Euler continuants, N-spherical functors and periodic semi-orthogonal decompositions

M.Kapranov, based on joint work in progress with T.Dyckerhoff and V.Schechtman

Conference Bondal60, Moscow, December 15, 2021

Universal continued fractions

$$
\begin{gathered}
R_{N}=x_{1}-\frac{1}{x_{2}-\frac{1}{\ddots-\frac{1}{x_{N}}}} \in \mathbb{Q}\left(x_{1}, \cdots, x_{N}\right) \\
R_{2}=x_{1}-\frac{1}{x_{2}}=\frac{x_{1} x_{2}-1}{x_{2}} \\
R_{3}=x_{1}-\frac{1}{x_{2}-\frac{1}{x_{3}}}=\frac{x_{1} x_{2} x_{3}-x_{1}-x_{3}}{x_{2} x_{3}-1}
\end{gathered}
$$

NB: We can make the x_{i} noncommutative: $R_{n} \in$ any skew field containing $\mathbb{Q}\left\langle x_{1}, \cdots, x_{N}\right\rangle$.

Euler continuants (noncommutative, alternating)

$I \subset\{1, \cdots, N\}$ called cotwinned, if its complement is a (possibly empty) disjoint union of "twins" $\{i, i+1\}$. Depth of I is $\operatorname{dep}(I)=\#\left(\right.$ such twins). Ordered product x_{I} of $x_{i}, i \in I$.

$$
E_{N}\left(x_{1}, \cdots x_{N}\right):=\sum_{I \subset\{1, \cdots, N\} \text { Cotwinned }}(-1)^{\operatorname{dep}(I)} x_{I} \in \mathbb{Z}\left\langle x_{1}, \cdots, x_{N}\right\rangle
$$

$$
\begin{gathered}
E_{1}(x)=x, \\
E_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}-1 \\
E_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}-x_{1}-x_{3} \\
E_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}-x_{1} x_{2}-x_{1} x_{3}-x_{3} x_{4}+1, \quad \text { etc. }
\end{gathered}
$$

$\#$ of monomials $=\varphi_{N}($ Fibonacci) $1,2,3,5, \ldots$

Continuants and continued fractions

Noncommutative $R_{N}=x_{1}-\frac{1}{x_{2}-\frac{1}{\ddots \cdot-\frac{1}{x_{N}}}}$ is represented as

$$
\begin{gathered}
R_{N}=P_{N} Q_{N}^{-1}=\left(Q_{N}^{\prime}\right)^{-1} P_{N}^{\prime}, \quad \text { where } \\
P_{N}=E_{N}\left(x_{1}, \cdots, x_{N}\right), \quad Q_{N}=E_{N-1}\left(x_{2}, \cdots, x_{N}\right), \\
P_{N}^{\prime}=E_{N}\left(x_{N}, \cdots, x_{1}\right), \quad Q_{N}^{\prime}=E_{N-1}\left(x_{N}, \cdots, x_{2}\right) .
\end{gathered}
$$

Categorification: continuant complexes of adjoints

\mathcal{A}, \mathcal{B} pre-triangulated dg-categories, $F: \mathcal{A} \rightarrow \mathcal{B}$ dg-functor, $F^{*}: \mathcal{B} \rightarrow \mathcal{A}$ right adjoint (appropriate sense, also ∞-cat. version) counit : $F F^{*} \Rightarrow \operatorname{ld}_{\mathcal{B}}, \quad$ unit : $\operatorname{ld}_{\mathcal{A}} \Rightarrow F^{*} F$
A chain of iterated adjoints $\left(F_{1}, \cdots, F_{N}\right): F_{i}=F_{i-1}^{*}$. Suppose \exists.
$I=\left\{i_{1}<\cdots<i_{p}\right\} \subset\{1, \cdots, N\}$ cotwinned $\rightsquigarrow F_{I}=F_{i_{1}} \cdots F_{i_{p}}$
Composite functor makes sense!
N th continuant chain complex of functors

$$
\mathcal{E}_{N}\left(F_{1}, \cdots, F_{n}\right)=\left\{F_{1} \cdots F_{N} \rightarrow \bigoplus_{\operatorname{dep}(I)=1} F_{I} \rightarrow \bigoplus_{\operatorname{dep}(I)=2} F_{I} \rightarrow \cdots\right\}
$$

Differential made of counits.
Dually, the N th cochain complex $\mathcal{E}^{N}\left(F_{N}, \cdots, F_{1}\right)$ (reverse order).
Differential made of units.

Examples

$$
\mathcal{E}_{2}\left(F, F^{*}\right)=\left\{F F^{*} \xrightarrow{c} \mathrm{Id}\right\}, \quad \mathcal{E}^{2}\left(F^{*}, F\right)=\left\{\mathrm{Id} \xrightarrow{\mu} F^{*} F\right\}
$$

Totalizations (i.e. cones of c, u) $=$ spherical twist, cotwist. F a spherical functor: when these Tots are equivalences.

$$
\mathcal{E}_{3}\left(F, F^{*}, F^{* *}\right)=\left\{F F^{*} F^{* *} \longrightarrow F \oplus F^{* *}\right\}, \quad \mathcal{E}^{3}: \text { dually }
$$

Kuznetsov's definition of spherical functors: $\operatorname{Tot} \mathcal{E}_{3}=0$ and of \mathcal{E}^{3}.
$\mathcal{E}_{4}=\left\{F F^{*} F^{* *} F^{* * *} \rightarrow F F^{*} \oplus F F^{* * *} \oplus F^{* *} F^{* * *} \rightarrow \mathrm{Id}\right\}$.
Define the N th spherical twist and cotwist of a functor F :
$\mathbb{E}_{N}(F)=\operatorname{Tot} \mathcal{E}_{N}\left(F, F^{*}, \cdots, F^{(N-1)}\right)$
$\mathbb{E}^{N}(F)=\operatorname{Tot} \mathcal{E}^{N}\left(F^{(N-1)}, \cdots, F^{*}, F\right)$.
(Co)units allow us to categorify the continuants.

N -spherical functors

Def. A (dg-)functor F (s.t. adjoints \exists) is called N-spherical, if $\mathbb{E}_{N-1}(F)=\mathbb{E}^{N-1}(F)=0$.

Prop. In this case $\mathbb{E}_{N-2}(F)$ and $\mathbb{E}_{N}(F)$ are equivalences and similarly for $\mathbb{E}^{N-2}, \mathbb{E}^{N}$.

Reason: Categorification of classical formula ("continued fractions give best approximation")

$$
\begin{gathered}
R_{N+1}-R_{N}=\frac{-1}{Q_{N} Q_{N+1}^{\prime}}, \quad \text { or, equivalently } \\
Q_{N+1}^{\prime} P_{N}-P_{N+1}^{\prime} Q_{N}=-1, \quad \text { or, equivalently } \\
E_{N}\left(x_{1}, \cdots, x_{N}\right) E_{N}\left(x_{N+1}, \cdots, x_{2}\right)- \\
-E_{N+1}\left(x_{1}, \cdots, x_{N+1}\right) E_{N-1}\left(x_{N}, \cdots, x_{2}\right)=1
\end{gathered}
$$

Meaning of N -spherical for small N

2-spherical means $F=0$.
3-spherical means that F is an equivalence.
4-spherical means spherical in the usual sense: Kuznetsov's definition is via $\mathbb{E}_{3}=\mathbb{E}^{3}=0$. His arg. categorifies the identity

$$
(a b-1)(c b-1)-(a b c-a-c) b=1
$$

which is an instance of (!).
If N is odd and $F: \mathcal{A} \rightarrow \mathcal{B}$ is N-spherical, then \mathcal{A} is equivalent to \mathcal{B} via \mathbb{E}_{N-2} or \mathbb{E}_{N}.

Semi-orthogonal decompositions and gluing functors

[Bondal-K., 1990] \mathcal{C} triangulated $\supset \mathcal{A}, \mathcal{B}$ full triangulated. Said to form an SOD, (notation $\mathcal{C}=\langle\mathcal{A}, \mathcal{B}\rangle$ and \mathcal{A} called left admissible) if

$$
\mathcal{A}=\mathcal{B}^{\perp}:=\{A: \operatorname{Hom}(B, A)=0, \forall B \in \mathcal{B}\}, \quad \mathcal{B}={ }^{\perp} \mathcal{A},
$$

and any $C \in \mathcal{C}$ includes into into a triangle

$$
B \longrightarrow C \longrightarrow A \longrightarrow B[1], \quad A \in \mathcal{A}, B \in \mathcal{B}
$$

Gluing functor [Bondal, Kuznetsov-Lunts] $F: \mathcal{A} \rightarrow \mathcal{B}$ (if \exists) s.t. $\operatorname{Hom}_{\mathcal{C}}(A, B)=\operatorname{Hom}_{\mathcal{B}}(F(A), B)$.

In dg-setting: can construct an SOD with any F as $\mathcal{C}=S_{1}(F)$ $\mathrm{Ob}=\operatorname{data}(A, B, \gamma: B \rightarrow F(A)$ closed degree 0 morphism $)$.
First level of relative Waldhausen S-construction.
For stable ∞ : Dyckerhoff-K-Schechtman-Soibelman [2106.02873]

N-Periodic SODs

Iterated orthogonals
$\ldots{ }^{\perp \perp} \mathcal{A}=\mathcal{A}^{(-2)},{ }^{\perp} \mathcal{A}=\mathcal{A}^{(-1)}, \mathcal{A}=\mathcal{A}^{(0)}, \mathcal{A}^{\perp}=\mathcal{A}^{(1)}, \mathcal{A}^{\perp \perp}=\mathcal{A}^{(2)},$.
Can happen that $\mathcal{A}^{(N)}=\mathcal{A}$ (periodic SOD).
Thm. In the dg-setting, for a dg-functor F TFAE:
(i) The glued (along F) $\operatorname{SOD} \mathcal{C}=\langle\mathcal{A}, \mathcal{B}\rangle$ is N-periodic.
(ii) F is N-spherical.

For $N=4$ this is due to Halpern-Leinster and Shipman.
Rem. For any ∞-admissible chain of orthogonals (each $\left(\mathcal{A}^{(i)}, \mathcal{A}^{(i-1)}\right)$ is an SOD) we have mutation equivalences $\mathcal{A}^{(i)} \rightarrow \mathcal{A}^{(i+2)}$. The equivalences $\mathbb{E}_{N-2}(F), \mathbb{E}_{N}(F)$ are compositions of such mutations.

Why continued fractions?

Continued Fractions \sim compositions of FLT \sim of 2×2 matrices

$$
z \mapsto a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{N}-\frac{1}{z}}}} \text { is a FLT } \frac{a z+b}{c z+d}
$$

composition of

$$
z \mapsto a_{i}-\frac{1}{z}=\frac{a_{i} z-1}{z}, \quad \text { matrix }=\left[\begin{array}{cc}
a_{i} & -1 \\
1 & 0
\end{array}\right]
$$

Continuants and continued fractions \sim multiplying such matrices.

Matrix calculus for functors between SODs

(Dg- or stable ∞-context) Suppose:
$\mathcal{A}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle$, so $\mathcal{A} i \underset{\text { proj. }}{\stackrel{\text { emb. }}{\leftrightarrows}} \mathcal{A}$, with gluing functor $\varphi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$,
$\mathcal{B}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}\right\rangle$, so $\mathcal{B}_{i} \underset{\text { proj. }}{\stackrel{\text { emb }}{\leftrightarrows}} \mathcal{B}$, with gluing functor $\psi: \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$,
$F: \mathcal{A} \rightarrow \mathcal{B}:($ dg- or exact $\infty-$) functor $\stackrel{1: 1}{\sim} \neq$ "Enhanced matrix", i.e.,
Matrix of functors $\left[\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right], \quad F_{i j}: \mathcal{A}_{j} \rightarrow \mathcal{B}_{i}$ + Nat. transformations $\psi F_{1 j} \Rightarrow F_{2 j}, \quad F_{i 1} \Rightarrow F_{i 2} \varphi$
such that the two ways to paste a transformation $\psi F_{11} \Rightarrow F_{22} \varphi$ are the same ("commutative tetrahedron").

Such enhanced matrices can be composed.

Mutation coordinate change as a Cont. Fr.-matrix

Suppose $\mathcal{A} \subset \mathcal{C}$ is an admissible subcategory, i.e.,

$$
\mathcal{C}=\left\{\begin{array}{l}
\left\langle\mathcal{A},{ }^{\perp} \mathcal{A}\right\rangle, \text { with gluing functor } \varphi: \mathcal{A} \rightarrow^{\perp} \mathcal{A} \\
\left\langle\mathcal{A}^{\perp}, \mathcal{A}\right\rangle, \text { gluing functor then } \varphi^{*} M[1] .
\end{array}\right.
$$

$M: \mathcal{A}^{\perp} \xrightarrow{\sim}{ }^{\perp} \mathcal{A}$ mutation.
(Enhanced) matrix of $\left\langle\mathcal{A}^{\perp}, \mathcal{A}\right\rangle \xrightarrow{\mathrm{Id}_{\mathcal{C}}}\left\langle\mathcal{A},{ }^{\perp} \mathcal{A}\right\rangle$ is of Cont. Fr. type

	\mathcal{A}^{\perp}	\mathcal{A}
\mathcal{A}	$\varphi^{*} \circ M[1]$	Id
${ }^{\perp} \mathcal{A}$	M	0

This explains the relevance of continued fractions in the theory of SODs

Examples of N-periodic SOD's: quivers

Ex.1: A_{n}-quiver. $\mathcal{C}=D^{b}\left\{V_{1} \rightarrow \cdots \rightarrow V_{n}\right\}=\left\{V_{1}^{\bullet} \rightarrow \cdots \rightarrow V_{n}^{\bullet}\right\}$.

$$
\mathcal{A}=\left\{V^{\bullet} \rightarrow 0 \rightarrow \cdots \rightarrow 0\right\}, \quad \mathcal{B}=\left\{0 \rightarrow V_{2}^{\bullet} \rightarrow \cdots \rightarrow V_{n}^{\bullet}\right\}
$$

$\langle\mathcal{A}, \mathcal{B}\rangle$ is a $2(n+1)$-periodic SOD.
NB: Here \mathcal{C} is fractional CY: Serre ${ }^{n+1}=[-2]$. So any SOD is $2(n+1)$ periodic, as $\mathcal{A}^{\perp \perp}=\operatorname{Serre}(\mathcal{A})$.

Similarly for other quivers, e.g., \mathcal{C} consist of

$$
V_{1}^{\bullet} \rightarrow V_{2}^{\bullet} \rightarrow \cdots \rightarrow V_{n-2}^{\bullet} \nrightarrow V_{n}^{\bullet} \quad \mathcal{A}=\left\{\text { only } V_{1}^{\bullet} \neq 0\right\}
$$

Example: Waldhausen S-construction

Ex.2. $f: \mathcal{A} \rightarrow \mathcal{B}$ usual (4-)spherical functor \rightsquigarrow
$S_{n}(f)$ nth Waldhausen category. $\mathrm{Ob}=\left\{B_{1} \rightarrow \cdots \rightarrow B_{n} \rightarrow f(A)\right\}$. Has SOD

$$
\langle\mathcal{B}, \cdots, \mathcal{B}, \mathcal{A}\rangle=\langle\mathcal{D}, \mathcal{A}\rangle, \quad \mathcal{D}=\langle\mathcal{B}, \cdots, \mathcal{B}\rangle
$$

It is $2(n+1)$-periodic.
This is because $S_{\bullet}(f)=\left(S_{n}(f)\right)_{n \geq 0}$ is a paracyclic object, see [DKSS 2106.02873]. Paracyclic rotation τ_{n} acts on $S_{n}(f)$ with $\tau_{n}^{n+1}=$ "monodromy of the schober". Also the SOD
\langle first $\mathcal{B}, \mathcal{E}\rangle, \quad \mathcal{E}=\langle$ second $\mathcal{B}, \cdots, \mathcal{B}, \mathcal{A}\rangle$.

N-spherical objects

X smooth projective, $\omega=\Omega_{X}^{n}[n], n=\operatorname{dim} X, E \in D^{b}$ Coh $_{X}$ object.

$$
\begin{aligned}
\mathcal{A}=D^{b} & \text { (Vect) } \xrightarrow[F^{*}=\operatorname{Hom}(E,-)]{F=-\otimes E} \mathcal{B}=D^{b} \operatorname{Coh}_{X} \\
& \stackrel{F^{* *}=-\otimes E \otimes \omega}{\longleftrightarrow F^{(3)}=\operatorname{Hom}(E \otimes \omega,-)} \\
& \stackrel{F^{(4)}=-\otimes E \otimes \omega^{\otimes 2}}{\longleftrightarrow}
\end{aligned}
$$

E is called an N-spherical object, if $F=-\otimes E$ is an N-spherical functor.
Examples related to $X=\mathrm{CY} / \mathbb{Z}_{n}$ (generalized Enriques mflds).
[In progress].

Relation to other work

T. Kuwagaki [1902.04269]: N-periodic SOD are categorical analogs of irregular connections near $\infty \in \mathbb{C}$ with exponential data (Lissajous figure) being a 2:1 covering of S_{∞}^{1} with N switches.
Such as for \mathbb{C} - Schrödinger $\psi^{\prime \prime}=P(z) \psi, P(z) \in \mathbb{C}[z]$, deg $=N$.
P. Boalch [1501.00930] Moduli space of Stokes data for \mathbb{C}-Schrödinger (following Shibuya) related to Euler continuants.
M. Fairon, D. Fernandez [2105.04858] Continuants as group valued moment maps for some multiplicative quiver varieties. NB: by [Bezrukavnikov-Kapranov 1506.07050] these varieties parametrize microlocal sheaves on the nodal curve which is the complexification of the Lissajous figure above ($\mathbb{C P}^{1}$'s instead of circles).

