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Abstract

Keller introduced a notion of quotient of a differential graded category modulo a full differential
graded subcategory which agrees with Verdier’s notion of quotient of a triangulated category modulo
a triangulated subcategory. This work is an attempt to further develop his theory.
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Conventions.We fix a commutative ring and write® instead of®; and “DG category”
instead of “differential gradeé-category.” If A is a DG category, we write “DG module

over A" instead of “DG functor fromA to the DG category of complexes bfmodules”

(more details on the DG module terminology can be found in Appendix C). Unless
stated otherwise, all categories are assumed to be small. Triangulated categories are
systematically viewed d&-graded categories (see A.1). A triangulated subcategfaf/a
triangulated subcategotyis required to be full, but we do not require it to be strictly full

(i.e., to contain all objects df isomorphic to an object @’). In the definition of quotient

of a triangulated category we do not require the subcategory to be thick (see A.2, A.3).

1. Introduction

1.1. It has been clear to the experts since the 1960s that Verdier’s notions of derived
category and triangulated category [56,57] are not quite satisfactory: when you pass to the
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homotopy category you forget too much. This is why Grothendieck developed his derivator
theory [17,40].

A different approach was suggested by Bondal and Kapranov [4]. According to [4], one
should work with pretriangulated DG categories rather than with triangulated categories
in Verdier’s sense (e.g., with the DG category of bounded above complexes of projective
modules rather than the bounded above derived category of modules). Hopefully, the part
of homological algebra most relevant for algebraic geometry will be rewritten using DG
categories or rather the more flexible notiomaf,-category due to Fukaya and Kontsevich
(see [14,15,24,25,30,31,33,36,37]), which goes back to Stasheff’s notidn, edlgebra
[51,52].

One of the basic tools developed by Verdier [56,57] is the notion of quotient of
a triangulated category by a triangulated subcategory. Keller [23] has started to develop
a theory of quotients in the DG setting. This work is an attempt to further develop his
theory. | tried to make this article essentially self-contained, in particular, it can be read
independently of [23].

The notion of quotient in the setting df,.-categories is being developed by Kontsevich
and Soibelman [33] and Lyubashenko and Ovsienko [38].

1.2. The basic notions related to that of DG category are recalled in Section 2 het
a DG category an#§ c A a full DG subcategory. Letl" denote the triangulated category
associated tod (we recall its definition in 2.4). AG quotient(or simply aquotien) of A
modulo’ is a diagram of DG categories and DG functors

A IS¢ (1.1)

such that the DG functad — A is a quasi-equivalence (see 2.3 for the definition), the
functor Ho.A) — Ho(C) is essentially surjective, and the functdf — C' induces an
equivalenced" /B — CU. Keller [23] proved that a DG quotient always exists (recall
that our DG categories are assumed to be small, otherwise even the existettt3f

is not clear). We recall his construction of the DG quotient in Section 4, and give a new
construction in Section 3.

The new construction is reminiscent of but easier than Dwyer—Kan localization [11-13].
Itis very simple under a certain flathess assumption (which is satisfied automatically if one
works over a field): one just kills the objects Bf(see 3.1). Without this assumption one
has to first replacel by a suitable resolution (see 3.5).

The idea of Keller’s original construction of the DG quotient (see Section 4) is to take
the orthogonal complement & as a DG quotient, but as the orthogonal complement of
B in A is not necessarily big enough he takes the complement ndt ft in its ind-
versionA studied by him in [22]. The reason why it is natural to consider the orthogonal
complement in4 is explained in 1.5. Of course, instead df one can use the pro-
versionA.

Keller's construction using4 (respectively. A) is convenient for considering right
(respectively left) derived DG functors (see Section 5).

In 6.1 we show that the DG quotient of modulo B is “as unique as possible,” so
one can speak ahheDG quotient of.4 modulo B (“thhe” is the homotopy version of
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“the”). In 1.6.2 and 1.7 we give another explanation of uniqueness. Unfortunately, both
explanations are somewhat clumsy.

1.3. Hom complexes of the DG quotient

We are going to describe them first as objects of the derived categarymafdules
(see 1.3.1), then in a stronger sense (see 1.3.2). We will do it by successive approximation
starting with less precise and less technical statements.

1.3.1. Each construction of the DG quotient shows thaXifY € Ob.A, X,Y e ObA,
X+ X, Y+ Y then the complex

Home (£ (), &(¥)) (1.2)

viewed as an object of the derived category of complexek-wfodules is canonically
isomorphic to

Condhy &p ix — Hom(X, 1)), (1.3)

wherehy is the right DGB-module defined byty (Z) := Hom(Z, Y), Z € B, andhy is the

left DG B-module defined by x (Z) := Hom(X, Z), Z € B. One can computgy ég hx
using a semi-free resolution b orzx (see C.8 for the definition of “semi-free”), and this
corresponds to Keller's construction of the DG quotienklfor ~x is homotopically flat

overk (see 3.3 for the definition of “homotopically flat”) then one can commrtég hx
using the bar resolution, and this corresponds to the new construction of the DG quotient
(see Remarks 3.6(i)).

1.3.2. Let D(A) denote the derived category oght DG modules overd. By 2.7
the functorD(A) — D(A) is an equivalence, so for fixell € Ob.A the complex (1.2)
defines an object ab(A). This object is canonically isomorphic to (1.3). Quite similarly,
for fixed X € ObA the complex (1.2) viewed as an object DiA°) is canonically
isomorphic to (1.3). 14 is homotoplcally flat ovek (see 3.3) then (1.2) and (1.3) are
canonically isomorphic inD (4 @i A°) (see Remarks 3.6(i)). (Without the homotoplcal

flatness assumption they are canonically isomorphic as objects of the caﬂs(q«brgl A°)
defined in E.5.)

1.3.3. Let (1.2) denote (1.2) viewed as an object b{.A). The morphism (1.3) —
(1.2)y mentioned in 1.3.1 and 1.3.2 is uniquely characterized by the following property:
the compositionhy := Hom(?,Y) — (1.3)y — (1.2), equals the obvious morphism
Hom(?,Y) — (1. 2)Y To prove the existence and uniqueness of such a morphism, we
may assume thatl = A and the DG functord — A equals ids. Rewrite the DG
A°-moduleX — hy ®5 hx asLIndResiy (here ResD(A) — D(B) is the restriction
functor andL Ind is its left adjoint, i.e., the derived induction functor) and notice that
Hom(L IndResiy, M) = 0 for every DG.4°-module M with ResM = 0, in particular
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for M = (1.2)y. As Res(1.2) = 0 and ResL Ind >~ id, the fact that our morphism
(1.3)y — (1.2), is an isomorphism is equivalent to the implication €} (ii) in the
following proposition.

1.4. Proposition.Let £:. 4 — C be a DG functor and3 c A a full DG subcategory
such that the objects @&f(8) are contractible andHo(¢) : Ho(A) — Ho(C) is essentially
surjective. Then the following properties are equivalent

(i) £€:A— CisaDG quotient of4 modulos;
(i) for everyY € Athe DG.A°-module

X > CongHomy (X, Y) — Homg (§(X), £(Y))) (1.4)

is in the essential image of the derived induction funétémd : D(B) — D(A);
(i) for everyX € A the DG.4-module

Y > CongHomy (X, Y) — Homg (§(X), £(Y)))
is in the essential image @find: D(B°) — D(A°).
The proof is contained in 9.3.

Remark. A DG A°-module M belongs to the essential image of the derived induction
functor L Ind: D(B) — D(A) if and only if the morphismL IndResM — M is a quasi-
isomorphism.

1.5. On Keller’s construction of the DG quotient

As explained in 10.2, the next proposition follows directly from Proposition 1.4. The
symbol Ho below denotes the graded homotopy category (see 2.3).

1.5.1. Proposition.Let& : A — C be a DG quotient of4 moduloBB and leté*: D(C) —
D(A) be the corresponding restriction functor. Then

(a) the compositiotHo (C) — D(C) — D(A) is fully faithful;

(b) an object of D(A) belongs to its essential image if and only if it is isomorphic to
Con€L IndRes: — a) for somez € Ho' (A) € D(A), whereL Ind (respectiveljRes)
is the derived inductiofrespectively restrictionfunctor corresponding tés — A.

Remark. In fact, the whole functoD(C) — D(A) is fully faithful (see Theorem 1.6.2(ii)
or Proposition 4.6(ii)).

1.5.2.S0if¢: A — Cis a DG quotient then HQC) identifies with a full subcategory
of D(A). But D(A) = Ho'(A), whereA is the DG category of semi-free D@°-modules
(see C.8). Thus, HGC) identifies with the graded homotopy category of a certain DG
subcategory of4. This is the DG quotientl ,” B from Section 4.
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1.6. Universal property of the DG quotient

1.6.1. 2-category of DG categories

There is areasonable way to organize all (small) DG categories into a 2-ca@goay,
i.e., to associate to each two DG categorgs.A, acategory of quasi-functorB( Az, A7)
and to define weakly associative composition funct@rcds, A2) x T (A2, A3) —
T (A1, A3) so that for every DG categoryl there is a weak unit object iff (A, A).
Besides, eaclT' (A1, A2) is equipped with a gradekicategory structure, and ifly is
pretriangulated in the sense of 2.4 tHe(1, A») is equipped with a triangulated structure.
We needGcatto formulate the universal property 1.6.2 of the DG quotient. The definition
of DGcatwill be recalled in Appendix E. Here are two key examples.

Examples.

(i) Let K be a DG model of the derived category of complexeg-aiodules (e.g.KC =
the DG category of semi-free DGmodules). Therf (A, K) is the derived category
of DG A-modules. (IfKC is not small therf" (A, K) is defined to be the direct limit of
T (A, K for all small full DG subcategorie§’ C £.)

(ii) If Ap is the DG category with one object whose endomorphism DG algebra gquals
thenT (Ao, A) is the graded homotopy category d).

It is clear from the definition off (A1, A2) (see Appendix E) or from example (ii)
above that® € T (A1, A2) induces a graded functor Hod1) — Ho'(A2) and thus Ho
becomes a (non-strict) 2-functor frobGcatto that of graded categories. It is also clear
from Appendix E that one has a bigger 2-functbr> A" from DGcatto the 2-category
of triangulated categories (with triangulated functors as 1-morphisms).

A DG functor F: A; — A, defines an objectbr € T (A1, A2) (see E.7.1). Thus,
one gets a 2-functddGcataive — DGcat, whereDGcatajve is the 2-category with DG
categories as objects, DG functors as 1-morphisms, and degree zero morphisms of DG
functors as 2-morphisms. K is a quasi-equivalence theby is invertible. So a diagram
Ay & A £ 45 still defines an object df' (As, A2). Allisomorphism classes of objects
of T (A1, A2) come from such diagrams (see E.7.2 and B.5).

1.6.2. Main Theorem.Let B be a full DG subcategory of a DG categady For all pairs
(C, &), whereC is a DG category ang € T (A, C), the following properties are equivalent

(i) the functorHo(A) — Ho(C) corresponding to is essentially surjective, and the
functor A" — C corresponding t& induces an equivalencd! /B — C";

(i) for every DG categoryC the functorT (C, K) — T (A, K) corresponding t& is fully
faithful and® e T (A, K) belongs to its essential image if and only if the imageof
in T(B, K) is zero.

A pair (C, &) satisfying(i), (ii) exists and is unique in the sense of DGcat.
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A weaker version of the universal property was proved by Keller, who worked not
with the 2-categoryDGcat but with the category whose morphisms are 2-isomorphism
classes of 1-morphisms BiGcat(see [23, Theorem 4.6, Proposition 4.1, and Lemma 4.2]).
Theorem 1.6.2 will be proved in 11.2 using the following statement, which easily follows
(see 11.1) from Proposition 1.4.

1.6.3. Proposition.Let &£ : A — C be a quotient of a DG categord modulo a full DG
subcategonys. If a DG categoryk is homotopically flat ovek thené Q idx: A K —
C ® K is a quotient of the DG categotyt ® K moduloB ® K.

1.7. More on uniqueness

Let (C1, 1) and(Ca, &2), & € T (A, C;), be DG quotients oA moduloB. Then one has
an object® € T (C1, C2) defined up to unique isomorphism. In fact, the graded category
T (C1,C2) comes from a certain DG category (three choices of which are mentioned in E.8)
and one would like to lifid to a homotopically canonical object of this DG category. The
following argument shows that this is possible under reasonable assumptidasaritl
C» are homotopically flat over in the sense of 3.3, these assumptions hold for the Keller
model (see E.8, in particular (E.4)).

Suppose thaf' (A, C;) (respectivelyT (C1,C2)) is realized as the graded homotopy
category of a DG categorG(A, C;) (respectivelyDG(C1, C2)) and suppose that the
graded functor

T(A,C1) x T(C1,C2) x T(A, C2)° — {Gradedk-module$
defined by(F1, G, F2) — @, Ext'(F2, G Fy) is lifted to a DG functor
¥ :DG(A, C1) x DG(C1, C2) x DG(A, C2)° — k-DGmod (1.5)

wherek-DGmod is the DG category of complexesiomodules. We claim that oncg,

i € {12}, is lifted to an object ofDG(A,C;) one can lift ® € T(C1,C2) to an
object of DG(C1,C2) in a homotopically canonical way. Indeed, ongeis lifted to
an object of DG(A, C;) the DG functor (1.5) yields a DG functap : DG(C1, C2) —
k-DGmod such that the corresponding graded fungét@t, C2) — {Gradedk-modules}

is corepresentable (it is corepresentabledby Such a functor defines a homotopically
canonical object 0BG (Cy, C2) (see Lemma C.16.2, C.16.3).

1.8. What do DG categories form?

To formulate uniqueness of the DG quotient in a more elegant and precise way than
in 1.7, one probably has to spell out the relevant structure on the class of all DG categories
(which is finer than the structure of 2-category). | hope that this will be done by the experts.
Kontsevich and Soibelman are working on this subject. They introduce in [33,34] a notion
of homotopyn-category so that a homotopy 1-category is the same as.atategory
(the notion of homotopy category is defined in [34] with respect to some category of
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“spaces,” and in this description of the results of [34] we assume that “spatedmplex
of k-modules”). They show that homotopy 1-categories form a homotopy 2-category and
they hope that homotopy-categories form a homotogy + 1)-category. They also show
that the notion of homotopy-category is closely related to the littecubes operad. E.g.,
they prove in [32,34] that endomorphisms of the identity 1-morphism of an object of a
homotopy 2-category form an algebra over the chain complex of the little squares operad
(Deligne’s conjecture). As DG categories arg -categories, we will hopefully understand
what DG categories form as soon as Kontsevich and Soibelman publish their results.

In the available texts they assume that the ground king a field. Possibly the case
of an arbitrary ground ring is not much harder for experts, but a non-expert like myself
becomes depressed when he comes to the conclusion that DG models of the triangulated
categoryT (A, K) are available only if you first replacd or KC by a resolution which is
homotopically flat ovek (see E.8).

1.9. Structure of the article

In Section 2 we recall the basic notions related to DG categories. In Sections 3, 4 we
give the two constructions of the quotient DG category. In Sections 5 and 7 we discuss the
notion of derived DG functor. The approach of Section 5 is based on Keller's construction
of the DG quotient, while the approach of Section 7 is based on any DG quotient satisfying
a certain flatness condition, e.g., the DG quotient from Section 3. In Section 6 we give an
explanation of the uniqueness of DG quotient. In Sections 8-11 we prove the theorems
formulated in Sections 3—7.

Finally, there are Appendices A—E; hopefully they make this article essentially self-
contained.

2. DG categories: recollections and notation

2.1. We fix a commutative ring and write® instead of®; and “DG category” instead
of “ differential gradedk-category.” So a DG category is a categotyin which the sets
Hom(X,Y), X,Y € ObA, are provided with the structure of zagradedk-module and
a differentiald : Hom(X, Y) — Hom(X, Y) of degree 1 so that for ever¥, Y, Z € ObA
the composition map Ho(X, Y) x Hom(Y, Z) — Hom(X, Z) comes from a morphism
of complexes HorX, Y) ® Hom(Y, Z) — Hom(X, Z). Using the super commutativity
isomorphismA ® B — B ® A in the category of D&-modules one defines for every DG
categoryA the dual DG categoryl® with Ob.A° = Ob.A, Homy. (X, Y) = Homy (Y, X)
(details can be found in [22, §1.1]).

Thetensor producbf DG categoriesd andB is defined as follows:

(i) Ob(A® B):=0bA x ObB; for a € Ob.A andb € ObB the corresponding object of
A® Bis denoted by: ® b;

(i) Hom(a ® b, a’ ® b") :=Hom(a, a’) ® Hom(b, b’) and the composition map is defined
by (/1 ® g1)(f2 ® g2) := (=1)P? f1f2 ® g1g2, p := degg1, g := degfz.
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2.2. Remark.Probably the notion of DG category was introduced around 1964 (G.M. Kelly
[29] refers to it as a new notion used in [28] and in an unpublished work by Eilenberg and
Moore).

2.3. Given a DG categoryl one defines a graded category Ké) with ObHo (A) =
ObA by replacing each Hom complex by the direct sum of its cohomology groups. We call
Ho' (A) the graded homotopy categoof A. Restricting ourselves to the Oth cohomology
of the Hom complexes, we get themotopy categorio(A).

A DG functorF is said to be guasi-equivalencéHo " (F) :Ho (A) — Ho (B) is fully
faithful and HQ F) is essentially surjective. We will often use the notatién™> 3 for a
quasi-equivalence fromd to 5. The following two notions are less reasonatfie A — B
is said to be ajuasi-isomorphisnif Ho (F) is an isomorphism. We say that: A — B
is a DG equivalencef it is fully faithful and for every objectX € B there is a closed
isomorphism of degree 0 betwe&nand an object of'(A).

2.4. To a DG category4 Bondal and Kapranov associate a triangulated category
A" (or Trt(A) in the notation of [4]). It is defined as the homotopy category of a
certain DG category4P®", The idea of the definition ofAP™®" is to formally add
to A all cones, cones of morphisms between cones, etc. Here is the precise definition
from [4]. The objects of4P™®!" are “one-sided twisted complexes,” i.e., formal expressions
(B7_1 Cilril.q), whereC; € A, rj € Z, n > 0, ¢ = (4ij), gij € Hom(C;, Ci)[r; — r;]
is homogeneous of degree ¢;; =0 fori > j, dg + q?> =0. If C,C’ € Ob.AP®Y,
C=(@}=1Cjlrjl,q), €' = (DL, Cilr{l, q") then theZ-gradedk-module HoniC, C")
is the space of matriceg = (fi;), fij € Hom(C;, C)[r] — r;], and the composition map
Hom(C, C") ® Hom(C’, C") — Hom(C, C”) is matrix multiplication. The differential
d:Hom(C, C") - Hom(C, C’) is defined by ¢f := dnaivef +¢' f — (=1 fq if degfij =1,
where Ghaivef/ = (dfi;).

APret contains.A as a full DG subcategory. IK,Y € A and f: X — Y is a closed
morphism of degree 0 one defines Cofieto be the objectY @ X[1], g) € AP™®Y where
q12 € Hom(X, Y)[1] equalsf andgi1 = g21 = g22=0.

Remark. As explained in [4], one has a canonical fully faithful DG functor (the
Yoneda embedding}P®" — 4°-DGmod, where4°-DGmod is the DG category of DG
A°-modules; a DGA°-module is DG-isomorphic to an object @P™'" if and only if it is
finitely generated and semi-free in the sense of C.8. Quite similarly one can iddRtfy
with the DG category dual to that of finitely generated semi-free.D@&odules.

A non-empty DG category is said to bepretriangulatedif for every X e A, k € Z
the objectX[k] € AP™®! is homotopy equivalent to an object gf and for every closed
morphism f in A of degree 0 the object Coag) € AP is homotopy equivalent to
an object of A. We say thatA is strongly pretriangulated+-pretriangulated in the
terminology of [4]) if the same is true with “homotopy equivalent” replaced by “DG-
isomorphic” (a DG-isomorphism is an invertible closed morphism of degree 0).

If A is pretriangulated then every closed degree 0 morphfisi — Y in A gives
rise to the usual triangl&® — Y — Cond f) — X[1] in Ho(A). Triangles of this type
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and those isomorphic to them are called distinguished. Thus,isf pretriangulated then
Ho'(A) becomes a triangulated category (in fact, the Yoneda embedding identified)Ho
with a triangulated subcategory of Hgl°-DGmod).

If Ais pretriangulated (respectively strongly pretriangulated) then every obje@fof
is homotopy equivalent (respectively DG-isomorphic) to an objectlofAs explained
in [4], the DG category4dP™" is always strongly pretriangulated, st := Ho (AP™Y) is
a triangulated category.

2.5. Proposition.If a DG functor F : A — B is a quasi-equivalence then the same is true
for the corresponding DG functarPret’; gpretr _, pgpretr,

The proof is standard.

2.6. Remark. Skipping the condition¢;; = 0 for i > j” in the definition of AP one
gets the definition of the DG category Pre:Ay considered by Bondal and Kapranov [4].
In Proposition 2.5 oneannotreplaceAP™! and 3P by Pre-T(.4) and Pre-T¢B). E.g.,
suppose thatl andB are DG algebras (i.e., DG categories with one object), narddly
the de Rham algebra of@> manifold M with trivial real conomology and nontriviats,

B =R, andF: A — B is the evaluation morphism corresponding to a poindofThen
Pre-Ti(F) :Pre-T(A) — Pre-TB) is not a quasi-equivalence. To show this notice that
Ko(M) ® Q = Q, so there exists a vector bundien M with an integrable connectiovi
such that is trivial but (¢, V) is not.&-valued differential forms form a DGl-moduleM
which is free as a graded-module. Considering/ as an object of Pre-Ta), we see that
Pre-Ti(F) is not a quasi-equivalence.

2.7. Derived category of DG modules

Let.A be a DG category. Following [22], we denote by.A) the derived category of DG
A°-modules, i.e., the Verdier quotient of the homotopy category ofb8nodules by the
triangulated subcategory of acyclic D& -modules. According to [6, Theorem 10.12.5.1]
(or [22, Example 7.2]) if a DG functad — B is a quasi-equivalence then the restriction
functor D(B) — D(A) and its left adjoint functor (the derived induction functor) are
equivalences. This also follows from Remark 4.3 becabgd) can be identified with
the homotopy category of semi-free D& -modules (see C.8).

2.8. Given DG functorsd’ — A <« A” one definesd’ x 4 A” to be the fiber productin
the category of DG categories. This is the most naive definition (one takes the fiber product
both at the level of objects and at the level of morphisms). More reasonable versions are
discussed in Appendix D.

2.9. To a DG categoryd we associate a new DG categokfor A, which is equipped
with a DG functor ConeMor A — AP The objects ofMor A are triples(X, Y, f),
where X,Y € ObA and f is a closed morphisnX — Y of degree 0. At the level of
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objects CongX, Y, f) is the cone off. We define Hon( X, Y, f), (X', Y’, f)) to be the
subcomplex

{u e Hom(Cone f), Cong(f”)) | =ui = 0},

wherei:Y — Congf) andn’:Con€d f’) — X’'[1] are the natural morphisms. At the
level of morphisms, Cone:HoftX, Y, f), (X', Y’, f')) - Hom(Cong f), Cond f')) is
defined to be the natural embedding. Composition of the morphismdafA is defined

so that ConeMor A — AP becomes a DG functor. There is an obvious DG functor
MorA— A x AsuchthatX, Y, f)— (X,Y).

2.10. Given a DG category one has the “stupid” DG categorytorsyp.A equipped
with a DG functorF : MorsypA — A x A it has the same objects agor A (see 2.9),
Hom((X,Y, f), (X', Y’, f")) is the subcomplex

{(u,v) e Hom(X, X") x Hom(Y, Y') | f'u =vf},

F(X,Y, f):=(X,Y), F(u,v) = (4, v), and composition of the morphisms fforss,p.A

is defined so thaf : MorsypA — A x A becomes a DG functor. There are canonical DG
functors® : MorsypA — Mor A and¥ : Mor A — MorsypA such thad (X, 7, f) :=
(X,Y, ), ¥(X,Y, f):=(,Congf),i),where : Y — Con€f) is the natural morphism.
So one gets the DG functor

oY Mor A — Mor A. (2.1)

3. A new construction of the DG quotient
3.1. Construction

Let A be a DG category anl ¢ A a full DG subcategory. We denote by/ B the DG
category obtained fromi by adding for every objed/ € B a morphismey : U — U of
degree—1 such that ¢ey) = idy (we add neither new objects nor new relations between
the morphisms).

SoforX,Y € Awe have an isomorphism of gradeanodules (but not an isomorphism
of complexes)

o
@Honﬁ/B(X, Y) = Homy s(X, Y), (3.1)
n=0

where Horfj4/B(X, Y) is the direct sum of tensor products HatU,,, U, +1) ® k[1] ®
Homy (Uy—1, Uy) ®k[1]®- - -®k[1]®- - -®@HOomy (Uo, U1), Up:= X, Upy1:=Y,U; € B
for 1 <i < n (in particular, Horﬁl/B(X, Y) = Homyu(X,Y)); _the morphism (3.1) maps
fn®e® f-1®---®e® foto fuey, fu—1---€u, fo, Wheree is the canonical generator
of k[1]. Using the formula ¢ky) = idy one can easily find the differential on the l.h.s.
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of (3.1) corresponding to the one on the r.h.s. The imag@é’fzo Horrfj4/B(X, Y)isa
subcomplex of Hom,5(X, Y), so we get a filtration on Hopy (X, Y). The map (3.1)
induces an isomorphism of complexes

o
@Honﬁ‘/g(x, Y) = grHomy s(X, Y). (3.2)
n=0

3.2. Example.If A has a single objedf with End4 U = R then.A4/A has a single object
U with Endg 4 U = R, where the DG algebr& is obtained from the DG algebi@ by
adding a new generater of degree—1 with de = 1. As a DG R-bimodule, R equals
CondBar(R) — R), where Ba(R) is the bar resolution of the D®&-bimoduleR. Both
descriptions off show that it has zero cohomology.

A more interesting example can be found in 3.7.

3.3. The triangulated functod" — (A/B)" mapsB" to zero and therefore induces
a triangulated functow : A"/B" — (A/B)Y. Here A"/B" denotes Verdier's quotient
(see Appendix A). We will prove that it is a field then® is an equivalence. For a
general ringk this is true under an additional assumption. E.g., it is enough to assume
that A is homotopically flat ovelk (we prefer to use the name “homotopically flat”
instead of Spaltenstein’s name “K-flat” which is probably due to the notdig@?) for the
homotopy category of complexes in an additive categr DG categoryA is said to be
homotopically flabverk if for every X, Y € A the complex HorniX, Y) is homotopically
flat overk in Spaltenstein’s sense [50], i.e., for every acyclic complerf k-modules
C ®r Hom(X, Y) is acyclic. In fact, homotopical flatness @f can be replaced by one of
the following weaker assumptions:

Hom(X, U) is homotopically flat ovek forall X € A, U € B; (3.3)
Hom(U, X) is homotopically flat ovek forall X € A, U € B. (3.4)

Here is our first main result.

3.4. Theorem.Let A be a DG category and& C A a full DG subcategory. If eithef3.3)
or (3.4)holds thend : A"/B" — (A/B)" is an equivalence.

The proof is contained in Section 8.

3.5. If (3.3) and (3.4) are not satisfied one can construct a diagram (1.1) by choosing
a homotopically flat resolutiont => A and puttingC := A/B, whereB C A is the full
subcategory of objects whose imageAns homotopy equivalent to an object Bf Here
“homotopically flat resolution” means that is homotopically flat and the DG functor
A — Ais a quasi-equivalence (see 2.3). The existence of homotopically flat resolutions of
A follows from Lemma B.5.
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3.6. Remarks.

(i) If (3.3) or (3.4) holds then one can compute (1.3) using the bar resolution of the DG
B-modulehy or the DGB°-modulehy . The corresponding complex representing the
object (1.3) of the derived category is precisely Hpm(X, Y).

(i) Let A and B be as in 3.5 and suppose that (3.3) or (3.4) holds for tdth A
and B c A. Then the DG functotd/B — A/B is a quasi-equivalence, i.e., it
induces an equivalence of the corresponding homotopy categories. This follows
from Theorem 3.4. One can also directly show thaKifY € Ob(A4/B) = ObA
are the images ok, ¥ € Ob(A4/B) = Ob.A then the morphism Ho;@/g(ﬁ, Y) —
Homy,s(X,Y) is a quasi-isomorphism (use (3.2) and notice that the morphism
Horrsz/g(f(', Y)— Hom) 5(X, ) is a quasi-isomorphism for eveny this follows
directly from the definition of Horh and the fact that (3.3) or (3.4) holds f8rc A
andB c A).

(iif) Usually the DG categoryd/B is huge. E.g., ifd is the DG category of all complexes
from some univers& andB C A is the subcategory of acyclic complexes then the
complexes Hom,5(X,Y), X, Y € A, are notU-small for obvious reasons (see [18,
§1.0] for the terminology) even thoug/B)" is a U-category. But it follows from
Theorem 3.4 that wheneveyd/B)" is a U-category there exists aA,.-category
C with U-small Hom complexes equipped with a@n.-functorC — A/B which is
a quasi-equivalence (so one can work witnstead of4/B).

(iv) The DG categoryA/B defined in 3.1 depends on the ground ringso the full
notation should b&A/B),. Given a morphisnto — k, we have a canonical functor
F:(A/B)k, — (A/B)k. If (3.3) or (3.4) holds for bottkg and k then the functor
(A/B)iy = (A/B)y is a quasi-isomorphism by Theorem 3.4.

3.7. Example

3.7.1. Let Ap be the DG category with two objecis;, X, freely generated by a mor-
phism f: X1 — X2 of degree 0 with ¢ =0 (so Hom{X;, X;) = k, Hom(X1, X2) is the
free modulekf and HoniXz, X1) = 0). Put.A := AD®". Let B C A be the full DG
subcategory with a single object Canf@. Instead of describing the whole DG quotient
A/ B, we will describe only the full DG subcategotyl/B)o C .A/B with objectsX; and

X, (the DG functor(A/B)) " — (A/B)P" is a DG equivalence in the sense of 2.3,
pretr

so A/B can be considered as a full DG subcategory.4fB), ). Directly using the
definition of A/B (see 3.1), one shows thatl/B)o equals the DG categork freely

generated by our originat : X; — X, and also a morphism: X> — X; of degree 0,
morphismsy; : X; — X; of degree—1, and a morphism : X1 — X of degree—2 with

the differential givenby @ =dg=0,dv1 =gf — 1, dwo= fg— 1, du = fags —a2f.On

the other hand, one has the following description of (dd/5)o).

3.7.2.LemmaExty 5 (X;, X ;) =0forn #0, Ex&/B(X,-, X;) =k, andEx&/B(Xl, X2),
Ext&/B(Xz, X1) are freek-modules generated by and £ 1.
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As (A/B)o = K, one gets the following corollary.

3.7.3. Corollary. K is a resolution of thé-categoryl 2 generated by the categodg with
2 objects and precisely one morphism with any given source and target.

Clearly, K is semi-free in the sense of B.4.

3.7.4. Proof of Lemma 3.7.2By Theorem 3.4, Ha.A/B) = A§/BY. As X5 € (B")1, the
map Ext, (X;, X2) — Ext’;l"/Btr(X,», X2),i=1,2,is an isomorphism by A.4. Therefore,
0

Ext’j4/B(Xi, X») is as stated in the lemma. Biit: X1 — X, becomes an isomorphism in
Ho(A/B), so EXQ/B(X,», X1) is also as stated.O

3.7.5. Modification of the proof

In the above proof we used Theorem 3.4 and A.4 to show¢hﬂ><fj4(xi, X2) —
Ext’;l/B(X,»,Xz) is an isomorphism. In fact, this follows directly from (3.2), which
is an immediate consequence of the definition4)f5. Indeed,¢ is induced by the
canonical morphisn : Homy (X;, X2) — Homy,5(X;, X2). By (3.2) « is injective and
L := Cokery; is the union of an increasing sequence of subcomplexes@c L1 C ---
such thatL, /L,—1 = Homj‘lpre"/B(X,», X») for n > 1. Finally, Horr’f4pretr/5(xi, X>5) is
acyclic for alln > 1 because the complex HopWU, X2), U := Cond&f: X1 — X2) is
contractible.

3.7.6. Remarks.

(i) The DG categoryk from 3.7.1 and the fact that it is a resolutionlgfwere known to
Kontsevich [31]. One can come to the definitiork®és follows. The naive guess is that
already the DG categoiiy’ freely generated by, g, @1, a2 as above is a resolution
of 15, but one discovers a nontrivial elemente Ext (X1, X2) by representing
fgf — f as a coboundary in two different ways (notice thi@t f — 1) = fgf — f =
(fg — ). Killing v one gets the DG catego#g, which already turns out to be
a resolution ofl;.

(if) The DG categorylC from 3.7.1 has a topological analdgop. This is a topological
category with two objectX1, X, freely generated by morphisnfse Mor(X1, X»),

g € Mor(X2, X1), continuous maps; : [0, 1] - Mor(X;, X;), and a continuous map

u: [0, 1] x [0, 1] = Mor(X1, X») with defining relationsy; (0) = idx,, a1(1) = gf,

a2(l) = fg, u(t,0) = fai(t), u@t,1) =a2(t) f, u(0,7v) = f, u(l, 7) = fgf. It was
considered by Vogt [58], who was inspired by an article of R. Lashof. The spaces
Mor,,,(Xi, X ;) are contractible. This can be easily deduced from Corollary 3.7.3
using a cellular decomposition of Mgy, (X;, X j) such that the composition maps

Mor,cmp(X,-, X;) x Mor;cwp(Xj, X)) — Mor,cmp(X,-, Xrk)

are cellular and the DG category that one gets by replacing the topological spaces
Morg,,,(Xi, X ) by their cellular chain complexes equls
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4. The DG categories4 and .A.. Keller’s construction of the DG quotient

The DG categoryA/B from Section 3 depends on the ground rikg(see Re-
marks 3.6(iv)). Here we describe Keller’s construction of a quotient DG category, which
does not depend at all an(if you like, assume = Z). The construction makes use of the
DG categoryA studied by him in [22], which may be considered as a DG version of the
category of ind-objects. There is also a dual construction basgtl@DG version of the
category of pro-objects).

4.1. If Ais a DG category we denote by the DG category of semi-free D@°-mo-
dules (see C.8 for the definition of “semi-free”). The notatidmas been chosen because
one can think of objects aofl as a certain kind of direct limits of objects ofP™"" (see
Remark 4.2). We pud := (A°)°. Of course, the DG categorie$ and A are not small.
They are strongly pretriangulated in the sense of 2.4, an@4hie- A" identifies with
the derived categorp(A) of DG .A°-modules (see C.8). We have the fully faithful DG
functors A < A — A. Given a DG functo3 — A, one has the induction DG functors
B — AandB — A (see C.9). In particular, iB C A is a full subcategory thef§, 3 are
identified with full DG subcategories of, A.

4.2. Remark.Here is a small version ofl. Fix an infinite set’ and consider the following
pretr—

DG categoryA; (which coincides with the DG categoiyP™® from 2.4 if I = N).

To define an object ofA?"*", make the following changes in the definition of an
object of APV First, replaced!_; Ci[r;] by €D, C:[r:] and require the cardinality of
{i € I| C; # 0} to be strictly less than that df Second, replace the triangularity condition
ong by the existence of an ordering bsuch thaty;; # 0 only fori < jand{i e I | i < j}

is finite for everyj € I (in other words, forj € I let I; denote the set afe I for which
there is a finite sequends, ...,i, € I with n > 0, ip = j, i, =i such thatg;,,; # 0,
then for everyj € I the set/_; should be finite and should not contgip Morphisms of
A are defined to be matricéy;;) as in 2.4 such thafi € 1 | f;; # O} is finite for every

j gre{t.r The DG functor4 — A extends in the obvious way to a fully faithful DG functor
A N A.

One also has the DG categar)®" := ((4°)"*")° and the fully faithful DG

functor 47" — A.

4.3. Remark.A quasi-equivalencé& : A = B induces quasi-equivalences
2 ~ retr ~ retr retr ~ retr
ASB, ASB AT ST, AT S BT

(the fact that4 — B is a quasi-equivalence was mentioned in 2.7). This is a consequence
of the following lemma.

4.4. Lemma.A triangulated subcategory ¢fo(A) containingHo(A) and closed under
(infinite) direct sums coincides witHo(A). A triangulated subcategory ¢1o(45"" )
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containingHo(A) and closed under direct sums indexed by setsuch thatCardJ <
Card! coincides withHo(AP"®" ™).

This was proved by Keller [22, p. 69]. Key idea: if one has a sequence a#ADGio-
dulesM; and morphismg; : M; — M;1 then one has an exact sequence QW i

M — lim M; — 0, whereM :=P; M; and f : M — M is induced by thef;’s

4.5. Now let B c A be a full DG subcategory. Le8+ (respectively-B) denote the
full DG subcategory of4 (respectively ofA) that consists of objectX such that for
every b € B the complex Honh, X) (respectively HormX, b)) is acyclic. Recall that
D(A) =Ho(A4) = A".

4.6. Proposition.Let& : A — C be a quotient of a DG categont modulo5 C A. Then

0] é :A— C isaquotient of4 moduloB;

(i) £€:A— Cisaquotient ofA moduloB;

(i) fﬁe restriction functoD(C) — D(A) is fully faithful, and its essential image consists
precisely of objects ab(A) annihilated by the restriction functgr: D(A) — D(B);
the functorD(A)/D(C) — D(B) induced byp is an equivalence.

See 10.3 for the proof.
4.7. Proposition.

(i) The essentialimage &" in A" is right-admissible in the sense &£6.
(i) The right orthogonal complement 8" in A" equals(84H)"".
(i) The functorBH" — A"/B" is an equivalence.
(iv) The functorA"/BY — A”/Btr is fully faithful.
(i°)—(iv°) Statementgi)—(iv) remain true if one replaces{" and B by A" and B",
“right” by “left’, and B+ by 1 5.

The proof will be given in 10.1.

4.8. Remark.Keller [23] derives Proposition 4.6(i) from Neeman'’s theorem on compactly
generated triangulated categories [47, Theorem 2.1]. Statements (i) and (iv) of Proposi-
tion 4.7 are particular cases of Lemmas 1.7 and 2.5 of Neeman’s work [47].

4.9. Now let A 7 B c B be the full DG subcategory of objecke B+ such that for
somea € A and some closed morphisfita — X of degree 0, the cone g¢f is homotopy
equivalent to an object oB. Let A /' B C 113 be the full DG subcategory of objects
X e 1B such that for some € .4 and some closed morphisyit X — a of degree 0, the
cone of f is homotopy equivalent to an object Bf. By Proposition 4.7 we have the fully
faithful functor A"/B" — A"/B" = (BHY = Ho(Bi) and its essential image equals
(A 7 B). Sowe getan equwalence
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AT /BT = (A S BT (4.1)
and a similar equivalencd"/B" = (A / B)".

4.10. Let us construct a diagram (1.1) with= .4 7 B such that the corresponding
functor A" — (A 7 B)" induces (4.1) (se4 ' B will become a DG quotient ofd
moduloB). The DG categoryZ: A is defined as follows. First, consider the DG category
Mor A (see 2.9). Its objects are triplés, Y, g), wherea,Y € A and g is a closed

morphisma — Y of degree 0. We defingl ¢ Mor A to be the full DG subcategory
of triples (a, Y, g) suchthata ¢ A, Y € A /B C A, and Conéx L v)is homotopy

equivalent to an object of3. The DG functorsA <« A A /' B are defined by
(a,Y,g)r>aand(@,Y, g)—Y.

4.11. Remarks.

() Let A c Mor A be the full DG subcategory of triplgs, a, f) € Mor A such that
P e B, ac A and ConeP EN a) € B+. The DG functor (2.1) (withA replaced
by A) induces a quasi-equivalenﬁé =, A, so one can usd’ instead ofA.

(ii) It follows from the definition of (2.1) that the image of the DG functdf — A is
contained inAswp:= A N MorsupA (see 2.10 for the definition aMorswpA C
Mor A).

4.12. Dualizing the construction from 4.10 one gets the full DG subcateg%rgz
Mor A which consists of tripleY, a, g) suchthat’ € A/ B,a € A, and Coné¢Y L0
is homotopy equivalent to an object ¢. Dualizing Remarks 4.11, one gets a DG
categoryﬁ’ equipped with a quasi-equivalengé = :4?; A c Mor A is the full DG
subcategory of triplegz, P, f) suchthat € A, P € B, and Conéf) € - B. The diagrams
A—A— A / Band A « A A B are also DG quotients ol modulo. The
image of the DG functofd’ — A is contained iWstupzz AN MorswpA.

4.13. One can also include the diagrams constructed in 4.10 and 4.12 into a canonical
commutative diagram of DG categories and DG functors

Q
Q

A
A (4.2)
7
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in which each column is a DG quotient @f moduloB. The DG categorW is defined to
be the fiber produci’ x g A, where A’ and A’ were defined in Remarks 4.11, 4.12
(recall that “fiber product” is understood in the most naive sense, see 2.8). To define
A /' B, we use the DG categoryl such that Ol := Ob A L ObA, A and A are
full DG subcategories of4, and forY € ObA, Y € ObA one has Hon, Y) := 0,
Hom(Y,Y):=Y ®4 Y (recall thatY is a DG .4°-module andy is a DG .4-module, so
Y ® 4 Y is well-defined, see C.3). Fare .A we denote bya (respectivelya) the image
of a in A (respectively4); we have the “identity” morphisma=e¢,: @ — a.Now define
A /' B c Mor A to be the full DG subcategory of triple¥’, Y, f) € Mor A such that
YeA,/BcC A YeA /"BCA andf: Y — Y can be represented as a composition
Y 5 a > a Ly, a e A, so that Cone) is homotopy equivalent to an object ¢
and Coneh) is homotopy equivalent to an object 8f (¢ and/ are closed morphisms of
degree 0).

The DG functorsd /' B — A/BandA/’BaA/Bsend(Y Y, )e A/ B
respectively toy andY. The DG functord — A /" B C Mor A is defined to be the
composition

PN PN ~ “~ ~
A = .A, X A .A, — AstupX_A Astupi) MOI’A,

where the DG functorsl’ — Xswp and A’ — Xstupwere defined in Remarks 4.11, 4.12
andF: Zstupr:iswpa Mor A is the composition DG functor: at the level of objects, if
u=(aY ga—Y)e MorsypA andi = (Y,a,g3:Y = a) € MorsupA, a € A, then
F(ii,u) = (Y,Y, gg); there is no problem to define the DG functBrat the level of
morphisms because we are working with the “stupid” versﬂ&g@p Xstup Morsyp (the

“non-stupid” compositiorﬁ XA A= Mor A is defined as ad -functor rather than as
a DG functor).

5. Derived DG functors

We will define a notion of right derived functor in the DG setting modeled on Deligne’s
definition in the triangulated setting. One can easily pass from right derived DG functors
to left ones by considering the dual DG categories.

5.1. Deligne’s definition

Let G:7 — 7' be a triangulated functor between triangulated categories and
S C T a triangulated subcategory. Denote by CohoF{gtthe category ofk-linear
cohomological functors froni7”)° to the category ok-modules.RG is defined to be
the functorZ /S — CohoFunat7”) defined by

RG(Y):= “lim" G(2), (5.1)
(Y—>2)eQy
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which is a shorthand for

RG(Y)(X):= lim Hom(X,G(2)), YeT, XeT' (5.2)
(Y—>2)eQy

Here Qy is the filtering category of7 -morphismsf:Y — Z such that Congf) is
isomorphic to an object af.

RG has the following universal property. Let 7 — 7 /S denote the canonical functor
andv:7’ — CohoFunat7”) the Yoneda embedding. L€i:7 /S — CohoFunat7”) be
a graded functor (see A.1 for a discussion of the meaning of “graded”). Then there is
a canonical isomorphism

Hom(RG, @) =Hom(vG, @) (5.3)

functorial in @ (here Hom is the set of morphisms of graded functors). In particular, if
RG(T/S) cT'thenRG:7T/S — T’ is a derived functor in Verdier's sense [56,57].

Let (7/S)g be the category of triple¢Y, X, ¢), whereY ¢ 7/S, X € T', ¢: X =
RG(Y). The functor

(T/S¢— T, Y, X, 0)—~ X (5.4)

is also denoted bR G. We have an equivalenc®, X, ¢) — Y between7 /S)s and a full
subcategory of /S (the full subcategory of object € 7 /S such thatRG (Y) is defined
as an object of ).

Remark. Deligne (cf. [10, Definition 1.2.1]) conside®G as a functor fron? /S to the
category of ind-objects in@”) rather than to the category CohoFurch. In fact, this
does not matter. First of all, the image of the funcia& defined by (5.2) is contained

in the full subcategory of ind-representable funct@$)° — k mod, which is canonically
identified with ind7”) (see [18, §8.2]). This is enough for our purposes, but in fact, since
7" is small,everyH € CohoFunat7”) is ind-representable by a well-known lemma (see,
e.g., [46, Lemma 7.2.4]), which is a version of Brown’s theorem [8,9]. Proof: by [18,
Theorem 8.3.3] it suffices to check that the catedgbiyH := {(X,u) | X € 7', u € H(X)}

is filtering.

5.2. Let A be a DG category anfl C A a full DG subcategory. LeF be a DG functor
from A to a DG category4’. To define the right derived DG funct@® F we use the
DG quotientA 7 B from 4.9. By definition,RF: A 7 B — A’ is the restriction of
the DG functorF : 4 — A’ to the DG subcategoryl /' B C Bt c A. A 2-categorical
reformulation of this definition is given in Remark (ii) from E.6.

5.3. Let us show that the definition gt F from 5.2 agrees with Deligne’s definition of

the right derived functor of a triangulated functor between triangulated categories (see 5.1).
Suppose we are in the situation of 5.2. We have the DG furkior A / B — A’

and the corresponding triangulated funct@r)": (4 /' B)" — (A")". Using (4.1) we
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can rewrite it axRF)": A"/B" — (4. On the other hand, we have the triangulated
functor F': A" — (A)T and its derived functoRF": A"/B" — CohoFunat(A")")
(see 5.1). Finally, one has the funcieP: (A’)tr — CohoFunat(A")") defined as follows:
a right DG A’-moduleM € A’ uniquely extends to a right DGA)Pret-module M (cf.
Example C.11), and?°(M) is defined to be the zeroth cohomologyiéf(or equivalently
HO(M) is the cohomological functa¥ Hom gy« (N, M), N € (AN (AH).

Finally, using thai.4")°-DGmod= ((A")P"®!")°-DGmod (see Example C.11), one gets
the functorH?: ((A")°-DGmogd" — CohoFunc(t(A’)”)

We are going to construct an isomorphigtw™ => HO(RF). To this end, consider
the diagram

A
l (5.5)
A

(see 4.10 for the definition Si). Its left square is not commutative, but there is a canonical
morphism from the compositiod — A < A to the compositiond — A 7 B < A.

So we get a canonical morph|s¢n from the composmorﬁitr AN — (A’)tr
CohoFunat4’) to the compositiotd" — (A ~ B) — (AH' — CohoFunatA). By4 10

we can identify A" with A" and(A ~ B)f with A”/IS’tr sog induces a morphism

RFY — HO(RF)" (5.6)
by the universal property (5.3) & F".
5.4. Proposition.The morphisng5.6)is an isomorphism.
See Section 9.1 for a proof.

5.5. Define the DG categorgd ' B) r to be the (naive) fiber product of’ x (A 7 B)
and ZAJ over 4' x A, whereZA/ is the “diagonal” DG category defined in D.1 and
A /B is mapped tod’ by RF. So the objects of A  B)r are triples(Y, X, ¢), where
YeA "B, Xe A, andg: X — RF(Y) is a homotopy equivalence. The DG functor
(A 7 B)r — A’ defined by(Y, X, ¢) — X is also called the right derived DG functor of
F and denoted bR F'.

Now consider the triangulated functat = F': A" — (A)'. It follows from
Proposition 5.4 that(A ~ B)r)" identifies with the triangulated categot'/B")g
from 5.1 and(RF)": (A 7 B)p)"' — (A)Y identifies with Deligne’s derived functor
RG : (A"/BN g — (AHY.



662 V. Drinfeld / Journal of Algebra 272 (2004) 643-691

5.6. The definition of(A Ve B)p used AA/ There are also versions @4 ~ B) ¢
using the DG categonesA/ and AA/ from D.1. They will be denoted respectively by
(A" B)r and(A / B)HF E.g., the objects ofA ' B) . are triples(Y, X, ¥),
whereY e A /B, X e A, andy: RF(Y) — X is a homotopy equivalence. We have
the right derived DG functor®F:(A /' B)er —- A and RF: (A /" B) ey — A'.
Sometimes we will write(A 7 B)_ r instead of(A ~ B)r. The DG functors(A ~
B)_r <« (A /"B)or— (A 7 B)_fp are quasi-equivalences by Lemma D.3, and one
has a canonical commutative diagram

A/ By < (A B)op ——= (A B)r
RFl RFl lRF . (5.7)
A A A

6. Some commutative diagrams
6.1. Unigueness of DG quotient

Let A be a DG category an8 C A a full DG subcatggory. Given a quotient (1.1) of
A moduloB we will “identify” it with the quotientA <~ A 5> A ~ B from 4.10. More
precisely, we will construct a canonical commutative diagram of DG categories

|

(the symbols—> £ denote quasi-equivalences). To this end, notice that the derived DG
functor R& : (A a B)g — C defined in 5.5 and the prOJectlc(m s B)g - A Va B are
guasi-equivalences (heBs is the preimage of3 in A) PutC := (A S B)g Define the

DG functorC — C to equalRé and the DG functog)—> A ' B to be the composition

=4/ B:—> A/ B— A B. WeputA:= A, ie., Ais the analog of4 with
(A, B) replaced by(A, B). The DG functord — A is the analog otd — A. The DG
functor A _LA is induced by the DG functotd — A andB — B. Finally, A — C is the
DG functor.A — C defined by(a, Y, g) — (Y, £(a), £(9)) (herea e Avyed  BcA,
andg:a — Y is a closed morphism of degree 0 ) whose cone is homotopy equwalent to
an object of3; recall that an object of is a triple (Y, X, ¢), whereY € ABc A

X eC, and<p is a homotopy equivalence froi to R&(Y), i.e., the image oY under
§:¢_4>—> C).

(6.1)

o
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6.2. More diagrams (to be used in Section 7)
6.2.1. Now let us consider the case thdt= 4 and the DG functod — A equals idy,

so our quotient (1.1) is just a DG categahequipped with a DG functay: A — C. Then
diagram (6.1) becomes

T

A/ B <—

H

A
ls, Ci=(A /By, 6.2)
C

H

Here the DG functorst < A — A B are the same as in (4.2).
In 7.5 we will use a slightly different canonical commutative diagram of DG categories

~

AsB——" G = c

; l ls* (6.3)

A A°-resDGmod—— .4°-DGmod

in which&* is defined byé*c(a) := Hom(£(a), ¢). Here is the construction.

Let us start with the lower row of (6.3). Consider the DG categbtgr(A°-DGmod
(see 2.9 for the definition ofMor). Its objects are triplesQ, M, f), where Q, M €
A°-DGmod andf : Q — M is a closed morphism of degree 0. We defidferesDGmodc
Mor(A°-DGmod to be the full DG subcategory of triplg®), M, f) such thatQ € A
and f is a quasi-isomorphism (s@ is a semi-free resolution af?). In other words,
A°-resDGmod is the DG category atsolved DG .A4°-modules.The DG functors
A°-resDGmod— A and.A°-resDGmod— A°-DGmod are defined byQ, M, f) — QO
and(Q, M, f)— M.

We defineC to be the DG categorgd  B) ¢ from 5.6. So the objects df are triples
(Y, X,¥), whereY e A 7 B, X e C,andy : RE(Y) — X is ahomotopy equivalence .
The upper row of (6.3) is defined just as the lower row of (6.1).

The DG functorC — A°-resDGmodc Mor(A°-DGmod is defined as follows.
To (Y, X,v¥) € C one assigngY,£*X, x) € Mor(A°-DGmod, where y:Y — £*X
corresponds tas : RE(Y) — X by adjointness. This assignment extends in the obvious
way to a DG functor fron€ to Mor(.4°-DGmod. To show that its image is contained in
A°-resDGmod we have to prove that Y — £*X is a quasi-isomorphism. This follows
from the next lemma.

6.2.2. Lemma. The natural morphismy — s*i(Y) = E*RE(Y), Y € B+ C AcC
A°-DGmod is a quasi-isomorphism.

Proof. We will identify Ho(A) with the derived categorp(A) of .A°-modules (so both
Y andg*g(Y) will be considered as objects of kid)). The essential image of ) in
Ho(A) will be again denoted by H&).
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It suffices to show that

CondY — §*£ (Y)) € Ho(B) (6.4)

for every Y € Ho(A) (then forY e B+ one has Cong — g*é(Y)) € Ho(B) N

Ho(B+) = 0). Proposition 1.4 says that (6.4) holds fiore Ho(A). ObjectsY e Ho(A)
for which (6.4) holds form a triangulated subcategory closed under (infinite) direct sums.
So (6.4) holds for alt’ € Ho(A) by Lemma 4.4. O

6.2.3. Now letC denote the DG categoiyd ” B)..¢ defined in 5.6. Using the quasi-
equivalence€ << C => C one can “glue” (6.2) and (6.3) and get a canonical commutative
diagram of DG categories

o]

Axe
| :
C

~ C (6.5)

N l &*

A A°-resDGmod— = A°-DGmod

(the DG functorA xQQ ~Aisa quasi-equivalence by Lemma D.3, and the DG functor
A xQQ — Ais the compositioﬁéf xQQ — A — A, soitisalsoa quasi-equivalence).

7. More on derived DG functors

7.1. Leté: A— C be a quotient of a DG category by a full DG subcategorys C A
(so in (1.1) A = A and the DG functotd — A equals idy). Let F be a DG functor
from A to a DG category4d’. Under a suitable flatness assumption (e.gC, i§ the DG
quotientA/B from Section 3 and (3.4) holds), we will define notions of the right derived
DG functor of F, which correspond to derived triangulated functors (5.2) and (5.4). They
are essentially equivalent to those from 5.2 and 5.5 but are basédather than the DG
quotientA B from 4.9. One can easily pass from right derived DG functors to left ones
by considering the dual DG categories.

7.2. Consider the DG functor

£*:C — A°-DGmod £*c(a) :=Hom(£(a), c). (7.1)

From now on we assume that the diagréms— AL A satisfies the following flatness
condition:
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for all c € ObC, the morphismg§*c ® 4 A" — &*c éA A’ are quasi-isomorphisms. (7.2)

This condition is satisfied i is the DG quotient4/B from Section 3 and (3.4) holds: in
this case the DGA°-modulest*c, ¢ € C, are homotopically flat by Lemma C.15(i).

7.3. We are going to define a DG version of the derived triangulated functor (5.2). As
a first step, consider the DG functor

RF:C— (A')°-DGmod (7.3)

corresponding to the D@ ® (A')°-moduleC ® 4 A" (see C.8). (This is only a first
step because the homotopy category of the targ& ofis not thederived category of
DG (A")°-modules.) The isomorphisii ® 4 A" = Homg ® 4. A" (see (C.8)) shows that
RF =Indfp o £*, wheret*:C — A°-DGmod is defined by (7.1) and Ipd . A°-DGmod—
(A)°-DGmod is the induction DG functor (see C.9).

The fiber product of and(A4")°-resDGmod ove(.A")°-DGmod will be denoted by, r;
(see 6.2.1 for the definition afd’)°-resDGmod). The DG functaf s} — C is a quasi-
equivalence. We define the derived DG funcRF :C;r) — A’ to be the composition
Cir) — (A')°-resDGmod— A'. A 2-categorical reformulation of this definition will be
given in Remark (ii) from E.6.

Let C(r) denote the preimage o’ C A’ underRF (soC(r) is a full DG subcategory
of C[F]). One haskRF :C(F) — A

In 7.4, 7.5 we will show using (7.2) that the above definitions are reasonable: the
DG functor RF:Cr) — A’ is essentially equivalent to the DG funct&F from 5.2
and therefore agrees with the derived triangulated functor (5.2). There is a similar
relation betweerR F :C(ry — A’, the DG functor from 5.5, and the derived triangulated
functor (5.4).

Remark. If k is a field or, more generally, if
Hom(U, X) is a semi-free D&-module for allX € A, U € B, (7.4)

then the image oRF :C — (A’)°-DGmod is contained in the full subcategody of semi-
free DG (A")°-modules (in the casgl’ = A, F =id 4 this is Lemma C.15(ii), and the
general case follows). So if (7.4) holds then one does not have to codsideone can
simply defineRF :C — A’ to be the DG functor correspondingRy¥'.

7.4. Assuming (7.2) we will “identify”RF : C;r; — A’ with the DG functorRF : A /
B — A’ from 5.2. More precisely, here is a construction of a commutative diagram

~ ~

A/ B ~ C1 —— Ciry C

Rpl l lRF | (75)

A)/ .A)/ A/

=
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Put C1 := Cjid 4], SO the objects of’; are triples(c, Q, f), wherec € C, Q € A4, and
[0 — &*c is a quasi-isomorphism. The derived DG funckid 4:C1 — A, i.e., the
DG functorC1 — A defined by(c, Q, f) — Q, induces a quasi-equivalenée = A S
B c A (see Proposition 1.5.1). To define the DG funafer— Cir) notice that by the
flatness assumption (7.2) the image of the composition

C1=Cjig 4] —> A°-resDGmod— Mor(A°-DGmod — Mor((A")°-DGmod)
is contained in.A")°-resDGmod, so we get a DG funci®f = Cjig . — (A’)°-resDGmod
whose composition with the DG funct@d’)°-resDGmod— (A’)°-DGmod equals (7.3),

i.e., we get a DG functafy — Ciry.

7.5. In fact, one can construct a slightly better diagram

~

Q

A A A

L] k
A/B<"— "> Cp——>0C - (7.6)
RF\L l lRF

A A A

To this end, first replace in (7.8} by the DG category from (6.3) (the right square
of (6.3) defines a DG functca‘ — (1, which is a quasi-equivalence becaud‘se» C and
C1 — C are). Next, puC =C (see 6.2.3 for the definition @) and replac& byC Now
the upper two rows of (6.5) yield (7.6) Wit := A xcC C.

8. Proof of Theorem 3.4

8.1. We can suppose that (3.3) holds (if (3.4) holds replacand 5 by the dual
categories). It suffices to show thadt is fully faithful (this will imply that Im® is
a triangulated subcategory @f4/B)", but on the other hand I > A/B, so @ is
essentially surjective). In other words, it suffices to prove that for every e APet
and every € Z the homomorphism

Ext 0 (X, ¥) = EXY 4 e (X, Y) (8.1)

is bijective. It is enough to prove this fof, Y € A.

8.2. By (A.1), the L.h.s. of (8.1) can be computed as follows:

ExXt 4 (X, V)= lim H' Hom gprer (X, Z), (8.2)
(Y—2Z)eQy
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whereQy is the filtering category af{"-morphismsf : Y — Z such that Congf) is A"-
isomorphic to an object as"".
Ther.h.s. of (8.1) can be written as

Ext 4 5u (X, )= lm  H' Homypew/5(X, Z). (8.3)
Y—2)eQy

To see this, first notice that the DG functot/B — (A/B)PeY is fully faithful,
SO Ex?A/B)"(X, Y) := H'"Hom4/ppretr (X, Y) = H' Homy,5(X, Y); then notice that
a morphismf — Z from Qy induces an isomorphism

H'Homy,s(X,Y) = H Homyprer ,5(X, Y) = H' Hompret/5(X, Z)

because Hompretr/5(X, U) is acyclic for everyU € B (acyclicity is clear sincel is
homotopy equivalent to 0 as an object4?®!/13).

8.3. Consider (8.1) as a morphism from the r.h.s. of (8.2) to the r.h.s. of (8.3). Clearly, it
is induced by the morphisnas; : Hom gpretr (X, Z) — Hompretr ,3(X, Z), Z € AP™®". By
(3.2) eachny is injective andLz := Cokeray is the union of an increasing sequence of
subcomplexes & (Lz)o C (Lz)1 C -+ such that(L z),/(Lz)n-1 = HOMyprerr 5 (X, Z)
forn > 1. So to prove that (8.1) is bijective, it suffices to show that

lim H Hom!ypew 5(X, Z) =0, n>1.
Y—>2Z)eQy

Forn > 1 the DG functorZ — HorrfJ’L‘pre."/B(X, Z) is a direct sum of DG functors of the
form Z — Fx .y ® Homyprer (U, Z), U € B, whereFx y is a homotopically flat complex
of k-modules. Since

lim  H'Homype (U, Z) = Extyu u(U, Z) =0, U€B
(Y—>2Z)eQy

it remains to prove the following lemma.

8.4. Lemma.Let {C,} be a filtering inductive system of objects of the homotopy category
of complexes ot-modulegso eachC, is a complexto each morphismu :a — B there
corresponds a morphistf, : C, — Cg and f,,, is homotopy equivalenttg, f,). Suppose
thatlim H'(C,) =0for all i. Then for every homotopically flat complExof k-modules

lim H'(Co ® F) =0.
o

Remark. This would be obvious if we had a true inductive system of complexes, i.e., if
fuv Were equal tof,, f, (because in this case

Co).

— — —
o o

lim H' (Cy) = H' (C), lim H (Co ® F) = H' (C ® F), C:=lim
o
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If there are countably many’s then Lemma 8.4 is still obvious because we can replace
the morphismsf,, by homotopy equivalent ones so that, = f,. f..

The proof of Lemma 8.4 is based on the following lemma due to Spaltenstein [50].

8.5. Lemma.For every complext’ of k-modules there is a quasi-isomorphigth— F,
whereF’ is a filtering direct limit of finite complexes of finitely generated fremodules.

Proof. One can takeF” to be a semi-free resolution df (see Appendix B). Here is
a slightly different argument close to the one from [50]. Repregermts a direct limit
of bounded above complexés, n € N. Let P, — F), be a surjective quasi-isomorphism,
where P, is a bounded above complex of fréemodules. The morphisn®, — F,+1
can be lifted to a morphisn®, — P, 1. We can takeF’ to be the direct limit of the
complexesP, (because each, is the union of a filtering family of finite complexes of
finitely generated freg-modules). O

8.6. Proof of Lemma 8.4Let F be as in Lemma 8.4. Choo¢€ as in Lemma 8.5. Since
Lemma 8.4 holds fo’ instead ofF it suffices to show that the maf‘(C, ® F') —
H'(C, ® F) is an isomorphism. As Coig’ — F) is homotopically flat and acyclic this
follows from [50, Proposition 5.8]: if a complex is homotopically flat and acyclic then
C ® C’ is acyclic for every complex’ (proof: by Lemma 8.5 one may assume tfais
either homotopically flat or acyclic). O

9. Proofs of Propositions 1.4 and 5.4
9.1. Proof of Proposition 5.4LetY € Ob.A. Then

RF"(Y)= *“lim* F"(2). (9.1)
(Y—>2)eQy

Here Qy is the filtering category ofA"-morphismsg:Y — Z such that Cong) is
isomorphic to an object as"".

To compute RFY(Y) choose a closed morphisryi: P — Y of degree 0 with
P e B, Congf) € Bt (i.e., choose a semi-free resolution of the IB3-moduleb —
Hom(b, Y), b € B). Then

HYRF)Y"(Y)= “lim” F"(Con&W — Y)), (9.2)
(W—P)eQ',

where Q’, is the filtering category of3-morphismsW — P with W e BPreT We have
the functor® : Q’, — Qy that sends:: W — P to g:Y — Cond fh), and (5.6) is the
morphism from the r.h.s. of (9.1) to the r.h.s. of (9.2) corresponding.tét remains to
prove the following lemma.
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9.2. Lemma.Let f:P — Y be a closed morphism of degr@ewith Y € A, P € B,
Cond f) € B+. Then the above functa : 9, — Qy is cofinal.

Proof. By the definition of cofinality (see [18, §8.1]), we have to show that for every
(g:Y — Z) € Qy there exists(W — P) € Q, such that theA"-morphismY —

CongW — Y) can be factored through. There is a distinguished triangleL Y S
Z — V[1], V € BY, so it suffices to show that is in the image of the composition

lim Homyu (V, W) — Homén(V, P) — Homuu (V,Y). (9.3)
(W%P)EQ’P

This is clear because both maps in (9.3) are bijective (the second one is bijective because
V eB"and Conéf: P — Y)eBt). O

9.3. Proof of Proposition 1.4 We will use the convention of 4.18 is identified with its
essential image under the induction DG fundbr A.

To prove that (i)= (ii), choose a closed morphisrfi: P — Y of degree 0 with
PeBcCA, Condf) e Bt (i.e., choose a semi-free resolution of the M¥3-module
b Hom(b, Y), b € B). It suffices to show that (1.4) is quasi-isomorphicfl]. To this
end, consider the commutative diagram

Hom(X,Y) S S

—

vx l lax (9.4)

Hom(&(X), £(Y)) —~ lim Hom(£(X). & (Con&W — 1))

—

Hom(X, CongW — 1))

in which the direct limits are ovefW — P) € Q', (see 9.1 for the definition 0D’,).
Objects of&(B) are homotopic to zero, sy is a quasi-isomorphism. By (A.1) and
Lemma 9.2ay is also a quasi-isomorphism. So the DG-module X — Conduvy) is
guasi-isomorphic to the D@°-moduleX +— Con€uy), i.e., to P[1].

To prove that (ii))= (i), consider again the commutative diagram (9.4). The BG
moduleX — Conduy) is quasi-isomorphic taP[1], andBx is a quasi-isomorphism. So
if the DG .A°-moduleX — Conguvy) is quasi-isomorphic to an object & C A then the
DG A°-module

X Conday), XecA (9.5)

is quasi-isomorphic to some € B C A. Clearly, M is quasi-isomorphic to the restriction
of (9.5) toB. By (A.1) and Lemma 9.2 one has

lim  H'Hom(X,CongW — Y)) = Ext XY, XY eA
(W—P)eQ'p

So the restriction of (9.5) t& is acyclic. Thereforegy is a quasi-isomorphism for all
X € A. So the canonical map Eﬁ:/Bn(X, Y) — Extor (6(X), §(Y)) is an isomorphism
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forall X,Y € A, i.e., the functotd” /BY — C" induced by is fully faithful. Its essential
image is a triangulated subcategory containing®eso it equal€®. O

10. Proofs of Propositions 1.5.1, 4.6, and 4.7

10.1. Proof of Proposition 4.7.1dentify A" = Ho(A) with D(A) and B" = Ho(B)

with D(B). Then the embeddlngtr — A” |dent|f|es with the derived |nduct|0n functor

so it has a right adjoint, namely the restrlctlon functor. This proves (i). By adjointness,
(B"M)L c Ho(A) is the kernel of the restriction functor, which proves (ii). Statement
(iii) follows from (i) and (ii). To prove (iv) apply Lemma A.5 in the following situation:
’T():.AU, T = Atr’ QOZBU, Q= §tr. 0

10.2. Proof of Proposition 1.5.1(a) is a particular case of Proposition 4.6(ii). Here is
a direct proof of (a). A is essentially surjective it suffices to show that the morphism
[ Ext'(E(a), c) — EXt'(§*&(a),&*c) is an |somorph|sm for every € A andc¢ € C.

Decomposef as Ext(&(a), c) = Ext'(a, £*c) —> Ext" (§*£(a), £*c), where f/ comes
from the morphisny : a — £*£(a). By Proposition 1.4(ii), there is a distinguished triangle

LInd(N) — a 5 £*€(a) — LInd(N)[1], N e D(B), (10.1)

where LInd:D(B) — D(A) is the derived induction functoL Ind:D(B) — D(A).
As &£*c is annihilated by the restriction functor Rd3¢A) — D(B), we see that
Ext'(L Ind(N), £*c) =0, sof’ is an isomorphism.

Applying Res to (10.1) and using the equalities Res: 0, ResL Ind = idp (), we get
N =Resx: andé*£(a) ~ CongL IndRes: — a). This implies (b). O

10.3. Proof of Proposition 4.6.The derived category of4°-modules identifies with
Ho(A). The derived induction functar: Ho(A) — Ho(C) is left adjoint to the restriction
functorR :Ho(C) — Ho(A).

By Proposition 4.7 we can identify Hgl)/ Ho(3) with Ho(3+) = (Ho(B))*. Clearly,
R(Ho(C)) C Ho(Bh). Leti :Ho(B+) — Ho(C) andr :Ho(C) — Ho(B1) be the functors
corresponding td and R. It suffices to show that they are quasi-inverse equivalences.
Clearly, i is left adjoint tor. So we have the adjunction morphisms—dri, ir — id,
and we have to show that they are isomorphisms. By Lemma 6.2.2, the morphismiid
is an isomorphism. Therefore, the natural morphism rir is an isomorphism, so the
morphismrir — r is an isomorphism (because the compositich rir — r equals id),
and finally the morphismr — id is an isomorphism (becausds conservative, i.e., if
is @ morphism in HOC ) such that (f) is an isomorphism theyfi is an isomorphism). O

11. Proofs of Proposition 1.6.3 and Theorem 1.6.2

11.1. Proof of Proposition 1.6.3Let My denote the DGA°-module (1.4). Replacing
£:A—Chyt®idc: A® K — C® K one gets a similar DGA° ® K°-moduleMy gz
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for every Z € K. Clearly, Mygz = My ® hz, whereh  is the image ofZ under the
Yoneda embeddinff — K°-DGmod. AsK is homotopically flat ovek property 1.4(ii)
for £ : A — C implies property 1.4(ii) fort ® idx: A ® K — C ® K. It remains to use
Proposition 1.4. O

11.2. Proof of Theorem 1.6.2A pair (C, &) satisfying Theorem 1.6.2(ii) is clearly unique
in the sense dbGcat, and in Sections 3, 4 we proved the existence of DG quotient, i.e., the
existence of a paifC, &) satisfying Theorem 1.6.2(i). So it remains to show thatfiYii).

We will use the definition ofT (A, £) from E.1-E.4. One can assume thatis
homotopically flat ovek. SoT (A, K) c D(A°®K), T(B,K)c D(B°® K), T(,K) C
D(C° ® K). We can also assume thak T(A4,C) comes from a DG functof: A — C
(otherwise replaced by one of its semi-free resolutions and apply Proposition E.7.2).
So if Theorem 1.6.2(i) holds, one can apply Proposition 1.6.3 and 4.6. We see that
the restriction functorD(C° ® K) — D(A° ® K) is fully faithful, and its essential
image consists precisely of objects b{.A° ® K) annihilated by the restriction functor
D(A° ® K) — D(B° ® K). Property (ii) follows. O
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Appendix A. Triangulated categories
A.1. Categories witlZ-action and graded categories

Let C be a category with a weak action @f i.e., a monoidal functor frorZ. to the
monoidal category Fun@f, C) of functorsC — C (hereZ is viewed as a monoidal
category: Mofm, n) := @ if m # n, Mor(n,n) :={id,}, m @ n :=m + n for m,n € 7).
For c1,c2 € C put Ext(cy, c2) := Mor(cy, F,(c2)), where F,:C — C is the functor
corresponding te € Z. Using the isomorphism,,, F,, — F,,1,, one gets the composition
map Ext'(c1, c2) x Ext'(cz, c3) — Ext"™(cq, c3), soC becomes &-graded category.
This Z-graded category has an additional property: for ewegyZ andc € C there exists
an objectc[n] € C with an isomorphisne[n] —> ¢ of degreer. EveryZ-graded category
C with this property comes from an essentially unique weak actidhaf C.

Suppose that each of the categor@snd C’ is equipped with a weak action &.
ConsiderC and C’ as graded categories. Then a graded fun€tes C’ (i.e., a functor
between the corresponding graded categories) is the same as a fdnator~ C’
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equipped with an isomorphisn@ ¥ — X’'®, where ¥ € Func(C,C) and X’ €
Funct(C’, C’) are the images of & Z.

An additive Z-graded categonyC is considered as a plain (non-graded) category
by considering elements &, Ext*(c1, c2) (rather than those of |, Ext’(c1, c2)) as
morphismsey — 3.

All this applies, in particular, to triangulated categories.

A.2. Quotients

The quotient7 /7' of a triangulated category by a triangulated subcatego®/ is
defined to be the localization Gf by the multiplicative sefS of morphismsf such that
Cond f) is isomorphic to an object af’. The category /7’ has a canonical triangulated
structure; by definition, the distinguished trianglesZof7” are those isomorphic to the
images of the distinguished triangles®f This is due to Verdier [56,57].

He also proved in [56,57] that for evelly € Ob7 the categoryQy of 7-morphisms
f:Y — Z such that Congf) is isomorphic to an object of” is filtering, and for every
Y € Ob7 one has an isomorphism

lim  Extr(X, Z) = Extr 7/ (X, Y). (A1)
(Y—>2Z)eQy

A.3. Remarks.

(i) Verdier requires” to be thick (épaisse), which means according to [57] that an object
of 7 which is (isomorphic to) a direct summand of an objgtbelongs ta7”’. But the
statements from A.2 hold without the thickness assumption because in [57, §11.2.2]
(orin [56, Chapter 1, §2.3]) the multiplicative s&is not required to be saturated (by
[57, Proposition 2.1.8] thickness @7 is equivalent to saturatedness$)f

(i) 7/7T'=7T)7T", whereT” c T is the smallest thick subcategory containing So
according to [57] an object of has zero image iff /7" if and only if it belongs
to7".

(iii) The definitions of thickness from [56,57] are equivalentZif C 7 is thick in the
sense of [57] then according to [57] is the set of objects of whose image in
T /T’ is zero, sd7”’ is thick in the sense of [56]. Direct proofs of the equivalence can
be found in [49, Proposition 1.3, p. 305] and [45, Criterion 1.3, p. 390].

A.4. Let Q be a triangulated subcategory of a triangulated cate@oriet O+ c T
be the right orthogonal complement &, i.e., Q* is the full subcategory of” formed
by objectsX of 7 such that Homr (Y, X) = 0 for all Y € ObQ. Then the morphism
Homy (Y, X) — Homg o (Y, X) is an isomorphism for alk € ObQ, Y € Ob7 (see [56,
Chapter |, §6] and [57, Proposition 11.2.3.3]). In particular, the fun@ér— 7 /Q is fully
faithful. This is a particular casgg = Q-+, Qo = 0) of the following lemma.
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A.5. Lemma. Let Q, 7p, Qo be triangulated subcategories of a triangulated categbry
Qo C 9@ N 7p. Suppose that every morphism from an objedyo an object ofQ factors
through an object 0Bg. Then the functoflp/ Qo — 7 /Q is fully faithful.

Proof. The functorZo/Qo — 7/ Qo is fully faithful by (A.1). Our factorization condition
implies that Hory, o, (X, Y) =0 for all X € Ob7p, Y € Ob Q. In other wordsZo/ Qo is
contained in the right orthogonal complement®@f Qg in 7 /7o, so by A.4 the functor
To/ Q0 — (7/Q0)/(Q/Q0) =T /Q s fully faithful. O

A.6. Admissible subcategories

Suppose that a triangulated subcateg@ry 7 is strictly full (“strictly” means that
every object of7” isomorphic to an object of belongs toQ). Let 9+ ¢ T (respectively
LQ ¢ 7) be the right (respectively left) orthogonal complement®f i.e., the full
subcategory of/ formed by objectsX of 7 such that Honfy, X) = O (respectively
Hom(X,Y)=0)forall Y € ObQ. According to [5, 81],Q is said to beight-admissibldf
for eachX € 7 there exists a distinguished triangtée — X — X” — X'[1] with X' € Q
andX” € Q1 (such a triangle is unique up to unique isomorphism)Asis thick, Q is
right-admissible if and only if the functa® — 7 /Q-' is essentially surjectiveR is said
to beleft-admissibléf Q° c 7° is right-admissible. There is a one-to-one correspondence
between right-admissible subcategori2s: 7 and left-admissible subcategori@sc 7,
namely @' = Q+, @ = +Q’. According to [5, §1] and [56, Chapter 1, §2.6] right-
admissibility is equivalent to each of the following conditions:

(a) Q is thick and the functo@t — 7/Q is essentially surjective (and therefore an
equivalence);

(b) the inclusion functo® < 7 has a right adjoint;

(c) Q isthick andthe functof” — 7 /Q has a right adjoint;

(d) 7 is generated by and Q' (i.e., if 7/ c T is a strictly full triangulated subcategory
containingQ and Q' then7’ = 7).

Remark. A left or right adjoint of a triangulated functor is automatically triangulated (see
[27] or [5, Proposition 1.4]).

Appendix B. Semi-free resolutions

B.1. Definition. A DG R-moduleF over a DG ringR is freeif it is isomorphic to a direct
sum of DG modules of the fornR[n], n € Z. A DG R-module F is semi-freeif the
following equivalent conditions hold:

(1) F can be represented as the union of an increasing sequence of DG subnfgdules
i=0,1,..., sothatFp = 0 and each quotierf; / F; 1 is free;
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(2) F has a homogeneoug-module basisB with the following property: for a subset
S C B lets(S) be the smallest subsgtc B such thati/(S) is contained in thek-linear
span ofT', then for every € B there is am € N such that” ({b}) = @.

A complex ofk-modules is semi-free if it is semi-free as a R&@nodule.

B.2. Remarks.

(i) A bounded above complex of frademodules is semi-free.

(i) Semi-free DG modules were explicitly introduced in [2] (according to the terminology
of [2], a DG module over a DG algebrR is free if it is freely generated, as an
R-module, by homogeneous elemeanissuch that d, = 0, so semi-free is weaker
than free). In fact, the notion of semi-free DG module had been known to topologists
long before [2] (see, e.g., [16]). Semi-free DG modules are also called “cell DG
modules” (Kriz—May [35]) and “standard cofibrant DG modules” (Hinich [19]). In
fact, Hinich shows in [19, Sections 2, 3] that DG modules over a fixed DG algebra
form a closed model category with weak equivalences being quasi-isomorphisms and
fibrations being surjective maps. He shows, that a DG mod@ugecofibrant (i.e., the
morphism 0— C is cofibrant) if and only if it is a direct summand of a semi-free DG
module.

(iii) As noticed in [1,19], a semi-free DG modulé is homotopically projectivewhich
means that for every acyclic DG moduleevery morphisny : F — N is homotopic
to 0 (we prefer to use the name “homotopically projective” instead of Spaltenstein’s
name “K-projective”). Indeed, if F;} is a filtration on F satisfying the condition
from B.1, then every homotopy betwe¢ig,_, and O can be extended to a homotopy
betweenf|r, and 0. This also follows from Lemma 4.4 applied to the triangulated
subcategoryy of semi-free DGR-modulesF such that the complex Hoth, N) is
acyclic (Zy is closed under arbitrary direct sums and cont&ins

(iv) By (iii) and Lemma B.3, the functor from the homotopy category of semi-free DG
R-modules to the derived category Rfmodules is an equivalence.

B.3. Lemma.For every DG modul@/ over a DG algebraR there is a quasi-isomorphism
f:F — M with F a semi-free D@-module. One can chooggto be surjective.

The pair(F, f) is constructed in [2] as the direct limit @¥;, f;) where O= Fy —
F1— F»— ---, each quotienF; /F;_y isfree, f; . F; = M, filu,_, = fi—1. GivenF;_1
and f;_1:Fi_1 — M, one finds a morphisrr : P — Condg f;_1)[—1] such thatP is
free ands induces an epimorphism of the cohomology groupslefines a morphism
fiF; := CongP — F;_1) — M such thatfi|r,_, = fi—1. The map Congf;_1) —
Cond€ f;) induces a zero map of the cohomology groups, so CbHné acyclic, i.e., f
is a quasi-isomorphism.

Remark. One can reformulate the above proof of the lemma without using the “linear”
word “cone” (it suffices to replace “category” by “module” in the proof of Lemma A.5).
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B.4. Hinich [19] proved a version of Lemma B.3 for DG algebras, i.e., DG categories
with one object. The case of a general DG category is similar.

Definition. Let A be a DG categoryl equipped with a DG functof — A. We say thaid

is semi-free ovelC if A can be represented as the union of an increasing sequence of DG
subcategories!;, i =0, 1, ..., so that Ob4; = Ob.A, K maps isomorphically ontolg,

and forevery > 0 A; as a graded-category ovei; _1 (i.e., with forgotten differentials in

the Hom complexes) is freely generated ader 1 by a family of homogeneous morphisms

f« such that ¢, € Mor A;_1.

Definition. A DG categoryA is semi-freeif it is semi-free overAgisc, Where Agiscr is
the DG category with OBlgiscr= Ob.A such that the endomorphism DG algebra of each
object of Agiscr equalsk and Homy,, (X, Y) =0 if X, Y are different objects afgiscr.

Remarks.

(1) Semi-free DG categories with one object were introduced in [19] under the name
of “standard cofibrant” DG algebras. In fact, Hinich shows in [19, Sections 2, 4]
that DG algebras form a closed model category with weak equivalences being quasi-
isomorphisms and fibrations being surjective maps. He shows that a DG al@ebra
is cofibrant (i.e., the morphisih — C is cofibrant) if and only ifR is a retract of
a semi-free DG algebra.

(2) Z_-graded semi-free DG algebras were considered as early as 1957 by Tate [55],
and Z,.-graded ones were considered in 1973 by Sullivan [53,54]. Hinich [19]
explained following [1,50] that it is easy and natural to work with DG algebras without
boundedness conditions.

B.5. Lemma. For every DG category4 there exists a semi-free DG categoxywnh
Ob.A = ObA and a functor¥ : 4 — A such that¥ (X) = X for everyX e ObA and
¥ induces a surjective quasi-isomorphigtiom(X, Y) — Hom(¥ (X), ¥ (Y)) for every
X, Y e A

The proof is the same as for DG algebras [19, Sections 2, 4] and similar to that
of Lemma B.3.(A4, ¥) is constructed as the direct limit af4;, ¥;) where Ob4; =
ObA, Ag<> AL <> -+, Wit A — A, ¥ z,_, = ¥i-1, and the following conditions are
satisfied:

(i) Ao is the discreté-category;
(ii) for everyi > 0 4; as a graded-category is freely generated ovdf_1 by a family
of homogeneous morphisnfs such that ¢, € Mor A; _1;
(iii) for every i > 0 andX,Y € ObA the morphism Hom, (X,Y) — Homu (¥ (X),
¥ (Y)) is surjective and induces a surjective map between the sets of the cocycles;
(iv) for everyi > 0 andX,Y € Ob.A every cocyclef e Homy, (X, Y) whose image in
Homy (¥ (X), ¥ (Y)) is a coboundary becomes a coboundary in Hom(X, ¥).
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One constru3t$ﬂ,-, ¥;) by induction. Notice that (iii) holds for all if it holds for
i =1, so after( A, ¥1) is constructed one only has to kill cohomology classes by adding
new morphisms.

B.6. Lemma. If a DG functor = :C—>Cis a surjective quasi-equivalendee., if
induces a surjectio®bC — Ob(C and surjective quasi-isomorphisms between Hoen
complexesthen every DG functor from a semi-free DG categotyto C lifts to a DG
functor.A — C. More generallyfor every commutative diagram

K
R

such thatr is semi-free ovelC andx is a surjective quasi-equivalence there exists a DG
functor¥ : R — C such thatr¥ =¥ and¥v = @.

e

(]
—_—

T

QA<—0Q

'4
E——

Remark. This is one of the closed model category axioms checked in [19].

Proof. Use the following fact: if f:A — B is a surjective quasi-isomorphism of
complexesa € A, b € B, f(a) = db, and & = 0 then there is am’ € A such that
f@)=banda=dd'. O

Appendix C. DG modules over DG categories

Additive functors from a preadditive categady/to the category of abelian groups are
often calledA-modules (see [42]). We are going to introduce a similar terminology in the
DG setting. The definitions below are similar to those of Mitchell [41].

C.1. Let A be a DG category. Aeft DG .A-moduleis a DG functor fromA to the DG
category of complexes @&t modules. Sometimes left DA-modules will be called simply
DG A-modules. IfA has a single objed? with End4q U = R then a DGA-module is the
same as a D@&-module. Aright DG .A-moduleis a left DG module over the dual DG
categoryA°. The DG category of DGA-modules is denoted hyl-DGmod. In particular,
k-DGmod is the DG category of complexesisfodules.

C.2. Let A be a DG category. Then the complex

Alg = @ Homx.Y)
X,YeObA

has a natural DG algebra structure (interpret elements of Alg matrices fxy), fxy €
Hom(Y, X), whose rows and columns are labeled by QbThe DG algebra Alg has
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the following property: every finite subset of Algis contained ine Alg 4 e for some
idempotente € Alg 4 such that d = 0 and deg = 0. We say that a modula/ over
Alg 4 is quasi-unitalif every element o/ belongs taeM for some idempotent € Alg 4
(which may be assumed closed of degree 0 without loss of generalitp)idfa DG A-
module thenM g := Pyop4 P(X) is a DG module over Alg (to define multiplication
write elements of Alg, as matrices and elements 8 as columns). Thus, we get a
DG equivalence between the DG category of l@nodules and that of quasi-unital DG
modules over Alg;.

C.3. Let F: A — k-DGmod be a left DGA-module and5 : A — k-DGmod a right DG
A-module. ADG pairing G x F — C, C € k-DGmod, is a DG morphism from the DG
bifunctor (X, Y) — Hom(X, Y) to the DG bifunctor X, Y) = Hom(G(Y) ® F(X), C).

It can be equivalently defined as a DG morphiBm> Hom(G, C) or as a DG morphism
G — Hom(F, C), where HoniG, C) is the DG functorX — Hom(G(X), C), X € A.
There is a universal DG pairing x F — Co. We say thatCy is the tensor product
of G and F, and we writeCo = G ® 4 F. Explicitly, G ® 4 F is the quotient of
Dxca G(X) ® F(X) by the following relations: for every morphisifi: X — Y in A
and everyu € G(Y), v € F(X) one should identifyf*(u) ® v andu ® fi(v). In terms
of [39, 8I1X.6],G ®4 F = fX G(X) ® F(X), i.e.,G ®4 F is the coend of the functor
A° x A — k-DGmod defined byY, X) — G(Y) ® F(X). Interms of C.2, a DG pairing
G x F — Cisthe same as a DG pairildg x Mr — C,S0G ® 4 F = Mg ®Alg 4, MF.

C.4. Example. For everyY € A one has the right DGA-moduleiy and the left DG
A-moduleiy defined byhy(Z) := Hom(Z,Y), hy(Z) := Hom(Y, Z), Z € A. One has
the canonical isomorphisms

GQRahy=G(), (C.1)
hy ® 4 F=F(Y) (C.2)

induced by the map§(Z) ® Hom(Y, Z) - G(Y), Hom(Z,Y)® F(Z) - F(Y), Z € A.

C.5. Given DG categoriest, B, B, a DG A ® B-moduleF, and a DG(A° ® B)-mo-
duleG, one defines the DB ® B-moduleG ® 4 F as follows. We consideF as a DG
functor from 5 to the DG category of DGA-modules, saF (X) is a DG .A-module for
everyX e B. Quite similarly,G(Y) is a DG (A)°-module for everyy € B. Now G ® 4 F
is the DG functo¥ @ X — G(Y) ® 4 F(X), X €B,Y € B.

C.6. Denote byHom4 the DG A ® A°-module(X, Y) — Hom(Y, X), X, Y € A. E.g.,
if A has a single object anll is its DG algebra of endomorphisms thdomy is the DG
R-bimoduleR. For any DG categoryl the isomorphisms (C.1) and (C.2) induce canonical
isomorphisms

Homy®4F =F, G®yqHOMy =G (C.3)
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for every left DG.4-module F and right DG.A-moduleG (the meaning oHomy ® 4 F
andG ® 4 Homy4 was explained in C.5). The isomorphisms (C.3) are clear from the point
of view of C.2 becaus#fpom, is Alg 4 considered as a DG bimodule over itself.

C.7. A left or right DG .A-module F: A — k-DGmod is said to becyclic if the
complex F(X) is acyclic for everyX € A. A left DG A-module F is said to be
homotopically flaif G ® 4 F is acyclic for every acyclic right DGA-moduleG. A right
DG A-module is said to be homotopically flat if it is homotopically flat as a left DG
A°-module. It follows from (C.1) and (C.2) thay andiy are homotopically flat.

C.8. Let A be a DG category. A DGA-module is said to b&eeif it is isomorphic to a
direct sum of complexes of the forirx[n], X € A, n € Z. The notion of semi-free DGI-
module is quite similar to that of semi-free module over a DG algebra (see Definition B.1):
an.4-module® is said to besemi-fredf it can be represented as the union of an increasing
sequence of DG submodulés, i =0, 1, ..., so thatdg = 0 and each quotier®; /®;_1
is free. Clearly, a semi-free DA@-module is homotopically flat. For every D@-module
@; there is a quasi-isomorphisi — @ such thatF is a semi-free DGA-module; this
is proved just as in the case thdt has a single object (see Lemma B.3). Just as in
Remarks B.2, one shows that a semi-free A@nodule is homotopically projective (i.e.,
the complex HortF, N) is acyclic for every acyclic DAA-moduleN) and that the functor
from the homotopy category of semi-free D&modules to the derived categoB/(.A°)
of A-modules is an equivalence.

C.9. Let F: A — A be a DG functor between DG categories. Then we have the
restriction DG functor Reg : A-DGmod— .A-DGmod, which maps a DGA-module
v A — k-DGmod to¥ o F. Sometimes instead of Reg” we write or “¥ considered
as a DGA-module.”

We define thenductionfunctor Indr : A-DGmod— A’-DGmaod by

Indrp, @ (Y)=(Reshy) @4 @, YecA. (C.4)
or equivalently by
Indg @ :=Homy ® 4@ (C.5)

(according to C.6Homy is a DGA’ ® (A’)°-module, but in (C.5) we consider it as a DG
A" ® A°-module). Usually we writed’ @ 4 @ instead oHomy ® 4P = Indr @.

The DG functor Ing is left adjoint to Reg. Indeed, for every DGA’-module ¥
the complex Homy-pgmodHOMy ® 4@, ¥) is canonically isomorphic to Hompgmod
(@, Hom g-pemodHOMy/, ¥)), and the DG.A’-module Homy-pgmod(HOMY/, ¥)) is
canonically isomorphic t@.

In terms of C.2, the DG functors Resnd Ind- correspond to the usual restriction and
induction for the DG algebra morphism Alg— Alg 4 corresponding t@.

Similar definitions and conventions apply to right DG modules (in this case we have
Indr @(Y)=® ® 4 (Res-hy), ® @ 4 A :=® ® 4 Homy = Indp @).
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C.10. Example.There is a canonical isomorphism
|ndpl’~lx=/’~lp(x), XE.A, (C6)

where iy (Y) := Homu4(X,Y), Y € A. This follows either from (C.4) and (C.1) or
equivalently from (C.5) and (C.3) (or from the fact that jnid the DG functor left adjoint
to Res). Quite similarly, there is a canonical isomorphismride = i p(x), which means
that the following diagram is commutative up to isomorphism:

A A°-DGmod

T

A —— (A)°-DGmod

The horizontal arrows of (C.7) are the Yoneda embeddings definédisy iy, the left
vertical arrow isF, and the right one is the induction functor.

C.11. Example.Let A be a DG category and: A — AP™®" the embedding. Then
Res : AP®"-DGmod — A4-DGmod is a DG equivalence. So ladA-DGmod —
APe"-DGmod is a quasi-inverse DG equivalence.

C.12. Derived induction

As explained (e.g., [6, 810]), in the situation of C.9 the functorindo(A°-DGmod —
Ho((A")°-DGmod has a left derived functoL Indr : D(A) — D(A’), which is called
derived induction.Derived induction is left adjoint to the obvious restriction functor
D(A) — D(A).

By C.8 one can identifyD(.A) with Ho(A4), whereA is the DG category of semi-free
DG A°-modules. Derived induction viewed as a functor(4o — HO(A/) is the obvious
induction functor. Restriction viewed as a functor(lzgtﬁ) — Ho(A) sends a semi-free DG
(A)°-module to a semi-free resolution of its restriction4®.

C.13. Given DG algebrast, C, A’, and DG morphismg& < A — A’, one has the
DG C ® (A")°-moduleC ®4 A’. Quite similarly, given DG categoried, C, A’, and DG
functorsF: A— A, G: A— C, one defines the DG ® (A")°-moduleC ® 4 A" by

C®4 A :=Homp ® g Homy =C ® 4 Homy = Hony ® 4 A’
=C®4Homyu®4A, (C.8)

whereHomny is considered as @ ® .A°-module andHomy as anA ® (A’)°-module. In
other wordsC ® 4 A’ is the DG functoC x (A')° — k-DGmod defined by

V4
(X,Y) / Hom(F(Z),Y) ® Hom(X, G(Z)), X € ObC, Y € Ob A/,



680 V. Drinfeld / Journal of Algebra 272 (2004) 643-691

where the/ symbol denotes the coend (see C.3), so the above “integral” is the tensor
product of the right.4-module Z — Hom(F(Z),Y) and the left.A-module Z
Hom(X, G(Z)). In terms of C.2, the DG module over AI®(Alg 4)° corresponding to
C®4 A equals Alg ®aig , Alg 4 -

C.14. Given a DG functorF: A — A we say thatA’ is right F-flat (or right
homotopically flat ovetA) if the right A-module Reg hx is homotopically flat for all
X € A'; herehx(Y) :=Hom(Y, X), X,Y € A’. We say thatd’ is right module-semifree
over A if the right DG A-modules Reghyx, X € A, are semi-freed’ is said to bdeft
F-flat (or left homotopically flat overd) if the left A-module Reg hy is homotopically
flat for all X € A’; herehx(Y) := Hom(X, Y), X, Y € A'. If A’ is right homotopically flat
over.A then the induction functor Indmaps acyclic left DG4-modules to acyclic left DG
A’-modules. The previous sentence remains true if “left” and “right” are interchanged.

C.15. Lemma.Let A be a DG category an#8 C A a full DG subcategory.

(i) If (3.4)holds thend/B is right homotopically flat oves.
(i) If (7.4)holds thend/B is right module-semifree oves.

Proof. We will only prove (i) (the proof of (ii) is similar). We have to show that for
everyY e A the functoryy : A° — k-DGmod defined by (X) = Homy,5(X,Y) is a

homotopically flat right4d-module. By (3.2), there is afiltratiohy =, ¥y, ¥y C lI/;,H'l,
such thaw = hy and¥) /¥t = @y Cy, ® hy for everyn > 0, whereCy, is the
direct sum of complexes

Hom (U1, U2) @ --- @ HoOMA (Un—1, Up) ® Homu (U, Y), Ui €B, Ur=U.

It remains to notice that for every € A the right.A-modulehy is homotopically flat (see
C.7) and by (3.4) the complex€y¥, are homotopically flat. O

C.16. Quasi-representability

Let A be a DG category. We have the DG functor frofrto the DG category of DG
A°-modules defined by > hy.

C.16.1. Definition. A DG A°-module @ is quasi-representabléf there is a quasi-
isomorphismf : hy — & for someX e A.

Remark. By C.8, for every DG.4°-module @ there exists a semi-free resolution
7:® — & (i.e., ® is semi-free and is a quasi-isomorphism), and the homotopy class of
@ does not depend on the choice(df, 7). So® is quasi-representable if and only if this
class containg y for someX € A.

C.16.2. Lemma. @ is quasi-representable if and only if the graded funct&ro :
(Ho' (A))° — {gradedk-module$ is representable.
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Proof. We only have to prove the “if” statement. Suppd$&® is represented byX, u),
X € ObA, u € H°®(X). Our u is the cohomology class of soniiee @ (X) such that
dit = 0, degi = 0. Theni defines a closed morphisifi: hx — @ of degree 0 such that
for everyY € A the morphismH 'hx(Y) — H & (Y) is an isomorphism, s¢ is a quasi-
isomorphism. O

C.16.3.Let A’ C A°-DGmod be the full DG subcategory of quasi-representable DG
modules. We have the DG functars< A" %> A’, whereA” is the DG category whose
objects are triples consisting of an objdcte A, a DG A°-module ¥, and a quasi-
isomorphismhy — W (more preciselyA” is the full DG subcategory of the DG category
A°-resDGmod from 6.2.1 which is formed by these triples). Cleatlyis a surjective
guasi-equivalence.

C.16.4. Quasi-corepresentability
We say that a DGA-module® is quasi-corepresentabléthere is a quasi-isomorphism
fihx — @ forsomeX € A4, i.e., if @ is representable as a DGL°)°-module.

Appendix D. The diagonal DG categories

D.1. Given topological space®’, M"” mapped to a spack, one has the “homotopy
fiber product” (M’ x M") xuxm Ak, where Al is the “homotopy diagonal,” i.e.,
the space of path®,1] - M (y € A’/{4 is mapped ta(y (0), y(1)) € M x M). In the
same spirit, given a DG catego€yit is sometimes useful to replace the naive diagonal
Ac C C x C by one of the following DG categoried¢, A¢, Ac, each of them equipped
with a DG functor toC x C. We defineZc to be the full DG subcategory of the DG
categoryMorC from 2.9 that consists of triple€X, Y, f) such thatf is a homotopy
equivalence; the DG functa_ﬂ)c — C x C is defined by(X, Y, ) — (X, Y). We define
ZC to be the same full DG subcategory 8fiorC, but the DG functorZC —CxCis
defined by(X, Y, f) — (Y, X).

Finally, defineZc to be the DG categoryi..-funct(l2, C) of A-functorsi, — C,
wherel, denotes thé&-category freely generated by the categdyywith objects 1...,n
and precisely one morphism with any given source and target. Here the wgrddnctor”
is understood in the “strictly unital” sense (cf. [24, §3.5] or [36, §3.1]; according to [31,
33,36,37], there are several versions of the notiomgf-functor which differ on how
an Ao, analog of the axion¥ (id) = id in the definition of usual functor is formulated;
the difference is inessential for our purposes and for any reasonable purpose). So an
Aso-functorl, — C is a DG functorD; — C, whereDs is a certain DG category with
ObDs = {1, 2}, which is freely generated (as a gradedategory, i.e., after one forgets the
differential) by morphismgi,: 1 — 2 andf21:2 — 1 of degree O, morphismfz1:1— 1
and f212: 2 — 2 of degree—1, morphismsfi212: 1 — 2 and f2121: 2 — 1 of degree-2,
etc. One has i, =0=df>1, df121= f21f12— 1, df212= f12f21— 1, and we do not need
explicit formulas for the differential of1212, f2121, €tc.
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D.2. Let ¢;; be the uniquelz-morphismi — j, i, j € {1,2}. Let |}, C |2 denote the
k-subcategory generated byz;)ThenAoo-funct(l’ , C) identifies withMorC, so we get
a canonical DG functori ¢ — A C MorC. There is a similar DG functofi ¢ — Ap.

D.3. Lemma. For every DG categoryC equipped with a DG functh — ZC the DG
flipCtOI’lC XZC(_ZC - K '_S> a quas(i_—equivalence. Same is truefffc, Ae) is replaced by
(Ac.C), (Ae. Ac) (Ae. Ac), o (A, C).

In other words, the lemma says that the DG functdis — Ac — C are quasi-
equivalences and this remains true after any “base change” in the sense of 2.8.

Proof. The DG functorsZc — ZC — C induce surjections of Hom complexes (this
follows from the definition of these complexes, see [31,33,36,37]). So it suffices to show
that they are quasi-equivalences and induce surjectiond ©b Ob Az — ObC. Both
statements are clear fat; — ObC. The DG functorF : A¢ — C is the DG functor

Axo-funct(l2, C) — Aso-funct(l1, C)

that comes from a functof:l; — |2 induced by an embeddingy < I2. F is
a quasi-equivalence becauseis an equivalence (more generally, if all the Hom
complexes of DG categorie4;, A, are semi-free DG-modules then a quasi-equivalence
A1 = Ay induces a quasi-equivalencés-funct(Az, C) => A-funci( Ay, C): this
follows from E.7.4 because the functbf.A,, C) — T (A1, C) is an equivalence).

Finally, let us prove the surjectivity of the map ﬁt@ — ObZC essentially follow-
ing [31] (where a slightly weaker statement is formulated). We will prove a formally more
general statement. Let; andl’, C 12 have the same meaning as in D.2. Suppose that the
embeddind’, < |2 (considered as a DG functor between DG categories) is decomposed
asl, — R — |2, where OR = Obl, =1/, = {1, 2} andR is semi-free ovel,, (see B.4).
Let F:15, — C be a DG functor such thaf (e12) is a homotopy equivalence. Then we
will show that F extends to a DG functa® : R — C (to prove the surjectivity of the map
ObZC — ObZC putR = D3). We will do this by decomposing as

2 H>R —>C  HOR)=Iz (D.1)
(here the equality HGR') = |2 means that the functdr, = Ho'(I},) — R’ extends to
an isomorphisni, — R’). Such a decomposition allows to extefdto a DG functor

G : R — C: first reduce to the case that all Exgroups inR’ vanish forn > 0 (otherwise
replaceR’ by a suitable DG subcategory), then one has a commutative diagram

/ @ /
15— R

R——=12
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with 77 being a surjective quasi-equivalence, and it remains to decondpas€, —> R —
‘R’ by applying Lemma B.6.

Here are two ways to construct a decomposition (D.1). The first way is, essentially, to
construct arfiR’ independent o€ and F:1 — C by slightly modifyingl’,. The second
construction seems simpler to me, but it givesrwhich depends o andF:1 — C.

() Ourl’ equals the DG categotfo from 3.7.1. LetR’ be the DG categoryA/B)o C
A/B from 3.7.1. One gets a DG funct@®’ := (A/B)o — C and, in fact, a DG functor
A/B — CP® as follows. First extend”: Ag := 1" — C to a DG functorFPet: 4 :=
(I5)Pretr — €. ThenFP™®! sends the unique object Bfto a contractible objedt € CPY.
A choice of a homotopy between,idand 0 defines a DG functod/B — CP®!. By
Lemma3.7.2, HAR') = 5.

(i) Notation: given a DG categoryl anda € Ob.A one definesd/a to be the fiber
product in the Cartesian square

Ala —— Mor A

R

* 4 A

where Mor A is the DG category from 2.9, sends an4-morphism to its targets is
the DG category with one object whose endomorphism algebra ekguatsli, : « — A
maps the object ok to a. DecomposeF:1, — C as F = sF, wheres:C/F(2) — C
sends aC-morphism to its source anE:I’2 — C/F(2) is the composition of the DG
functor I, — 12/2 that sends € {1, 2} to the uniquel,-morphisme;>:i — 2 and the
DG functorl,/2 — C/F(2) corresponding ta?: 12 — C (herel; is considered as a DG
category). Now defin®’ from (D.1) as follows: OIR’ := Obl’, = {1, 2}, Hom(j1, j2) =
Hom(F (j1), F(j2)) for ji = j» € ObR’ := Obl’, and composition iR’ comes from
composition inC/ F(2). We have a canonical decomposition_lff)iatsl’2 — R — C/F(2),
and to get (D.1) one usasC/F(2) — C. To show that H(R') = |2 use thatF(e¢;2) is
a homotopy equivalence.o

Appendix E. The 2-category of DG categories

In E.1-E.4 we recall the definition of the 2-category of DG categories used by Keller
in [22], and in E.7.1-E.7.4 we mention a different approach used by Kontsevich. We
prefer to work with the weak notion of 2-category due to Bénabou. The definition
and basic examples of 2-categories can be found in [3] or [39, Chapter XlI], where
they are called “bicategories.” Let us just recall that we have to associate to each two
DG categoriesAs, A> a categoryT (A1, A2) and to define the composition functors
T (A1, A2) x T(A2, A3) — T (A1, A3). The 2-category axioms say that composition
should be weakly associative and for every DG categédrihere is a weak unit object
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in T(A, A). The meaning of “weak” is clear from the following example: a 2-category
with one object is the same as a monoidal category.

The 2-category of DG categories is only the tip of the “iceberg” of DG categories. In E.8
we make some obvious remarks regarding the whole iceberg, but its detailed description is
left to the experts (see 1.8).

E.1. Flat case

First, let us construct the 2-categoRlatDGcat of flat DG categories (“flat” is
a shorthand for “homotopically flat ovér” see 3.3). Defing"(Ay, A2) C D(Aj ® A2) to
be the full subcategory of quasi-functors in the sense of [22, 87] (see also [26]). According
to [22], a quasi-functorfrom A; to A is an object® € D(A] ® A2) such that for
every X € Az the objectd(X) € D(A2) belongs to the essential image of the Yoneda
embedding HoAz) — D(A2) (here® (X) is the restriction ofp : A; ® A5 — k-DGmod
to {X} ® A2 = A2). In other words, an object db(A] ® A) is a quasi-functor if it comes
from a DG functor fromA; to the full subcategory of quasi-representable A§modu-
les (“quasi-representable” means “quasi-isomorphic to a representabld>BrGodule,”
see C.16). The composition df € D(A] ® Az) and¥ € D(A3 ® Az3) is defined to be

@ éAZ ¥, and the associativity isomorphism is the obvious one.

D(A] ® Az) is a gradedk-category (the morphism&; — &, of degreen are the
elements of EXt(®1, ®2)). This structure induces a structure of gradedategory on
T (A1, A2).

E.2. Remark. If Ay is pretriangulated in the sense of 2.4, then the subcategory
T (A1, A2) C D(A] ® A») is triangulated.

E.3. General case

It suffices to define for every DG categadya 2-functor: S 4 — FlatDGcat, where
FlatDGcatis the 2-category of flat DG categories afig is a non-empty 2-category such
that for everyss, s € ObS 4 the category of 1-morphismg — s2 has one object and
one morphism (7" is the Hebrew letter Dalet). We define Gf to be the class of all flat
resolutions ofS (by Lemma B.5, Ols 4 # ). T sends each\ € ObS 4 to itself considered
as an object oFlatDGcat The unique 1-morphism fromd; € ObS 4 to A; € = ObS 4 is
mapped byT to Homy 7, € T (A1, Ap) C D(A° ® Ay), where the DGA; ® A° module
Homj 7, is defined by

(X1, X2) > Hom(2(X2), m1(X1)),  Xi € A; (E.1)
andr; is the DG functotd; — A. To define, one also has to specify a quasi-isomorphism

L
Homjl’jz ® A, Homj(zﬁg — Homgljs (E.2)
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for every three resolutiond; — A. It comes from the composition morphism
Homjl’jz A, Homjz)ﬂa — Homjl,js'

E.4. Each T (A1, A2) is equipped with a gradek-category structure, and ifl, is
pretriangulated thefi (A1, A>) is equipped with a triangulated structure. We already know
this if A1 and.A; are flat (see E.1, Remark E.2), and in the general case we get it by
transport of structure via the equwaleriEeAl, Az) — T (A1, A2) corresponding to flat
resolutions4; — A1 and A1 — As.

E.5. Remarks.

(i) T(Az, A2) is a full subcategory of the following triangulated categ@rgA; <§> A2)
equipped with a triangulated funct®: D(A] ® Az) — D(A] é A»), which is an

equivalence itA; or Ay is flat. The objects oD (A7 é) Ao) are triples(ﬂl, Ao, M),
wherefT,» is a flat resolution of4; and M € D(Z‘{ ® Zz). Morphisms of degrea
from (Ay, A2, M) to (A, A,, M) are elements of

EXty o 1 (Homg, z, ®Homy, 3) ® 7,605 M, M').

One defines composition i (A é Az) andR: D(A] ® A2) — D(A] é) Ao) in the
obvious way.

(i) D(A° éA) equipped with the functoiA is a monoidal categoridomy := Homy 4
. . L . . .
viewed as an object dD(A° ® A) is a unit object.

E.6. Ind-version and duality

We are going to define an involutianof the 2-categorypGcat which preserves the
composition of 1-morphisms, reverses that of 2-morphisms, and sendsdeadGcat
to A°.

To define it at the level of 1-morphisms and 2-morphisms consider the 2-category
DGcatng whose objects are DG categories, as before, but the categody K) of

1-morphisms from a DG categoyto a DG categoryC equalsD (A° ®IC) (1-morphisms
are composed in the obvious way). Cleaiizcatc DGcatng. The DG categoridGceatng
has a canonical involutionwhich reverses the composition of 1-morphisms and preserves
that of 2-morphisms: at the level of objects one Has= A°, and to define at the level of
1-morphisms and 2-morphisms, one uses the obvious equivalence beterC) and
T (K°, A°).

Now it is easy to see that eadh € T(A,K) C T (A, K) has a right adjointF™ ¢
T(K, A and (F*)* € T(A°,K°) C T(A° K°). So puttingF° := (F*)*, one gets the
promised involution oDGcat



686 V. Drinfeld / Journal of Algebra 272 (2004) 643-691

Remarks.

(i) Itis easy to show that ifC € DGcatis pretriangulated and H&) is Karoubian then
F € T (A, K) has aright adjointif andnlyif 7 € T (A, K).

(i) Atthe 2-category level the definitions of the right derived DG functor from 5.2 and 7.3
amount to the following one. Suppose that in the situation of Theorem 1.6.2, we are
given F € T(A, A'). ThenRF € T (C, A’) is the composition ofF € T(A, A') C
T.(C, A’) and the right adjoint* € T(C, A) of £ e T(A,C).

E.7. Relation with Kontsevich's approach

E.7.1.Let A, K be DG categories and suppose thétis flat. Given a DG func-
tor F: A — K denote by®r the DG A ® K°-module (X,Y) — Hom(Y, F(X)).
Clearly, r € D(A° ® K) belongs toT (A, K). Let us describe the full subcategory of
T (A, K) formed by the DGA ® K°-modules®r. One has®r = Indig , e (Homy),
where F° is the DG functorA®° — K° corresponding taF : A — K andHomy is the
A° ® A-module(X, Y) — Hom(X, Y). As A is homotopically flat ovek the morphism
LIndig 4 gre(Homy) — Indig , g 7o (HOMy) is a quasi-isomorphism. Therefore, the ad-
junction between derived induction and restriction yields a canonical isomorphism

Ext' (@, @c) = Ext' (L Indd , oo (Homy), @) — Ext*(F, G), (E.3)

where Ext(F, G) := EXYA®AO(H0mA, Hom(F, G)) andHOM(F, G) := Resd , gr- (PG),
i.e.,Hom(F, G) is the DGA ® A°-module(X,Y) — Hom(F(Y), G(X)), X,Y € A. The
morphism EXt (F», F3) ® Ext'(F1, F2) — Ext"™(Fy, F3) coming from (E.3) is, in fact,
induced by the morphisiitom(F>, F3) ® Hom(F1, F») — Hom(Fy, F3) and the quasi-
isomorphism(Homy) ® 4 (Homy) — Homy4. So we have described the full subcategory
of T(A, K) formed by the DGA ® K°-modules®r. The next statement shows that it
essentially equalg (A, K) if A is semi-free.

E.7.2. Proposition.If A is semi-free ovek then every object df (A, K) is isomorphic to
@ forsomeF: A— K.

Proof. An object® € T(A, K) is a DG A ® K°-module. Consider> as a DG functor
A — K’ c K°-DGmod, wherel’ is the full DG subcategory of quasi-representable DG
modules. We have the DG functas< K’ % K, whereK” is the DG category whose
objects are triples consisting of an objétt K, a DG .4 ® K°-module¥, and a quasi-
isomorphismy:hy — ¥ (see C.16.3 for a precise definition &f’). We also have a
canonical DG functor Conél” — K°-DGmod, which sendsY, ¥, f) to Cond f) (the
definition of the Cone functor on morphisms is clear from 2.9)is semi-free andr is

a surjective quasi-equivalence, so by Lemma B.6 our DG fundtes K’ lifts to a DG
functor A — K”. Let F: A — K be the compositiod - K” — K. One has an exact
sequence of DGA ® K°)-modules 0~ & - M — ®g[1] — 0, whereM corresponds
to the compositiond — K’ Lon8 jco_DGmod. As M is acyclic we get ar'(A, K)-
isomorphismdr — &. O
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E.7.3. The standard resolution

Consider the category DGalg of (non-unital) associative DG algebras and the category
DGcoalg of (non-counital) cocomplete coassociative coalgebras (a coalgehisa
cocompletef for every u € U there exists: € N such thatu is annihilated by the:-fold
coproductA, : U — U®"). If U e DGcoalg andA € DGalg then HomU, A) € DGalg
(the productoff : U — A andg: U — A is defined to be the composition of the coproduct
U—-UQ®U,themapf ®g:U®U - A® A, and the produciz: A ® A — A). Define
the Maurer—Cartan functoMC : DGcoalg x DGalg— Sets as follows: MQU, A) is the
set of elements € Hom(U, A) of degree 1 such thaitt w? = 0. There exist functors
B :DGalg— DGcoalg and? : DGcoalg— DGalg such that MQ/, A) = Mor(U, BA) =
Mor(2U, A) (they are called “bar construction” and “cobar construction”).sAss left
adjoint to B, we have the adjunction morphisnisaBA — A andU — BS2U. In fact,
they are quasi-isomorphisms. The above statements are classical (references will be given
in E.9).

Caution: while B sends quasi-isomorphisms to quasi-isomorphisms thimidrue
for 2. Indeed, consider the morphisp1 0 — k, wherek is equipped with the obvious
DG algebra structure. TheB(¢) is a quasi-isomorphism b2 B(¢p) is not.

It is easy to see that ifA is a semi-free DG:-module then2 BA is a semi-free DG
algebra (in the non-unital sense), 8B A is a semi-free resolution . 2 BA is non-
unital even ifA is unital. The DG algebra one gets by adding the unit to a DG alggbra
will be denoted by (B). If A is unital theru(A) is the Cartesian product of DG algebras
A andk, so we get a quasi-isomorphisais2 BA) — u(A) = A x k. Let us call it the
standard resolutiorof A x k. It is semi-free (in the unital sense) 4 is a semi-free DG
k-module.

As explained in [24,31,33,36], there is a similar construction in the more general
setting of DG categories. Given a DG categotylet Agiscr denote the DG category with
ObAgiscr= Ob.A such that the endomorphism DG algebra of each objegtgt; equals
k and Homy,,(X,Y) =0 if X, Y are different objects afdgiscr. Let u(A) C A x Adgiscr
be the full DG subcategory formed by obje¢ts a), a € Ob.A = ObAgiscr. There is a
standard resolutiorStand.4) — u(A). If all Hom complexes of4 are semi-free ovet
then StandA) is semi-free.

E.7.4. A -functors _ ~

If Aisany DG category and is a semi-free resolution od thenT (A, K) =T (A, K),
so E.7.1, Proposition E.7.2 give a gradedategory equivalent td'(A, K) whose objects
are DG functors4 — K. In particular, if all Hom complexes ofl are semi-free (or, more
generally, homotopically projective) ovér we get a category equivalent (i (.A), K)
whose objects are DG functors Stgad — K. Notice that ifk is a field (and if you
believe in the axiom of choice, which ensures that modules over a field are free) then
every DGk-module is semi-free. The functdt(A, ) — T (u(A), K) corresponding to
the canonical projection(A) — A is fully faithful (this follows from the decomposition
Du(A)° ®K) = D(A° ®K) ® D(AGis,® K)). DG functors Stan@d) — K such that the
corresponding object &f (u(A), K) isinT(A, K) C T (u(A), K) are calledA-functors.
More precisely, this ione of the versions of the notion ol .-functor A — K. They
differ on how anA, analog of the axion¥ (id) = id in the definition of usual functor is
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formulated (the difference is inessential from the homotopy viewpoint). The above notion
is as “weak” as possible.

According to Kontsevich, the structure of gradedategory onf (A, K) comes from
a canonical DG categorg~-funct(4, ) whose objects ard ».-functorsA — K. Here
is its definition if A andXC have one object (the general case is similar). AeK be the
endomorphism DG algebras of these objects. TheagHAunctor4A — K is a DG algebra
morphisms2 BA — K satisfying a certain condition (see E.7.3). So it remains to construct
a DG category whose objects are elements of WkB A, K) = MC(BA, K), i.e.,
elementsy of the DG algebrak := Hom(BA, K) such that deg = 1 and d + w? = 0.
Such w defines a DGR°-module N,,: it equals R as a gradedR°-module, and the
differential in N, mapsr to Vr :=dr + wr. Now put Homw, «’) := Hom(N,, N,/) and
define the composition map H@m, ') x Hom(«/', ®”) — Hom(w, »”) in the obvious
way.

Remark. According to [33,36], in the more general case tkais an A,,-categoryA .-
functors4 — K form anA..-category. Kontsevich informed me, thakifis a DG category
then theA ..-category ofA -functorsA — K is a DG category. | do not know if this DG
category equals the above DG categary-funct(A, K).

E.8. DG models of (A1, A2)

Kontsevich’s modédias already been mentioned in E.7.4: if the Hom complexe;of
are semi-free (or, more generally, homotopically projective) avienT (Aj, Ay) is the
graded homotopy category of the DG categary-funct(As, A).

Keller's model is easier to define.; or A3 is flat thenD (A3 & Ag) = D(A{®Az) =
Ho' (R), whereR := A] ® A2 andR is the DG category of semi-free DB°-modules.
This identifiesT (A1, A2) C D(A] ® A2) with the graded homotopy category of a certain
full DG subcategorypG(Az1, A2) C R, which will be calledkeller’'s model

One also has thdual Keller model(DG(A7, .A3))°: its graded homotopy category is
T (A7, A5)° = T (A1, A2). The equalityT' (A1, A2) = T (A1, A5)° identifiesT (A, Az)
with the graded homotopy category of the DG categ@(.A7, A5))°, which is a full
DG subcategory of the DG categoR/:={the dual of the DG category of semi-free DG
R-modules}.

If the Hom complexes ofd; are homotopically projective ovérthere is a canonical
quasi-equivalencd - -funct(A;, A2) — DG(A1, A2), which is not discussed here.

Remark. Let A, C1, C2 be DG categories and suppose thatC are flat. ThelDG(A, C1),
DG(C1, C2), andDG(A, C») are defined, but in general @ is not semi-free) the image of

(X):DG(A. C1) ® DG(C1. C2) — (A ® C5)-DGmod
C1



V. Drinfeld / Journal of Algebra 272 (2004) 643-691 689

is not contained iDG(A, C2) or even inR, whereR := A° ® C2. So we do not get a com-
position DG functoiDG(A, C1) ® DG(C1, C2) — DG(A, C2) but rather a DG functor

¥ :DG(A, C1) x DG(C1, C2) x DG(A, C2)° — k-DGmod (E.4)
which lifts the graded functor
T(A,C1) x T(C1,C2) x T(A,C2)° — {Gradedk-module$
defined by(F1, G, F2) — @, Ext'(F2, GF1). One defines (E.4) by
(M1, N, M2) = Hom(Mz, M1 ®¢, N).
E.9. Some historical remarks

As explained in [44], the functorB and$2 from E.7.3 go back to Eilenberg—MacLane
and J.F. Adams. It was E.H. Brown [7] who introduced” (U, A); he called its elements
“twisting cochains.” The fact that the morphis@BA — A is a quasi-isomorphism
appears as [43, Theorem 6.2, pp. 7-28]. All the propertie® ahd 2 from E.7.3 were
formulated in [44] and proved in [21]; their analogs for Lie algebras and commutative
coalgebras were proved in [48, Appendix B, §7]. In these works DG algebras and DG
coalgebras were assumed to satisfy certain boundedness conditions. The general case was
treated in [20,36].
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