Homological Mirror Symmetry for chain type polynomials

Sasha Polishchuk, joint work with Umut Varolgunes

December 15, 2021

Invertible polynomials

Invertible polynomial $w \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$:

$$
w=\sum_{i=1}^{n} c_{i} \prod_{j=1}^{n} x_{j}^{a_{i j}}
$$

where $c_{i} \neq 0, A=\left(a_{i j}\right)$ is nondegenerate and w has an isolated critical point at the origin (can make $c_{i}=1$).

Dual invertible polynomial w^{\vee} : replace A by the transposed matrix A^{t}.

Group of symmetries $G_{w} \subset\left(\mathbb{C}^{*}\right)^{n}$ consists of diagonal transformations g such that $w(g x)=w(x)$.

Invertible polynomials

Invertible polynomials have been classified by Kreuzer and Skarke. Atomic types:

■ $w=x_{1}^{a_{1}}$ (Fermat)
■ $w=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots+x_{n-1}^{a_{n-1}} x_{n}+x_{n}^{a_{n}}$, where $a_{i}>1$ (chain)
■ $w=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots+x_{n-1}^{a_{n-1}} x_{n}+x_{n}^{a_{n}} x_{1}$, where $a_{i}>1$ (loop)
For chain polynomial $p_{a}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots+x_{n-1}^{a_{n-1}} x_{n}+x_{n}^{a_{n}}$, where $a=\left(a_{1}, \ldots, a_{n}\right)$, the dual is $p_{a^{\vee}}$, where $a^{\vee}=\left(a_{n}, \ldots, a_{1}\right)$. The group of diagonal symmetries of p_{a}, G_{a}, consists of $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$ such that

$$
\lambda_{1}^{a_{1}} \lambda_{2}=1, \ldots \lambda_{n-1}^{a_{n-1}} \lambda_{n}=1, \lambda_{n}^{a_{n}}=1
$$

so it is cyclic of order $a_{1} \ldots a_{n}$.

Mirror symmetry for invertible polynomials

LG Mirror Symmetry: $\left(\mathbb{C}^{n} / G_{w}, w\right)$ and $\left(\mathbb{C}^{n}, w^{\vee}\right)$ are mirror dual.
There are many levels of this duality. E.g., one can compare Frobenius algebras, Frobenius manifolds, Cohomological field theories. This involves Saito-Givental's theory on the B-side and Fan-Jarvis-Ruan-Witten theory on the A-side.

Today: will discuss the relevant equivalence of categories, i.e., homological mirror symmetry. Almost the entire talk will be about the B-side. For more details on the A-side, see Umut's talk available online.

B-side category

On the B-side to the pair $\left(\mathbb{C}^{n} / G_{w}, w\right)$ we associate the category of graded matrix factorizations.

Set $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Recall that a matrix factorization of w is a \mathbb{Z}_{2}-graded free S-module $P_{0} \oplus P_{1}$ equipped with odd S-linear operator δ such that $\delta^{2}=w \cdot$ id.

There is a natural \mathbb{Z}_{2}-dg-category of matrix factorizations: hom $\left(\left(P, \delta_{P}\right), Q, \delta_{P}\right)=\operatorname{Hom}_{0}(P, Q) \oplus \operatorname{Hom}_{1}(P, Q)$ where the differential is given by $d(f)=\delta_{Q} f-(-1)^{|f|} f \delta_{P}$.

If G is a finite group of symmetries of w then there is a natural definition of the category of G-equivariant matrix factorizations.

B-side category

To define a \mathbb{Z}-graded category of matrix factorizations one needs to use a \mathbb{C}^{*}-action. Note that an invertible polynomial is quasi-homogeneous, i.e., there exists a grading $\operatorname{deg}\left(x_{i}\right)=d_{i}>0$ such that w is homogeneous of degree d.

Consider the algebraic group $\Gamma_{w} \subset\left(\mathbb{C}^{*}\right)^{n}$ together with a natural homomorphism $\chi: \Gamma_{w} \rightarrow \mathbb{C}^{*}$ consisting of all $g \in\left(\mathbb{C}^{*}\right)^{n}$ such that $w(g x)=\chi(x) w(x)$. It is an extension of \mathbb{C}^{*} by G_{w}. Then there is a natural \mathbb{Z}-graded dg-category of Γ_{w}-equivariant matrix factorizations of w.

Equivalently, we can consider the abelian group L_{w} dual to Γ_{w}, and consider the category of L_{w}-graded matrix factorizations of w. We denote this category by $\mathrm{MF}_{g r}(w)$.

A-side category and equivalence

On the A-side, consider Fukaya-Seidel category $D F(w)$ of the map $w: \mathbb{C}^{n} \rightarrow \mathbb{C}$.
Objects are Lagrangians, such that outside of compact set they project to radial lines (the ray $\mathbb{R}_{<0}$ is not allowed).

Conjecture. For every invertible polynomial w, there is an equivalence $D F(w) \simeq \mathrm{MF}_{g r}\left(w^{\vee}\right)$.

Our result: proof for chain polynomials, i.e., $D F\left(p_{a}\right) \simeq \operatorname{MF}_{g r}\left(p_{a} \vee\right)$, where $a=\left(a_{1}, \ldots, a_{n}\right), a^{\vee}=\left(a_{n}, \ldots, a_{1}\right)$, under some (standard) assumptions on the A-side.

Exceptional collections

An object E in a triangulated category \mathcal{D} is called exceptional if $\operatorname{Ext}^{>0}(E, E)=0, \operatorname{Hom}(E, E)=k$, the ground field.
A collection $\left(E_{1}, \ldots, E_{n}\right)$ of exceptional objects is exceptional if $\operatorname{Ext}^{*}\left(E_{i}, E_{j}\right)=0$ for $i>j$ and all $E_{x t}{ }^{*}\left(E_{i}, E_{j}\right)$ are finite dimensional.

An exceptional collection is full if it generates \mathcal{D}, i.e., $\operatorname{Hom}\left(E_{i}, X\right)=0$ for all i implies that $X=0$.

Standard example: $(\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n))$ in $D^{b}\left(\operatorname{Coh} \mathbb{P}^{n}\right)$.
If $E x t^{>0}\left(E_{i}, E_{j}\right)=0$ for all i, j the collection is called strong. The category generated by a full strong exceptional collection is equivalent to $D^{b}(A-\bmod)$, where A is the Hom-algebra of the collection.

Aramaki-Takahashi collection

For a regular sequence $a_{1}, \ldots, a_{m} \in S$ such that $w=a_{1} b_{1}+\ldots+a_{m} b_{m}$, can define a Koszul matrix factorization

$$
\operatorname{stab}\left(a_{1}, \ldots, a_{m}\right)=\left(\bigwedge^{\bullet}\left(S^{m}\right), \sum_{i} a_{i} e_{i}^{*}+\sum_{i} b_{i} e_{i} \wedge ?\right)
$$

It depends only on the ideal $\left(a_{1}, \ldots, a_{m}\right)$ and corresponds to the module $S /\left(a_{1}, \ldots, a_{n}\right)$ under the equivalence of MF (w) with the singularity category of $S /(w)$.

In our case $w=p_{a}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots+x_{n-1}^{a_{n-1}} x_{n}+x_{n}^{a_{n}}$, and we consider the matrix factorization

$$
E=\left\{\begin{array}{lc}
\operatorname{stab}\left(x_{2}, x_{4}, \ldots, x_{n}\right), & n \text { even } \\
\operatorname{stab}\left(x_{1}, x_{3}, \ldots, x_{n}\right), & n \text { odd }
\end{array}\right.
$$

Aramaki-Takahashi collection

Recall that we consider L-graded matrix factorizations where the grading group L is generated by $\bar{x}_{1}, \ldots, \bar{x}_{n}$ with the relations

$$
a_{1} \bar{x}_{1}+\bar{x}_{2}=a_{2} \bar{x}_{2}+\bar{x}_{3}=\ldots=a_{n-1} \bar{x}_{n-1}+\bar{x}_{n}=a_{n} \bar{x}_{n}=\bar{p}
$$

Set $\tau=(-1)^{n} \bar{x}_{1}$ and consider the twist operation $M(i):=M(i \tau)$ on graded matrix factorizations.

Theorem ([Aramaki-Takahashi]). $\left(E, E(1), \ldots, E\left(\mu^{\vee}-1\right)\right)$ is a full exceptional collection in $M F_{g r}\left(p_{a}\right)$, where
$\mu^{\vee}=\mu\left(a^{\vee}\right)=a_{1} \ldots a_{n}-a_{1} \ldots a_{n-1}+a_{1} \ldots a_{n-2}-\ldots$ (thiis is the Milnor number of the dual singularity $p_{a^{\vee}}=0$).
We refer to $\left(E, \ldots, E\left(\mu^{\vee}-1\right)\right)$ as AT collection.

Ext-algebra

The shift functor T on $\mathrm{MF}_{g r}\left(p_{a}\right)$ satisfies $2 T=\bar{p}$. So we can define a bigger abelian group \widetilde{L} generated by L and T, and the Ext-algebra of the collection will be the \widetilde{L}-graded algebra

$$
\mathcal{B}_{a}:=\bigoplus_{\ell \in \widetilde{L}} \operatorname{Hom}^{0}(E, E(\ell))
$$

This algebra was computed by [Aramaki-Takahashi]. Assume for simplicity that $a_{1}>2$. Then

$$
\mathcal{B}_{a} \simeq \begin{cases}k\left[x_{1}, x_{3}, \ldots, x_{n-1}\right] /\left(x_{1}^{a_{1}}, \ldots, x_{n-1}^{a_{n-1}}\right), & n \text { even } \\ k\left[x_{0}, x_{2}, \ldots, x_{n-1}\right] /\left(x_{0}^{2}, x_{2}^{a_{2}}, \ldots, x_{n-1}^{a_{n-1}}\right), & n \text { odd }\end{cases}
$$

where $\operatorname{deg}\left(x_{0}\right)=\tau+T$.

Examples: $n \leq 3$

For $n=1, p=x_{1}^{a_{1}}, E=\operatorname{stab}\left(x_{1}\right)$.
The only nontrivial Ext in the AT-collection $\left(E, \ldots, E\left(a_{1}-2\right)\right)$ are given by $x_{0} \in \operatorname{Ext}^{1}(E(i), E(i+1))$, where $x_{0}^{2}=0$.
The element x_{0} comes from the extension of S-modules

$$
0 \rightarrow S /\left(x_{1}\right)\left(-\bar{x}_{1}\right) \xrightarrow{x_{1}} S /\left(x_{1}^{2}\right) \rightarrow S /\left(x_{1}\right) \rightarrow 0
$$

which gives rise to an exact triangle in the category of matrix factorizations with $S /\left(x_{1}\right)$ going to E, and $S /\left(x_{1}\right)\left(-\bar{x}_{1}\right)$ going to $E(1)$.

For $n=2, p=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}}, E=\operatorname{stab}\left(x_{2}\right)$.
The AT-collection $\left(E, E(1), \ldots, E\left(\mu^{\vee}-1\right)\right)$, where $\mu^{\vee}=a_{1} a_{2}-a_{1}+1$, is strong (no higher Ext's), and the Hom-algebra is generated by $x_{1}: E(i) \rightarrow E(i+1)$, with the relation $x_{1}^{a_{1}}=0$.

Examples: $n \leq 3$

For $n=3, p=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+x_{3}^{a_{3}}, E=\operatorname{stab}\left(x_{1}, x_{3}\right)$.
The AT-collection $\left(E, E(1), \ldots, E\left(\mu^{\vee}-1\right)\right)$ is no longer strong.
We have generators $x_{0} \in \operatorname{Ext}^{1}(E(i), E(i+1))$ and
$x_{2} \in \operatorname{Ext}^{2}\left(E(i), E\left(i+a_{1}\right)\right)$. (Note that
$\left.\bar{x}_{2}=\bar{p}-a_{1} \bar{x}_{1}=2 T+a_{1} \tau.\right)$
The corresponding A_{∞}-algebra is homotopically nontrivial. In fact, one can calculate that

$$
m_{a_{1}}\left(x_{0}, \ldots, x_{0}\right)=x_{2}
$$

Socle of the Ext-algebra: glimpse of a recursion

The algebra \mathcal{B}_{a} is Gorenstein, with 1-dimensional socle generated by $x_{1}^{a_{1}-1} x_{3}^{a_{3}-1} \ldots x_{n-1}^{a_{n-1}-1}$ if n is even (resp., $x_{0} x_{2}^{a_{2}-1} \ldots x_{n-1}^{a_{n-1}-1}$ if n is odd).

In the grading group L we have relations

$$
\bar{x}_{i} \equiv(-1)^{i} a_{1} a_{2} \ldots a_{i-1} \cdot \overline{x_{1}} \quad \bmod 2 T \cdot \mathbb{Z}
$$

So say for even n, the socle lives in degree $N \tau$, where
$N=\left(a_{1}-1\right)+a_{1} a_{2}\left(a_{3}-1\right)+\ldots+a_{1} a_{2} \ldots a_{n-2}\left(a_{n-1}-1\right)=\mu^{\vee}(a-)$ modulo $2 T \cdot \mathbb{Z}$, where $a-=\left(a_{1}, \ldots, a_{n-1}\right)$.

In other words, this gives a basis vector in Ext* $\left(E, E\left(\mu^{\vee}(a-)\right)\right)$ and $E x t^{*}(E, E(i))=0$ for $i>\mu^{\vee}(a-)$ in the AT-collection.

Recursion. I: VGIT embedding

Plan: 1) Identify the subcategory $\left\langle E, E(1), \ldots, E\left(\mu^{\vee}(a-)-1\right)\right\rangle$, generated by the initial segment of the AT-collection, with the previous category $\mathrm{MF}_{g r}\left(p_{a-}\right)$, where $a-=\left(a_{1}, \ldots, a_{n-1}\right)$.
2) Recover the entire AT-collection from this initial segment.

To do 1) we use the VGIT construction of [BFK], as explained in [Favero-Kaplan-Kelly].
Consider the polynomial $W=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\ldots+x_{n-1}^{a_{n-1}} x_{n}+x_{n}^{a_{n}} x_{n+1}^{a_{n}}$, invariant with respect to the \mathbb{G}_{m}-action on \mathbb{A}^{n+1} with the weights

$$
c_{1}=-1, c_{2}=a_{1}, c_{3}=-a_{1} a_{2}, \ldots, c_{n}= \pm a_{1} \ldots a_{n-1}, c_{n+1}=-c_{n}
$$

Main idea: on the open subset $U_{+}=\left(x_{n+1} \neq 0\right)$ the \mathbb{G}_{m}-action allows to reduce to $x_{n+1}=1$ which gives $W_{+}=p_{a}\left(x_{1}, \ldots, x_{n}\right)$, while on $U_{-}=\left(x_{n} \neq 0\right)$ the \mathbb{G}_{m}-action allows to reduce to $x_{n}=1$ which gives $W_{-}=p_{a-}\left(\underset{15}{ }, \ldots, x_{n-1}\right)+x_{n+1}^{a_{n}}$.

VGIT embedding

For every interval $I \subset \mathbb{Z}$, one defines the window subcategory $\mathcal{W}_{l} \subset \mathrm{MF}_{\Gamma}(W)$ consisting of matrix factorizations F such that $\left.F\right|_{0}$ has weights in I with respect to the above $\mathbb{G}_{m} \subset \Gamma$.
Set $\alpha_{n}=a_{1} \ldots a_{n}+a_{1} \ldots a_{n-2}+\ldots$, and consider the intervals

$$
I^{-}=\left[0, \alpha_{n-1}-1\right] \subset I^{+}=\left[0, a_{1} \ldots a_{n-1}+\alpha_{n-2}-1\right]
$$

Theorem($[F K K])$. The restriction to U_{+}induces an equivalence $\mathcal{W}_{1^{+}} \xrightarrow{\sim} \mathrm{MF}_{\Gamma_{+}}\left(W_{+}\right)=\mathrm{MF}_{g r}\left(p_{a}\right)$, while the restriction to U_{-} gives $\mathcal{W}_{1^{-}} \xrightarrow{\sim} \mathrm{MF}_{\Gamma_{-}}\left(W_{-}\right)=\mathrm{MF}_{g r}\left(p_{a_{-}}+x_{n+1}^{a_{n}}\right)$.
We also have a fully faithful embedding $\mathrm{MF}_{g r}(p(a-)) \rightarrow \mathrm{MF}_{g r}\left(p(a-)+x_{n+1}^{a_{n}}\right)$ sending F to $F \boxtimes \operatorname{stab}\left(x_{n+1}\right)$.

VGIT embedding

So we get a fully faithful embedding

$$
\Phi: \operatorname{MF}_{g r}\left(p_{a-}\right) \rightarrow \operatorname{MF}_{g r}\left(W_{-}\right) \simeq \mathcal{W}_{l^{-}} \subset \mathcal{W}_{l^{+}} \xrightarrow{\sim} \operatorname{MF}_{g r}\left(p_{a}\right) .
$$

Naive hope: the image of the AT-collection in $\mathrm{MF}_{g r}(p(a-))$ will give a segment of the AT-collection in $\mathrm{MF}_{g r}\left(p_{a}\right)$.

This is false. For example, for $n=2$, the AT-collection in $\operatorname{MF}_{g r}\left(p_{a_{1}, a_{2}}\right)$ consists of $E(i)$, where $E=\operatorname{stab}\left(x_{2}\right)$. But $\Phi($ AT-collection $)$ will consist of $F(i)$, where $F=\operatorname{stab}\left(x_{1}, x_{2}\right)$.

Mutations

For $\mathcal{C} \subset \mathcal{D}$ an admissible subcategory (e.g., generated by an exceptional collection) there exist left and right adjoints $\lambda_{\mathcal{C}}, \rho_{\mathcal{C}}: \mathcal{D} \rightarrow \mathcal{C}$ to the inclusion of \mathcal{C}. Consider the subcategories ${ }^{\perp} \mathcal{C}, \mathcal{C}^{\perp} \subset \mathcal{D}$, where $X \in{ }^{\perp} \mathcal{C}$ (resp., $X \in \mathcal{C}^{\perp}$) if $\operatorname{Hom}(X, \mathcal{C})=0$ (resp., $\operatorname{Hom}(\mathcal{C}, X)=0$).
For $X \in{ }^{\perp} \mathcal{C}$, we have an exact triangle $C \rightarrow X \rightarrow L_{\mathcal{C}}(X) \rightarrow \ldots$, where $C=\rho_{\mathcal{C}}(X)$ and $L_{\mathcal{C}}(X)=\lambda_{\mathcal{C}^{\perp}}(X)$. This triangle implies that $L_{\mathcal{C}}(X) \in \mathcal{C}^{\perp}$. The functor

$$
L_{\mathcal{C}}:{ }^{\perp} \mathcal{C} \rightarrow \mathcal{C}^{\perp}
$$

is an equivalence, called left mutation through \mathcal{C}.
The inverse functor is provided by the functor of the right mutation

$$
R_{\mathcal{C}}: \mathcal{C}^{\perp} \rightarrow{ }^{\perp} \mathcal{C}
$$

Dual exceptional collection

If E_{0}, \ldots, E_{n} is an exceptional collection then the left dual exceptional collection is $\left(F_{-n}, \ldots, F_{0}\right)$ given by
$F_{0}=E_{0}, F_{-1}=L_{E_{0}} E_{1}, F_{-2}=L_{E_{0}, E_{1}} E_{2}, \ldots, F_{-n}=L_{E_{0}, \ldots, E_{n-1}} E_{n}$.

It has the property $\operatorname{Hom}^{*}\left(E_{i}, F_{-j}\right)=0$ for $i \neq j$ while $\operatorname{Hom}^{*}\left(E_{i}, F_{-i}\right)$ is 1-dimensional.

Example. The left dual collection to $(\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n))$ on \mathbb{P}^{n} is $\left(\Omega^{n}(n), \ldots, \Omega^{1}(1), \mathcal{O}\right)$.

Dual of the inital segment of AT-collection

We want to relate $\left(E, \ldots, E\left(\mu^{\vee}(a-)-1\right)\right)$ in $\mathrm{MF}_{g r}\left(p_{a}\right)$ to the image of $\Phi: \mathrm{MF}_{g r}\left(p_{a-}\right) \rightarrow \mathrm{MF}_{g r}\left(p_{a}\right)$. This requires passing to a dual collection and an extra mutation.

Consider the subcategory $\mathcal{C}=\left\langle E\left(-\mu^{\vee}(a--)\right), \ldots, E(-1)\right\rangle$. Then the image of the AT-collection in $\mathrm{MF}_{\text {gr }}\left(p_{a_{-}}\right)$under Φ (suitably twisted) is left dual to the collection $L_{\mathcal{C}}\left(E, \ldots, E\left(\mu^{\vee}-1\right)\right)$.

This image (up to a twist) is given by $\left(F\left(\mu^{\vee}(a-)-1\right), \ldots, F(1), F\right)$, where

$$
F= \begin{cases}\operatorname{stab}\left(x_{1}, x_{3}, \ldots, x_{n-1}, x_{n}\right), & n \text { even, } \\ \operatorname{stab}\left(x_{2}, x_{4}, \ldots, x_{n-1}, x_{n}\right), & \text { nodd }\end{cases}
$$

Helices

If $\left(E_{1}, \ldots, E_{n}\right)$ is an exceptional collection in \mathcal{D} then it extends to a helix $\left(E_{i}\right)_{i \in \mathbb{Z}}$ in \mathcal{D}, where

$$
E_{i-n}=L_{E_{i-n+1}, \ldots, E_{i-1}} E_{i}, \quad E_{i+n}=R_{E_{i+1}, \ldots, E_{i+n-1}} E_{i}
$$

For $(\mathcal{O}, \ldots, \mathcal{O}(n))$ on \mathbb{P}^{n} this gives $(\mathcal{O}(i))_{i \in \mathbb{Z}}$ (up to a shift).
If $\left(E_{1}, \ldots, E_{n}\right)$ generates \mathcal{D} then $\mathcal{S}_{\mathcal{D}}\left(E_{i}\right) \simeq E_{i-n}$, where $\mathcal{S}_{\mathcal{D}}$ is the Serre functor on \mathcal{D}, i.e., $\operatorname{Hom}(X, Y)^{*} \simeq \operatorname{Hom}\left(Y, \mathcal{S}_{\mathcal{D}}(X)\right)$.

The Serre functor on the category $\mathrm{MF}_{g r}\left(p_{a}\right)$ has form $\mathcal{S}(F)=F\left(-\mu^{\vee}\right)[m]$ for some $m \in \mathbb{Z}$. Hence, the helix generated by the AT-collection is simply $(E(i))_{i \in \mathbb{Z}}$ (up to shift).

Helices and the AT-collections

Let $\left(E_{0}, \ldots, E_{M-1}\right)$ denote the AT-collection in $\mathcal{D}=\operatorname{MF}_{g r}\left(p_{a}\right)$, where $M=\mu^{\vee}$. We replace it and its initial segment (E_{0}, \ldots, E_{m-1}), where $m=\mu^{\vee}(a-)$, by the left dual collections $\left(F_{-M+1}, \ldots, F_{0}\right)$ and $\left(F_{-m+1}, \ldots, F_{0}\right)$. Let $\mathcal{C}=\left\langle F_{-m+1}, \ldots, F_{0}\right\rangle$.
Consider the functor $\lambda: \mathcal{D} \rightarrow \mathcal{C}$ left adjoint to the inclusion.
Key result: $\left(\lambda\left(F_{-M+1}\right), \ldots, \lambda\left(F_{0}\right)\right)$ is a segment of the helix generated by $\left(F_{-m+1}, \ldots, F_{0}\right)$ (note that $\lambda\left(F_{-i}\right)=F_{-i}$ for $0 \leq i \leq m-1)$, and the functor λ induces isomorphisms

$$
\operatorname{Ext}^{*}\left(F_{-j}, F_{-i}\right) \xrightarrow{\sim} \operatorname{Ext}^{*}\left(\lambda\left(F_{-j}\right), \lambda\left(F_{-i}\right)\right)
$$

for $i \leq j$ (from left to right).
Crucial fact for the proof: $\operatorname{Ext}^{*}\left(E_{0}, E_{m}\right)$ is 1-dimensional and $\operatorname{Ext}^{*}\left(E_{0}, E_{i}\right) \otimes \operatorname{Ext}^{*}\left(E_{i}, E_{m}\right) \rightarrow \operatorname{Ext}^{*}\left(E_{0}, E_{m}\right)$ is a perfect pairing.

Example: $\mathrm{M}=\mathrm{m}+1$

Assume Ext* $\left(E_{0}, E_{m}\right)$ is 1-dimensional and
$\operatorname{Ext}^{*}\left(E_{0}, E_{i}\right) \otimes \operatorname{Ext}^{*}\left(E_{i}, E_{m}\right) \rightarrow \operatorname{Ext}^{*}\left(E_{0}, E_{m}\right)$ is a perfect pairing.
Consider $\mathcal{C}=\left\langle E_{0}, \ldots, E_{m-1}\right\rangle$, and let $\lambda, \rho: \mathcal{D} \rightarrow \mathcal{C}$ denote the left and right adjoints to the inclusion.

Claim: $\lambda\left(L_{\mathcal{C}} E_{m}\right) \simeq \rho\left(E_{m}\right) \simeq \mathcal{S}_{\mathcal{C}}\left(E_{0}\right)$ and λ induces isomorphisms $\operatorname{Ext}^{*}\left(L_{\mathcal{C}} E_{m}, C\right) \rightarrow \operatorname{Ext}^{*}\left(\mathcal{S}_{\mathcal{C}}\left(E_{0}\right), C\right)$ for $C \in \mathcal{C}$.
Proof: $\operatorname{Hom}\left(C, \rho\left(E_{m}\right)\right) \simeq \operatorname{Hom}\left(C, E_{m}\right) \simeq \operatorname{Hom}\left(E_{0}, C\right)^{\vee} \simeq$ $\operatorname{Hom}\left(C, \mathcal{S}_{\mathcal{C}}\left(E_{0}\right)\right)$.

Now, if F_{-m}, \ldots, F_{0} is the dual collection to E_{0}, \ldots, E_{m}, then $\mathcal{C}=\left\langle F_{-m+1}, \ldots, F_{0}\right\rangle$ and $F_{-m}=L_{\mathcal{C}}\left(E_{m}\right)$.

Recursion: conclusion

Starting from the AT-collection $\left(E_{0}, \ldots, E_{m-1}\right)$ in $\operatorname{MF}_{g r}\left(p_{a-}\right)$ for $a-=\left(a_{1}, \ldots, a_{n-1}\right)$, we have a recipe for constructing a category with an exceptional collection, which will be equivalent to $\mathrm{MF}_{g r}\left(p_{a}\right)$ with its AT-collection.

Step 1. Extend $\left(E_{0}, \ldots, E_{m-1}\right)$ to a helix $\left(E_{i}\right)_{i \in \mathbb{Z}}$, and take any segment of length M, say, $\left(E_{0}, \ldots, E_{M-1}\right)$.
Step 2. Leave only Ext's from left to right (but remember the A_{∞}-structure).
Step 3. Pass to the right dual exceptional collection.

A-side

On the A-side we consider the perturbation
$x_{1}+p_{a}\left(x_{1}, \ldots, x_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}$ that has only nondegenerate critical points. There are
$\mu=\mu(a)=a_{1} \ldots a_{n}-a_{2} \ldots a_{n}+a_{3} \ldots a_{n}-\ldots$ critical points, and they form one orbit with respect to the group of rotations through multiples of $2 \pi / \mu$.

We consider a diffeomorphism φ given by the $2 \pi / \mu$ rotation inside some circle containing critical values and is identity outside a bigger circle, together with its lift as a symplectomorphism Φ of \mathbb{C}^{n}.

A-side

We take a path γ from a large regular value to a critical value, and consider the set of paths

$$
\gamma, \varphi(\gamma), \ldots, \varphi^{\mu-1}(\gamma) .
$$

Corresponding Lefshetz thimbles form an exceptional collection in the Fukaya-Seidel category $D F(a)$, which is an analog of the AT-collection.

Using Lefschetz bifibration method one can show the recursion that gives $D F\left(a_{1}, \ldots, a_{n}\right)$ from $D F\left(a_{2}, \ldots, a_{n}\right)$.

