniquely extended to an isomorphism idÿ!� F in the wholeDb�A�.

Proof. Note that in view of the condition (b) from De¢nition A.1, X 2 Db�A� is
isomorphic to an object in A iff Homj�Pi;X � � 0 for j 6� 0 and i � 0.

This allows us to `extract' the Abelian subcategory A from Db�A� by means of the
sequence fPig. Then using surjective coverings Hom�Pi; X � 
 Piÿ!X by the stan-
dard technique from the theory of Abelian categories, one can extend f to an
isomorphism (which we denote by the same letter) f : j ÿ!� F jA, where j stands
for the natural embedding j : A ,!Db�A�. We skip the details of this part of the proof
because we don't need it in the main body of the paper.

Let us de¢ne fX �n� : X �n� ÿ!F �X �n�� � F �X ��n� for X 2 A by fX �n� � fX �n�: It is not
dif¢cult to show that, for any X andY inA and for any u 2 Extk�X ; Y �, the diagram

X ÿ!u Y �k�
fX
?y ?y fY �k�

F �X � ÿÿ!F �u� F �Y ��k�
�8�

is commutative. Indeed, since any element u 2 Extk�X ; Y � can be represented as the
Yoneda composition u � u1 . . . uk of elements ui 2 Ext1�Zi; Zi�1� for some objects
Zi, with Z1 � X ;Zk�1 � Y , then we can restrict ourselves to the case
u 2 Ext1�X ; Y �. Consider the following diagram:

Y ÿ! Z ÿ!p X ÿ!u Y �1�
fY
?y ?y fZ ..

.

..

.
_h

?y fY �1�

F �Y � ÿ! F �Z� ÿÿ!F �p� F �X � ÿÿ!F �u� F �Y ��1�
By axioms of triangulated categories, there exists a morphism h : X ! F �X � such
that �fY ; fZ; h� is a morphism of triangles. On the other hand, since
Hom�Y �1�; F �X �� � 0, by the lemma above h is a unique morphism such that
F �p� � fZ � h � p. As F �p�fZ � fXp, we conclude that h � fX . This implies com-
mutativity of the diagram (8) for k � 1.

We shall prove by induction over n the following statement. Consider the full
subcategory jn : Dn ,!Db�A� in Db�A� generated by objects which have nontrivial
cohomology in a (non¢xed) segment of length n. Then there is a unique extension
of f to a natural functorial isomorphism fn : jnÿ!F jDn .

Above, we have completed the ¢rst, n � 1, step of the induction.
Now take the step n � a; aX 1, for granted . Let X be an object in Da�1 and

suppose, for de¢niteness, that its cohomology objects Hp�X � are nontrivial only
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for p 2 �ÿa; 0�. Take Pi from the given ample sequence with suf¢ciently negative i
such that

�a� Homj�Pi; Hp�X �� � 0 for all p and for j 6� 0;

�b� there exists a surjective morphism u : P�ki ÿ!H0�X �;
�c� Hom�H0�X �; Pi� � 0:

�9�

Note that in view of condition (a) and the standard spectral sequence
Hom�Pi; X � !� Hom�Pi; H0�X ��. This means that we can ¢nd a morphism
u : P�ki ÿ!X such that the composition of u with the canonical morphism
Xÿ!H0�X � coincides with u. Consider an exact triangle

Y �ÿ1�ÿ!P�ki ÿ!
u

X ÿ!Y :

Denote by fi the morphism fZ for Z � P�ki . Since Y belongs toDa by the induction
hypothesis, the isomorphism fY is already de¢ned and the right-hand square of the
diagram

P�ki ÿ!u X ÿ! Y ÿ! P�ki �1�?y fi ..
.
..
.
_ fX

?y fY
?y fi �1�

F �P�ki � ÿÿ!
F �u�

F �X � ÿ! F �Y � ÿ! F �P�ki � �1�
�10�

is commutative.
Further, we have the following sequence of isomorphisms:

Hom�X ; F �P�ki �� � Hom�X ; P�ki � � Hom�H0�X �; P�ki � � 0:

Hence, applying Lemma A.2 to g equal fY , we obtain a unique morphism
fX : Xÿ!F �X � that preserves the commutativity of the above diagram.

It is clear from the de¢nition that fX is an isomorphism if so are fi and fY . For the
sequel, we need to show that fX does not depend on the choice of i and u. Suppose
we are given two surjective morphisms u1 : P�k1i1 ÿ!H0�X � and
u2 : P�k2i2 ÿ!H0�X �, where i1 and i2 are suf¢ciently negative to satisfy conditions (a),
(b) and (c).Then we can ¢nd suf¢ciently negative j and surjective morphisms
w1;w2 such that the following diagram commutes:

P�lj ÿ!w2 P�k2i2?y w1

?y u2

P�k1i1 ÿ!u1 H0�X �:

Denote by v1 : P�k1i1 ÿ!X ; v2 : P�k2i2 ÿ!X the morphisms corresponding to u1 and
u2. Since Hom�Pj; X � !� Hom�Pj; H0�X ��, we have v2w2 � v1w1.
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There is a morphism f : Yjÿ!Yi1 such that the triple �w1; id;f� is a morphism of
exact triangles:

P�lj ÿÿÿ!u1�w1 X ÿ!y Yj ÿ! P�lj �1�
w1

?y ?y id
?y f

?y w1 �1�

P�k1i1 ÿ!u1 X ÿ!y1 Yi1 ÿ! P�k1i1 �1�;
i.e. fy � y1.

Since Yj and Yi1 have cohomology in the segment �ÿa;ÿ1�, by the induction
hypothesis, the following square is commutative:

Yj ÿ!f Yi1
fYj
?y ?y f Yi1

F �Yj� ÿÿÿ!
F �f�

F �Yi1�:

Denote by f jX ; f
i1
X ; f

i2
X the unique morphisms constructed as above to make the

diagram (10) commutative for v equal, respectively v � v1w1; v � v1; v � v2. We
have:

F �y1�f jX � F �fy�f jX � F �f�F �y�f jX � F �f�FYjy � fYi1
fy � fYi1

y1:

It follows that f jX � f i1X . Similarly, since v1w1 � v2w2 we have f
j
X � f i2X . Therefore, the

morphism fX does not depend on the choice of i and of the morphism
u : P�ki ÿ!H0�X �.

By means of the translation functor, we obtain the only possible extension of fa to
Da�1 in the obvious way. Let us prove that it is indeed a natural transformation from
ja�1 to F jDa�1 , i.e. that for any morphism f : Xÿ!Y , X ;Y being in Da�1, the
following diagram commutes

X ÿ!f Y
fX
?y ?y fY

F �X � ÿÿÿ!F �f�
F �Y �:

�11�

We shall reduce the problem to the case when both X and Y are in Da.
There are two working possibilities that we shall utilize for this.

Case 1. Suppose that the upper bound, say 0 (without loss of generality), of
cohomology for X is greater than that for Y . Take a surjective morphism
u : P�ki ÿ!H0�X � satisfying (a), (b), (c) and construct the morphism v : P�ki ÿ!X
related to u as above. We have an exact triangle:

P�ki ÿ!
v1 X ÿ!a Zÿ!P�ki �1�:

If we take i suf¢ciently negative, then Hom�P�ki ; Y � � 0. Applying the functor
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Hom�ÿ; Y � to this triangle we found that there exists a morphism c : Zÿ!Y such
that f � ca. We know that fX , de¢ned above, satis¢es the equation F �a�fX � fZa:

If we assume that F �c�fZ � fYc; then

F �f�fX � F �c�F �a�fX � F �c�fZa � fYca � fYf:

This means that, for this case in verifying commutativity of (11), we can substitute
X by an object Z such that the upper bound of its cohomology is, by one, less than
that for X . Moreover, one can easily see that if X belongs to Dk, with k > 1, then
Z does to Dkÿ1, and if it is in D1 then so is Z.

Case 2. Suppose now that the upper bound, say 0 (again without loss of
generality), of cohomology for Y is greater than or equal to that for X . Take a
surjective morphism u : P�ki ÿ!H0�Y � with i satisfying (a), (b), (c) (with Y instead
of X ) and construct a morphism v : P�ki ÿ!Y related to u. Consider an exact triangle

P�ki ÿ!
v

Y ÿ!b Wÿ!P�ki :

Denote the composition b � f by c.
If we assume that F �c�fX � fWc; then, since F �b�fY � fWb, we have

F �b��fYfÿ F �f�fX � � fWbfÿ f �bf�fX � fWcÿ F �c�fX � 0: �12�

We again take i suf¢ciently negative so that Hom�X ; P�ki � � 0. As F �P�ki � is
isomorphic to P�ki , then Hom�X ; F �P�ki �� � 0. Applying the functor
Hom�X ; F �ÿ�� to the above triangle, we found that the composition with F �b� gives
an inclusion of Hom�X ; F �Y �� into Hom�X ; F �W ��. It follows from (15) that
fYf � F �f�fX .

Thus, for this case, in verifying commutativity of (11), we can substitute Y by an
object W such that the upper bound of its cohomology is less by one than that
for Y . If Y belongs to Dk; k > 1, then W does to Dkÿ1, if Y belongs to D1, then
so does W .

Suppose now that X and Y are in Da�1; a > 1. Depending on which case, (1) or
(2), we are in, we can substitute either X or Y by an object lying in Da. Then,
if necessary, repeating the procedure, we can lower the upper bound of the
cohomology of the object to such a point that the other case is applicable. Then
we shorten the cohomology segment of the second object and come to the situation
when both objects are in Da, i.e. to the induction hypothesis.

At every step of the construction we always made the only possible choice for the
morphism fX . This means that the natural transformation with required properties
is unique. This ¢nishes the proof of the proposition. &

Remark. As was mentioned by the reviewer the same argument as in the proof of
the proposition proves that for any pair �F1;F2� of exact functors in the category
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Db�A� such that F1jC and F2jC are isomorphic to the identity functor, the restriction
map

HomDb�A��F1;F2� ! HomC�F1jC;F2jC�

is bijective.
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