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Abstract

Keller introduced a notion of quotient of a differential graded category modulo a full differe
graded subcategory which agrees with Verdier’s notion of quotient of a triangulated category m
a triangulated subcategory. This work is an attempt to further develop his theory.
 2004 Elsevier Inc. All rights reserved.
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Conventions.We fix a commutative ringk and write⊗ instead of⊗k and “DG category”
instead of “differential gradedk-category.” IfA is a DG category, we write “DG modul
overA” instead of “DG functor fromA to the DG category of complexes ofk-modules”
(more details on the DG module terminology can be found in Appendix C). Un
stated otherwise, all categories are assumed to be small. Triangulated catego
systematically viewed asZ-graded categories (see A.1). A triangulated subcategoryC ′ of a
triangulated subcategoryC is required to be full, but we do not require it to be strictly f
(i.e., to contain all objects ofC isomorphic to an object ofC ′). In the definition of quotien
of a triangulated category we do not require the subcategory to be thick (see A.2, A.

1. Introduction

1.1. It has been clear to the experts since the 1960s that Verdier’s notions of d
category and triangulated category [56,57] are not quite satisfactory: when you pass
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1 Partially supported by NSF grant DMS-0100108.
0021-8693/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2003.05.001



644 V. Drinfeld / Journal of Algebra 272 (2004) 643–691

ivator

], one
gories
jective
e part
DG

ich

t of
evelop
p his
read

ich

ry

the

all

new

–13].
if one

ne

take
t of

onal
-

t

o
f

homotopy category you forget too much. This is why Grothendieck developed his der
theory [17,40].

A different approach was suggested by Bondal and Kapranov [4]. According to [4
should work with pretriangulated DG categories rather than with triangulated cate
in Verdier’s sense (e.g., with the DG category of bounded above complexes of pro
modules rather than the bounded above derived category of modules). Hopefully, th
of homological algebra most relevant for algebraic geometry will be rewritten using
categories or rather the more flexible notion ofA∞-category due to Fukaya and Kontsev
(see [14,15,24,25,30,31,33,36,37]), which goes back to Stasheff’s notion ofA∞-algebra
[51,52].

One of the basic tools developed by Verdier [56,57] is the notion of quotien
a triangulated category by a triangulated subcategory. Keller [23] has started to d
a theory of quotients in the DG setting. This work is an attempt to further develo
theory. I tried to make this article essentially self-contained, in particular, it can be
independently of [23].

The notion of quotient in the setting ofA∞-categories is being developed by Kontsev
and Soibelman [33] and Lyubashenko and Ovsienko [38].

1.2. The basic notions related to that of DG category are recalled in Section 2. LetA be
a DG category andB ⊂A a full DG subcategory. LetAtr denote the triangulated catego
associated toA (we recall its definition in 2.4). ADG quotient(or simply aquotient) of A
moduloB is a diagram of DG categories and DG functors

A ≈←− Ã ξ−→ C (1.1)

such that the DG functor̃A→ A is a quasi-equivalence (see 2.3 for the definition),
functor Ho(Ã)→ Ho(C) is essentially surjective, and the functor̃Atr → Ctr induces an
equivalenceAtr/Btr → Ctr. Keller [23] proved that a DG quotient always exists (rec
that our DG categories are assumed to be small, otherwise even the existence ofAtr/Btr

is not clear). We recall his construction of the DG quotient in Section 4, and give a
construction in Section 3.

The new construction is reminiscent of but easier than Dwyer–Kan localization [11
It is very simple under a certain flatness assumption (which is satisfied automatically
works over a field): one just kills the objects ofB (see 3.1). Without this assumption o
has to first replaceA by a suitable resolution (see 3.5).

The idea of Keller’s original construction of the DG quotient (see Section 4) is to
the orthogonal complement ofB as a DG quotient, but as the orthogonal complemen
B in A is not necessarily big enough he takes the complement not inA but in its ind-
versionA→ studied by him in [22]. The reason why it is natural to consider the orthog
complement inA→ is explained in 1.5. Of course, instead ofA→ one can use the pro
versionA←.

Keller’s construction usingA→ (respectivelyA←) is convenient for considering righ
(respectively left) derived DG functors (see Section 5).

In 6.1 we show that the DG quotient ofA moduloB is “as unique as possible,” s
one can speak ofthheDG quotient ofA moduloB (“thhe” is the homotopy version o
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“the”). In 1.6.2 and 1.7 we give another explanation of uniqueness. Unfortunately
explanations are somewhat clumsy.

1.3. Hom complexes of the DG quotient

We are going to describe them first as objects of the derived category ofk-modules
(see 1.3.1), then in a stronger sense (see 1.3.2). We will do it by successive approx
starting with less precise and less technical statements.

1.3.1. Each construction of the DG quotient shows that ifX,Y ∈ ObA, X̃, Ỹ ∈ ObÃ,
X̃ 
→X, Ỹ 
→ Y then the complex

HomC
(
ξ
(
X̃

)
, ξ

(
Ỹ

))
(1.2)

viewed as an object of the derived category of complexes ofk-modules is canonicall
isomorphic to

Cone
(
hY

L⊗B h̃X→Hom(X,Y )
)
, (1.3)

wherehY is the right DGB-module defined byhY (Z) :=Hom(Z,Y ),Z ∈ B, andh̃X is the

left DG B-module defined bỹhX(Z) := Hom(X,Z), Z ∈ B. One can computehY
L⊗B h̃X

using a semi-free resolution ofhY orhX (see C.8 for the definition of “semi-free”), and th
corresponds to Keller’s construction of the DG quotient. IfhY or h̃X is homotopically flat

overk (see 3.3 for the definition of “homotopically flat”) then one can computehY
L⊗B h̃X

using the bar resolution, and this corresponds to the new construction of the DG qu
(see Remarks 3.6(i)).

1.3.2. Let D(A) denote the derived category ofright DG modules overA. By 2.7
the functorD(A)→ D(Ã) is an equivalence, so for fixed̃Y ∈ ObÃ the complex (1.2)
defines an object ofD(A). This object is canonically isomorphic to (1.3). Quite similar
for fixed X̃ ∈ ObÃ the complex (1.2) viewed as an object ofD(Ã◦) is canonically
isomorphic to (1.3). IfÃ is homotopically flat overk (see 3.3) then (1.2) and (1.3) a
canonically isomorphic inD(Ã ⊗k Ã◦) (see Remarks 3.6(i)). (Without the homotopi

flatness assumption they are canonically isomorphic as objects of the categoryD(A L⊗A◦)
defined in E.5.)

1.3.3. Let (1.2)Y denote (1.2) viewed as an object ofD(A). The morphism (1.3)Y →
(1.2)Y mentioned in 1.3.1 and 1.3.2 is uniquely characterized by the following prop
the compositionhY := Hom(?, Y ) → (1.3)Y → (1.2)Y equals the obvious morphis
Hom(?, Y )→ (1.2)Y . To prove the existence and uniqueness of such a morphism
may assume that̃A = A and the DG functorÃ → A equals idA. Rewrite the DG

A◦-moduleX 
→ hY
L⊗B h̃X asL IndReshY (here Res :D(A)→ D(B) is the restriction

functor andL Ind is its left adjoint, i.e., the derived induction functor) and notice t
Hom(L IndReshY ,M) = 0 for every DGA◦-moduleM with ResM = 0, in particular
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for M = (1.2)Y . As Res (1.2)Y = 0 and Res·L Ind � id, the fact that our morphism
(1.3)Y → (1.2)Y is an isomorphism is equivalent to the implication (i)⇒ (ii) in the
following proposition.

1.4. Proposition. Let ξ :A→ C be a DG functor andB ⊂ A a full DG subcategory
such that the objects ofξ(B) are contractible andHo(ξ) : Ho(A)→ Ho(C) is essentially
surjective. Then the following properties are equivalent:

(i) ξ :A→ C is a DG quotient ofA moduloB;
(ii) for everyY ∈A the DGA◦-module

X 
→Cone
(
HomA(X,Y )→HomC

(
ξ(X), ξ(Y )

))
(1.4)

is in the essential image of the derived induction functorL Ind :D(B)→D(A);
(ii◦) for everyX ∈A the DGA-module

Y 
→Cone
(
HomA(X,Y )→HomC

(
ξ(X), ξ(Y )

))
is in the essential image ofL Ind :D(B◦)→D(A◦).

The proof is contained in 9.3.

Remark. A DG A◦-moduleM belongs to the essential image of the derived induc
functorL Ind :D(B)→D(A) if and only if the morphismL IndResM→M is a quasi-
isomorphism.

1.5. On Keller’s construction of the DG quotient

As explained in 10.2, the next proposition follows directly from Proposition 1.4.
symbol Ho· below denotes the graded homotopy category (see 2.3).

1.5.1. Proposition.Let ξ :A→ C be a DG quotient ofA moduloB and letξ∗ :D(C)→
D(A) be the corresponding restriction functor. Then

(a) the compositionHo·(C) ↪→D(C)→D(A) is fully faithful;
(b) an object ofD(A) belongs to its essential image if and only if it is isomorphic

Cone(L IndResa→ a) for somea ∈Ho·(A)⊂D(A), whereL Ind (respectivelyRes)
is the derived induction(respectively restriction) functor corresponding toB ↪→A.

Remark. In fact, the whole functorD(C)→D(A) is fully faithful (see Theorem 1.6.2(ii
or Proposition 4.6(ii)).

1.5.2. So if ξ :A→ C is a DG quotient then Ho·(C) identifies with a full subcategor
ofD(A). ButD(A)=Ho·(A→), whereA→ is the DG category of semi-free DGA◦-modules
(see C.8). Thus, Ho·(C) identifies with the graded homotopy category of a certain
subcategory ofA. This is the DG quotientA↗ B from Section 4.
→
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1.6. Universal property of the DG quotient

1.6.1. 2-category of DG categories
There is a reasonable way to organize all (small) DG categories into a 2-categoryDGcat,

i.e., to associate to each two DG categoriesA1,A2 acategory of quasi-functorsT (A1,A2)

and to define weakly associative composition functorsT (A1,A2) × T (A2,A3) →
T (A1,A3) so that for every DG categoryA there is a weak unit object inT (A,A).
Besides, eachT (A1,A2) is equipped with a gradedk-category structure, and ifA2 is
pretriangulated in the sense of 2.4 thenT (A1,A2) is equipped with a triangulated structu
We needDGcatto formulate the universal property 1.6.2 of the DG quotient. The defin
of DGcatwill be recalled in Appendix E. Here are two key examples.

Examples.

(i) Let K be a DG model of the derived category of complexes ofk-modules (e.g.,K =
the DG category of semi-free DGk-modules). ThenT (A,K) is the derived categor
of DG A-modules. (IfK is not small thenT (A,K) is defined to be the direct limit o
T (A,K′) for all small full DG subcategoriesK′ ⊂K.)

(ii) If A0 is the DG category with one object whose endomorphism DG algebra equk
thenT (A0,A) is the graded homotopy category Ho·(A).

It is clear from the definition ofT (A1,A2) (see Appendix E) or from example (i
above thatΦ ∈ T (A1,A2) induces a graded functor Ho·(A1)→ Ho·(A2) and thus Ho·
becomes a (non-strict) 2-functor fromDGcat to that of graded categories. It is also cle
from Appendix E that one has a bigger 2-functorA 
→Atr from DGcat to the 2-category
of triangulated categories (with triangulated functors as 1-morphisms).

A DG functor F :A1 → A2 defines an objectΦF ∈ T (A1,A2) (see E.7.1). Thus
one gets a 2-functorDGcatnaive→ DGcat, whereDGcatnaive is the 2-category with DG
categories as objects, DG functors as 1-morphisms, and degree zero morphisms
functors as 2-morphisms. IfF is a quasi-equivalence thenΦF is invertible. So a diagram
A1

≈←− Ã1
F−→A2 still defines an object ofT (A1,A2). All isomorphism classes of objec

of T (A1,A2) come from such diagrams (see E.7.2 and B.5).

1.6.2. Main Theorem.LetB be a full DG subcategory of a DG categoryA. For all pairs
(C, ξ), whereC is a DG category andξ ∈ T (A,C), the following properties are equivalen:

(i) the functorHo(A)→ Ho(C) corresponding toξ is essentially surjective, and th
functorAtr→ Ctr corresponding toξ induces an equivalenceAtr/Btr→ Ctr;

(ii) for every DG categoryK the functorT (C,K)→ T (A,K) corresponding toξ is fully
faithful andΦ ∈ T (A,K) belongs to its essential image if and only if the image oΦ
in T (B,K) is zero.

A pair (C, ξ) satisfying(i), (ii) exists and is unique in the sense of DGcat.



648 V. Drinfeld / Journal of Algebra 272 (2004) 643–691

not
ism
.2]).
lows

gory
E.8)
he

eller

py
e

lly

y than
gories
perts.
otion

ry of
A weaker version of the universal property was proved by Keller, who worked
with the 2-categoryDGcat but with the category whose morphisms are 2-isomorph
classes of 1-morphisms ofDGcat(see [23, Theorem 4.6, Proposition 4.1, and Lemma 4
Theorem 1.6.2 will be proved in 11.2 using the following statement, which easily fol
(see 11.1) from Proposition 1.4.

1.6.3. Proposition.Let ξ :A→ C be a quotient of a DG categoryA modulo a full DG
subcategoryB. If a DG categoryK is homotopically flat overk thenξ ⊗ idK :A⊗K→
C ⊗K is a quotient of the DG categoryA⊗K moduloB⊗K.

1.7. More on uniqueness

Let (C1, ξ1) and(C2, ξ2), ξi ∈ T (A,Ci ), be DG quotients ofA moduloB. Then one has
an objectΦ ∈ T (C1,C2) defined up to unique isomorphism. In fact, the graded cate
T (C1,C2) comes from a certain DG category (three choices of which are mentioned in
and one would like to liftΦ to a homotopically canonical object of this DG category. T
following argument shows that this is possible under reasonable assumptions. IfC1 and
C2 are homotopically flat overk in the sense of 3.3, these assumptions hold for the K
model (see E.8, in particular (E.4)).

Suppose thatT (A,Ci ) (respectivelyT (C1,C2)) is realized as the graded homoto
category of a DG categoryDG(A,Ci ) (respectivelyDG(C1,C2)) and suppose that th
graded functor

T (A,C1)× T (C1,C2)× T (A,C2)
◦ → {Gradedk-modules}

defined by(F1,G,F2) 
→⊕
nExtn(F2,GF1) is lifted to a DG functor

Ψ :DG(A,C1)×DG(C1,C2)×DG(A,C2)
◦ → k-DGmod, (1.5)

wherek-DGmod is the DG category of complexes ofk-modules. We claim that onceξi ,
i ∈ {1,2}, is lifted to an object ofDG(A,Ci ) one can lift Φ ∈ T (C1,C2) to an
object of DG(C1,C2) in a homotopically canonical way. Indeed, onceξi is lifted to
an object ofDG(A,Ci ) the DG functor (1.5) yields a DG functorψ :DG(C1,C2)→
k-DGmod such that the corresponding graded functorT (C1,C2)→ {Gradedk-modules}
is corepresentable (it is corepresentable byΦ). Such a functor defines a homotopica
canonical object ofDG(C1,C2) (see Lemma C.16.2, C.16.3).

1.8. What do DG categories form?

To formulate uniqueness of the DG quotient in a more elegant and precise wa
in 1.7, one probably has to spell out the relevant structure on the class of all DG cate
(which is finer than the structure of 2-category). I hope that this will be done by the ex
Kontsevich and Soibelman are working on this subject. They introduce in [33,34] a n
of homotopyn-category so that a homotopy 1-category is the same as anA∞-category
(the notion of homotopy category is defined in [34] with respect to some catego
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“spaces,” and in this description of the results of [34] we assume that “space”= “complex
of k-modules”). They show that homotopy 1-categories form a homotopy 2-categor
they hope that homotopyn-categories form a homotopy(n+ 1)-category. They also sho
that the notion of homotopyn-category is closely related to the littlen-cubes operad. E.g
they prove in [32,34] that endomorphisms of the identity 1-morphism of an object
homotopy 2-category form an algebra over the chain complex of the little squares o
(Deligne’s conjecture). As DG categories areA∞-categories, we will hopefully understan
what DG categories form as soon as Kontsevich and Soibelman publish their results

In the available texts they assume that the ground ringk is a field. Possibly the cas
of an arbitrary ground ringk is not much harder for experts, but a non-expert like my
becomes depressed when he comes to the conclusion that DG models of the trian
categoryT (A,K) are available only if you first replaceA or K by a resolution which is
homotopically flat overk (see E.8).

1.9. Structure of the article

In Section 2 we recall the basic notions related to DG categories. In Sections 3
give the two constructions of the quotient DG category. In Sections 5 and 7 we discu
notion of derived DG functor. The approach of Section 5 is based on Keller’s constru
of the DG quotient, while the approach of Section 7 is based on any DG quotient sati
a certain flatness condition, e.g., the DG quotient from Section 3. In Section 6 we g
explanation of the uniqueness of DG quotient. In Sections 8–11 we prove the the
formulated in Sections 3–7.

Finally, there are Appendices A–E; hopefully they make this article essentially
contained.

2. DG categories: recollections and notation

2.1. We fix a commutative ringk and write⊗ instead of⊗k and “DG category” instead
of “ differential gradedk-category.” So a DG category is a categoryA in which the sets
Hom(X,Y ), X,Y ∈ ObA, are provided with the structure of aZ-gradedk-module and
a differentiald : Hom(X,Y )→ Hom(X,Y ) of degree 1 so that for everyX,Y,Z ∈ ObA
the composition map Hom(X,Y )× Hom(Y,Z)→ Hom(X,Z) comes from a morphism
of complexes Hom(X,Y ) ⊗ Hom(Y,Z)→ Hom(X,Z). Using the super commutativit
isomorphismA⊗B ∼−→ B⊗A in the category of DGk-modules one defines for every D
categoryA the dual DG categoryA◦ with ObA◦ =ObA, HomA◦(X,Y )= HomA(Y,X)
(details can be found in [22, §1.1]).

Thetensor productof DG categoriesA andB is defined as follows:

(i) Ob(A⊗ B) :=ObA×ObB; for a ∈ObA andb ∈ObB the corresponding object o
A⊗ B is denoted bya⊗ b;

(ii) Hom(a⊗ b, a′ ⊗ b′) :=Hom(a, a′)⊗Hom(b, b′) and the composition map is define
by (f1⊗ g1)(f2⊗ g2) := (−1)pqf1f2⊗ g1g2, p := degg1, q := degf2.
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2.2. Remark.Probably the notion of DG category was introduced around 1964 (G.M. K
[29] refers to it as a new notion used in [28] and in an unpublished work by Eilenber
Moore).

2.3. Given a DG categoryA one defines a graded category Ho·(A) with ObHo·(A)=
ObA by replacing each Hom complex by the direct sum of its cohomology groups. W
Ho·(A) the graded homotopy categoryof A. Restricting ourselves to the 0th cohomolo
of the Hom complexes, we get thehomotopy categoryHo(A).

A DG functorF is said to be aquasi-equivalenceif Ho·(F ) : Ho·(A)→Ho·(B) is fully
faithful and Ho(F ) is essentially surjective. We will often use the notationA ≈−→ B for a
quasi-equivalence fromA toB. The following two notions are less reasonable.F :A→ B
is said to be aquasi-isomorphismif Ho·(F ) is an isomorphism. We say thatF :A→ B
is a DG equivalenceif it is fully faithful and for every objectX ∈ B there is a closed
isomorphism of degree 0 betweenX and an object ofF(A).

2.4. To a DG categoryA Bondal and Kapranov associate a triangulated cate
Atr (or Tr+(A) in the notation of [4]). It is defined as the homotopy category o
certain DG categoryApre-tr. The idea of the definition ofApre-tr is to formally add
to A all cones, cones of morphisms between cones, etc. Here is the precise de
from [4]. The objects ofApre-tr are “one-sided twisted complexes,” i.e., formal express
(
⊕n

i=1Ci[ri ], q), whereCi ∈ A, ri ∈ Z, n � 0, q = (qij ), qij ∈ Hom(Cj ,Ci)[ri − rj ]
is homogeneous of degree 1,qij = 0 for i � j , dq + q2 = 0. If C,C′ ∈ ObApre-tr,
C = (⊕n

j=1Cj [rj ], q), C′ = (
⊕m

i=1C
′
i [r ′i], q ′) then theZ-gradedk-module Hom(C,C′)

is the space of matricesf = (fij ), fij ∈ Hom(Cj ,C′i )[r ′i − rj ], and the composition ma
Hom(C,C′) ⊗ Hom(C′,C′′)→ Hom(C,C′′) is matrix multiplication. The differentia
d : Hom(C,C′)→Hom(C,C′) is defined by df := dnaivef +q ′f −(−1)lf q if degfij = l,
where dnaivef := (dfij ).

Apre-tr containsA as a full DG subcategory. IfX,Y ∈ A andf :X→ Y is a closed
morphism of degree 0 one defines Cone(f ) to be the object(Y ⊕X[1], q) ∈Apre-tr, where
q12∈Hom(X,Y )[1] equalsf andq11= q21= q22= 0.

Remark. As explained in [4], one has a canonical fully faithful DG functor (
Yoneda embedding)Apre-tr→A◦-DGmod, whereA◦-DGmod is the DG category of DG
A◦-modules; a DGA◦-module is DG-isomorphic to an object ofApre-tr if and only if it is
finitely generated and semi-free in the sense of C.8. Quite similarly one can identifyApre-tr

with the DG category dual to that of finitely generated semi-free DGA-modules.

A non-empty DG categoryA is said to bepretriangulatedif for everyX ∈ A, k ∈ Z

the objectX[k] ∈ Apre-tr is homotopy equivalent to an object ofA and for every closed
morphismf in A of degree 0 the object Cone(f ) ∈ Apre-tr is homotopy equivalent to
an object ofA. We say thatA is strongly pretriangulated(+-pretriangulated in the
terminology of [4]) if the same is true with “homotopy equivalent” replaced by “D
isomorphic” (a DG-isomorphism is an invertible closed morphism of degree 0).

If A is pretriangulated then every closed degree 0 morphismf :X→ Y in A gives
rise to the usual triangleX→ Y → Cone(f )→ X[1] in Ho(A). Triangles of this type
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and those isomorphic to them are called distinguished. Thus, ifA is pretriangulated the
Ho·(A) becomes a triangulated category (in fact, the Yoneda embedding identifies H·(A)
with a triangulated subcategory of Ho·(A◦-DGmod)).

If A is pretriangulated (respectively strongly pretriangulated) then every object ofApre-tr

is homotopy equivalent (respectively DG-isomorphic) to an object ofA. As explained
in [4], the DG categoryApre-tr is always strongly pretriangulated, soAtr :=Ho·(Apre-tr) is
a triangulated category.

2.5. Proposition.If a DG functorF :A→ B is a quasi-equivalence then the same is t
for the corresponding DG functorF pre-tr :Apre-tr→ Bpre-tr.

The proof is standard.

2.6. Remark.Skipping the condition “qij = 0 for i � j ” in the definition ofApre-tr one
gets the definition of the DG category Pre-Tr(A) considered by Bondal and Kapranov [4
In Proposition 2.5 onecannotreplaceApre-tr andBpre-tr by Pre-Tr(A) and Pre-Tr(B). E.g.,
suppose thatA andB are DG algebras (i.e., DG categories with one object), namelyA is
the de Rham algebra of aC∞ manifoldM with trivial real cohomology and nontrivialπ1,
B = R, andF :A→ B is the evaluation morphism corresponding to a point ofM. Then
Pre-Tr(F ) : Pre-Tr(A)→ Pre-Tr(B) is not a quasi-equivalence. To show this notice t
K0(M)⊗Q=Q, so there exists a vector bundleξ onM with an integrable connection∇
such thatξ is trivial but (ξ,∇) is not.ξ -valued differential forms form a DGA-moduleM
which is free as a gradedA-module. ConsideringM as an object of Pre-Tr(A), we see tha
Pre-Tr(F ) is not a quasi-equivalence.

2.7. Derived category of DG modules

LetA be a DG category. Following [22], we denote byD(A) the derived category of DG
A◦-modules, i.e., the Verdier quotient of the homotopy category of DGA◦-modules by the
triangulated subcategory of acyclic DGA◦-modules. According to [6, Theorem 10.12.5
(or [22, Example 7.2]) if a DG functorA→ B is a quasi-equivalence then the restrict
functorD(B)→ D(A) and its left adjoint functor (the derived induction functor) a
equivalences. This also follows from Remark 4.3 becauseD(A) can be identified with
the homotopy category of semi-free DGA◦-modules (see C.8).

2.8. Given DG functorsA′ →A←A′′ one definesA′ ×AA′′ to be the fiber product in
the category of DG categories. This is the most naive definition (one takes the fiber p
both at the level of objects and at the level of morphisms). More reasonable versio
discussed in Appendix D.

2.9. To a DG categoryA we associate a new DG categoryMorA, which is equipped
with a DG functor Cone :MorA→ Apre-tr. The objects ofMorA are triples(X,Y,f ),
whereX,Y ∈ ObA and f is a closed morphismX→ Y of degree 0. At the level o



652 V. Drinfeld / Journal of Algebra 272 (2004) 643–691

e

tor

DG

.

een

m

s
r

.s.
objects Cone(X,Y,f ) is the cone off . We define Hom((X,Y,f ), (X′, Y ′, f ′)) to be the
subcomplex {

u ∈Hom
(
Cone(f ),Cone

(
f ′

)) ∣∣ π ′ui = 0
}
,

where i :Y → Cone(f ) and π ′ : Cone(f ′)→ X′[1] are the natural morphisms. At th
level of morphisms, Cone : Hom((X,Y,f ), (X′, Y ′, f ′))→ Hom(Cone(f ),Cone(f ′)) is
defined to be the natural embedding. Composition of the morphisms ofMorA is defined
so that Cone:MorA→ Apre-tr becomes a DG functor. There is an obvious DG func
MorA→A×A such that(X,Y,f ) 
→ (X,Y ).

2.10. Given a DG categoryA one has the “stupid” DG categoryMorstupA equipped
with a DG functorF :MorstupA→A×A: it has the same objects asMorA (see 2.9),
Hom((X,Y,f ), (X′, Y ′, f ′)) is the subcomplex{

(u, v) ∈Hom
(
X,X′

)×Hom
(
Y,Y ′

) ∣∣ f ′u= vf }
,

F (X,Y,f ) := (X,Y ), F(u, v)= (u, v), and composition of the morphisms ofMorstupA
is defined so thatF :MorstupA→A×A becomes a DG functor. There are canonical
functorsΦ :MorstupA→MorA andΨ :MorA→MorstupA such thatΦ(X,Y,f ) :=
(X,Y,f ),Ψ (X,Y,f ) := (Y,Cone(f ), i), wherei :Y →Cone(f ) is the natural morphism
So one gets the DG functor

ΦΨ :MorA→MorA. (2.1)

3. A new construction of the DG quotient

3.1. Construction

Let A be a DG category andB ⊂A a full DG subcategory. We denote byA/B the DG
category obtained fromA by adding for every objectU ∈ B a morphismεU :U → U of
degree−1 such that d(εU)= idU (we add neither new objects nor new relations betw
the morphisms).

So forX,Y ∈A we have an isomorphism of gradedk-modules (but not an isomorphis
of complexes)

∞⊕
n=0

HomnA/B(X,Y )
∼−→HomA/B(X,Y ), (3.1)

where HomnA/B(X,Y ) is the direct sum of tensor products HomA(Un,Un+1) ⊗ k[1] ⊗
HomA(Un−1,Un)⊗k[1]⊗· · ·⊗k[1]⊗· · ·⊗HomA(U0,U1),U0 :=X,Un+1 := Y ,Ui ∈ B
for 1 � i � n (in particular, Hom0

A/B(X,Y ) = HomA(X,Y )); the morphism (3.1) map
fn ⊗ ε ⊗ fn−1⊗ · · · ⊗ ε⊗ f0 to fnεUnfn−1 · · ·εU1f0, whereε is the canonical generato
of k[1]. Using the formula d(εU) = idU one can easily find the differential on the l.h
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of (3.1) corresponding to the one on the r.h.s. The image of
⊕N

n=0 HomnA/B(X,Y ) is a
subcomplex of HomA/B(X,Y ), so we get a filtration on HomA/B(X,Y ). The map (3.1)
induces an isomorphism of complexes

∞⊕
n=0

HomnA/B(X,Y )
∼−→ grHomA/B(X,Y ). (3.2)

3.2. Example.If A has a single objectU with EndAU =R thenA/A has a single objec
U with EndA/AU = R̃, where the DG algebrãR is obtained from the DG algebraR by
adding a new generatorε of degree−1 with dε = 1. As a DGR-bimodule,R̃ equals
Cone(Bar(R)→ R), where Bar(R) is the bar resolution of the DGR-bimoduleR. Both
descriptions of̃R show that it has zero cohomology.

A more interesting example can be found in 3.7.

3.3. The triangulated functorAtr → (A/B)tr mapsBtr to zero and therefore induce
a triangulated functorΦ : Atr/Btr → (A/B)tr. HereAtr/Btr denotes Verdier’s quotien
(see Appendix A). We will prove that ifk is a field thenΦ is an equivalence. For
general ringk this is true under an additional assumption. E.g., it is enough to as
that A is homotopically flat overk (we prefer to use the name “homotopically fla
instead of Spaltenstein’s name “K-flat” which is probably due to the notationK(C) for the
homotopy category of complexes in an additive categoryC). A DG categoryA is said to be
homotopically flatoverk if for everyX,Y ∈A the complex Hom(X,Y ) is homotopically
flat over k in Spaltenstein’s sense [50], i.e., for every acyclic complexC of k-modules
C ⊗k Hom(X,Y ) is acyclic. In fact, homotopical flatness ofA can be replaced by one o
the following weaker assumptions:

Hom(X,U) is homotopically flat overk for all X ∈A, U ∈ B; (3.3)

Hom(U,X) is homotopically flat overk for all X ∈A, U ∈ B. (3.4)

Here is our first main result.

3.4. Theorem.LetA be a DG category andB ⊂A a full DG subcategory. If either(3.3)
or (3.4)holds thenΦ :Atr/Btr→ (A/B)tr is an equivalence.

The proof is contained in Section 8.

3.5. If (3.3) and (3.4) are not satisfied one can construct a diagram (1.1) by cho
a homotopically flat resolutioñA ≈−→ A and puttingC := Ã/B̃, whereB̃ ⊂ Ã is the full
subcategory of objects whose image inA is homotopy equivalent to an object ofB. Here
“homotopically flat resolution” means that̃A is homotopically flat and the DG functo
Ã→A is a quasi-equivalence (see 2.3). The existence of homotopically flat resoluti
A follows from Lemma B.5.
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3.6. Remarks.

(i) If (3.3) or (3.4) holds then one can compute (1.3) using the bar resolution of th
B-moduleh̃X or the DGB◦-modulehY . The corresponding complex representing
object (1.3) of the derived category is precisely HomA/B(X,Y ).

(ii) Let Ã and B̃ be as in 3.5 and suppose that (3.3) or (3.4) holds for bothB ⊂ A
and B̃ ⊂ Ã. Then the DG functorÃ/B̃ → A/B is a quasi-equivalence, i.e.,
induces an equivalence of the corresponding homotopy categories. This fo
from Theorem 3.4. One can also directly show that ifX,Y ∈ Ob(A/B) = ObA
are the images of̃X, Ỹ ∈ Ob(Ã/B̃) = ObÃ then the morphism Hom̃A/B̃(X̃, Ỹ )→
HomA/B(X,Y ) is a quasi-isomorphism (use (3.2) and notice that the morp
HomnÃ/B̃(X̃, Ỹ )→ HomnA/B(X,Y ) is a quasi-isomorphism for everyn; this follows

directly from the definition of Homn and the fact that (3.3) or (3.4) holds forB ⊂A
andB̃ ⊂ Ã).

(iii) Usually the DG categoryA/B is huge. E.g., ifA is the DG category of all complexe
from some universeU andB ⊂A is the subcategory of acyclic complexes then
complexes HomA/B(X,Y ), X,Y ∈A, are notU -small for obvious reasons (see [1
§1.0] for the terminology) even though(A/B)tr is aU -category. But it follows from
Theorem 3.4 that whenever(A/B)tr is a U -category there exists anA∞-category
C with U -small Hom complexes equipped with anA∞-functorC→ A/B which is
a quasi-equivalence (so one can work withC instead ofA/B).

(iv) The DG categoryA/B defined in 3.1 depends on the ground ringk, so the full
notation should be(A/B)k. Given a morphismk0→ k, we have a canonical functo
F : (A/B)k0 → (A/B)k. If (3.3) or (3.4) holds for bothk0 and k then the functor
(A/B)k0→ (A/B)k is a quasi-isomorphism by Theorem 3.4.

3.7. Example

3.7.1. Let A0 be the DG category with two objectsX1, X2 freely generated by a mo
phismf :X1→ X2 of degree 0 with df = 0 (so Hom(Xi,Xi) = k, Hom(X1,X2) is the
free modulekf and Hom(X2,X1) = 0). PutA := Apre-tr

0 . Let B ⊂ A be the full DG
subcategory with a single object Cone(f ). Instead of describing the whole DG quotie
A/B, we will describe only the full DG subcategory(A/B)0⊂A/B with objectsX1 and
X2 (the DG functor(A/B)pre-tr

0 → (A/B)pre-tr is a DG equivalence in the sense of 2

so A/B can be considered as a full DG subcategory of(A/B)pre-tr
0 ). Directly using the

definition of A/B (see 3.1), one shows that(A/B)0 equals the DG categoryK freely
generated by our originalf :X1→ X2 and also a morphismg :X2→ X1 of degree 0,
morphismsαi :Xi→ Xi of degree−1, and a morphismu : X1→ X2 of degree−2 with
the differential given by df = dg = 0, dα1= gf − 1, dα2= fg− 1, du= fα1− α2f . On
the other hand, one has the following description of Ho·((A/B)0).

3.7.2. Lemma.ExtnA/B(Xi,Xj )= 0 for n �= 0, Ext0A/B(Xi,Xi)= k, andExt0A/B(X1,X2),

Ext0 (X2,X1) are freek-modules generated byf andf−1.
A/B
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As (A/B)0=K, one gets the following corollary.

3.7.3. Corollary.K is a resolution of thek-categoryI2 generated by the categoryJ2 with
2 objects and precisely one morphism with any given source and target.

Clearly,K is semi-free in the sense of B.4.

3.7.4. Proof of Lemma 3.7.2.By Theorem 3.4, Ho·(A/B)=Atr
0/Btr. AsX2 ∈ (Btr)⊥, the

map ExtnA(Xi,X2)→ ExtnAtr
0/Btr(Xi,X2), i = 1,2, is an isomorphism by A.4. Therefor

ExtnA/B(Xi,X2) is as stated in the lemma. Butf :X1→ X2 becomes an isomorphism
Ho(A/B), so ExtnA/B(Xi,X1) is also as stated.✷
3.7.5. Modification of the proof

In the above proof we used Theorem 3.4 and A.4 to show thatϕ : ExtnA(Xi,X2)→
ExtnA/B(Xi,X2) is an isomorphism. In fact, this follows directly from (3.2), whi
is an immediate consequence of the definition ofA/B. Indeed,ϕ is induced by the
canonical morphismα : HomA(Xi,X2)→ HomA/B(Xi,X2). By (3.2)α is injective and
L := Cokerαi is the union of an increasing sequence of subcomplexes 0= L0⊂ L1⊂ · · ·
such thatLn/Ln−1 = HomnApre-tr/B(Xi,X2) for n � 1. Finally, HomnApre-tr/B(Xi,X2) is
acyclic for all n � 1 because the complex HomA(U,X2), U := Cone(f :X1→ X2) is
contractible.

3.7.6. Remarks.

(i) The DG categoryK from 3.7.1 and the fact that it is a resolution ofI2 were known to
Kontsevich [31]. One can come to the definition ofK as follows. The naive guess is th
already the DG categoryK′ freely generated byf , g, α1, α2 as above is a resolutio
of I2, but one discovers a nontrivial elementν ∈ Ext−1(X1,X2) by representing
fgf − f as a coboundary in two different ways (notice thatf (gf − 1)= fgf − f =
(fg − 1)f ). Killing ν one gets the DG categoryK, which already turns out to b
a resolution ofJ2.

(ii) The DG categoryK from 3.7.1 has a topological analogKtop. This is a topologica
category with two objectsX1,X2 freely generated by morphismsf ∈ Mor(X1,X2),
g ∈Mor(X2,X1), continuous mapsαi : [0,1]→Mor(Xi,Xi), and a continuous ma
u : [0,1] × [0,1]→Mor(X1,X2) with defining relationsαi(0) = idXi , α1(1) = gf ,
α2(1)= fg, u(t,0) = f α1(t), u(t,1) = α2(t)f , u(0, τ ) = f , u(1, τ ) = fgf . It was
considered by Vogt [58], who was inspired by an article of R. Lashof. The sp
MorKtop(Xi,Xj ) are contractible. This can be easily deduced from Corollary 3
using a cellular decomposition of MorKtop(Xi,Xj ) such that the composition maps

MorKtop(Xi,Xj )×MorKtop(Xj ,Xk)→MorKtop(Xi,Xk)

are cellular and the DG category that one gets by replacing the topological s
MorKtop(Xi,Xj ) by their cellular chain complexes equalsK.
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4. The DG categoriesA→ and A← . Keller’s construction of the DG quotient

The DG categoryA/B from Section 3 depends on the ground ringk (see Re-
marks 3.6(iv)). Here we describe Keller’s construction of a quotient DG category, w
does not depend at all onk (if you like, assumek = Z). The construction makes use of t
DG categoryA→ studied by him in [22], which may be considered as a DG version o
category of ind-objects. There is also a dual construction based onA← (a DG version of the
category of pro-objects).

4.1. If A is a DG category we denote byA→ the DG category of semi-free DGA◦-mo-
dules (see C.8 for the definition of “semi-free”). The notationA→ has been chosen becau
one can think of objects ofA→ as a certain kind of direct limits of objects ofApre-tr (see
Remark 4.2). We putA← := (A◦→ )◦. Of course, the DG categoriesA→ andA← are not small.
They are strongly pretriangulated in the sense of 2.4, and Ho(A→) = A→

tr identifies with
the derived categoryD(A) of DG A◦-modules (see C.8). We have the fully faithful D
functorsA←←A→ A→. Given a DG functorB→A, one has the induction DG functo
B→→A→ andB←→A← (see C.9). In particular, ifB ⊂A is a full subcategory thenB→, B← are
identified with full DG subcategories ofA→, A←.

4.2. Remark.Here is a small version ofA→. Fix an infinite setI and consider the following

DG categoryApre-tr→
I (which coincides with the DG categoryApre-tr from 2.4 if I = N).

To define an object ofApre-tr→
I , make the following changes in the definition of

object ofApre-tr. First, replace
⊕n

i=1Ci[ri ] by
⊕

i∈I Ci[ri ] and require the cardinality o
{i ∈ I | Ci �= 0} to be strictly less than that ofI . Second, replace the triangularity conditi
onq by the existence of an ordering ofI such thatqij �= 0 only for i < j and{i ∈ I | i < j }
is finite for everyj ∈ I (in other words, forj ∈ I let I<j denote the set ofi ∈ I for which
there is a finite sequencei0, . . . , in ∈ I with n > 0, i0 = j , in = i such thatqik+1ik �= 0,
then for everyj ∈ I the setI<j should be finite and should not containj ). Morphisms of
A→ are defined to be matrices(fij ) as in 2.4 such that{i ∈ I | fij �= 0} is finite for every
j ∈ I . The DG functorA→A→ extends in the obvious way to a fully faithful DG funct
Apre-tr→
I →A→.

One also has the DG categoryApre-tr←
I := ((A◦)pre-tr→

I )◦ and the fully faithful DG
functorApre-tr→

I →A←.

4.3. Remark.A quasi-equivalenceF :A ≈−→ B induces quasi-equivalences

A→
≈−→ B→, A←

≈−→ B←, Apre-tr→
I

≈−→ Bpre-tr→
I , Apre-tr←

I
≈−→ Bpre-tr←

I

(the fact thatA→→ B→ is a quasi-equivalence was mentioned in 2.7). This is a consequ
of the following lemma.

4.4. Lemma.A triangulated subcategory ofHo(A→) containingHo(A) and closed unde

(infinite) direct sums coincides withHo(A). A triangulated subcategory ofHo(Apre-tr→
)
→ I
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containingHo(A) and closed under direct sums indexed by setsJ such thatCardJ <
CardI coincides withHo(Apre-tr→

I ).

This was proved by Keller [22, p. 69]. Key idea: if one has a sequence of DGA◦-mo-

dulesMi and morphismsfi :Mi →Mi+1 then one has an exact sequence 0→M
1−f−−−→

M→ lim−→Mi→ 0, whereM :=⊕
i Mi andf :M→M is induced by thefi ’s.

4.5. Now let B ⊂ A be a full DG subcategory. LetB⊥ (respectively⊥B) denote the
full DG subcategory ofA→ (respectively ofA←) that consists of objectsX such that for
every b ∈ B the complex Hom(b,X) (respectively Hom(X,b)) is acyclic. Recall tha
D(A)=Ho(A→)=A→

tr.

4.6. Proposition.Let ξ :A→ C be a quotient of a DG categoryA moduloB ⊂A. Then

(i) ξ→ :A→→ C→ is a quotient ofA→ moduloB→;

(i ′) ξ← :A←→ C← is a quotient ofA← moduloB←;
(ii) the restriction functorD(C)→D(A) is fully faithful, and its essential image consis

precisely of objects ofD(A) annihilated by the restriction functorρ :D(A)→D(B);
the functorD(A)/D(C)→D(B) induced byρ is an equivalence.

See 10.3 for the proof.

4.7. Proposition.

(i) The essential image ofB→
tr in A→

tr is right-admissible in the sense ofA.6.
(ii) The right orthogonal complement ofB→

tr in A→
tr equals(B⊥)tr.

(iii) The functor(B⊥)tr→A→
tr/B→

tr is an equivalence.
(iv) The functorAtr/Btr→A→

tr/B→
tr is fully faithful.

(i◦)–(iv◦) Statements(i)–(iv) remain true if one replacesA→
tr and B→

tr by A←
tr and B←

tr,
“ right” by “ left”, andB⊥ by⊥B.

The proof will be given in 10.1.

4.8. Remark.Keller [23] derives Proposition 4.6(i) from Neeman’s theorem on compa
generated triangulated categories [47, Theorem 2.1]. Statements (i) and (iv) of Pr
tion 4.7 are particular cases of Lemmas 1.7 and 2.5 of Neeman’s work [47].

4.9. Now letA↗ B ⊂ B⊥ be the full DG subcategory of objectsX ∈ B⊥ such that for
somea ∈A and some closed morphismf :a→X of degree 0, the cone off is homotopy
equivalent to an object ofB→. Let A↙ B ⊂ ⊥B be the full DG subcategory of objec
X ∈ ⊥B such that for somea ∈A and some closed morphismf :X→ a of degree 0, the
cone off is homotopy equivalent to an object ofB←. By Proposition 4.7 we have the full
faithful functor Atr/Btr → A→

tr/B→
tr = (B⊥)tr = Ho(B⊥), and its essential image equa

(A↗ B)tr. So we get an equivalence
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Atr/Btr ∼−→ (A↗ B)tr (4.1)

and a similar equivalenceAtr/Btr ∼−→ (A↙ B)tr.

4.10. Let us construct a diagram (1.1) withC = A↗ B such that the correspondin
functor Atr → (A ↗ B)tr induces (4.1) (soA ↗ B will become a DG quotient ofA
moduloB). The DG categorỹA=❀A is defined as follows. First, consider the DG categ
MorA→ (see 2.9). Its objects are triples(a,Y, g), wherea,Y ∈ A→ and g is a closed

morphisma → Y of degree 0. We define
❀A ⊂MorA→ to be the full DG subcategor

of triples (a,Y, g) such thata ∈ A, Y ∈ A↗ B ⊂ A→, and Cone(a
g−→ Y ) is homotopy

equivalent to an object ofB→. The DG functorsA ← ❀A → A ↗ B are defined by
(a,Y, g) 
→ a and(a,Y, g) 
→ Y .

4.11. Remarks.

(i) Let
❀A′ ⊂MorA→ be the full DG subcategory of triples(P, a,f ) ∈MorA→ such that

P ∈ B→, a ∈ A, and Cone(P
f−→ a) ∈ B⊥. The DG functor (2.1) (withA replaced

by A→) induces a quasi-equivalence
❀A′ ≈−→❀A, so one can use

❀A′ instead of
❀A.

(ii) It follows from the definition of (2.1) that the image of the DG functor
❀A′ →❀A is

contained in
❀Astup := ❀A ∩MorstupA→ (see 2.10 for the definition ofMorstupA→ ⊂

MorA→).

4.12. Dualizing the construction from 4.10 one gets the full DG subcategory
❀

A ⊂
MorA←which consists of triples(Y , a,g) such thatY ∈A↙ B, a ∈A, and Cone(Y

g−→ a)

is homotopy equivalent to an object ofB←. Dualizing Remarks 4.11, one gets a D

category
❀

A′ equipped with a quasi-equivalence
❀

A′ ≈−→ ❀
A;

❀
A′ ⊂MorA← is the full DG

subcategory of triples(a,P ,f ) such thata ∈A, P ∈ B←, and Cone(f ) ∈ ⊥B. The diagrams

A← ❀
A→A↙ B andA← ❀

A′ → A↙ B are also DG quotients ofA moduloB. The
image of the DG functor

❀
A′ → ❀

A is contained in
�A stup:= ❀

A ∩MorstupA←.

4.13. One can also include the diagrams constructed in 4.10 and 4.12 into a can
commutative diagram of DG categories and DG functors

A A A

❀
A �A

≈ ≈ ❀A

A↙ B A↙↗ B≈ ≈ A↗ B

(4.2)
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in which each column is a DG quotient ofA moduloB. The DG category
�A is defined to

be the fiber product
❀

A′ ×A
❀A′, where

❀
A′ and

❀A′ were defined in Remarks 4.11, 4.
(recall that “fiber product” is understood in the most naive sense, see 2.8). To
A ↙↗ B, we use the DG categoryA↔ such that ObA↔ := ObA← # ObA→, A→ and A← are
full DG subcategories ofA↔, and for Y ∈ ObA→, Y ∈ ObA← one has Hom(Y, Y ) := 0,
Hom(Y ,Y ) := Y ⊗A Y (recall thatY is a DGA◦-module andY is a DGA-module, so
Y ⊗A Y is well-defined, see C.3). Fora ∈A we denote bya← (respectivelya→) the image
of a in A← (respectivelyA→); we have the “identity” morphisme= ea : a←→ a→. Now define

A↙↗ B ⊂MorA↔ to be the full DG subcategory of triples(Y ,Y,f ) ∈MorA↔ such that
Y ∈ A↙ B ⊂ A←, Y ∈ A↗ B ⊂ A→, andf :Y → Y can be represented as a composit

Y
g−→ a←

e−→ a→
h−→ Y , a ∈ A, so that Cone(g) is homotopy equivalent to an object ofB←

and Cone(h) is homotopy equivalent to an object ofB→ (g andh are closed morphisms o
degree 0).

The DG functorsA↙↗ B→A↗ B andA↙↗ B→A↙ B send(Y ,Y,f ) ∈A↙↗ B
respectively toY andY . The DG functor

�A → A↙↗ B ⊂MorA↔ is defined to be the
composition

�A := ❀
A′ ×A

❀A′ → ❀
Astup×A

❀Astup
F−→MorA↔,

where the DG functors
❀

A′ → ❀
Astup and

❀A′ →❀Astup were defined in Remarks 4.11, 4.

andF :
❀

Astup×A
❀Astup→MorA↔ is the composition DG functor: at the level of objects

u = (a,Y, g :a→ Y ) ∈MorstupA→ and ū = (Y , a,g :Y → a) ∈MorstupA←, a ∈ A, then
F(ū, u) = (Y ,Y, gg); there is no problem to define the DG functorF at the level of
morphisms because we are working with the “stupid” versions

❀
Astup,

❀Astup, Morstup (the

“non-stupid” composition
❀

A ×A
❀A→MorA↔ is defined as anA∞-functor rather than a

a DG functor).

5. Derived DG functors

We will define a notion of right derived functor in the DG setting modeled on Delig
definition in the triangulated setting. One can easily pass from right derived DG fun
to left ones by considering the dual DG categories.

5.1. Deligne’s definition

Let G :T → T ′ be a triangulated functor between triangulated categories
S ⊂ T a triangulated subcategory. Denote by CohoFunct(T ′) the category ofk-linear
cohomological functors from(T ′)◦ to the category ofk-modules.RG is defined to be
the functorT /S→CohoFunct(T ′) defined by

RG(Y ) := “lim”−→ G(Z), (5.1)

(Y→Z)∈QY



660 V. Drinfeld / Journal of Algebra 272 (2004) 643–691

r

ere is

r, if

d

ince
ee,
[18,

f
e 5.1).
which is a shorthand for

RG(Y )(X) := lim−→
(Y→Z)∈QY

Hom
(
X,G(Z)

)
, Y ∈ T , X ∈ T ′. (5.2)

Here QY is the filtering category ofT -morphismsf :Y → Z such that Cone(f ) is
isomorphic to an object ofS.
RG has the following universal property. Letπ :T → T /S denote the canonical functo

andν :T ′ → CohoFunct(T ′) the Yoneda embedding. LetΦ :T /S→ CohoFunct(T ′) be
a graded functor (see A.1 for a discussion of the meaning of “graded”). Then th
a canonical isomorphism

Hom(RG,Φ)=Hom(νG,Φπ) (5.3)

functorial inΦ (here Hom is the set of morphisms of graded functors). In particula
RG(T /S)⊂ T ′ thenRG :T /S→ T ′ is a derived functor in Verdier’s sense [56,57].

Let (T /S)G be the category of triples(Y,X,ϕ), whereY ∈ T /S, X ∈ T ′, ϕ :X ∼−→
RG(Y ). The functor

(T /S)G→ T ′, (Y,X,ϕ) 
→X (5.4)

is also denoted byRG. We have an equivalence(Y,X,ϕ) 
→ Y between(T /S)G and a full
subcategory ofT /S (the full subcategory of objectsY ∈ T /S such thatRG(Y ) is defined
as an object ofT ′).

Remark. Deligne (cf. [10, Definition 1.2.1]) considersRG as a functor fromT /S to the
category of ind-objects ind(T ′) rather than to the category CohoFunct(T ′). In fact, this
does not matter. First of all, the image of the functorRG defined by (5.2) is containe
in the full subcategory of ind-representable functors(T ′)◦ → kmod, which is canonically
identified with ind(T ′) (see [18, §8.2]). This is enough for our purposes, but in fact, s
T ′ is small,everyH ∈ CohoFunct(T ′) is ind-representable by a well-known lemma (s
e.g., [46, Lemma 7.2.4]), which is a version of Brown’s theorem [8,9]. Proof: by
Theorem 8.3.3] it suffices to check that the categoryT ′/H := {(X,u) |X ∈ T ′, u ∈H(X)}
is filtering.

5.2. Let A be a DG category andB ⊂A a full DG subcategory. LetF be a DG functor
from A to a DG categoryA′. To define the right derived DG functorRF we use the
DG quotientA ↗ B from 4.9. By definition,RF :A ↗ B → A→

′ is the restriction of
the DG functorF→ :A→→ A→

′ to the DG subcategoryA↗ B ⊂ B⊥ ⊂ A→. A 2-categorical
reformulation of this definition is given in Remark (ii) from E.6.

5.3. Let us show that the definition ofRF from 5.2 agrees with Deligne’s definition o
the right derived functor of a triangulated functor between triangulated categories (se

Suppose we are in the situation of 5.2. We have the DG functorRF :A↗ B→ A→
′

and the corresponding triangulated functor(RF)tr : (A↗ B)tr→ (A′)tr. Using (4.1) we
→
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can rewrite it as(RF)tr :Atr/Btr→ (A→
′)tr. On the other hand, we have the triangula

functor F tr :Atr → (A′)tr and its derived functorRF tr :Atr/Btr → CohoFunct((A′)tr)
(see 5.1). Finally, one has the functorH 0 : (A→

′)tr→CohoFunct((A′)tr) defined as follows
a right DGA′-moduleM ∈ A→

′ uniquely extends to a right DG(A′)pre-tr-moduleM̃ (cf.
Example C.11), andH 0(M) is defined to be the zeroth cohomology ofM̃ (or equivalently
H 0(M) is the cohomological functorN 
→Hom(A→

′)tr(N,M), N ∈ (A′)tr ⊂ (A→′)tr).
Finally, using that(A′)◦-DGmod= ((A′)pre-tr)◦-DGmod (see Example C.11), one ge

the functorH 0 : ((A′)◦-DGmod)tr→CohoFunct((A′)tr).
We are going to construct an isomorphismRF tr ∼−→ H 0(RF)tr. To this end, conside

the diagram

❀A ≈
A

F
A′

A↗ B A→ A→
′

(5.5)

(see 4.10 for the definition of
❀A). Its left square is not commutative, but there is a canon

morphism from the composition
❀A→ A ↪→ A→ to the composition

❀A→ A↗ B ↪→ A→.

So we get a canonical morphismϕ from the composition
❀Atr → (A′)tr → (A→

′)tr →
CohoFunct(A′) to the composition

❀Atr→ (A↗ B)tr→ (A→
′)tr→CohoFunct(A′). By 4.10

we can identify
❀Atr with Atr and(A↗ B)tr with Atr/Btr, soϕ induces a morphism

RF tr→H 0(RF)tr (5.6)

by the universal property (5.3) ofRF tr.

5.4. Proposition.The morphism(5.6) is an isomorphism.

See Section 9.1 for a proof.

5.5. Define the DG category(A↗ B)F to be the (naive) fiber product ofA′ × (A↗ B)
and

−→
∆A′→ over A′→ × A′→ , where

−→
∆A′→ is the “diagonal” DG category defined in D.1 a

A↗ B is mapped toA′→ by RF . So the objects of(A↗ B)F are triples(Y,X,ϕ), where
Y ∈ A↗ B, X ∈ A′, andϕ :X→ RF(Y ) is a homotopy equivalence. The DG func
(A↗ B)F →A′ defined by(Y,X,ϕ) 
→X is also called the right derived DG functor
F and denoted byRF .

Now consider the triangulated functorG = F tr :Atr → (A′)tr. It follows from
Proposition 5.4 that((A↗ B)F )tr identifies with the triangulated category(Atr/Btr)G
from 5.1 and(RF)tr : ((A↗ B)F )tr → (A′)tr identifies with Deligne’s derived functo
RG : (Atr/Btr)G→ (A′)tr.
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5.6. The definition of(A ↗ B)F used
−→
∆A′→ . There are also versions of(A ↗ B)F

using the DG categories
←−
∆A′→ and

←→
∆A′→ from D.1. They will be denoted respectively b

(A↗ B)←F and (A↗ B)↔F . E.g., the objects of(A↗ B)←F are triples(Y,X,ψ),
whereY ∈ A↗ B, X ∈ A′, andψ :RF(Y )→ X is a homotopy equivalence. We ha
the right derived DG functorsRF : (A ↗ B)←F → A′ and RF : (A ↗ B)↔F → A′.
Sometimes we will write(A↗ B)→F instead of(A↗ B)F . The DG functors(A↗
B)→F ← (A↗ B)↔F → (A↗ B)←F are quasi-equivalences by Lemma D.3, and
has a canonical commutative diagram

(A↗ B)→F

RF

(A↗ B)↔F
≈ ≈

RF

(A↗ B)←F

RF

A A A

. (5.7)

6. Some commutative diagrams

6.1. Uniqueness of DG quotient

Let A be a DG category andB ⊂ A a full DG subcategory. Given a quotient (1.1)
A moduloB we will “identify” it with the quotientA ≈←−❀A F−→A↗ B from 4.10. More
precisely, we will construct a canonical commutative diagram of DG categories

❀A
F

A≈ ≈
Ã

ξ

A↗ B C≈ ≈
C

(6.1)

(the symbols≈−→, ≈←− denote quasi-equivalences). To this end, notice that the derive
functorRξ : (Ã↗ B̃)ξ → C defined in 5.5 and the projection(Ã↗ B̃)ξ → Ã↗ B̃ are
quasi-equivalences (herẽB is the preimage ofB in Ã). PutC := (Ã↗ B̃)ξ . Define the
DG functorC→ C to equalRξ and the DG functorC→ A↗ B to be the composition

C = (Ã↗ B̃)ξ → Ã↗ B̃→ A↗ B. We putA :=
❀̃
A, i.e.,A is the analog of

❀A with
(A,B) replaced by(Ã, B̃). The DG functorA→ Ã is the analog of

❀A→ A. The DG
functorA→❀A is induced by the DG functors̃A→A andB̃→ B. Finally,A→ C is the

DG functor
❀̃
A→ C defined by(a,Y, g) 
→ (Y, ξ(a), ξ→(g)) (herea ∈ Ã, Y ∈ Ã↗ B̃ ⊂ Ã→,

andg :a→ Y is a closed morphism of degree 0 whose cone is homotopy equivale
an object ofB→; recall that an object ofC is a triple (Y,X,ϕ), whereY ∈ Ã↗ B̃ ⊂ Ã→,
X ∈ C, andϕ is a homotopy equivalence fromX to Rξ(Y ), i.e., the image ofY under
ξ : Ã→ C ).
→ → →
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6.2. More diagrams (to be used in Section 7)

6.2.1. Now let us consider the case that̃A=A and the DG functor̃A→A equals idA,
so our quotient (1.1) is just a DG categoryC equipped with a DG functorξ :A→ C. Then
diagram (6.1) becomes

❀A
F

❀A ≈
A

ξ

A↗ B C≈ ≈
C

, C := (A↗ B)ξ . (6.2)

Here the DG functorsA←❀A→A↗ B are the same as in (4.2).
In 7.5 we will use a slightly different canonical commutative diagram of DG categ

A↗ B

∩

C
≈ ≈

C

ξ∗

A→ A◦-resDGmod
≈

A◦-DGmod

(6.3)

in which ξ∗ is defined byξ∗c(a) :=Hom(ξ(a), c). Here is the construction.
Let us start with the lower row of (6.3). Consider the DG categoryMor(A◦-DGmod)

(see 2.9 for the definition ofMor). Its objects are triples(Q,M,f ), whereQ,M ∈
A◦-DGmod andf :Q→M is a closed morphism of degree 0. We defineA◦-resDGmod⊂
Mor(A◦-DGmod) to be the full DG subcategory of triples(Q,M,f ) such thatQ ∈A→
and f is a quasi-isomorphism (soQ is a semi-free resolution ofM). In other words,
A◦-resDGmod is the DG category ofresolved DGA◦-modules.The DG functors
A◦-resDGmod→ A→ andA◦-resDGmod→ A◦-DGmod are defined by(Q,M,f ) 
→Q

and(Q,M,f ) 
→M.
We defineC to be the DG category(A↗ B)←ξ from 5.6. So the objects ofC are triples

(Y,X,ψ), whereY ∈A↗ B,X ∈ C, andψ :Rξ(Y )→X is a homotopy equivalence inC→.
The upper row of (6.3) is defined just as the lower row of (6.1).

The DG functorC → A◦-resDGmod⊂ Mor(A◦-DGmod) is defined as follows
To (Y,X,ψ) ∈ C one assigns(Y, ξ∗X,χ) ∈Mor(A◦-DGmod), where χ :Y → ξ∗X
corresponds toψ :Rξ(Y )→ X by adjointness. This assignment extends in the obv
way to a DG functor fromC to Mor(A◦-DGmod). To show that its image is contained
A◦-resDGmod we have to prove thatχ :Y → ξ∗X is a quasi-isomorphism. This follow
from the next lemma.

6.2.2. Lemma. The natural morphismY → ξ∗ ξ→(Y ) = ξ∗Rξ(Y ), Y ∈ B⊥ ⊂ A→ ⊂
A◦-DGmod, is a quasi-isomorphism.

Proof. We will identify Ho(A→) with the derived categoryD(A) of A◦-modules (so both
Y andξ∗ ξ→(Y ) will be considered as objects of Ho(A→)). The essential image of Ho(B→) in
Ho(A) will be again denoted by Ho(B).
→ →
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It suffices to show that

Cone
(
Y → ξ∗ ξ→(Y )

) ∈Ho(B→) (6.4)

for every Y ∈ Ho(A→) (then for Y ∈ B⊥ one has Cone(Y → ξ∗ ξ→(Y )) ∈ Ho(B→) ∩
Ho(B⊥) = 0). Proposition 1.4 says that (6.4) holds forY ∈ Ho(A). ObjectsY ∈ Ho(A→)
for which (6.4) holds form a triangulated subcategory closed under (infinite) direct s
So (6.4) holds for allY ∈Ho(A→) by Lemma 4.4. ✷

6.2.3. Now let C denote the DG category(A↗ B)↔ξ defined in 5.6. Using the quas
equivalencesC ≈←− C ≈−→ C one can “glue” (6.2) and (6.3) and get a canonical commuta
diagram of DG categories

❀A ❀A ×C C≈ ≈
A

ξ

A↗ B

∩

C
≈ ≈

C

ξ∗

A→ A◦-resDGmod
≈

A◦-DGmod

(6.5)

(the DG functor
❀A ×C C→❀A is a quasi-equivalence by Lemma D.3, and the DG fun❀A ×C C→A is the composition

❀A ×C C→❀A→A, so it is also a quasi-equivalence).

7. More on derived DG functors

7.1. Let ξ :A→ C be a quotient of a DG categoryA by a full DG subcategoryB ⊂A
(so in (1.1)Ã = A and the DG functorÃ→ A equals idA). Let F be a DG functor
from A to a DG categoryA′. Under a suitable flatness assumption (e.g., ifC is the DG
quotientA/B from Section 3 and (3.4) holds), we will define notions of the right deri
DG functor ofF , which correspond to derived triangulated functors (5.2) and (5.4). T
are essentially equivalent to those from 5.2 and 5.5 but are based onC rather than the DG
quotientA↗ B from 4.9. One can easily pass from right derived DG functors to left o
by considering the dual DG categories.

7.2. Consider the DG functor

ξ∗ :C→A◦-DGmod, ξ∗c(a) :=Hom
(
ξ(a), c

)
. (7.1)

From now on we assume that the diagramC ξ←− A F−→A′ satisfies the following flatnes
condition:
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for all c ∈ObC, the morphismsξ∗c⊗A A′ → ξ∗c L⊗A A′ are quasi-isomorphisms. (7.

This condition is satisfied ifC is the DG quotientA/B from Section 3 and (3.4) holds: i
this case the DGA◦-modulesξ∗c, c ∈ C, are homotopically flat by Lemma C.15(i).

7.3. We are going to define a DG version of the derived triangulated functor (5.2
a first step, consider the DG functor

RF :C→ (
A′

)◦
-DGmod (7.3)

corresponding to the DGC ⊗ (A′)◦-moduleC ⊗A A′ (see C.8). (This is only a firs
step because the homotopy category of the target ofRF is not thederivedcategory of
DG (A′)◦-modules.) The isomorphismC ⊗A A′ = HomC⊗AA′ (see (C.8)) shows tha
RF = IndF ◦ ξ∗, whereξ∗ :C→A◦-DGmod is defined by (7.1) and IndF :A◦-DGmod→
(A′)◦-DGmod is the induction DG functor (see C.9).

The fiber product ofC and(A′)◦-resDGmod over(A′)◦-DGmod will be denoted byC[F ]
(see 6.2.1 for the definition of(A′)◦-resDGmod). The DG functorC[F ] → C is a quasi-
equivalence. We define the derived DG functorRF :C[F ] → A′→ to be the composition
C[F ] → (A′)◦-resDGmod→ A′→ . A 2-categorical reformulation of this definition will b
given in Remark (ii) from E.6.

Let C(F ) denote the preimage ofA′ ⊂A′→ underRF (soC(F ) is a full DG subcategory
of C[F ]). One hasRF :C(F )→A′.

In 7.4, 7.5 we will show using (7.2) that the above definitions are reasonable
DG functorRF :C[F ] → A′→ is essentially equivalent to the DG functorRF from 5.2
and therefore agrees with the derived triangulated functor (5.2). There is a s
relation betweenRF :C(F )→A′, the DG functor from 5.5, and the derived triangula
functor (5.4).

Remark. If k is a field or, more generally, if

Hom(U,X) is a semi-free DGk-module for allX ∈A, U ∈ B, (7.4)

then the image ofRF :C→ (A′)◦-DGmod is contained in the full subcategoryA′→ of semi-
free DG (A′)◦-modules (in the caseA′ = A, F = idA this is Lemma C.15(ii), and th
general case follows). So if (7.4) holds then one does not have to considerC[F ]: one can
simply defineRF :C→A′→ to be the DG functor corresponding toRF .

7.4. Assuming (7.2) we will “identify”RF :C[F ] →A′ with the DG functorRF :A↗
B→A′→ from 5.2. More precisely, here is a construction of a commutative diagram

A↗ B

RF

C1
≈ ≈ C[F ]

RF

≈
C

A′ A′ A′

. (7.5)
→ → →
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Put C1 := C[idA], so the objects ofC1 are triples(c,Q,f ), wherec ∈ C, Q ∈ A→, and
f :Q→ ξ∗c is a quasi-isomorphism. The derived DG functorR idA :C1→ A, i.e., the
DG functorC1→A→ defined by(c,Q,f ) 
→Q, induces a quasi-equivalenceC1

≈−→A↗
B ⊂ A→ (see Proposition 1.5.1). To define the DG functorC1→ C[F ] notice that by the
flatness assumption (7.2) the image of the composition

C1= C[idA] →A◦-resDGmod↪→Mor(A◦-DGmod)→Mor
(
(A′)◦-DGmod

)
is contained in(A′)◦-resDGmod, so we get a DG functorC1= C[idA] → (A′)◦-resDGmod
whose composition with the DG functor(A′)◦-resDGmod→ (A′)◦-DGmod equals (7.3)
i.e., we get a DG functorC1→ C[F ].

7.5. In fact, one can construct a slightly better diagram

❀A Ã
≈ ≈

A

ξ

A↗ B

RF

C̃
≈ ≈ C[F ]

RF

≈
C

A′→ A′→ A′→

. (7.6)

To this end, first replace in (7.5)C1 by the DG categoryC from (6.3) (the right squar
of (6.3) defines a DG functorC→ C1, which is a quasi-equivalence becauseC→ C and
C1→ C are). Next, put̃C := C (see 6.2.3 for the definition ofC) and replaceC by C̃. Now
the upper two rows of (6.5) yield (7.6) with̃A :=❀A ×C C.

8. Proof of Theorem 3.4

8.1. We can suppose that (3.3) holds (if (3.4) holds replaceA and B by the dual
categories). It suffices to show thatΦ is fully faithful (this will imply that ImΦ is
a triangulated subcategory of(A/B)tr, but on the other hand ImΦ ⊃ A/B, so Φ is
essentially surjective). In other words, it suffices to prove that for everyX,Y ∈ Apre-tr

and everyi ∈ Z the homomorphism

ExtiAtr/Btr(X,Y )→ Exti
(A/B)tr(X,Y ) (8.1)

is bijective. It is enough to prove this forX,Y ∈A.

8.2. By (A.1), the l.h.s. of (8.1) can be computed as follows:

ExtiAtr/Btr(X,Y )= lim−→ Hi HomApre-tr(X,Z), (8.2)

(Y→Z)∈QY
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whereQY is the filtering category ofAtr-morphismsf :Y → Z such that Cone(f ) isAtr-
isomorphic to an object ofBtr.

The r.h.s. of (8.1) can be written as

Exti(A/B)tr(X,Y )= lim−→
(Y→Z)∈QY

H i HomApre-tr/B(X,Z). (8.3)

To see this, first notice that the DG functorA/B → (A/B)pre-tr is fully faithful,
so Exti

(A/B)tr(X,Y ) := Hi Hom(A/B)pre-tr(X,Y ) = Hi HomA/B(X,Y ); then notice tha
a morphismY → Z fromQY induces an isomorphism

Hi HomA/B(X,Y )=Hi HomApre-tr/B(X,Y )
∼−→Hi HomApre-tr/B(X,Z)

because HomApre-tr/B(X,U) is acyclic for everyU ∈ B (acyclicity is clear sinceU is
homotopy equivalent to 0 as an object ofApre-tr/B).

8.3. Consider (8.1) as a morphism from the r.h.s. of (8.2) to the r.h.s. of (8.3). Clea
is induced by the morphismsαZ : HomApre-tr(X,Z)→HomApre-tr/B(X,Z),Z ∈Apre-tr. By
(3.2) eachαZ is injective andLZ := CokerαZ is the union of an increasing sequence
subcomplexes 0= (LZ)0 ⊂ (LZ)1 ⊂ · · · such that(LZ)n/(LZ)n−1 = HomnApre-tr/B(X,Z)
for n� 1. So to prove that (8.1) is bijective, it suffices to show that

lim−→
(Y→Z)∈QY

H i HomnApre-tr/B(X,Z)= 0, n� 1.

For n� 1 the DG functorZ 
→ HomnApre-tr/B(X,Z) is a direct sum of DG functors of th
formZ 
→ FX,U ⊗HomApre-tr(U,Z), U ∈ B, whereFX,U is a homotopically flat comple
of k-modules. Since

lim−→
(Y→Z)∈QY

H i HomApre-tr(U,Z)= ExtiAtr/Btr(U,Z)= 0, U ∈ B

it remains to prove the following lemma.

8.4. Lemma.Let {Cα} be a filtering inductive system of objects of the homotopy cate
of complexes ofk-modules(so eachCα is a complex, to each morphismµ :α→ β there
corresponds a morphismfµ :Cα→ Cβ andfµν is homotopy equivalent tofµfν ). Suppose
that lim−→α

H i(Cα)= 0 for all i. Then for every homotopically flat complexF of k-modules

lim−→
α

H i(Cα ⊗F)= 0.

Remark. This would be obvious if we had a true inductive system of complexes, i.
fµν were equal tofµfν (because in this case

lim−→H
i(Cα)=Hi(C), lim−→H

i(Cα ⊗ F)=Hi(C ⊗ F), C := lim−→Cα).

α α α
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If there are countably manyα’s then Lemma 8.4 is still obvious because we can rep
the morphismsfµ by homotopy equivalent ones so thatfµν = fµfν .

The proof of Lemma 8.4 is based on the following lemma due to Spaltenstein [50

8.5. Lemma.For every complexF of k-modules there is a quasi-isomorphismF ′ → F ,
whereF ′ is a filtering direct limit of finite complexes of finitely generated freek-modules.

Proof. One can takeF ′ to be a semi-free resolution ofF (see Appendix B). Here i
a slightly different argument close to the one from [50]. RepresentF as a direct limit
of bounded above complexesFn, n ∈N. Let Pn→ Fn be a surjective quasi-isomorphism
wherePn is a bounded above complex of freek-modules. The morphismPn → Fn+1
can be lifted to a morphismPn → Pn+1. We can takeF ′ to be the direct limit of the
complexesPn (because eachPn is the union of a filtering family of finite complexes o
finitely generated freek-modules). ✷
8.6. Proof of Lemma 8.4.Let F be as in Lemma 8.4. ChooseF ′ as in Lemma 8.5. Sinc
Lemma 8.4 holds forF ′ instead ofF it suffices to show that the mapHi(Cα ⊗ F ′)→
Hi(Cα ⊗ F) is an isomorphism. As Cone(F ′ → F) is homotopically flat and acyclic thi
follows from [50, Proposition 5.8]: if a complexC is homotopically flat and acyclic the
C ⊗ C′ is acyclic for every complexC′ (proof: by Lemma 8.5 one may assume thatC′ is
either homotopically flat or acyclic).✷

9. Proofs of Propositions 1.4 and 5.4

9.1. Proof of Proposition 5.4.Let Y ∈ObA. Then

RF tr(Y )= “lim”−→
(Y→Z)∈QY

F tr(Z). (9.1)

HereQY is the filtering category ofAtr-morphismsg :Y → Z such that Cone(g) is
isomorphic to an object ofBtr.

To computeRF tr(Y ) choose a closed morphismf :P → Y of degree 0 with
P ∈ B→, Cone(f ) ∈ B⊥ (i.e., choose a semi-free resolution of the DGB◦-moduleb 
→
Hom(b,Y ), b ∈ B). Then

H 0(RF)tr(Y )= “lim”−→
(W→P)∈Q′P

F tr(Cone(W → Y )
)
, (9.2)

whereQ′P is the filtering category ofB→-morphismsW → P with W ∈ Bpre-tr. We have
the functorΦ :Q′P → QY that sendsh :W → P to g :Y → Cone(f h), and (5.6) is the
morphism from the r.h.s. of (9.1) to the r.h.s. of (9.2) corresponding toΦ. It remains to
prove the following lemma.
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9.2. Lemma. Let f :P → Y be a closed morphism of degree0 with Y ∈ A, P ∈ B→,
Cone(f ) ∈ B⊥. Then the above functorΦ :Q′P →QY is cofinal.

Proof. By the definition of cofinality (see [18, §8.1]), we have to show that for ev
(g :Y → Z) ∈ QY there exists(W → P) ∈ Q′P such that theAtr-morphism Y →
Cone(W → Y ) can be factored throughg. There is a distinguished triangleV

ψ−→ Y
g−→

Z→ V [1], V ∈ Btr, so it suffices to show thatψ is in the image of the composition

lim−→
(W→P)∈Q′P

HomAtr(V ,W)→HomA→
tr(V ,P )→HomAtr(V ,Y ). (9.3)

This is clear because both maps in (9.3) are bijective (the second one is bijective b
V ∈ Btr and Cone(f :P → Y ) ∈ B⊥). ✷
9.3. Proof of Proposition 1.4.We will use the convention of 4.1:B→ is identified with its
essential image under the induction DG functorB→→A→.

To prove that (i)⇒ (ii), choose a closed morphismf :P → Y of degree 0 with
P ∈ B→ ⊂ A→, Cone(f ) ∈ B⊥ (i.e., choose a semi-free resolution of the DGB◦-module
b 
→Hom(b,Y ), b ∈ B). It suffices to show that (1.4) is quasi-isomorphic toP [1]. To this
end, consider the commutative diagram

Hom(X,Y )
uX

vX

lim−→Hom
(
X,Cone(W → Y )

)
αX

Hom
(
ξ(X), ξ(Y )

) βX
lim−→Hom

(
ξ(X), ξ

(
Cone(W → Y )

))
(9.4)

in which the direct limits are over(W → P) ∈ Q′P (see 9.1 for the definition ofQ′P ).
Objects ofξ(B) are homotopic to zero, soβX is a quasi-isomorphism. By (A.1) an
Lemma 9.2,αX is also a quasi-isomorphism. So the DGA◦-moduleX 
→ Cone(vX) is
quasi-isomorphic to the DGA◦-moduleX 
→Cone(uX), i.e., toP [1].

To prove that (ii)⇒ (i), consider again the commutative diagram (9.4). The DGA◦-
moduleX 
→ Cone(uX) is quasi-isomorphic toP [1], andβX is a quasi-isomorphism. S
if the DGA◦-moduleX 
→Cone(vX) is quasi-isomorphic to an object ofB→⊂A→ then the
DG A◦-module

X 
→Cone(αX), X ∈A (9.5)

is quasi-isomorphic to someM ∈ B→⊂A→. Clearly,M is quasi-isomorphic to the restrictio
of (9.5) toB. By (A.1) and Lemma 9.2 one has

lim−→
(W→P)∈Q′P

H i Hom
(
X,Cone(W → Y )

)= ExtiAtr/Btr(X,Y ), X,Y ∈A.

So the restriction of (9.5) toB is acyclic. Therefore,αX is a quasi-isomorphism for a
X ∈A. So the canonical map Exti

tr tr(X,Y )→ Exti tr(ξ(X), ξ(Y )) is an isomorphism
A /B C
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for all X,Y ∈A, i.e., the functorAtr/Btr→ Ctr induced byξ is fully faithful. Its essentia
image is a triangulated subcategory containing Ho(C), so it equalsCtr. ✷

10. Proofs of Propositions 1.5.1, 4.6, and 4.7

10.1. Proof of Proposition 4.7.Identify A→
tr = Ho(A→) with D(A) and B→

tr = Ho(B→)
with D(B). Then the embeddingB→

tr→A→
tr identifies with the derived induction functo

so it has a right adjoint, namely the restriction functor. This proves (i). By adjointn
(B→

tr)⊥ ⊂ Ho(A→) is the kernel of the restriction functor, which proves (ii). Statem
(iii) follows from (i) and (ii). To prove (iv) apply Lemma A.5 in the following situatio
T0=Atr, T =A→

tr, Q0= Btr, Q= B→
tr. ✷

10.2. Proof of Proposition 1.5.1.(a) is a particular case of Proposition 4.6(ii). Here
a direct proof of (a). Asξ is essentially surjective it suffices to show that the morph
f : Extn(ξ(a), c)→ Extn(ξ∗ξ(a), ξ∗c) is an isomorphism for everya ∈ A and c ∈ C.

Decomposef as Extn(ξ(a), c) = Extn(a, ξ∗c) f ′−→ Extn(ξ∗ξ(a), ξ∗c), wheref ′ comes
from the morphismϕ :a→ ξ∗ξ(a). By Proposition 1.4(ii), there is a distinguished trian

L Ind(N)−→ a
ϕ−→ ξ∗ξ(a)−→ L Ind(N)[1], N ∈D(B), (10.1)

whereL Ind :D(B) → D(A) is the derived induction functorL Ind :D(B) → D(A).
As ξ∗c is annihilated by the restriction functor Res :D(A) → D(B), we see tha
Extn(L Ind(N), ξ∗c)= 0, sof ′ is an isomorphism.

Applying Res to (10.1) and using the equalities Resξ∗ = 0, ResL Ind= idD(B), we get
N =Resa andξ∗ξ(a)� Cone(L IndResa→ a). This implies (b). ✷
10.3. Proof of Proposition 4.6.The derived category ofA◦-modules identifies with
Ho(A→). The derived induction functorI : Ho(A→)→Ho(C→) is left adjoint to the restriction
functorR : Ho(C→)→Ho(A→).

By Proposition 4.7 we can identify Ho(A→)/Ho(B→) with Ho(B⊥)= (Ho(B→))
⊥. Clearly,

R(Ho(C→))⊂Ho(B⊥). Let i : Ho(B⊥)→Ho(C→) andr : Ho(C→)→Ho(B⊥) be the functors
corresponding toI andR. It suffices to show that they are quasi-inverse equivalen
Clearly, i is left adjoint tor. So we have the adjunction morphisms id→ ri, ir → id,
and we have to show that they are isomorphisms. By Lemma 6.2.2, the morphism id→ ri

is an isomorphism. Therefore, the natural morphismr → rir is an isomorphism, so th
morphismrir→ r is an isomorphism (because the compositionr→ rir→ r equals id),
and finally the morphismir→ id is an isomorphism (becauser is conservative, i.e., iff
is a morphism in Ho(C→) such thatr(f ) is an isomorphism thenf is an isomorphism). ✷

11. Proofs of Proposition 1.6.3 and Theorem 1.6.2

11.1. Proof of Proposition 1.6.3.Let MY denote the DGA◦-module (1.4). Replacing
ξ :A→ C by ξ ⊗ idK :A⊗K→ C ⊗K one gets a similar DGA◦ ⊗K◦-moduleMY⊗Z
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for everyZ ∈ K. Clearly,MY⊗Z = MY ⊗ hZ , wherehZ is the image ofZ under the
Yoneda embeddingK ↪→ K◦-DGmod. AsK is homotopically flat overk property 1.4(ii)
for ξ :A→ C implies property 1.4(ii) forξ ⊗ idK :A ⊗ K→ C ⊗ K. It remains to use
Proposition 1.4. ✷
11.2. Proof of Theorem 1.6.2.A pair (C, ξ) satisfying Theorem 1.6.2(ii) is clearly uniqu
in the sense ofDGcat, and in Sections 3, 4 we proved the existence of DG quotient, i.e
existence of a pair(C, ξ) satisfying Theorem 1.6.2(i). So it remains to show that (i)⇒ (ii).

We will use the definition ofT (A,K) from E.1–E.4. One can assume thatK is
homotopically flat overk. SoT (A,K)⊂D(A◦ ⊗K), T (B,K)⊂D(B◦ ⊗K), T (C,K)⊂
D(C◦ ⊗ K). We can also assume thatξ ∈ T (A,C) comes from a DG functorξ :A→ C
(otherwise replaceA by one of its semi-free resolutions and apply Proposition E.7
So if Theorem 1.6.2(i) holds, one can apply Proposition 1.6.3 and 4.6. We se
the restriction functorD(C◦ ⊗ K) → D(A◦ ⊗ K) is fully faithful, and its essentia
image consists precisely of objects ofD(A◦ ⊗ K) annihilated by the restriction functo
D(A◦ ⊗K)→D(B◦ ⊗K). Property (ii) follows. ✷
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Appendix A. Triangulated categories

A.1. Categories withZ-action and graded categories

Let C be a category with a weak action ofZ, i.e., a monoidal functor fromZ to the
monoidal category Funct(C,C) of functorsC → C (hereZ is viewed as a monoida
category: Mor(m,n) := ∅ if m �= n, Mor(n,n) := {idn}, m ⊗ n := m + n for m,n ∈ Z).
For c1, c2 ∈ C put Extn(c1, c2) := Mor(c1,Fn(c2)), whereFn :C → C is the functor
corresponding ton ∈ Z. Using the isomorphismFmFn

∼−→ Fm+n, one gets the compositio
map Extm(c1, c2) × Extn(c2, c3)→ Extm+n(c1, c3), so C becomes aZ-graded category
This Z-graded category has an additional property: for everyn ∈ Z andc ∈ C there exists
an objectc[n] ∈ C with an isomorphismc[n] ∼−→ c of degreen. EveryZ-graded categor
C with this property comes from an essentially unique weak action ofZ onC.

Suppose that each of the categoriesC andC′ is equipped with a weak action ofZ.
ConsiderC andC′ as graded categories. Then a graded functorC→ C′ (i.e., a functor
between the corresponding graded categories) is the same as a functorΦ :C → C′
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equipped with an isomorphismΦΣ ∼−→ Σ ′Φ, where Σ ∈ Funct(C,C) and Σ ′ ∈
Funct(C′,C′) are the images of 1∈ Z.

An additive Z-graded categoryC is considered as a plain (non-graded) categ
by considering elements of

⊕
nExtn(c1, c2) (rather than those of

⊔
nExtn(c1, c2)) as

morphismsc1→ c2.
All this applies, in particular, to triangulated categories.

A.2. Quotients

The quotientT /T ′ of a triangulated categoryT by a triangulated subcategoryT ′ is
defined to be the localization ofT by the multiplicative setS of morphismsf such that
Cone(f ) is isomorphic to an object ofT ′. The categoryT /T ′ has a canonical triangulate
structure; by definition, the distinguished triangles ofT /T ′ are those isomorphic to th
images of the distinguished triangles ofT . This is due to Verdier [56,57].

He also proved in [56,57] that for everyY ∈ ObT the categoryQY of T -morphisms
f :Y → Z such that Cone(f ) is isomorphic to an object ofT ′ is filtering, and for every
Y ∈ObT one has an isomorphism

lim−→
(Y→Z)∈QY

ExtiT (X,Z)
∼−→ ExtiT /T ′(X,Y ). (A.1)

A.3. Remarks.

(i) Verdier requiresT ′ to be thick (épaisse), which means according to [57] that an o
of T which is (isomorphic to) a direct summand of an objectT ′ belongs toT ′. But the
statements from A.2 hold without the thickness assumption because in [57, §
(or in [56, Chapter 1, §2.3]) the multiplicative setS is not required to be saturated (b
[57, Proposition 2.1.8] thickness ofT ′ is equivalent to saturatedness ofS).

(ii) T /T ′ = T /T ′′, whereT ′′ ⊂ T is the smallest thick subcategory containingT ′. So
according to [57] an object ofT has zero image inT /T ′ if and only if it belongs
to T ′′.

(iii) The definitions of thickness from [56,57] are equivalent: ifT ′ ⊂ T is thick in the
sense of [57] then according to [57]T ′ is the set of objects ofT whose image in
T /T ′ is zero, soT ′ is thick in the sense of [56]. Direct proofs of the equivalence
be found in [49, Proposition 1.3, p. 305] and [45, Criterion 1.3, p. 390].

A.4. Let Q be a triangulated subcategory of a triangulated categoryT . Let Q⊥ ⊂ T
be the right orthogonal complement ofQ, i.e.,Q⊥ is the full subcategory ofT formed
by objectsX of T such that HomT (Y,X) = 0 for all Y ∈ ObQ. Then the morphism
HomT (Y,X)→HomT /Q(Y,X) is an isomorphism for allX ∈ObQ, Y ∈ObT (see [56,
Chapter I, §6] and [57, Proposition II.2.3.3]). In particular, the functorQ⊥ → T /Q is fully
faithful. This is a particular case (T0=Q⊥, Q0= 0) of the following lemma.
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A.5. Lemma. LetQ, T0, Q0 be triangulated subcategories of a triangulated categoryT ,
Q0⊂Q∩ T0. Suppose that every morphism from an object ofT0 to an object ofQ factors
through an object ofQ0. Then the functorT0/Q0→ T /Q is fully faithful.

Proof. The functorT0/Q0→ T /Q0 is fully faithful by (A.1). Our factorization condition
implies that HomT /Q0(X,Y )= 0 for all X ∈ObT0, Y ∈ObQ. In other words,T0/Q0 is
contained in the right orthogonal complement ofQ/Q0 in T /T0, so by A.4 the functo
T0/Q0→ (T /Q0)/(Q/Q0)= T /Q is fully faithful. ✷
A.6. Admissible subcategories

Suppose that a triangulated subcategoryQ ⊂ T is strictly full (“strictly” means that
every object ofT isomorphic to an object ofQ belongs toQ). LetQ⊥ ⊂ T (respectively
⊥Q ⊂ T ) be the right (respectively left) orthogonal complement ofQ, i.e., the full
subcategory ofT formed by objectsX of T such that Hom(Y,X) = 0 (respectively
Hom(X,Y )= 0) for all Y ∈ObQ. According to [5, §1],Q is said to beright-admissibleif
for eachX ∈ T there exists a distinguished triangleX′ →X→X′′ →X′[1] with X′ ∈Q
andX′′ ∈Q⊥ (such a triangle is unique up to unique isomorphism). AsQ⊥ is thick,Q is
right-admissible if and only if the functorQ→ T /Q⊥ is essentially surjective.Q is said
to beleft-admissibleif Q◦ ⊂ T ◦ is right-admissible. There is a one-to-one correspond
between right-admissible subcategoriesQ⊂ T and left-admissible subcategoriesQ′ ⊂ T ,
namely Q′ = Q⊥, Q = ⊥Q′. According to [5, §1] and [56, Chapter 1, §2.6] righ
admissibility is equivalent to each of the following conditions:

(a) Q is thick and the functorQ⊥ → T /Q is essentially surjective (and therefore
equivalence);

(b) the inclusion functorQ ↪→ T has a right adjoint;
(c) Q is thick and the functorT → T /Q has a right adjoint;
(d) T is generated byQ andQ⊥ (i.e., if T ′ ⊂ T is a strictly full triangulated subcatego

containingQ andQ⊥ thenT ′ = T ).

Remark. A left or right adjoint of a triangulated functor is automatically triangulated (
[27] or [5, Proposition 1.4]).

Appendix B. Semi-free resolutions

B.1. Definition. A DG R-moduleF over a DG ringR is free if it is isomorphic to a direct
sum of DG modules of the formR[n], n ∈ Z. A DG R-moduleF is semi-freeif the
following equivalent conditions hold:

(1) F can be represented as the union of an increasing sequence of DG submoduFi ,
i = 0,1, . . . , so thatF0= 0 and each quotientFi/Fi−1 is free;
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(2) F has a homogeneousR-module basisB with the following property: for a subse
S ⊂ B let δ(S) be the smallest subsetT ⊂ B such thatd(S) is contained in theR-linear
span ofT , then for everyb ∈ B there is ann ∈N such thatδn({b})= ∅.

A complex ofk-modules is semi-free if it is semi-free as a DGk-module.

B.2. Remarks.

(i) A bounded above complex of freek-modules is semi-free.
(ii) Semi-free DG modules were explicitly introduced in [2] (according to the termino

of [2], a DG module over a DG algebraR is free if it is freely generated, as a
R-module, by homogeneous elementseα such that deα = 0, so semi-free is weake
than free). In fact, the notion of semi-free DG module had been known to topolo
long before [2] (see, e.g., [16]). Semi-free DG modules are also called “cel
modules” (Kriz–May [35]) and “standard cofibrant DG modules” (Hinich [19]).
fact, Hinich shows in [19, Sections 2, 3] that DG modules over a fixed DG alg
form a closed model category with weak equivalences being quasi-isomorphism
fibrations being surjective maps. He shows, that a DG moduleC is cofibrant (i.e., the
morphism 0→ C is cofibrant) if and only if it is a direct summand of a semi-free D
module.

(iii) As noticed in [1,19], a semi-free DG moduleF is homotopically projective, which
means that for every acyclic DG moduleN every morphismf : F →N is homotopic
to 0 (we prefer to use the name “homotopically projective” instead of Spaltens
name “K-projective”). Indeed, if{Fi} is a filtration onF satisfying the condition
from B.1, then every homotopy betweenf |Fi−1 and 0 can be extended to a homoto
betweenf |Fi and 0. This also follows from Lemma 4.4 applied to the triangula
subcategoryTN of semi-free DGR-modulesF such that the complex Hom(F,N) is
acyclic (TN is closed under arbitrary direct sums and containsR).

(iv) By (iii) and Lemma B.3, the functor from the homotopy category of semi-free
R-modules to the derived category ofR-modules is an equivalence.

B.3. Lemma.For every DG moduleM over a DG algebraR there is a quasi-isomorphism
f :F →M with F a semi-free DGR-module. One can choosef to be surjective.

The pair(F,f ) is constructed in [2] as the direct limit of(Fi, fi) where 0= F0 ↪→
F1 ↪→ F2 ↪→ ·· · , each quotientFi/Fi−1 is free,fi :Fi→M, fi |Mi−1 = fi−1. GivenFi−1
and fi−1 :Fi−1 → M, one finds a morphismπ :P → Cone(fi−1)[−1] such thatP is
free andπ induces an epimorphism of the cohomology groups.π defines a morphism
fi :Fi := Cone(P → Fi−1)→ M such thatfi |Fi−1 = fi−1. The map Cone(fi−1)→
Cone(fi) induces a zero map of the cohomology groups, so Cone(f ) is acyclic, i.e.,f
is a quasi-isomorphism.

Remark. One can reformulate the above proof of the lemma without using the “lin
word “cone” (it suffices to replace “category” by “module” in the proof of Lemma A.5
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B.4. Hinich [19] proved a version of Lemma B.3 for DG algebras, i.e., DG catego
with one object. The case of a general DG category is similar.

Definition. LetA be a DG categoryA equipped with a DG functorK→A. We say thatA
is semi-free overK if A can be represented as the union of an increasing sequence
subcategoriesAi , i = 0,1, . . . , so that ObAi = ObA, K maps isomorphically ontoA0,
and for everyi > 0Ai as a gradedk-category overAi−1 (i.e., with forgotten differentials in
the Hom complexes) is freely generated overAi−1 by a family of homogeneous morphism
fα such that dfα ∈MorAi−1.

Definition. A DG categoryA is semi-freeif it is semi-free overAdiscr, whereAdiscr is
the DG category with ObAdiscr=ObA such that the endomorphism DG algebra of e
object ofAdiscr equalsk and HomAdiscr(X,Y )= 0 if X,Y are different objects ofAdiscr.

Remarks.

(1) Semi-free DG categories with one object were introduced in [19] under the
of “standard cofibrant” DG algebras. In fact, Hinich shows in [19, Sections 2
that DG algebras form a closed model category with weak equivalences being
isomorphisms and fibrations being surjective maps. He shows that a DG algeR
is cofibrant (i.e., the morphismk→ C is cofibrant) if and only ifR is a retract of
a semi-free DG algebra.

(2) Z−-graded semi-free DG algebras were considered as early as 1957 by Tat
and Z+-graded ones were considered in 1973 by Sullivan [53,54]. Hinich
explained following [1,50] that it is easy and natural to work with DG algebras wit
boundedness conditions.

B.5. Lemma. For every DG categoryA there exists a semi-free DG categorỹA with
ObÃ = ObA and a functorΨ : Ã→ A such thatΨ (X) = X for everyX ∈ ObÃ and
Ψ induces a surjective quasi-isomorphismHom(X,Y )→ Hom(Ψ (X),Ψ (Y )) for every
X,Y ∈ Ã.

The proof is the same as for DG algebras [19, Sections 2, 4] and similar to
of Lemma B.3.(Ã,Ψ ) is constructed as the direct limit of(Ãi ,Ψi) where ObÃi =
ObA, A0 ↪→A1 ↪→ ·· · , Ψi : Ãi→A, Ψi |Ãi−1

= Ψi−1, and the following conditions ar
satisfied:

(i) A0 is the discretek-category;
(ii) for every i > 0 Ai as a gradedk-category is freely generated overAi−1 by a family

of homogeneous morphismsfα such that dfα ∈MorAi−1;
(iii) for every i > 0 andX,Y ∈ ObA the morphism HomAi

(X,Y )→ HomA(Ψ (X),
Ψ (Y )) is surjective and induces a surjective map between the sets of the cocyc

(iv) for every i > 0 andX,Y ∈ ObA every cocyclef ∈ HomAi
(X,Y ) whose image in

HomA(Ψ (X),Ψ (Y )) is a coboundary becomes a coboundary in HomA (X,Y ).

i+1
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One constructs(Ãi ,Ψi) by induction. Notice that (iii) holds for alli if it holds for
i = 1, so after(Ã1,Ψ1) is constructed one only has to kill cohomology classes by ad
new morphisms.

B.6. Lemma. If a DG functor π : C̃ → C is a surjective quasi-equivalence(i.e., if π
induces a surjectionObC̃→ ObC and surjective quasi-isomorphisms between theHom
complexes) then every DG functor from a semi-free DG categoryA to C lifts to a DG
functorA→ C̃. More generally, for every commutative diagram

K
Φ

ν

C̃
π

R
Ψ

C

such thatR is semi-free overK andπ is a surjective quasi-equivalence there exists a
functorΨ̃ :R→ C̃ such thatπΨ̃ = Ψ andΨ̃ ν =Φ.

Remark. This is one of the closed model category axioms checked in [19].

Proof. Use the following fact: if f :A → B is a surjective quasi-isomorphism
complexes,a ∈ A, b ∈ B, f (a) = db, and da = 0 then there is ana′ ∈ A such that
f (a′)= b anda = da′. ✷

Appendix C. DG modules over DG categories

Additive functors from a preadditive categoryA to the category of abelian groups a
often calledA-modules (see [42]). We are going to introduce a similar terminology in
DG setting. The definitions below are similar to those of Mitchell [41].

C.1. Let A be a DG category. Aleft DGA-moduleis a DG functor fromA to the DG
category of complexes ofk-modules. Sometimes left DGA-modules will be called simply
DG A-modules. IfA has a single objectU with EndAU =R then a DGA-module is the
same as a DGR-module. Aright DG A-moduleis a left DG module over the dual DG
categoryA◦. The DG category of DGA-modules is denoted byA-DGmod. In particular
k-DGmod is the DG category of complexes ofk-modules.

C.2. Let A be a DG category. Then the complex

AlgA :=
⊕

X,Y∈ObA
Hom(X,Y )

has a natural DG algebra structure (interpret elements of AlgA as matrices(fXY ), fXY ∈
Hom(Y,X), whose rows and columns are labeled by ObA). The DG algebra AlgA has
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the following property: every finite subset of AlgA is contained ineAlgA e for some
idempotente ∈ AlgA such that de = 0 and dege = 0. We say that a moduleM over
AlgA is quasi-unitalif every element ofM belongs toeM for some idempotente ∈ AlgA
(which may be assumed closed of degree 0 without loss of generality). IfΦ is a DGA-
module thenMΦ :=⊕

X∈ObAΦ(X) is a DG module over AlgA (to define multiplication
write elements of AlgA as matrices and elements ofMΦ as columns). Thus, we get
DG equivalence between the DG category of DGA-modules and that of quasi-unital D
modules over AlgA.

C.3. LetF :A→ k-DGmod be a left DGA-module andG :A→ k-DGmod a right DG
A-module. ADG pairingG× F → C, C ∈ k-DGmod, is a DG morphism from the D
bifunctor (X,Y ) 
→ Hom(X,Y ) to the DG bifunctor(X,Y ) 
→ Hom(G(Y )⊗ F(X),C).
It can be equivalently defined as a DG morphismF →Hom(G,C) or as a DG morphism
G→ Hom(F,C), where Hom(G,C) is the DG functorX 
→ Hom(G(X),C), X ∈ A.
There is a universal DG pairingG × F → C0. We say thatC0 is the tensor product
of G and F , and we writeC0 = G ⊗A F . Explicitly, G ⊗A F is the quotient of⊕

X∈AG(X) ⊗ F(X) by the following relations: for every morphismf : X→ Y in A
and everyu ∈ G(Y), v ∈ F(X) one should identifyf ∗(u) ⊗ v andu ⊗ f∗(v). In terms
of [39, §IX.6],G ⊗A F = ∫ X

G(X) ⊗ F(X), i.e.,G ⊗A F is the coend of the functo
A◦ ×A→ k-DGmod defined by(Y,X) 
→G(Y)⊗ F(X). In terms of C.2, a DG pairing
G× F →C is the same as a DG pairingMG ×MF → C, soG⊗A F =MG ⊗AlgA MF .

C.4. Example. For everyY ∈ A one has the right DGA-modulehY and the left DG
A-moduleh̃Y defined byhY (Z) := Hom(Z,Y ), h̃Y (Z) := Hom(Y,Z), Z ∈ A. One has
the canonical isomorphisms

G⊗A h̃Y =G(Y), (C.1)

hY ⊗A F = F(Y ) (C.2)

induced by the mapsG(Z)⊗Hom(Y,Z)→G(Y), Hom(Z,Y )⊗ F(Z)→ F(Y ), Z ∈A.

C.5. Given DG categoriesA,B,B, a DGA⊗ B-moduleF , and a DG(A◦ ⊗ B)-mo-
duleG, one defines the DGB ⊗ B-moduleG⊗A F as follows. We considerF as a DG
functor fromB to the DG category of DGA-modules, soF(X) is a DGA-module for
everyX ∈ B. Quite similarly,G(Y) is a DG(A)◦-module for everyY ∈ B. NowG⊗A F
is the DG functorY ⊗X 
→G(Y)⊗A F(X), X ∈ B, Y ∈ B.

C.6. Denote byHomA the DGA⊗A◦-module(X,Y ) 
→Hom(Y,X), X,Y ∈A. E.g.,
if A has a single object andR is its DG algebra of endomorphisms thenHomA is the DG
R-bimoduleR. For any DG categoryA the isomorphisms (C.1) and (C.2) induce canon
isomorphisms

HomA⊗AF = F, G⊗A HomA =G (C.3)
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for every left DGA-moduleF and right DGA-moduleG (the meaning ofHomA⊗AF
andG⊗A HomA was explained in C.5). The isomorphisms (C.3) are clear from the p
of view of C.2 becauseMHomA is AlgA considered as a DG bimodule over itself.

C.7. A left or right DG A-moduleF :A→ k-DGmod is said to beacyclic if the
complex F(X) is acyclic for everyX ∈ A. A left DG A-module F is said to be
homotopically flatif G⊗A F is acyclic for every acyclic right DGA-moduleG. A right
DG A-module is said to be homotopically flat if it is homotopically flat as a left
A◦-module. It follows from (C.1) and (C.2) thathY andh̃Y are homotopically flat.

C.8. Let A be a DG category. A DGA-module is said to befree if it is isomorphic to a
direct sum of complexes of the form̃hX[n],X ∈A, n ∈ Z. The notion of semi-free DGA-
module is quite similar to that of semi-free module over a DG algebra (see Definition
anA-moduleΦ is said to besemi-freeif it can be represented as the union of an increa
sequence of DG submodulesΦi , i = 0,1, . . . , so thatΦ0= 0 and each quotientΦi/Φi−1
is free. Clearly, a semi-free DGA-module is homotopically flat. For every DGA-module
Φi there is a quasi-isomorphismF → Φ such thatF is a semi-free DGA-module; this
is proved just as in the case thatA has a single object (see Lemma B.3). Just a
Remarks B.2, one shows that a semi-free DGA-module is homotopically projective (i.e
the complex Hom(F,N) is acyclic for every acyclic DGA-moduleN ) and that the functo
from the homotopy category of semi-free DGA-modules to the derived categoryD(A◦)
of A-modules is an equivalence.

C.9. Let F :A→ A′ be a DG functor between DG categories. Then we have
restriction DG functor ResF :A′-DGmod→ A-DGmod, which maps a DGA-module
Ψ :A′ → k-DGmod toΨ ◦F . Sometimes instead of ResF Ψ we writeΨ or “Ψ considered
as a DGA-module.”

We define theinductionfunctor IndF :A-DGmod→A′-DGmod by

IndF Φ(Y )= (ResF hY )⊗A Φ, Y ∈A′. (C.4)

or equivalently by

IndF Φ :=HomA′ ⊗AΦ (C.5)

(according to C.6,HomA′ is a DGA′ ⊗ (A′)◦-module, but in (C.5) we consider it as a D
A′ ⊗A◦-module). Usually we writeA′ ⊗A Φ instead ofHomA′ ⊗AΦ = IndF Φ.

The DG functor IndF is left adjoint to ResF . Indeed, for every DGA′-moduleΨ
the complex HomA′-DGmod(HomA′ ⊗AΦ,Ψ ) is canonically isomorphic to HomA-DGmod
(Φ,HomA′-DGmod(HomA′ ,Ψ )), and the DGA′-module HomA′-DGmod(HomA′ ,Ψ )) is
canonically isomorphic toΨ .

In terms of C.2, the DG functors ResF and IndF correspond to the usual restriction a
induction for the DG algebra morphism AlgA→ AlgA′ corresponding toΦ.

Similar definitions and conventions apply to right DG modules (in this case we
IndF Φ(Y )=Φ ⊗A (ResF h̃Y ),Φ ⊗A A′ :=Φ ⊗A HomA′ = IndF Φ).
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C.10. Example.There is a canonical isomorphism

IndF h̃X = h̃F (X), X ∈A, (C.6)

where h̃X(Y ) := HomA(X,Y ), Y ∈ A. This follows either from (C.4) and (C.1) o
equivalently from (C.5) and (C.3) (or from the fact that IndF is the DG functor left adjoin
to ResF ). Quite similarly, there is a canonical isomorphism IndF hX = hF(X), which means
that the following diagram is commutative up to isomorphism:

A A◦-DGmod

A′ (A′)◦-DGmod.

(C.7)

The horizontal arrows of (C.7) are the Yoneda embeddings defined byX 
→ hX , the left
vertical arrow isF , and the right one is the induction functor.

C.11. Example. Let A be a DG category andF :A→ Apre-tr the embedding. The
ResF :Apre-tr-DGmod→ A-DGmod is a DG equivalence. So IndF :A-DGmod→
Apre-tr-DGmod is a quasi-inverse DG equivalence.

C.12. Derived induction

As explained (e.g., [6, §10]), in the situation of C.9 the functor IndF : Ho(A◦-DGmod)→
Ho((A′)◦-DGmod) has a left derived functorL IndF :D(A)→ D(A′), which is called
derived induction.Derived induction is left adjoint to the obvious restriction func
D(A′)→D(A).

By C.8 one can identifyD(A) with Ho(A→), whereA→ is the DG category of semi-fre
DG A◦-modules. Derived induction viewed as a functor Ho(A→)→Ho(A→

′) is the obvious
induction functor. Restriction viewed as a functor Ho(A→

′)→Ho(A→) sends a semi-free DG
(A′)◦-module to a semi-free resolution of its restriction toA◦.

C.13. Given DG algebrasA, C, A′, and DG morphismsC ← A→ A′, one has the
DG C ⊗ (A′)◦-moduleC ⊗A A′. Quite similarly, given DG categoriesA,C,A′, and DG
functorsF :A→A′,G :A→ C, one defines the DGC ⊗ (A′)◦-moduleC ⊗A A′ by

C ⊗A A′ :=HomC⊗A HomA′ = C ⊗A HomA′ =HomC⊗AA′

= C ⊗A HomA⊗AA′, (C.8)

whereHomC is considered as aC ⊗A◦-module andHomA′ as anA⊗ (A′)◦-module. In
other words,C ⊗A A′ is the DG functorC × (A′)◦ → k-DGmod defined by

(X,Y ) 
→
Z∫

Hom
(
F(Z),Y

)⊗Hom
(
X,G(Z)

)
, X ∈ObC, Y ∈ObA′,



680 V. Drinfeld / Journal of Algebra 272 (2004) 643–691

ensor

d.

or

n
s of
is
where the
∫

symbol denotes the coend (see C.3), so the above “integral” is the t
product of the rightA-module Z 
→ Hom(F (Z),Y ) and the leftA-module Z 
→
Hom(X,G(Z)). In terms of C.2, the DG module over AlgC⊗(AlgA′)

◦ corresponding to
C ⊗A A′ equals AlgC⊗AlgA AlgA′ .

C.14. Given a DG functorF :A → A′ we say thatA′ is right F -flat (or right
homotopically flat overA) if the right A-module ResF hX is homotopically flat for all
X ∈A′; herehX(Y ) := Hom(Y,X), X,Y ∈A′. We say thatA′ is right module-semifree
overA if the right DGA-modules ResF hX , X ∈ A′, are semi-free.A′ is said to beleft
F -flat (or left homotopically flat overA) if the left A-module ResF h̃X is homotopically
flat for allX ∈A′; hereh̃X(Y ) :=Hom(X,Y ), X,Y ∈A′. If A′ is right homotopically flat
overA then the induction functor IndF maps acyclic left DGA-modules to acyclic left DG
A′-modules. The previous sentence remains true if “left” and “right” are interchange

C.15. Lemma.LetA be a DG category andB ⊂A a full DG subcategory.

(i) If (3.4)holds thenA/B is right homotopically flat overA.
(ii) If (7.4)holds thenA/B is right module-semifree overA.

Proof. We will only prove (i) (the proof of (ii) is similar). We have to show that f
everyY ∈A the functorΨY :A◦ → k-DGmod defined byΨY (X) = HomA/B(X,Y ) is a
homotopically flat rightA-module. By (3.2), there is a filtrationΨY =⋃

n Ψ
n
Y ,Ψ n

Y ⊂ Ψ n+1
Y ,

such thatΨ 0
Y = hY andΨ n

Y /Ψ
n−1
Y =⊕

U∈BCnU ⊗ hU for everyn > 0, whereCnU is the
direct sum of complexes

HomA(U1,U2)⊗ · · · ⊗HomA(Un−1,Un)⊗HomA(Un,Y ), Ui ∈ B, U1=U.
It remains to notice that for everyY ∈A the rightA-modulehY is homotopically flat (see
C.7) and by (3.4) the complexesCnU are homotopically flat. ✷
C.16. Quasi-representability

Let A be a DG category. We have the DG functor fromA to the DG category of DG
A◦-modules defined byX 
→ hX .

C.16.1. Definition. A DG A◦-moduleΦ is quasi-representableif there is a quasi-
isomorphismf :hX→Φ for someX ∈A.

Remark. By C.8, for every DGA◦-moduleΦ there exists a semi-free resolutio
π :Φ→Φ (i.e.,Φ is semi-free andπ is a quasi-isomorphism), and the homotopy clas
Φ does not depend on the choice of(Φ,π). SoΦ is quasi-representable if and only if th
class containshX for someX ∈A.

C.16.2. Lemma.Φ is quasi-representable if and only if the graded functorH ·Φ :
(Ho·(A))◦ → {gradedk-modules} is representable.
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Proof. We only have to prove the “if” statement. SupposeH ·Φ is represented by(X,u),
X ∈ ObA, u ∈ H 0Φ(X). Our u is the cohomology class of somẽu ∈ Φ(X) such that
dũ= 0, degũ = 0. Thenũ defines a closed morphismf :hX→ Φ of degree 0 such tha
for everyY ∈A the morphismH ·hX(Y )→H ·Φ(Y ) is an isomorphism, sof is a quasi-
isomorphism. ✷

C.16.3. Let A′ ⊂ A◦-DGmod be the full DG subcategory of quasi-representable
modules. We have the DG functorsA←A′′ π−→A′, whereA′′ is the DG category whos
objects are triples consisting of an objectY ∈ A, a DG A◦-moduleΨ , and a quasi
isomorphismhY → Ψ (more precisely,A′′ is the full DG subcategory of the DG catego
A◦-resDGmod from 6.2.1 which is formed by these triples). Clearly,π is a surjective
quasi-equivalence.

C.16.4. Quasi-corepresentability
We say that a DGA-moduleΦ is quasi-corepresentableif there is a quasi-isomorphism

f : h̃X→Φ for someX ∈A, i.e., ifΦ is representable as a DG(A◦)◦-module.

Appendix D. The diagonal DG categories

D.1. Given topological spacesM ′,M ′′ mapped to a spaceM, one has the “homotop
fiber product” (M ′ × M ′′) ×M×M ∆hM , where∆hM is the “homotopy diagonal,” i.e.
the space of paths[0,1] → M (γ ∈ ∆hM is mapped to(γ (0), γ (1)) ∈ M ×M). In the
same spirit, given a DG categoryC it is sometimes useful to replace the naive diago
∆C ⊂ C × C by one of the following DG categories

−→
∆C ,

←−
∆C ,

←→
∆C , each of them equippe

with a DG functor toC × C. We define
−→
∆C to be the full DG subcategory of the D

categoryMorC from 2.9 that consists of triples(X,Y,f ) such thatf is a homotopy
equivalence; the DG functor

−→
∆C → C × C is defined by(X,Y,f ) 
→ (X,Y ). We define←−

∆C to be the same full DG subcategory ofMorC, but the DG functor
←−
∆C → C × C is

defined by(X,Y,f ) 
→ (Y,X).
Finally, define

←→
∆C to be the DG categoryA∞-funct(I2,C) of A∞-functors I2→ C,

whereIn denotes thek-category freely generated by the categoryJn with objects 1, . . . , n
and precisely one morphism with any given source and target. Here the word “A∞-functor”
is understood in the “strictly unital” sense (cf. [24, §3.5] or [36, §3.1]; according to
33,36,37], there are several versions of the notion ofA∞-functor which differ on how
anA∞ analog of the axiomF(id) = id in the definition of usual functor is formulate
the difference is inessential for our purposes and for any reasonable purpose).
A∞-functor I2→ C is a DG functorD2→ C, whereD2 is a certain DG category wit
ObD2= {1,2}, which is freely generated (as a gradedk-category, i.e., after one forgets th
differential) by morphismsf12: 1→ 2 andf21: 2→ 1 of degree 0, morphismsf121: 1→ 1
andf212: 2→ 2 of degree−1, morphismsf1212: 1→ 2 andf2121: 2→ 1 of degree−2,
etc. One has df12= 0= df21, df121= f21f12−1, df212= f12f21−1, and we do not nee
explicit formulas for the differential off1212, f2121, etc.
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D.2. Let eij be the uniqueJ2-morphismi → j , i, j ∈ {1,2}. Let I ′2 ⊂ I2 denote the
k-subcategory generated bye12. ThenA∞-funct(I ′2,C) identifies withMorC, so we get
a canonical DG functor

←→
∆C→−→

∆C ⊂MorC. There is a similar DG functor
←→
∆C→←−

∆C .

D.3. Lemma. For every DG categoryK equipped with a DG functorK→ −→
∆C the DG

functorK×−→∆C
←→
∆C→K is a quasi-equivalence. Same is true if(

←→
∆C,

−→
∆C) is replaced by

(
−→
∆C,C), (

←→
∆C,

←−
∆C) (

←→
∆C,

−→
∆C), or (

←−
∆C,C).

In other words, the lemma says that the DG functors
←→
∆C → −→

∆C → C are quasi-
equivalences and this remains true after any “base change” in the sense of 2.8.

Proof. The DG functors
←→
∆C → −→

∆C → C induce surjections of Hom complexes (th
follows from the definition of these complexes, see [31,33,36,37]). So it suffices to
that they are quasi-equivalences and induce surjections Ob

←→
∆C → Ob

−→
∆C → ObC. Both

statements are clear for
−→
∆C→ObC. The DG functorF :

←→
∆C→ C is the DG functor

A∞-funct(I2,C)→A∞-funct(I1,C)

that comes from a functori : I1 → I2 induced by an embeddingI1 ↪→ I2. F is
a quasi-equivalence becausei is an equivalence (more generally, if all the Ho
complexes of DG categoriesA1,A2 are semi-free DGk-modules then a quasi-equivalen
A1

≈−→ A2 induces a quasi-equivalenceA∞-funct(A2,C) ≈−→ A∞-funct(A1,C): this
follows from E.7.4 because the functorT (A2,C)→ T (A1,C) is an equivalence).

Finally, let us prove the surjectivity of the map Ob
←→
∆C → Ob

−→
∆C essentially follow-

ing [31] (where a slightly weaker statement is formulated). We will prove a formally m
general statement. Leteij andI ′2⊂ I2 have the same meaning as in D.2. Suppose tha
embeddingI ′2 ↪→ I2 (considered as a DG functor between DG categories) is decomp
asI ′2 ↪→R→ I2, where ObR=ObI2= I ′2= {1,2} andR is semi-free overI ′2 (see B.4).
Let F : I ′2→ C be a DG functor such thatF(e12) is a homotopy equivalence. Then w
will show thatF extends to a DG functorG :R→ C (to prove the surjectivity of the ma
Ob
←→
∆C→Ob

−→
∆C putR=D2). We will do this by decomposingF as

I ′2
Φ−→R′ → C, Ho·(R′)= I2 (D.1)

(here the equality Ho·(R′) = I2 means that the functorI ′2 = Ho·(I ′2)→ R′ extends to
an isomorphismI2

∼−→ R′). Such a decomposition allows to extendF to a DG functor
G :R→ C: first reduce to the case that all Extn groups inR′ vanish forn > 0 (otherwise
replaceR′ by a suitable DG subcategory), then one has a commutative diagram

I ′2
Φ

ν

R′

π

R I2
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with π being a surjective quasi-equivalence, and it remains to decomposeΦ asI ′2
ν−→R→

R′ by applying Lemma B.6.
Here are two ways to construct a decomposition (D.1). The first way is, essentia

construct anR′ independent onC andF : I → C by slightly modifying I ′2. The second
construction seems simpler to me, but it gives anR′ which depends onC andF : I→ C.

(i) Our I ′2 equals the DG categoryA0 from 3.7.1. LetR′ be the DG category(A/B)0⊂
A/B from 3.7.1. One gets a DG functorR′ := (A/B)0→ C and, in fact, a DG functo
A/B→ Cpre-tr as follows. First extendF :A0 := I ′ → C to a DG functorF pre-tr :A :=
(I ′2)pre-tr→ C. ThenF pre-tr sends the unique object ofB to a contractible objectY ∈ Cpre-tr.
A choice of a homotopy between idY and 0 defines a DG functorA/B→ Cpre-tr. By
Lemma 3.7.2, Ho·(R′)= I ′2.

(ii) Notation: given a DG categoryA and a ∈ ObA one definesA/a to be the fiber
product in the Cartesian square

A/a MorA

t

*
ia

A

,

whereMorA is the DG category from 2.9,t sends anA-morphism to its target,∗ is
the DG category with one object whose endomorphism algebra equalsk, andia :∗→A
maps the object of∗ to a. DecomposeF : I ′2 → C as F = sF , wheres :C/F (2)→ C
sends aC-morphism to its source andF : I ′2 → C/F (2) is the composition of the DG
functor I ′2 → I2/2 that sendsi ∈ {1,2} to the uniqueJ′2-morphismei2 : i → 2 and the
DG functorI2/2→ C/F (2) corresponding toF : I2→ C (hereI2 is considered as a DG
category). Now defineR′ from (D.1) as follows: ObR′ :=ObI ′2 = {1,2}, Hom(j1, j2)=
Hom(F (j1), F(j2)) for j1 = j2 ∈ ObR′ := ObI ′2, and composition inR′ comes from
composition inC/F (2). We have a canonical decomposition ofF asI ′2→R′ → C/F (2),
and to get (D.1) one usess :C/F (2)→ C. To show that Ho·(R′) = I2 use thatF(ei2) is
a homotopy equivalence.✷

Appendix E. The 2-category of DG categories

In E.1–E.4 we recall the definition of the 2-category of DG categories used by K
in [22], and in E.7.1–E.7.4 we mention a different approach used by Kontsevich
prefer to work with the weak notion of 2-category due to Bénabou. The defin
and basic examples of 2-categories can be found in [3] or [39, Chapter XII], w
they are called “bicategories.” Let us just recall that we have to associate to eac
DG categoriesA1,A2 a categoryT (A1,A2) and to define the composition functo
T (A1,A2) × T (A2,A3) → T (A1,A3). The 2-category axioms say that composit
should be weakly associative and for every DG categoryA there is a weak unit objec
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in T (A,A). The meaning of “weak” is clear from the following example: a 2-categ
with one object is the same as a monoidal category.

The 2-category of DG categories is only the tip of the “iceberg” of DG categories. I
we make some obvious remarks regarding the whole iceberg, but its detailed descri
left to the experts (see 1.8).

E.1. Flat case

First, let us construct the 2-categoryFlatDGcat of flat DG categories (“flat” is
a shorthand for “homotopically flat overk,” see 3.3). DefineT (A1,A2)⊂D(A◦1⊗A2) to
be the full subcategory of quasi-functors in the sense of [22, §7] (see also [26]). Acco
to [22], a quasi-functorfrom A1 to A2 is an objectΦ ∈ D(A◦1 ⊗ A2) such that for
everyX ∈ A1 the objectΦ(X) ∈ D(A2) belongs to the essential image of the Yone
embedding Ho(A2)→D(A2) (hereΦ(X) is the restriction ofΦ :A1⊗A◦2→ k-DGmod
to {X}⊗A2=A2). In other words, an object ofD(A◦1⊗A2) is a quasi-functor if it come
from a DG functor fromA1 to the full subcategory of quasi-representable DGA◦2-modu-
les (“quasi-representable” means “quasi-isomorphic to a representable DGA◦2-module,”
see C.16). The composition ofΦ ∈D(A◦1 ⊗A2) andΨ ∈ D(A◦2 ⊗A3) is defined to be

Φ
L⊗A2 Ψ , and the associativity isomorphism is the obvious one.
D(A◦1 ⊗ A2) is a gradedk-category (the morphismsΦ1 → Φ2 of degreen are the

elements of Extn(Φ1,Φ2)). This structure induces a structure of gradedk-category on
T (A1,A2).

E.2. Remark. If A2 is pretriangulated in the sense of 2.4, then the subcate
T (A1,A2)⊂D(A◦1⊗A2) is triangulated.

E.3. General case

It suffices to define for every DG categoryA a 2-functor� :SA→ FlatDGcat, where
FlatDGcat is the 2-category of flat DG categories andSA is a non-empty 2-category suc
that for everys1, s2 ∈ ObSA the category of 1-morphismss1→ s2 has one object an
one morphism (“�” is the Hebrew letter Dalet). We define ObSA to be the class of all fla
resolutions ofS (by Lemma B.5, ObSA �= ∅). � sends each̃A ∈ObSA to itself considered
as an object ofFlatDGcat. The unique 1-morphism from̃A1 ∈ ObSA to Ã2 ∈ ObSA is
mapped by� to HomÃ1,Ã2

∈ T (Ã1, Ã2)⊂D(Ã◦1⊗ Ã2), where the DGÃ1⊗ Ã◦2-module
HomÃ1,Ã2

is defined by

(X1,X2) 
→Hom
(
π2(X2),π1(X1)

)
, Xi ∈ Ãi (E.1)

andπi is the DG functorÃi→A. To define�, one also has to specify a quasi-isomorph

Hom˜ ˜ L⊗A Hom˜ ˜ →Hom˜ ˜ (E.2)
A1,A2 2 A2,A3 A1,A3
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for every three resolutions̃Ai→A. It comes from the composition morphism

HomÃ1,Ã2
⊗A2 HomÃ2,Ã3

→HomÃ1,Ã3
.

E.4. EachT (A1,A2) is equipped with a gradedk-category structure, and ifA2 is
pretriangulated thenT (A1,A2) is equipped with a triangulated structure. We already kn
this if A1 andA2 are flat (see E.1, Remark E.2), and in the general case we get
transport of structure via the equivalenceT (Ã1, Ã2)→ T (A1,A2) corresponding to fla
resolutionsÃ1→A1 andÃ1→A2.

E.5. Remarks.

(i) T (A1,A2) is a full subcategory of the following triangulated categoryD(A◦1
L⊗A2)

equipped with a triangulated functorR :D(A◦1 ⊗ A2)→ D(A◦1
L⊗ A2), which is an

equivalence ifA1 or A2 is flat. The objects ofD(A◦1
L⊗A2) are triples(Ã1, Ã2,M),

whereÃi is a flat resolution ofAi andM ∈ D(Ã◦1 ⊗ Ã2). Morphisms of degreen
from (Ã1, Ã2,M) to (Ã′1, Ã′2,M ′) are elements of

ExtnÃ′1⊗(Ã′2)◦
((

HomÃ′1,Ã1
⊗HomÃ2,Ã′2

)⊗Ã1⊗Ã◦2 M,M
′).

One defines composition inD(A◦1
L⊗A2) andR :D(A◦1⊗A2)→D(A◦1

L⊗A2) in the
obvious way.

(ii) D(A◦ L⊗A) equipped with the functor
L⊗A is a monoidal category.HomA :=HomA,A

viewed as an object ofD(A◦ L⊗A) is a unit object.

E.6. Ind-version and duality

We are going to define an involution◦ of the 2-categoryDGcat which preserves th
composition of 1-morphisms, reverses that of 2-morphisms, and sends eachA ∈ DGcat
to A◦.

To define it at the level of 1-morphisms and 2-morphisms consider the 2-cat
DGcatind whose objects are DG categories, as before, but the categoryT→(A,K) of

1-morphisms from a DG categoryA to a DG categoryK equalsD(A◦ L⊗K) (1-morphisms
are composed in the obvious way). Clearly,DGcat⊂DGcatind. The DG categoryDGcatind

has a canonical involution• which reverses the composition of 1-morphisms and prese
that of 2-morphisms: at the level of objects one hasA• :=A◦, and to define• at the level of
1-morphisms and 2-morphisms, one uses the obvious equivalence betweenT→(A,K) and
T→(K

◦,A◦).
Now it is easy to see that eachF ∈ T (A,K) ⊂ T→(A,K) has a right adjointF ∗ ∈

T→(K,A) and (F ∗)• ∈ T (A◦,K◦) ⊂ T→(A
◦,K◦). So puttingF ◦ := (F ∗)•, one gets the

promised involution ofDGcat.
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Remarks.

(i) It is easy to show that ifK ∈ DGcat is pretriangulated and Ho(K) is Karoubian then
F ∈ T→(A,K) has a right adjoint if andonly if F ∈ T (A,K).

(ii) At the 2-category level the definitions of the right derived DG functor from 5.2 and
amount to the following one. Suppose that in the situation of Theorem 1.6.2, w
given F ∈ T (A,A′). ThenRF ∈ T→(C,A′) is the composition ofF ∈ T (A,A′) ⊂
T→(C,A

′) and the right adjointξ∗ ∈ T→(C,A) of ξ ∈ T (A,C).

E.7. Relation with Kontsevich’s approach

E.7.1. Let A,K be DG categories and suppose thatA is flat. Given a DG func-
tor F :A → K denote byΦF the DG A ⊗ K◦-module (X,Y ) 
→ Hom(Y,F (X)).
Clearly,ΦF ∈ D(A◦ ⊗ K) belongs toT (A,K). Let us describe the full subcategory
T (A,K) formed by the DGA ⊗ K◦-modulesΦF . One hasΦF = IndidA⊗F ◦(HomA),
whereF ◦ is the DG functorA◦ → K◦ corresponding toF :A→ K and HomA is the
A◦ ⊗A-module(X,Y ) 
→ Hom(X,Y ). As A is homotopically flat overk the morphism
L IndidA⊗F ◦(HomA)→ IndidA⊗F ◦(HomA) is a quasi-isomorphism. Therefore, the a
junction between derived induction and restriction yields a canonical isomorphism

Extn(ΦF ,ΦG)= Extn
(
L IndidA⊗F ◦(HomA),ΦG

) ∼−→ Extn(F,G), (E.3)

where Extn(F,G) := ExtnA⊗A◦ (HomA,Hom(F,G)) andHom(F,G) :=ResidA⊗F ◦(ΦG),
i.e.,Hom(F,G) is the DGA⊗A◦-module(X,Y ) 
→ Hom(F (Y ),G(X)), X,Y ∈A. The
morphism Extm(F2,F3)⊗Extn(F1, F2)→ Extm+n(F1,F3) coming from (E.3) is, in fact
induced by the morphismHom(F2,F3)⊗Hom(F1,F2)→Hom(F1,F3) and the quasi
isomorphism(HomA)⊗A (HomA)→ HomA. So we have described the full subcateg
of T (A,K) formed by the DGA ⊗ K◦-modulesΦF . The next statement shows that
essentially equalsT (A,K) if A is semi-free.

E.7.2. Proposition.If A is semi-free overk then every object ofT (A,K) is isomorphic to
ΦF for someF :A→K.

Proof. An objectΦ ∈ T (A,K) is a DGA ⊗ K◦-module. ConsiderΦ as a DG functor
A→ K′ ⊂ K◦-DGmod, whereK′ is the full DG subcategory of quasi-representable
modules. We have the DG functorsK←K′′ π−→K′, whereK′′ is the DG category whos
objects are triples consisting of an objectY ∈ K, a DGA⊗ K◦-moduleΨ , and a quasi
isomorphismf :hY → Ψ (see C.16.3 for a precise definition ofK′′). We also have a
canonical DG functor Cone :K′′ → K◦-DGmod, which sends(Y,Ψ,f ) to Cone(f ) (the
definition of the Cone functor on morphisms is clear from 2.9).A is semi-free andπ is
a surjective quasi-equivalence, so by Lemma B.6 our DG functorA→ K′ lifts to a DG
functorA→ K′′. Let F :A→ K be the compositionA→ K′′ → K. One has an exac
sequence of DG(A⊗K◦)-modules 0→ Φ→M→ ΦF [1] → 0, whereM corresponds
to the compositionA→ K′ Cone−−−→ K◦-DGmod. AsM is acyclic we get aT (A,K)-
isomorphismΦF

∼−→Φ. ✷
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E.7.3. The standard resolution
Consider the category DGalg of (non-unital) associative DG algebras and the ca

DGcoalg of (non-counital) cocomplete coassociative coalgebras (a coalgebraU is
cocompleteif for every u ∈ U there existsn ∈ N such thatu is annihilated by then-fold
coproduct∆n :U → U⊗n). If U ∈ DGcoalg andA ∈ DGalg then Hom(U,A) ∈ DGalg
(the product off :U→A andg :U→A is defined to be the composition of the coprod
U→ U ⊗U , the mapf ⊗ g :U ⊗U→A⊗A, and the productm :A⊗A→A). Define
theMaurer–Cartan functorMC: DGcoalg◦ ×DGalg→Sets as follows: MC(U,A) is the
set of elementsω ∈ Hom(U,A) of degree 1 such that dω + ω2 = 0. There exist functor
B : DGalg→DGcoalg andΩ : DGcoalg→DGalg such that MC(U,A)=Mor(U,BA)=
Mor(ΩU,A) (they are called “bar construction” and “cobar construction”). AsΩ is left
adjoint toB, we have the adjunction morphismsΩBA→ A andU → BΩU . In fact,
they are quasi-isomorphisms. The above statements are classical (references will b
in E.9).

Caution: whileB sends quasi-isomorphisms to quasi-isomorphisms this isnot true
for Ω . Indeed, consider the morphismϕ : 0→ k, wherek is equipped with the obviou
DG algebra structure. ThenB(ϕ) is a quasi-isomorphism butΩB(ϕ) is not.

It is easy to see that ifA is a semi-free DGk-module thenΩBA is a semi-free DG
algebra (in the non-unital sense), soΩBA is a semi-free resolution ofA. ΩBA is non-
unital even ifA is unital. The DG algebra one gets by adding the unit to a DG algebB
will be denoted byu(B). If A is unital thenu(A) is the Cartesian product of DG algebr
A andk, so we get a quasi-isomorphismu(ΩBA)→ u(A) = A × k. Let us call it the
standard resolutionof A× k. It is semi-free (in the unital sense) ifA is a semi-free DG
k-module.

As explained in [24,31,33,36], there is a similar construction in the more ge
setting of DG categories. Given a DG categoryA, let Adiscr denote the DG category wit
ObAdiscr=ObA such that the endomorphism DG algebra of each object ofAdiscr equals
k and HomAdiscr(X,Y )= 0 if X, Y are different objects ofAdiscr. Let u(A)⊂A×Adiscr
be the full DG subcategory formed by objects(a, a), a ∈ ObA = ObAdiscr. There is a
standard resolutionStand(A)→ u(A). If all Hom complexes ofA are semi-free overk
then Stand(A) is semi-free.

E.7.4. A∞-functors
If A is any DG category and̃A is a semi-free resolution ofA thenT (A,K)= T (Ã,K),

so E.7.1, Proposition E.7.2 give a gradedk-category equivalent toT (A,K) whose objects
are DG functors̃A→K. In particular, if all Hom complexes ofA are semi-free (or, mor
generally, homotopically projective) overk, we get a category equivalent toT (u(A),K)
whose objects are DG functors Stand(A)→ K. Notice that if k is a field (and if you
believe in the axiom of choice, which ensures that modules over a field are free
every DGk-module is semi-free. The functorT (A,K)→ T (u(A),K) corresponding to
the canonical projectionu(A)→A is fully faithful (this follows from the decompositio
D(u(A)◦ ⊗K)=D(A◦ ⊗K)⊕D(A◦discr⊗K)). DG functors Stand(A)→K such that the
corresponding object ofT (u(A),K) is in T (A,K)⊂ T (u(A),K) are calledA∞-functors.
More precisely, this isone of the versions of the notion ofA∞-functor A→ K. They
differ on how anA∞ analog of the axiomF(id)= id in the definition of usual functor i
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formulated (the difference is inessential from the homotopy viewpoint). The above n
is as “weak” as possible.

According to Kontsevich, the structure of gradedk-category onT (A,K) comes from
a canonical DG categoryA∞-funct(A,K) whose objects areA∞-functorsA→ K. Here
is its definition ifA andK have one object (the general case is similar). LetA,K be the
endomorphism DG algebras of these objects. Then anA∞-functorA→K is a DG algebra
morphismΩBA→K satisfying a certain condition (see E.7.3). So it remains to cons
a DG category whose objects are elements of Mor(ΩBA,K) = MC(BA,K), i.e.,
elementsω of the DG algebraR := Hom(BA,K) such that degω = 1 and dω+ ω2 = 0.
Suchω defines a DGR◦-moduleNω: it equalsR as a gradedR◦-module, and the
differential inNω mapsr to ∇r := dr + ωr. Now put Hom(ω,ω′) :=Hom(Nω,Nω′ ) and
define the composition map Hom(ω,ω′) × Hom(ω′,ω′′)→ Hom(ω,ω′′) in the obvious
way.

Remark. According to [33,36], in the more general case thatK is anA∞-categoryA∞-
functorsA→K form anA∞-category. Kontsevich informed me, that ifK is a DG category
then theA∞-category ofA∞-functorsA→K is a DG category. I do not know if this DG
category equals the above DG categoryA∞-funct(A,K).

E.8. DG models ofT (A1,A2)

Kontsevich’s modelhas already been mentioned in E.7.4: if the Hom complexes oA1

are semi-free (or, more generally, homotopically projective) overk thenT (A1,A2) is the
graded homotopy category of the DG categoryA∞-funct(A1,A2).

Keller’s model is easier to define. IfA1 orA2 is flat thenD(A◦1
L⊗A2)=D(A◦1⊗A2)=

Ho·(R→), whereR :=A◦1⊗A2 andR→ is the DG category of semi-free DGR◦-modules.
This identifiesT (A1,A2)⊂D(A◦1⊗A2) with the graded homotopy category of a cert
full DG subcategoryDG(A1,A2)⊂R→, which will be calledKeller’s model.

One also has thedual Keller model(DG(A◦1,A◦2))◦: its graded homotopy category
T (A◦1,A◦2)◦ = T (A1,A2). The equalityT (A1,A2) = T (A◦1,A◦2)◦ identifiesT (A1,A2)

with the graded homotopy category of the DG category(DG(A◦1,A◦2))◦, which is a full
DG subcategory of the DG categoryR← :={the dual of the DG category of semi-free D
R-modules}.

If the Hom complexes ofA1 are homotopically projective overk there is a canonica
quasi-equivalenceA∞-funct(A1,A2)→DG(A1,A2), which is not discussed here.

Remark. LetA, C1, C2 be DG categories and suppose thatC1, C2 are flat. ThenDG(A,C1),
DG(C1,C2), andDG(A,C2) are defined, but in general (ifC1 is not semi-free) the image o

⊗
: DG(A,C1)⊗DG(C1,C2)→ (A⊗ C◦2)-DGmod
C1
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is not contained inDG(A,C2) or even inR→, whereR :=A◦ ⊗C2. So we do not get a com
position DG functorDG(A,C1)⊗DG(C1,C2)→DG(A,C2) but rather a DG functor

Ψ : DG(A,C1)×DG(C1,C2)×DG(A,C2)
◦ → k-DGmod, (E.4)

which lifts the graded functor

T (A,C1)× T (C1,C2)× T (A,C2)
◦ → {Gradedk-modules}

defined by(F1,G,F2) 
→⊕
nExtn(F2,GF1). One defines (E.4) by

(M1,N,M2) 
→Hom(M2,M1⊗C1 N).

E.9. Some historical remarks

As explained in [44], the functorsB andΩ from E.7.3 go back to Eilenberg–MacLa
and J.F. Adams. It was E.H. Brown [7] who introducedMC(U,A); he called its element
“twisting cochains.” The fact that the morphismΩBA→ A is a quasi-isomorphism
appears as [43, Theorem 6.2, pp. 7–28]. All the properties ofB andΩ from E.7.3 were
formulated in [44] and proved in [21]; their analogs for Lie algebras and commut
coalgebras were proved in [48, Appendix B, §7]. In these works DG algebras an
coalgebras were assumed to satisfy certain boundedness conditions. The general c
treated in [20,36].
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