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Invertible polynomials

Invertible polynomial w ∈ C[x1, . . . , xn]:

w =
n∑

i=1

ci

n∏
j=1

xaij
j ,

where ci 6= 0, A = (aij) is nondegenerate and w has an isolated
critical point at the origin (can make ci = 1).

Dual invertible polynomial w∨: replace A by the transposed
matrix At .

Group of symmetries Gw ⊂ (C∗)n consists of diagonal
transformations g such that w(gx) = w(x).
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Invertible polynomials

Invertible polynomials have been classified by Kreuzer and
Skarke. Atomic types:

w = xa1
1 (Fermat)

w = xa1
1 x2 + xa2

2 x3 + . . .+ xan−1
n−1 xn + xan

n , where ai > 1
(chain)
w = xa1

1 x2 + xa2
2 x3 + . . .+ xan−1

n−1 xn + xan
n x1, where ai > 1

(loop)
For chain polynomial pa = xa1

1 x2 + xa2
2 x3 + . . .+ xan−1

n−1 xn + xan
n ,

where a = (a1, . . . ,an), the dual is pa∨ , where a∨ = (an, . . . ,a1).
The group of diagonal symmetries of pa, Ga, consists of
(λ1, . . . , λn) ∈ (C∗)n such that

λa1
1 λ2 = 1, . . . λan−1

n−1 λn = 1, λan
n = 1,

so it is cyclic of order a1 . . . an.
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Mirror symmetry for invertible polynomials

LG Mirror Symmetry: (Cn/Gw ,w) and (Cn,w∨) are mirror dual.

There are many levels of this duality. E.g., one can compare
Frobenius algebras, Frobenius manifolds, Cohomological field
theories. This involves Saito-Givental’s theory on the B-side
and Fan-Jarvis-Ruan-Witten theory on the A-side.

Today: will discuss the relevant equivalence of categories, i.e.,
homological mirror symmetry. Almost the entire talk will be
about the B-side. For more details on the A-side, see Umut’s
talk available online.
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B-side category

On the B-side to the pair (Cn/Gw ,w) we associate the category
of graded matrix factorizations.

Set S = C[x1, . . . , xn]. Recall that a matrix factorization of w is a
Z2-graded free S-module P0 ⊕ P1 equipped with odd S-linear
operator δ such that δ2 = w · id.

There is a natural Z2-dg-category of matrix factorizations:
hom((P, δP),Q, δP) = Hom0(P,Q)⊕ Hom1(P,Q) where the
differential is given by d(f ) = δQf − (−1)|f |f δP .

If G is a finite group of symmetries of w then there is a natural
definition of the category of G-equivariant matrix factorizations.
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B-side category

To define a Z-graded category of matrix factorizations one
needs to use a C∗-action. Note that an invertible polynomial is
quasi-homogeneous, i.e., there exists a grading
deg(xi) = di > 0 such that w is homogeneous of degree d .

Consider the algebraic group Γw ⊂ (C∗)n together with a
natural homomorphism χ : Γw → C∗ consisting of all g ∈ (C∗)n

such that w(gx) = χ(x)w(x). It is an extension of C∗ by Gw .
Then there is a natural Z-graded dg-category of Γw -equivariant
matrix factorizations of w .

Equivalently, we can consider the abelian group Lw dual to Γw ,
and consider the category of Lw -graded matrix factorizations of
w . We denote this category by MFgr (w).
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A-side category and equivalence

On the A-side, consider Fukaya-Seidel category DF (w) of the
map w : Cn → C.
Objects are Lagrangians, such that outside of compact set they
project to radial lines (the ray R<0 is not allowed).

Conjecture. For every invertible polynomial w , there is an
equivalence DF (w) ' MFgr (w∨).

Our result: proof for chain polynomials, i.e.,
DF (pa) ' MFgr (pa∨), where a = (a1, . . . ,an), a∨ = (an, . . . ,a1),
under some (standard) assumptions on the A-side.
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Exceptional collections

An object E in a triangulated category D is called exceptional if
Ext>0(E ,E) = 0, Hom(E ,E) = k , the ground field.
A collection (E1, . . . ,En) of exceptional objects is exceptional if
Ext∗(Ei ,Ej) = 0 for i > j and all Ext∗(Ei ,Ej) are finite
dimensional.

An exceptional collection is full if it generates D, i.e.,
Hom(Ei ,X ) = 0 for all i implies that X = 0.

Standard example: (O,O(1), . . . ,O(n)) in Db(CohPn).

If Ext>0(Ei ,Ej) = 0 for all i , j the collection is called strong. The
category generated by a full strong exceptional collection is
equivalent to Db(A−mod), where A is the Hom-algebra of the
collection.
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Aramaki-Takahashi collection

For a regular sequence a1, . . . ,am ∈ S such that
w = a1b1 + . . .+ ambm, can define a Koszul matrix factorization

stab(a1, . . . ,am) = (
∧•

(Sm),
∑

i

ai ιe∗i +
∑

i

biei∧?)

It depends only on the ideal (a1, . . . ,am) and corresponds to
the module S/(a1, . . . ,an) under the equivalence of MF(w) with
the singularity category of S/(w).

In our case w = pa = xa1
1 x2 + xa2

2 x3 + . . .+ xan−1
n−1 xn + xan

n , and
we consider the matrix factorization

E =

{
stab(x2, x4, . . . , xn), n even,
stab(x1, x3, . . . , xn), n odd.
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Aramaki-Takahashi collection

Recall that we consider L-graded matrix factorizations where
the grading group L is generated by x1, . . . , xn with the relations

a1x1 + x2 = a2x2 + x3 = . . . = an−1xn−1 + xn = anxn = p.

Set τ = (−1)nx1 and consider the twist operation M(i) := M(iτ)
on graded matrix factorizations.

Theorem ([Aramaki-Takahashi]). (E ,E(1), . . . ,E(µ∨ − 1)) is a
full exceptional collection in MFgr (pa), where
µ∨ = µ(a∨) = a1 . . . an − a1 . . . an−1 + a1 . . . an−2 − . . . (thiis is
the Milnor number of the dual singularity pa∨ = 0).

We refer to (E , . . . ,E(µ∨ − 1)) as AT collection.
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Ext-algebra

The shift functor T on MFgr (pa) satisfies 2T = p. So we can
define a bigger abelian group L̃ generated by L and T , and the
Ext-algebra of the collection will be the L̃-graded algebra

Ba :=
⊕
`∈L̃

Hom0(E ,E(`)).

This algebra was computed by [Aramaki-Takahashi]. Assume
for simplicity that a1 > 2. Then

Ba '

{
k [x1, x3, . . . , xn−1]/(xa1

1 , . . . , xan−1
n−1 ), n even,

k [x0, x2, . . . , xn−1]/(x2
0 , x

a2
2 , . . . , xan−1

n−1 ), n odd,

where deg(x0) = τ + T .
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Examples: n ≤ 3

For n = 1, p = xa1
1 , E = stab(x1).

The only nontrivial Ext in the AT-collection (E , . . . ,E(a1 − 2))
are given by x0 ∈ Ext1(E(i),E(i + 1)), where x2

0 = 0.

The element x0 comes from the extension of S-modules

0→ S/(x1)(−x1)
x1- S/(x2

1 )→ S/(x1)→ 0

which gives rise to an exact triangle in the category of matrix
factorizations with S/(x1) going to E , and S/(x1)(−x1) going to
E(1).

For n = 2, p = xa1
1 x2 + xa2

2 , E = stab(x2).
The AT-collection (E ,E(1), . . . ,E(µ∨ − 1)), where
µ∨ = a1a2 − a1 + 1, is strong (no higher Ext’s), and the
Hom-algebra is generated by x1 : E(i)→ E(i + 1), with the
relation xa1

1 = 0.
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Examples: n ≤ 3

For n = 3, p = xa1
1 x2 + xa2

2 x3 + xa3
3 , E = stab(x1, x3).

The AT-collection (E ,E(1), . . . ,E(µ∨ − 1)) is no longer strong.
We have generators x0 ∈ Ext1(E(i),E(i + 1)) and
x2 ∈ Ext2(E(i),E(i + a1)). (Note that
x2 = p − a1x1 = 2T + a1τ .)

The corresponding A∞-algebra is homotopically nontrivial. In
fact, one can calculate that

ma1(x0, . . . , x0) = x2.
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Socle of the Ext-algebra: glimpse of a recursion

The algebra Ba is Gorenstein, with 1-dimensional socle
generated by xa1−1

1 xa3−1
3 . . . xan−1−1

n−1 if n is even (resp.,

x0xa2−1
2 . . . xan−1−1

n−1 if n is odd).

In the grading group L we have relations

x i ≡ (−1)ia1a2 . . . ai−1 · x1 mod 2T · Z.

So say for even n, the socle lives in degree Nτ , where

N = (a1−1)+a1a2(a3−1)+. . .+a1a2 . . . an−2(an−1−1) = µ∨(a−)

modulo 2T · Z, where a− = (a1, . . . ,an−1).

In other words, this gives a basis vector in Ext∗(E ,E(µ∨(a−)))
and Ext∗(E ,E(i)) = 0 for i > µ∨(a−) in the AT-collection.
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Recursion. I: VGIT embedding

Plan: 1) Identify the subcategory 〈E ,E(1), . . . ,E(µ∨(a−)− 1)〉,
generated by the initial segment of the AT-collection, with the
previous category MFgr (pa−), where a− = (a1, . . . ,an−1).
2) Recover the entire AT-collection from this initial segment.

To do 1) we use the VGIT construction of [BFK], as explained in
[Favero-Kaplan-Kelly].
Consider the polynomial
W = xa1

1 x2 + xa2
2 x3 + . . .+ xan−1

n−1 xn + xan
n xan

n+1, invariant with
respect to the Gm-action on An+1 with the weights

c1 = −1, c2 = a1, c3 = −a1a2, . . . , cn = ±a1 . . . an−1, cn+1 = −cn.

Main idea: on the open subset U+ = (xn+1 6= 0) the Gm-action
allows to reduce to xn+1 = 1 which gives W+ = pa(x1, . . . , xn),
while on U− = (xn 6= 0) the Gm-action allows to reduce to
xn = 1 which gives W− = pa−(x1, . . . , xn−1) + xan

n+1.
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VGIT embedding

For every interval I ⊂ Z, one defines the window subcategory
WI ⊂ MFΓ(W ) consisting of matrix factorizations F such that
F |0 has weights in I with respect to the above Gm ⊂ Γ.

Set αn = a1 . . . an + a1 . . . an−2 + . . ., and consider the intervals

I− = [0, αn−1 − 1] ⊂ I+ = [0,a1 . . . an−1 + αn−2 − 1].

Theorem([FKK]). The restriction to U+ induces an equivalence
WI+

∼- MFΓ+(W+) = MFgr (pa), while the restriction to U−
givesWI−

∼- MFΓ−(W−) = MFgr (pa− + xan
n+1).

We also have a fully faithful embedding
MFgr (p(a−))→ MFgr (p(a−) + xan

n+1) sending F to
F � stab(xn+1).
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VGIT embedding

So we get a fully faithful embedding

Φ : MFgr (pa−)→ MFgr (W−) ' WI− ⊂ WI+
∼- MFgr (pa).

Naive hope: the image of the AT-collection in MFgr (p(a−)) will
give a segment of the AT-collection in MFgr (pa).

This is false. For example, for n = 2, the AT-collection in
MFgr (pa1,a2) consists of E(i), where E = stab(x2). But
Φ(AT-collection) will consist of F (i), where F = stab(x1, x2).
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Mutations

For C ⊂ D an admissible subcategory (e.g., generated by an
exceptional collection) there exist left and right adjoints
λC , ρC : D → C to the inclusion of C. Consider the subcategories
⊥C, C⊥ ⊂ D, where X ∈ ⊥C (resp., X ∈ C⊥) if Hom(X , C) = 0
(resp., Hom(C,X ) = 0).

For X ∈ ⊥C, we have an exact triangle C → X → LC(X )→ . . .,
where C = ρC(X ) and LC(X ) = λC⊥(X ). This triangle implies
that LC(X ) ∈ C⊥. The functor

LC : ⊥C → C⊥

is an equivalence, called left mutation through C.
The inverse functor is provided by the functor of the right
mutation

RC : C⊥ → ⊥C.
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Dual exceptional collection

If E0, . . . ,En is an exceptional collection then the left dual
exceptional collection is (F−n, . . . ,F0) given by

F0 = E0, F−1 = LE0E1, F−2 = LE0,E1E2, . . . , F−n = LE0,...,En−1En.

It has the property Hom∗(Ei ,F−j) = 0 for i 6= j while
Hom∗(Ei ,F−i) is 1-dimensional.

Example. The left dual collection to (O,O(1), . . . ,O(n)) on Pn

is (Ωn(n), . . . ,Ω1(1),O).
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Dual of the inital segment of AT-collection

We want to relate (E , . . . ,E(µ∨(a−)− 1)) in MFgr (pa) to the
image of Φ : MFgr (pa−)→ MFgr (pa). This requires passing to a
dual collection and an extra mutation.

Consider the subcategory C = 〈E(−µ∨(a−−)), . . . ,E(−1)〉.
Then the image of the AT-collection in MFgr (pa−) under Φ
(suitably twisted) is left dual to the collection
LC(E , . . . ,E(µ∨ − 1)).

This image (up to a twist) is given by
(F (µ∨(a−)− 1), . . . ,F (1),F ), where

F =

{
stab(x1, x3, . . . , xn−1, xn), n even,
stab(x2, x4, . . . , xn−1, xn), nodd

.

20



Helices

If (E1, . . . ,En) is an exceptional collection in D then it extends
to a helix (Ei)i∈Z in D, where

Ei−n = LEi−n+1,...,Ei−1Ei , Ei+n = REi+1,...,Ei+n−1Ei .

For (O, . . . ,O(n)) on Pn this gives (O(i))i∈Z (up to a shift).

If (E1, . . . ,En) generates D then SD(Ei) ' Ei−n, where SD is the
Serre functor on D, i.e., Hom(X ,Y )∗ ' Hom(Y ,SD(X )).

The Serre functor on the category MFgr (pa) has form
S(F ) = F (−µ∨)[m] for some m ∈ Z. Hence, the helix generated
by the AT-collection is simply (E(i))i∈Z (up to shift).
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Helices and the AT-collections

Let (E0, . . . ,EM−1) denote the AT-collection in D = MFgr (pa),
where M = µ∨. We replace it and its initial segment
(E0, . . . ,Em−1), where m = µ∨(a−), by the left dual collections
(F−M+1, . . . ,F0) and (F−m+1, . . . ,F0). Let C = 〈F−m+1, . . . ,F0〉.
Consider the functor λ : D → C left adjoint to the inclusion.

Key result: (λ(F−M+1), . . . , λ(F0)) is a segment of the helix
generated by (F−m+1, . . . ,F0) (note that λ(F−i) = F−i for
0 ≤ i ≤ m − 1), and the functor λ induces isomorphisms

Ext∗(F−j ,F−i)
∼- Ext∗(λ(F−j), λ(F−i))

for i ≤ j (from left to right).

Crucial fact for the proof: Ext∗(E0,Em) is 1-dimensional and
Ext∗(E0,Ei)⊗ Ext∗(Ei ,Em)→ Ext∗(E0,Em) is a perfect pairing.
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Example: M=m+1

Assume Ext∗(E0,Em) is 1-dimensional and
Ext∗(E0,Ei)⊗ Ext∗(Ei ,Em)→ Ext∗(E0,Em) is a perfect pairing.
Consider C = 〈E0, . . . ,Em−1〉, and let λ, ρ : D → C denote the
left and right adjoints to the inclusion.

Claim: λ(LCEm) ' ρ(Em) ' SC(E0) and λ induces
isomorphisms Ext∗(LCEm,C)→ Ext∗(SC(E0),C) for C ∈ C.

Proof: Hom(C, ρ(Em)) ' Hom(C,Em) ' Hom(E0,C)∨ '
Hom(C,SC(E0)).

Now, if F−m, . . . ,F0 is the dual collection to E0, . . . ,Em, then
C = 〈F−m+1, . . . ,F0〉 and F−m = LC(Em).
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Recursion: conclusion

Starting from the AT-collection (E0, . . . ,Em−1) in MFgr (pa−) for
a− = (a1, . . . ,an−1), we have a recipe for constructing a
category with an exceptional collection, which will be equivalent
to MFgr (pa) with its AT-collection.

Step 1. Extend (E0, . . . ,Em−1) to a helix (Ei)i∈Z, and take any
segment of length M, say, (E0, . . . ,EM−1).
Step 2. Leave only Ext’s from left to right (but remember the
A∞-structure).
Step 3. Pass to the right dual exceptional collection.
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A-side

On the A-side we consider the perturbation
x1 + pa(x1, . . . , xn) : Cn → C that has only nondegenerate
critical points. There are
µ = µ(a) = a1 . . . an − a2 . . . an + a3 . . . an − . . . critical points,
and they form one orbit with respect to the group of rotations
through multiples of 2π/µ.

We consider a diffeomorphism ϕ given by the 2π/µ rotation
inside some circle containing critical values and is identity
outside a bigger circle, together with its lift as a
symplectomorphism Φ of Cn.
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A-side

We take a path γ from a large regular value to a critical value,
and consider the set of paths

γ, ϕ(γ), . . . , ϕµ−1(γ).

Corresponding Lefshetz thimbles form an exceptional collection
in the Fukaya-Seidel category DF (a), which is an analog of the
AT-collection.

Using Lefschetz bifibration method one can show the recursion
that gives DF (a1, . . . ,an) from DF (a2, . . . ,an).
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