Homological Mirror Symmetry for chain type polynomials

Sasha Polishchuk, joint work with Umut Varolgunes

December 15, 2021

Invertible polynomials

Invertible polynomial $w \in \mathbb{C}[x_1, \ldots, x_n]$:

$$w=\sum_{i=1}^n c_i \prod_{j=1}^n x_j^{a_{ij}},$$

where $c_i \neq 0$, $A = (a_{ij})$ is nondegenerate and *w* has an isolated critical point at the origin (can make $c_i = 1$).

Dual invertible polynomial w^{\vee} : replace *A* by the transposed matrix A^t .

Group of symmetries $G_w \subset (\mathbb{C}^*)^n$ consists of diagonal transformations g such that w(gx) = w(x).

Invertible polynomials

Invertible polynomials have been classified by Kreuzer and Skarke. Atomic types:

For chain polynomial $p_a = x_1^{a_1}x_2 + x_2^{a_2}x_3 + \ldots + x_{n-1}^{a_{n-1}}x_n + x_n^{a_n}$, where $a = (a_1, \ldots, a_n)$, the dual is $p_{a^{\vee}}$, where $a^{\vee} = (a_n, \ldots, a_1)$. The group of diagonal symmetries of p_a , G_a , consists of $(\lambda_1, \ldots, \lambda_n) \in (\mathbb{C}^*)^n$ such that

$$\lambda_1^{\mathbf{a}_1}\lambda_2=\mathbf{1},\ \ldots\lambda_{n-1}^{\mathbf{a}_{n-1}}\lambda_n=\mathbf{1},\ \lambda_n^{\mathbf{a}_n}=\mathbf{1},$$

so it is cyclic of order $a_1 \ldots a_n$.

Mirror symmetry for invertible polynomials

LG Mirror Symmetry: $(\mathbb{C}^n/G_w, w)$ and (\mathbb{C}^n, w^{\vee}) are mirror dual.

There are many levels of this duality. E.g., one can compare Frobenius algebras, Frobenius manifolds, Cohomological field theories. This involves Saito-Givental's theory on the B-side and Fan-Jarvis-Ruan-Witten theory on the A-side.

Today: will discuss the relevant equivalence of categories, i.e., homological mirror symmetry. Almost the entire talk will be about the B-side. For more details on the A-side, see Umut's talk available online.

On the B-side to the pair $(\mathbb{C}^n/G_w, w)$ we associate the category of graded matrix factorizations.

Set $S = \mathbb{C}[x_1, ..., x_n]$. Recall that a matrix factorization of w is a \mathbb{Z}_2 -graded free *S*-module $P_0 \oplus P_1$ equipped with odd *S*-linear operator δ such that $\delta^2 = w \cdot id$.

There is a natural \mathbb{Z}_2 -dg-category of matrix factorizations: hom $((P, \delta_P), Q, \delta_P) = \text{Hom}_0(P, Q) \oplus \text{Hom}_1(P, Q)$ where the differential is given by $d(f) = \delta_Q f - (-1)^{|f|} f \delta_P$.

If G is a finite group of symmetries of w then there is a natural definition of the category of G-equivariant matrix factorizations.

B-side category

To define a \mathbb{Z} -graded category of matrix factorizations one needs to use a \mathbb{C}^* -action. Note that an invertible polynomial is quasi-homogeneous, i.e., there exists a grading $\deg(x_i) = d_i > 0$ such that *w* is homogeneous of degree *d*.

Consider the algebraic group $\Gamma_w \subset (\mathbb{C}^*)^n$ together with a natural homomorphism $\chi : \Gamma_w \to \mathbb{C}^*$ consisting of all $g \in (\mathbb{C}^*)^n$ such that $w(gx) = \chi(x)w(x)$. It is an extension of \mathbb{C}^* by G_w . Then there is a natural \mathbb{Z} -graded dg-category of Γ_w -equivariant matrix factorizations of w.

Equivalently, we can consider the abelian group L_w dual to Γ_w , and consider the category of L_w -graded matrix factorizations of w. We denote this category by $MF_{gr}(w)$.

On the A-side, consider Fukaya-Seidel category DF(w) of the map $w : \mathbb{C}^n \to \mathbb{C}$. Objects are Lagrangians, such that outside of compact set they project to radial lines (the ray $\mathbb{R}_{<0}$ is not allowed).

Conjecture. For every invertible polynomial w, there is an equivalence $DF(w) \simeq MF_{gr}(w^{\vee})$.

Our result: proof for chain polynomials, i.e., $DF(p_a) \simeq MF_{gr}(p_{a^{\vee}})$, where $a = (a_1, \ldots, a_n)$, $a^{\vee} = (a_n, \ldots, a_1)$, under some (standard) assumptions on the A-side.

An object *E* in a triangulated category \mathcal{D} is called exceptional if $Ext^{>0}(E, E) = 0$, Hom(E, E) = k, the ground field. A collection (E_1, \ldots, E_n) of exceptional objects is exceptional if $Ext^*(E_i, E_j) = 0$ for i > j and all $Ext^*(E_i, E_j)$ are finite dimensional.

An exceptional collection is full if it generates \mathcal{D} , i.e., $Hom(E_i, X) = 0$ for all *i* implies that X = 0.

Standard example: $(\mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n))$ in $D^b(\operatorname{Coh} \mathbb{P}^n)$.

If $Ext^{>0}(E_i, E_j) = 0$ for all *i*, *j* the collection is called strong. The category generated by a full strong exceptional collection is equivalent to $D^b(A - mod)$, where *A* is the Hom-algebra of the collection.

Aramaki-Takahashi collection

For a regular sequence $a_1, \ldots, a_m \in S$ such that $w = a_1b_1 + \ldots + a_mb_m$, can define a Koszul matrix factorization

$$\operatorname{stab}(a_1,\ldots,a_m) = (\bigwedge^{\bullet}(S^m),\sum_i a_i\iota_{e_i^*} + \sum_i b_i e_i \wedge ?)$$

It depends only on the ideal (a_1, \ldots, a_m) and corresponds to the module $S/(a_1, \ldots, a_n)$ under the equivalence of MF(*w*) with the singularity category of S/(w).

In our case $w = p_a = x_1^{a_1}x_2 + x_2^{a_2}x_3 + \ldots + x_{n-1}^{a_{n-1}}x_n + x_n^{a_n}$, and we consider the matrix factorization

$$E = \begin{cases} \operatorname{stab}(x_2, x_4, \dots, x_n), & n \text{ even}, \\ \operatorname{stab}(x_1, x_3, \dots, x_n), & n \text{ odd}. \end{cases}$$

Aramaki-Takahashi collection

Recall that we consider *L*-graded matrix factorizations where the grading group *L* is generated by $\overline{x}_1, \ldots, \overline{x}_n$ with the relations

$$a_1\overline{x}_1+\overline{x}_2=a_2\overline{x}_2+\overline{x}_3=\ldots=a_{n-1}\overline{x}_{n-1}+\overline{x}_n=a_n\overline{x}_n=\overline{p}.$$

Set $\tau = (-1)^n \overline{x}_1$ and consider the twist operation $M(i) := M(i\tau)$ on graded matrix factorizations.

Theorem ([Aramaki-Takahashi]). $(E, E(1), \ldots, E(\mu^{\vee} - 1))$ is a full exceptional collection in $MF_{gr}(p_a)$, where $\mu^{\vee} = \mu(a^{\vee}) = a_1 \ldots a_n - a_1 \ldots a_{n-1} + a_1 \ldots a_{n-2} - \ldots$ (thiis is the Milnor number of the dual singularity $p_{a^{\vee}} = 0$).

We refer to $(E, \ldots, E(\mu^{\vee} - 1))$ as AT collection.

Ext-algebra

The shift functor *T* on $MF_{gr}(p_a)$ satisfies $2T = \overline{p}$. So we can define a bigger abelian group \widetilde{L} generated by *L* and *T*, and the Ext-algebra of the collection will be the \widetilde{L} -graded algebra

$$\mathcal{B}_{\boldsymbol{a}} := \bigoplus_{\ell \in \widetilde{L}} \operatorname{Hom}^{\mathsf{0}}(\boldsymbol{E}, \boldsymbol{E}(\ell)).$$

This algebra was computed by [Aramaki-Takahashi]. Assume for simplicity that $a_1 > 2$. Then

$$\mathcal{B}_{a} \simeq \begin{cases} k[x_{1}, x_{3}, \dots, x_{n-1}]/(x_{1}^{a_{1}}, \dots, x_{n-1}^{a_{n-1}}), & n \text{ even}, \\ k[x_{0}, x_{2}, \dots, x_{n-1}]/(x_{0}^{2}, x_{2}^{a_{2}}, \dots, x_{n-1}^{a_{n-1}}), & n \text{ odd}, \end{cases}$$

where $deg(x_0) = \tau + T$.

Examples: $n \leq 3$

For n = 1, $p = x_1^{a_1}$, $E = \operatorname{stab}(x_1)$. The only nontrivial Ext in the AT-collection $(E, \ldots, E(a_1 - 2))$ are given by $x_0 \in \operatorname{Ext}^1(E(i), E(i + 1))$, where $x_0^2 = 0$.

The element x_0 comes from the extension of *S*-modules

$$0 o S/(x_1)(-\overline{x}_1) \stackrel{x_1}{\longrightarrow} S/(x_1^2) o S/(x_1) o 0$$

which gives rise to an exact triangle in the category of matrix factorizations with $S/(x_1)$ going to E, and $S/(x_1)(-\overline{x}_1)$ going to E(1).

For n = 2, $p = x_1^{a_1} x_2 + x_2^{a_2}$, $E = \operatorname{stab}(x_2)$. The AT-collection $(E, E(1), \ldots, E(\mu^{\vee} - 1))$, where $\mu^{\vee} = a_1 a_2 - a_1 + 1$, is strong (no higher Ext's), and the Hom-algebra is generated by $x_1 : E(i) \to E(i+1)$, with the relation $x_1^{a_1} = 0$.

Examples: $n \leq 3$

For
$$n = 3$$
, $p = x_1^{a_1}x_2 + x_2^{a_2}x_3 + x_3^{a_3}$, $E = \operatorname{stab}(x_1, x_3)$.

The AT-collection $(E, E(1), \ldots, E(\mu^{\vee} - 1))$ is no longer strong. We have generators $x_0 \in \operatorname{Ext}^1(E(i), E(i + 1))$ and $x_2 \in \operatorname{Ext}^2(E(i), E(i + a_1))$. (Note that $\overline{x}_2 = \overline{p} - a_1 \overline{x}_1 = 2T + a_1 \tau$.)

The corresponding A_{∞} -algebra is homotopically nontrivial. In fact, one can calculate that

$$m_{a_1}(x_0,\ldots,x_0)=x_2.$$

Socle of the Ext-algebra: glimpse of a recursion

The algebra \mathcal{B}_a is Gorenstein, with 1-dimensional socle generated by $x_1^{a_1-1}x_3^{a_3-1}\dots x_{n-1}^{a_{n-1}-1}$ if *n* is even (resp., $x_0x_2^{a_2-1}\dots x_{n-1}^{a_{n-1}-1}$ if *n* is odd).

In the grading group *L* we have relations

$$\overline{x}_i \equiv (-1)^i a_1 a_2 \dots a_{i-1} \cdot \overline{x_1} \mod 2T \cdot \mathbb{Z}.$$

So say for even *n*, the socle lives in degree $N\tau$, where

$$N = (a_1 - 1) + a_1 a_2 (a_3 - 1) + \ldots + a_1 a_2 \ldots a_{n-2} (a_{n-1} - 1) = \mu^{\vee} (a - 1)$$

modulo $2T \cdot \mathbb{Z}$, where $a - = (a_1, \ldots, a_{n-1})$.

In other words, this gives a basis vector in $\text{Ext}^*(E, E(\mu^{\vee}(a-)))$ and $\text{Ext}^*(E, E(i)) = 0$ for $i > \mu^{\vee}(a-)$ in the AT-collection.

Recursion. I: VGIT embedding

Plan: 1) Identify the subcategory $\langle E, E(1), \ldots, E(\mu^{\vee}(a-)-1) \rangle$, generated by the initial segment of the AT-collection, with the previous category $MF_{gr}(p_{a-})$, where $a-=(a_1, \ldots, a_{n-1})$. 2) Recover the entire AT-collection from this initial segment.

To do 1) we use the VGIT construction of [BFK], as explained in [Favero-Kaplan-Kelly].

Consider the polynomial $W = x_1^{a_1}x_2 + x_2^{a_2}x_3 + \ldots + x_{n-1}^{a_{n-1}}x_n + x_n^{a_n}x_{n+1}^{a_n}$, invariant with respect to the \mathbb{G}_m -action on \mathbb{A}^{n+1} with the weights

 $c_1 = -1, c_2 = a_1, c_3 = -a_1 a_2, \dots, c_n = \pm a_1 \dots a_{n-1}, c_{n+1} = -c_n.$

Main idea: on the open subset $U_+ = (x_{n+1} \neq 0)$ the \mathbb{G}_m -action allows to reduce to $x_{n+1} = 1$ which gives $W_+ = p_a(x_1, \dots, x_n)$, while on $U_- = (x_n \neq 0)$ the \mathbb{G}_m -action allows to reduce to $x_n = 1$ which gives $W_- = p_{a-}(x_{1,2}, \dots, x_{n-1}) + x_{n+1}^{a_n}$.

VGIT embedding

For every interval $I \subset \mathbb{Z}$, one defines the window subcategory $\mathcal{W}_I \subset MF_{\Gamma}(W)$ consisting of matrix factorizations F such that $F|_0$ has weights in I with respect to the above $\mathbb{G}_m \subset \Gamma$.

Set $\alpha_n = a_1 \dots a_n + a_1 \dots a_{n-2} + \dots$, and consider the intervals

$$I^{-} = [0, \alpha_{n-1} - 1] \subset I^{+} = [0, a_1 \dots a_{n-1} + \alpha_{n-2} - 1].$$

Theorem([FKK]). The restriction to U_+ induces an equivalence $\mathcal{W}_{l^+} \xrightarrow{\sim} \mathsf{MF}_{\Gamma_+}(W_+) = \mathsf{MF}_{gr}(p_a)$, while the restriction to U_- gives $\mathcal{W}_{l^-} \xrightarrow{\sim} \mathsf{MF}_{\Gamma_-}(W_-) = \mathsf{MF}_{gr}(p_{a-} + x_{n+1}^{a_n})$.

We also have a fully faithful embedding $MF_{gr}(p(a-)) \rightarrow MF_{gr}(p(a-) + x_{n+1}^{a_n})$ sending *F* to $F \boxtimes \operatorname{stab}(x_{n+1})$. So we get a fully faithful embedding

$$\Phi:\mathsf{MF}_{gr}(p_{a-})\to\mathsf{MF}_{gr}(W_{-})\simeq\mathcal{W}_{l^{-}}\subset\mathcal{W}_{l^{+}}\xrightarrow{\sim}\mathsf{MF}_{gr}(p_{a}).$$

Naive hope: the image of the AT-collection in $MF_{gr}(p(a-))$ will give a segment of the AT-collection in $MF_{gr}(p_a)$.

This is false. For example, for n = 2, the AT-collection in $MF_{gr}(p_{a_1,a_2})$ consists of E(i), where $E = \operatorname{stab}(x_2)$. But Φ (AT-collection) will consist of F(i), where $F = \operatorname{stab}(x_1, x_2)$.

Mutations

For $C \subset D$ an admissible subcategory (e.g., generated by an exceptional collection) there exist left and right adjoints $\lambda_{\mathcal{C}}, \rho_{\mathcal{C}}: D \to C$ to the inclusion of C. Consider the subcategories ${}^{\perp}C, C^{\perp} \subset D$, where $X \in {}^{\perp}C$ (resp., $X \in C^{\perp}$) if $\operatorname{Hom}(X, C) = 0$ (resp., $\operatorname{Hom}(C, X) = 0$).

For $X \in {}^{\perp}C$, we have an exact triangle $C \to X \to L_{\mathcal{C}}(X) \to \ldots$, where $C = \rho_{\mathcal{C}}(X)$ and $L_{\mathcal{C}}(X) = \lambda_{\mathcal{C}^{\perp}}(X)$. This triangle implies that $L_{\mathcal{C}}(X) \in \mathcal{C}^{\perp}$. The functor

$$L_{\mathcal{C}}:{}^{\perp}\mathcal{C}\to \mathcal{C}^{\perp}$$

is an equivalence, called left mutation through C.

The inverse functor is provided by the functor of the right mutation

$$R_{\mathcal{C}}: \mathcal{C}^{\perp} \to {}^{\perp}\mathcal{C}.$$

Dual exceptional collection

If E_0, \ldots, E_n is an exceptional collection then the left dual exceptional collection is (F_{-n}, \ldots, F_0) given by

$$F_0 = E_0, \ F_{-1} = L_{E_0}E_1, \ F_{-2} = L_{E_0,E_1}E_2, \dots, \ F_{-n} = L_{E_0,\dots,E_{n-1}}E_n.$$

It has the property $\text{Hom}^*(E_i, F_{-j}) = 0$ for $i \neq j$ while $\text{Hom}^*(E_i, F_{-i})$ is 1-dimensional.

Example. The left dual collection to $(\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n))$ on \mathbb{P}^n is $(\Omega^n(n), \ldots, \Omega^1(1), \mathcal{O})$.

Dual of the inital segment of AT-collection

We want to relate $(E, ..., E(\mu^{\vee}(a-)-1))$ in $MF_{gr}(p_a)$ to the image of $\Phi : MF_{gr}(p_{a-}) \to MF_{gr}(p_a)$. This requires passing to a dual collection and an extra mutation.

Consider the subcategory $C = \langle E(-\mu^{\vee}(a--)), \dots, E(-1) \rangle$. Then the image of the AT-collection in $MF_{gr}(p_{a-})$ under Φ (suitably twisted) is left dual to the collection $L_{\mathcal{C}}(E, \dots, E(\mu^{\vee} - 1))$.

This image (up to a twist) is given by $(F(\mu^{\vee}(a-)-1),\ldots,F(1),F)$, where

$$F = \begin{cases} \operatorname{stab}(x_1, x_3, \dots, x_{n-1}, x_n), & n \text{ even}, \\ \operatorname{stab}(x_2, x_4, \dots, x_{n-1}, x_n), & n \text{ odd} \end{cases}$$

Helices

If (E_1, \ldots, E_n) is an exceptional collection in \mathcal{D} then it extends to a helix $(E_i)_{i \in \mathbb{Z}}$ in \mathcal{D} , where

$$E_{i-n} = L_{E_{i-n+1},...,E_{i-1}}E_i, \ E_{i+n} = R_{E_{i+1},...,E_{i+n-1}}E_i.$$

For $(\mathcal{O}, \ldots, \mathcal{O}(n))$ on \mathbb{P}^n this gives $(\mathcal{O}(i))_{i \in \mathbb{Z}}$ (up to a shift).

If (E_1, \ldots, E_n) generates \mathcal{D} then $\mathcal{S}_{\mathcal{D}}(E_i) \simeq E_{i-n}$, where $\mathcal{S}_{\mathcal{D}}$ is the Serre functor on \mathcal{D} , i.e., $\operatorname{Hom}(X, Y)^* \simeq \operatorname{Hom}(Y, \mathcal{S}_{\mathcal{D}}(X))$.

The Serre functor on the category $MF_{gr}(p_a)$ has form $S(F) = F(-\mu^{\vee})[m]$ for some $m \in \mathbb{Z}$. Hence, the helix generated by the AT-collection is simply $(E(i))_{i \in \mathbb{Z}}$ (up to shift).

Helices and the AT-collections

Let (E_0, \ldots, E_{M-1}) denote the AT-collection in $\mathcal{D} = \mathsf{MF}_{gr}(p_a)$, where $M = \mu^{\vee}$. We replace it and its initial segment (E_0, \ldots, E_{m-1}) , where $m = \mu^{\vee}(a-)$, by the left dual collections (F_{-M+1}, \ldots, F_0) and (F_{-m+1}, \ldots, F_0) . Let $\mathcal{C} = \langle F_{-m+1}, \ldots, F_0 \rangle$. Consider the functor $\lambda : \mathcal{D} \to \mathcal{C}$ left adjoint to the inclusion.

Key result: $(\lambda(F_{-M+1}), \dots, \lambda(F_0))$ is a segment of the helix generated by (F_{-m+1}, \dots, F_0) (note that $\lambda(F_{-i}) = F_{-i}$ for $0 \le i \le m - 1$), and the functor λ induces isomorphisms

$$\operatorname{Ext}^*(F_{-j},F_{-i}) \xrightarrow{\sim} \operatorname{Ext}^*(\lambda(F_{-j}),\lambda(F_{-i}))$$

for $i \leq j$ (from left to right).

Crucial fact for the proof: $Ext^*(E_0, E_m)$ is 1-dimensional and $Ext^*(E_0, E_i) \otimes Ext^*(E_i, E_m) \rightarrow Ext^*(E_0, E_m)$ is a perfect pairing.

Assume $\operatorname{Ext}^*(E_0, E_m)$ is 1-dimensional and $\operatorname{Ext}^*(E_0, E_i) \otimes \operatorname{Ext}^*(E_i, E_m) \to \operatorname{Ext}^*(E_0, E_m)$ is a perfect pairing. Consider $\mathcal{C} = \langle E_0, \dots, E_{m-1} \rangle$, and let $\lambda, \rho : \mathcal{D} \to \mathcal{C}$ denote the left and right adjoints to the inclusion.

Claim: $\lambda(\mathcal{L}_{\mathcal{C}}\mathcal{E}_m) \simeq \rho(\mathcal{E}_m) \simeq \mathcal{S}_{\mathcal{C}}(\mathcal{E}_0)$ and λ induces isomorphisms $\operatorname{Ext}^*(\mathcal{L}_{\mathcal{C}}\mathcal{E}_m, \mathcal{C}) \to \operatorname{Ext}^*(\mathcal{S}_{\mathcal{C}}(\mathcal{E}_0), \mathcal{C})$ for $\mathcal{C} \in \mathcal{C}$.

Proof: Hom $(C, \rho(E_m)) \simeq$ Hom $(C, E_m) \simeq$ Hom $(E_0, C)^{\vee} \simeq$ Hom $(C, S_{\mathcal{C}}(E_0))$.

Now, if F_{-m}, \ldots, F_0 is the dual collection to E_0, \ldots, E_m , then $C = \langle F_{-m+1}, \ldots, F_0 \rangle$ and $F_{-m} = L_C(E_m)$.

Starting from the AT-collection (E_0, \ldots, E_{m-1}) in $MF_{gr}(p_{a-})$ for $a-=(a_1, \ldots, a_{n-1})$, we have a recipe for constructing a category with an exceptional collection, which will be equivalent to $MF_{gr}(p_a)$ with its AT-collection.

Step 1. Extend (E_0, \ldots, E_{m-1}) to a helix $(E_i)_{i \in \mathbb{Z}}$, and take any segment of length *M*, say, (E_0, \ldots, E_{M-1}) . Step 2. Leave only Ext's from left to right (but remember the A_{∞} -structure).

Step 3. Pass to the right dual exceptional collection.

A-side

On the A-side we consider the perturbation $x_1 + p_a(x_1, ..., x_n) : \mathbb{C}^n \to \mathbb{C}$ that has only nondegenerate critical points. There are $\mu = \mu(a) = a_1 ... a_n - a_2 ... a_n + a_3 ... a_n - ...$ critical points, and they form one orbit with respect to the group of rotations through multiples of $2\pi/\mu$.

We consider a diffeomorphism φ given by the $2\pi/\mu$ rotation inside some circle containing critical values and is identity outside a bigger circle, together with its lift as a symplectomorphism Φ of \mathbb{C}^n .

A-side

We take a path γ from a large regular value to a critical value, and consider the set of paths

$$\gamma, \varphi(\gamma), \ldots, \varphi^{\mu-1}(\gamma).$$

Corresponding Lefshetz thimbles form an exceptional collection in the Fukaya-Seidel category DF(a), which is an analog of the AT-collection.

Using Lefschetz bifibration method one can show the recursion that gives $DF(a_1, \ldots, a_n)$ from $DF(a_2, \ldots, a_n)$.