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Abstract. The main purpose of this work is to study the homotopy theory
of dg-categories up to quasi-equivalences. Our main result is a description
of the mapping spaces between two dg-categories C and D in terms of
the nerve of a certain category of (C, D)-bimodules. We also prove that
the homotopy category Ho(dg − Cat) possesses internal Hom’s relative to
the (derived) tensor product of dg-categories. We use these two results in
order to prove a derived version of Morita theory, describing the morphisms
between dg-categories of modules over two dg-categories C and D as the
dg-category of (C, D)-bi-modules. Finally, we give three applications of our
results. The first one expresses Hochschild cohomology as endomorphisms
of the identity functor, as well as higher homotopy groups of the classifying
space of dg-categories (i.e. the nerve of the category of dg-categories and
quasi-equivalences between them). The second application is the existence
of a good theory of localization for dg-categories, defined in terms of a nat-
ural universal property. Our last application states that the dg-category of
(continuous) morphisms between the dg-categories of quasi-coherent (resp.
perfect) complexes on two schemes (resp. smooth and proper schemes) is
quasi-equivalent to the dg-category of quasi-coherent (resp. perfect) com-
plexes on their product.
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1 Introduction

Let A and B be two associative algebras (over some field k), and A − Mod
and B − Mod be their categories of right modules. It is well known that
any functor A − Mod → B − Mod which commutes with colimits is of the
form

A − Mod −→ B − Mod
M �−→ M ⊗A P

for some Aop ⊗ B-module P. More generally, there exists a natural equiva-
lence of categories between (Aop ⊗ B)−Mod and the category of all colimit
preserving functors A − Mod → B − Mod. This is known as Morita theory
for rings.

Now, let A and B be two associative dg-algebras (say over some field k),
together with their triangulated derived category of right (unbounded) dg-
modules D(A) and D(B). A natural way of constructing triangulated func-
tors from D(A) to D(B) is by choosing P a left Aop ⊗ B-dg-module, and
considering the derived functor

D(A) −→ D(B)

M �−→ M ⊗LA P.

However, it is well known that there exist triangulated functors D(A) →
D(B) that do not arise from a Aop ⊗ B-dg-module (see e.g. [Du-Sh, 2.5,
6.8]). The situation is even worse, as the functor

D(Aop ⊗ B) −→ Homtr(D(A), D(B))

is not expected to be reasonable in any sense as the right hand side simply
does not possess a natural triangulated structure. Therefore, triangulated
categories do not appear as the right object to consider if one is looking
for an extension of Morita theory to dg-algebras. The main purpose of this
work is to provide a solution to this problem by replacing the notion of
triangulated categories by the notion of dg-categories.

dg-Categories. A dg-category is a category which is enriched over the
monoidal category of complexes over some base ring k. It consists of a set
of objects together with complexes C(x, y) for two any objects x and y,
and composition morphisms C(x, y) ⊗ C(y, z) → C(x, z) (assumed to be
associative and unital). As linear categories can be understood as rings with
several objects, dg-categories can be thought as dg-algebras with several ob-
jects, the precise statement being that dg-algebras are exactly dg-categories
having a unique object.

From a dg-category C one can form a genuine category [C] by keep-
ing the same set of objects and defining the set of morphisms between
x and y in [C] to be H0(C(x, y)). In turns out that a lot of triangulated
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categories appearing in geometric contexts are of the form [C] for some
natural dg-category C (this is for example the case for the derived cate-
gory of a reasonable abelian category, as well as for the derived category
of dg-modules over some dg-algebra). The new feature of dg-categories is
the notion of quasi-equivalences, a mixture between quasi-isomorphisms
and categorical equivalences and which turns out to be the right notion of
equivalences between dg-categories. Precisely, a morphism f : C → D be-
tween two dg-categories is a quasi-equivalence if it satisfies the following
two conditions

• For any objects x and y in C the induced morphism C(x, y) →
D( f(x), f(y)) is a quasi-isomorphism.

• The induced functor [C] → [D] is an equivalence of categories.

In practice we are only interested in dg-categories up to quasi-equiva-
lences, and the main object of study is thus the localized category Ho(dg −
Cat) of dg-categories with respect to quasi-equivalences, or better its refined
simplicial version L(dg − Cat) of Dwyer and Kan (see [D-K2]). The main
purpose of this paper is to study the simplicial category L(dg −Cat), and to
show that a derived version of Morita theory can be extracted from it. The
key tool for us will be the existence of a model structure on the category of
dg-categories (see [Tab]), which will allow us to use standard constructions
of homotopical algebra (mapping spaces, homotopy limits and colimits . . .)
in order to describe L(dg − Cat).

Statement of the results. Let C and D be two dg-categories, considered
as objects in L(dg − Cat). A first invariant is the homotopy type of the
simplicial set of morphism L(dg − Cat)(C, D), which is well known to
be weakly equivalent to the mapping space Map(C, D) computed in the
model category of dg-categories (see [D-K1,D-K2]). From C and D one
can form the tensor product C ⊗ Dop (suitably derived if necessary), as
well as the category (C ⊗ Dop) − Mod of C ⊗ Dop-modules (these are
enriched functors from C ⊗ Dop to the category of complexes). There exists
an obvious notion of quasi-isomorphism between C ⊗ Dop-modules, and
thus a homotopy category Ho((C ⊗ Dop) − Mod). Finally, inside Ho((C ⊗
Dop) − Mod) is a certain full sub-category of right quasi-representable
objects, consisting of modules F such that for any x ∈ C the induced Dop-
module F(x,−) is quasi-isomorphic to a Dop-module of the form D(−, y)
for some y ∈ D (see Sect. 3 for details). One can then consider the category
F (C, D) consisting of all right quasi-representable C ⊗ Dop-modules and
quasi-isomorphisms between them. The main result of this work is the
following.

Theorem 1.1 (See Theorem 4.2) There exists a natural weak equivalence
of simplicial sets

Map(C, D) � N(F (C, D)),

where N(F (C, D)) is the nerve of the category F (C, D).
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We would like to mention that this theorem does not simply follow from
the existence of the model structure on dg-categories. Indeed, this model
structure is not simplicially enriched (even in some weak sense, as the model
category of complexes is for example), and there is no obvious manner to
compute the mapping spaces Map(C, D).

As an important corollary one gets the following result.

Corollary 1.2 1. There is a natural bijection between [C, D], the set of
morphisms between C and D in Ho(dg − Cat), and the isomorphism
classes of right quasi-representable objects in Ho((C ⊗ Dop) − Mod).

2. For two morphism f, g : C → D there is a natural weak equivalence

Ω f,gMap(C, D) � Map(φ( f ), φ(g)),

where Map(φ( f ), φ(g)) is the mapping space between the C ⊗ Dop-
modules corresponding to f and g.

The tensor product of dg-categories, suitably derived, induces a sym-
metric monoidal structure on Ho(dg − Cat). Our second main result states
that this monoidal structure is closed.

Theorem 1.3 (See Theorem 6.1) The symmetric monoidal category Ho(dg−
Cat) is closed. More precisely, for any three dg-categories A, B and C, there
exists a dg-category RHom(B, C) and functorial isomorphisms in Ho(SSet)

Map(A,RHom(B, C)) � Map(A ⊗L B, C).

Furthermore, RHom(B, C) is naturally isomorphic in Ho(dg − Cat) to the
dg-category of cofibrant right quasi-representable B ⊗ Cop-modules.

Finally, Morita theory can be expressed in the following terms. Let us
use the notation ̂C := RHom(Cop, Int(C(k))), where Int(C(k)) is the dg-
category of cofibrant complexes. Note that by our Theorem 1.3 ̂C is also
quasi-equivalent to the dg-category of cofibrant Cop-modules.

Theorem 1.4 (See Theorem 7.2 and Corollary 7.6) There exists a natural
isomorphism in Ho(dg − Cat)

RHomc(
̂C, ̂D) � ̂Cop ⊗L D,

whereRHomc(
̂C, ̂D) is the full sub-dg-category of RHom(̂C, ̂D) consisting

of morphisms commuting with infinite direct sums.

As a corollary we obtain the following result.

Corollary 1.5 There is a natural bijection between [̂C, ̂D]c, the sub-set of
[̂C, ̂D] consisting of direct sums preserving morphisms, and the isomorph-
ism classes in Ho((C ⊗L Dop) − Mod).
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Three applications. We will give three applications of our general results.
The first one is a description of the homotopy groups of the classifying space
of dg-categories |dg − Cat|, defined as the nerve of the category of quasi-
equivalences between dg-categories. For this, recall that the Hochschild
cohomology of a dg-category C is defined by

HH
i := [C, C[i]]C⊗LCop−Mod,

where C is the C ⊗L Cop-module sending (x, y) ∈ C ⊗ Cop to C(y, x).

Corollary 1.6 (See Corollary 8.4, 8.6) For any dg-category C one has

1. HH∗(C) � H∗(RHom(C, C)(Id, Id)).

2. πi(|dg − Cat|, C) � HH2−i(C) ∀i > 2.

3. π2(|dg − Cat|, C) � AutHo(C⊗Cop−Mod)(C) � HH0(C)∗

4. π1(|dg − Cat|,̂BA) � RPic(A), where A is a dg-algebra, BA the
dg-category with a unique object and A as its endomorphism, and
where RPic(A) is the derived Picard group of A as defined for example
in [Ro-Zi,Ke2,Ye].

Our second application is the existence of localization for dg-categories.
For this, let C be any dg-category and S be a set of morphisms in [C].
For any dg-category D we define MapS(C, D) as the sub-simplicial set of
Map(C, D) consisting of morphisms sending S to isomorphisms in [D].
Corollary 1.7 (See Corollary 8.7) The Ho(SSetU)-enriched functor

MapS(C,−) : Ho(dg − CatU) −→ Ho(SSetU)

is co-represented by an object LS(C) ∈ Ho(dg − CatU).

Our final application will provide a proof of the following fact, which
can be considered as a possible answer to a folklore question to know
whether or not all triangulated functors between derived categories of va-
rieties are induced by some object in the derived category of their product
(see e.g. [O] where this is proved for triangulated equivalences between
derived categories of smooth projective varieties).

Corollary 1.8 (See Theorem 8.9) Let X and Y be two quasi-compact and
separated k-schemes, one of them being flat over Spec k, and let Lqcoh(X)
and Lqcoh(Y ) their dg-categories of (fibrant) quasi-coherent complexes.
Then, one has a natural isomorphism in Ho(dg − Cat)

Lqcoh(X ×k Y ) � RHomc(Lqcoh(X), Lqcoh(Y )).

In particular, there is a natural bijection between [Lqcoh(X), Lqcoh(Y )]c and
set of isomorphism classes of objects in the category Dqcoh(X × Y ).
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If furthermore X and Y are smooth and proper over Spec k, then one has
a natural isomorphism in Ho(dg − Cat)

Lparf(X ×k Y ) � RHom(Lparf(X), Lparf(Y )),

where Lparf(X) (resp. Lparf(Y )) is the full sub-dg-category of Lqcoh(X) (resp.
of Lqcoh(Y )) consisting of perfect complexes.

Related works. The fact that dg-categories provide natural and interesting
enhancement of derived categories has been recognized for some times,
and in particular in [B-K]. They have been used more recently in [B-L-L]
in which a very special case of our Theorem 8.9 is proved for smooth
projective varieties. The present work follows the same philosophy that dg-
categories are the true derived categories (though I do not like very much
this expression).

Derived equivalences between (non-dg) algebras have been heavily
studied by J. Rickard (see e.g. [Ri1,Ri2]), and the results obtained have
been commonly called Morita theory for derived categories. The present
work can be considered as a continuation of this fundamental work, though
our techniques and our purposes are rather different. Indeed, in our mind
the word derived appearing in our title does not refer to generalizing Morita
theory from module categories to derived categories, but to generalizing
Morita theory from algebras to dg-algebras.

Morita theory for dg-algebras and ring spectra has been approached
recently using model category techniques in [S-S]. The results obtained
this way state in particular that two ring spectra have Quillen equivalent
model categories of modules if and only if a certain bi-module exists. This
approach, however, does not say anything about higher homotopies, in the
sense that it seems hard (or even impossible) to compare the whole model
category of bi-modules with the category of Quillen equivalences, already
simply because a model category of Quillen functors does not seem to exist
in any reasonable sense. This is another incarnation of the principle that
model category theory does not work very well as soon as categories of
functors are involved, and that some sort of higher categorical structures are
then often needed (see e.g. [T2, §1]).

A relation between the derived Picard group and Hochschild cohomo-
logy is given in [Ke2], and is somehow close to our Corollary 8.4. An
interpretation of Hochschild cohomology as first order deformations of dg-
categories is also given in [HAGII].

There has been many works on dg-categories (as well as its weakened,
but after all equivalent, notion of A∞-categories) in which several uni-
versal constructions, such as reasonable dg-categories of dg-functors or
quotient and localization of dg-categories, have been studied (see for ex-
ample [Dr,Ke1,Ly1,Ly2]). Of course, when compared in a correct way, our
constructions give back the same objects as the ones considered in these
papers, but I would like to point out that the two approaches are different and
that our results can not be deduced from these previous works. Indeed, the
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universal properties of the constructions of [Dr,Ke1,Ly1,Ly2] are expressed
in a somehow un-satisfactory manner (at least for my personal taste) as they
are stated in terms of certain dg-categories of dg-functors that are not them-
selves defined by some universal properties (except an obvious one with
respect to themselves!)1. In some sense, the results proved in these papers
are more properties satisfied by certain constructions rather than existence
theorems. On the contrary our results truly are existence theorems and our
dg-categories of dg-functors, or our localized dg-categories, are constructed
as solution to a universal problem inside the category Ho(dg − Cat) (or
rather inside the simplicial category L(dg − Cat)). As far as I know, these
universal properties were not known to be satisfied by the constructions
of [Dr,Ke1,Ly1,Ly2].

The results of the present work can also be generalized in an obvious
way to other contexts, as for example simplicially enriched categories, or
even spectral categories. Indeed, the key tool that makes the proofs working
is the existence of a nice model category structure on enriched categories.
For simplicial categories this model structure is known to exist by a recent
work of J. Bergner, and our Theorems 4.2 and 6.1 can be easily shown to
be true in this setting (essentially the same proofs work). Theorem 7.2 also
stays correct for simplicial categories except that one needs to replace the
notion of continuous morphisms by the more elaborated notion of colimit
preserving morphisms. More recently, J. Tapia has done some progress
for proving the existence of a model category structure on M-enriched
categories for very general monoidal model categories M, including for
example spectral categories (i.e. categories enriched in symmetric spectra).
I am convinced that Theorems 4.2 and 6.1, as well as the correct modification
of Theorem 7.2, stay correct in this general setting. As a consequence one
would get a Morita theory for symmetric ring spectra.

Finally, I did not investigate at all the question of the behavior of the
equivalence of Theorem 4.2 with respect to composition of morphisms. Of
course, on the level of bi-modules composition is given by the tensor prod-
uct, but the combinatorics of these compositions are not an easy question.
This is related to the question: What do dg-categories form? It is commonly
expected that the answer is an E2-category, whatever this means. The point
of view of this work is to avoid this difficulty by stating that another possible
answer is a simplicially enriched category (precisely the Dwyer-Kan local-
ization L(dg − Cat)), which is a perfectly well understood structure. Our
Theorem 6.1, as well as its Corollary 6.4 state that the simplicial category
L(dg − Cat) is enriched over itself in a rather strong sense. In fact, one
can show that L(dg − Cat) is a symmetric monoidal simplicial category in
the sense of Segal monoids explained in [K-T], and I believe that another
equivalent way to talk about E2-categories is by considering L(dg − Cat)-
enriched simplicial categories, again in some Segal style of definitions (see

1 The situation is very comparable to the situation where one tries to explain why cate-
gories of functors give the right notion: expressing universal properties using itself categories
of functors is not helpful.
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for example [T1]). In other words, I think the E2-category of dg-categories
should be completely determined by the symmetric monoidal simplicial
category L(dg − Cat).
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Conventions: All along this work universes will be denoted by U ∈ V
∈W . . . . We will always assume that they satisfy the infinite axiom.

We use the notion of model categories in the sense of [Ho1]. The ex-
pression equivalence always refer to weak equivalence in a model category.
For a model category M, we will denote by MapM (or Map if M is clear) its
mapping spaces as defined in [Ho1]. We will always consider MapM(x, y)
as an object in the homotopy category Ho(SSet). In the same way, the set of
morphisms in the homotopy category Ho(M) will be denoted by [−,−]M ,
or by [−,−] if M is clear. The natural Ho(SSet)-tensor structure on Ho(M)
will be denoted by K ⊗L X, for K a simplicial set and X an object in M.
In the same way, the Ho(SSet)-cotensor structure will be denoted by XRK .
The homotopy fiber products will be denoted by x ×h

z y, and dually the
homotopy push-outs will be denoted by x

∐

L

z y.
For all along this work, we fix an associative, unital and commutative

ring k. We denote by C(k)U the category ofU-small (un-bounded) complexes
of k-modules, for some universe U with k ∈ U. The category C(k)U is
a symmetric monoidal model category, where one uses the projective model
structures for which fibrations are epimorphisms and equivalences are quasi-
isomorphisms (see e.g. [Ho1]). When the universe U is irrelevant we will
simply write C(k) for C(k)U. The monoidal structure on C(k) is the usual
tensor product of complexes over k, and will be denoted by ⊗. Its derived
version will be denoted by ⊗L.

2 The model structure

Recall that a U-small dg-category C consists of the following data.

• A U-small set of objects Ob(C), also sometimes denoted by C itself.
• For any pair of objects (x, y) ∈ Ob(C)2 a complex C(x, y) ∈ C(k).
• For any triple (x, y, z) ∈ Ob(C)3 a composition morphism C(x, y) ⊗

C(y, z) → C(x, z), satisfying the usual associativity condition.
• For any object x ∈ Ob(C), a morphism k → C(x, x), satisfying the usual

unit condition with respect to the above composition.



The homotopy theory of dg-categories and derived Morita theory 623

For two dg-categories C and D, a morphism of dg-categories (or simply
a dg-functor) f : C → D consists of the following data.

• A map of sets f : Ob(C) → Ob(D).
• For any pair of objects (x, y) ∈ Ob(C)2, a morphism in C(k)

fx,y : C(x, y) −→ D( f(x), f(y))

satisfying the usual unit and associativity conditions.

The U-small dg-categories and dg-functors do form a category dg −
CatU. When the universe U is irrelevant, we will simply write dg − Cat for
dg − CatU.

We define a functor

[−] : dg − CatU −→ CatU,

from dg − CatU to the category of U-small categories by the following
construction. For C ∈ dg − CatU, the set of object of [C] is simply the set
of object of C. For two object x and y in [C], the set of morphisms from x
to y in [C] is defined by

[C](x, y) := H0(C(x, y)).

Composition of morphisms in [C] is given by the natural morphism

[C](x, y) × [C](y, z) = H0(C(x, y)) × H0(C(x, y))

−→ H0(C(x, y) ⊗L C(y, z))

−→ H0(C(x, z)) = [C](x, z).

The unit of an object x in [C] is simply given by the point in [k, C(x, x)] =
H0(C(x, x)) image of the unit morphism k → C(x, x) in M. This construc-
tion, provides a functor C �→ [C] from dg−CatU to the category ofU-small
categories. For a morphism f : C → D in dg − Cat, we will denote by
[ f ] : [C] → [D] the corresponding morphism in Cat.

Definition 2.1 Let f : C → D be a morphism in dg − Cat.

1. The morphism f is quasi-fully faithful if for any two objects x and y in C
the morphism fx,y : C(x, y) → D( f(x), f(y)) is a quasi-isomorphism.

2. The morphism f is quasi-essentially surjective if the induced functor
[ f ] : [C] → [D] is essentially surjective.

3. The morphism f is a quasi-equivalence if it is quasi-fully faithful and
quasi-essentially surjective.

4. The morphism f is a fibration if it satisfies the following two conditions.
(a) For any x and y in C the morphism fx,y : C(x, y) → D( f(x), f(y))

is a fibration in C(k) (i.e. is an epimorphism).
(b) For any x ∈ C, and any isomorphism v : [ f ](x) → y′ in [D], there

exists an isomorphism u : x → y in [C] such that [ f ](u) = v.
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In [Tab] it is proved that the above notions of fibrations and quasi-
equivalences in dg − Cat form a model category structure. The model
category dg − CatU is furthermore U-cofibrantly generated in the sense
of [HAGI, Appendix]. Moreover, for U ∈ V, the set of generators for
the cofibrations and trivial cofibrations can be chosen to be the same for
dg − CatU and for dg − CatV. As a consequence we get that the natural
inclusion functor

Ho(dg − CatU) −→ Ho(dg − CatV)

is fully faithful. This inclusion functor also induces natural equivalences on
mapping spaces

Mapdg−CatU(C, D) � Mapdg−CatV(C, D),

for two U-small dg-categories C and D. As a consequence we see that we
can change our universe without any serious harm.

Note also that the functor

[−] : dg − Cat −→ Cat

induces a functor

Ho(dg − Cat) −→ Ho(Cat),

where Ho(Cat) is the category of small categories and isomorphism classes
of functors between them. In other words, any morphism C → D in
Ho(dg−Cat) induces a functor [C] → [D] well defined up to a non-unique
isomorphism. This lack of uniqueness will not be so much of a trouble as we
will essentially be interested in properties of functors which are invariant
by isomorphisms (e.g. being fully faithful, being an equivalence . . .).

Definition 2.2 Let f : C → D be a morphism of dg-categories. The quasi-
essential image of f is the full sub-dg-category of D consisting of all
objects x ∈ D whose image in [D] lies in the essential image of the functor
[ f ] : [C] → [D].

The model category dg − Cat also satisfies the following additional
properties.

Proposition 2.3 1. Any object C ∈ dg − Cat is fibrant.
2. There exists a cofibrant replacement functor Q on dg − Cat, such that

for any C ∈ dg − Cat the natural morphism Q(C) → C induces the
identity of the sets of objects.

3. If C is a cofibrant object in dg − Cat and x and y are two objects in C,
then C(x, y) is a cofibrant object in C(k).
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Sketch of proof: (1) is clear by definition. (2) simply follows from the fact
that one can choose the generating cofibrations A → B to induce the
identity on the set of objects (see [Tab] for details). Finally, for (3), one
uses that any cofibrant object can be written as a transfinite composition of
push-outs along the generating cofibrations. As the functor C �→ C(x, y)
commutes with filtered colimits, and that a filtered colimit of cofibrations
stays a cofibration, one sees that it is enough to prove that the property (3)
is preserved by push-outs along a generating cofibration. But this can be
easily checked by an explicit description of such a push-out (see [Tab] proof
of Lemma 2.2. for more details). 
�
To finish this section, recall that a morphism x → y in a model category M
is called a homotopy monomorphism if for any z ∈ M the induced morphism

MapM(z, x) −→ MapM(z, y)

induces an injection on π0 and isomorphisms on all πi for i > 0 (for all
base points). This is also equivalent to say that the natural morphism

x −→ x ×h
y x

is an isomorphism in Ho(M). The following lemma will be used implicitly
in the sequel.

Lemma 2.4 A morphism f : C → D in dg −Cat is a homotopy monomor-
phism if and only if it is quasi-fully faithful.

Proof: We can of course suppose that the morphism f is a fibration in
dg − Cat. Then, f is a homotopy monomorphism if and only if the induced
morphism

∆ : C −→ C ×D C

is a quasi-equivalence.
Let us first assume that f is quasi-fully faithful. For any x and y in C

the induced morphism by ∆ is the diagonal of C(x, y)

∆(x, y) : C(x, y) −→ C(x, y) ×D( f(x), f(y)) C(x, y).

As f is a fibration, the morphism C(x, y) → D( f(x), f(y)) is a trivial
fibration, and thus the morphism ∆(x, y) is a quasi-isomorphism. This
shows that ∆ is quasi-fully faithful. Now, let t be an object in C ×D C,
corresponding to two points x and y in C such that f(x) = f(y). We
consider the identity morphism f(x) → f(y) in [D]. As [C] → [D] is fully
faithful, the identity can be lifted to an isomorphism in [C] u : x → y.
Furthermore, as C(x, y) → D( f(x), f(y)) is a fibration, the morphism u
can be represented by a zero cycle u ∈ Z0(C(x, y)) whose image by f is the
identity. This implies that the point t is isomorphic in [C ×D C] to the image
of the point x ∈ C by ∆, and thus that ∆ is quasi-essentially surjective. We
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have shown that ∆ is a quasi-equivalence and therefore that f is a homotopy
monomorphism.

Conversely, let us assume that f is a homotopy monomorphism. Then,
for any x and y in C the natural morphism

C(x, y) −→ C(x, y) ×D( f(x), f(y)) C(x, y)

is a quasi-isomorphism, and thus the morphism C(x, y) → D( f(x), f(y))
is a homotopy monomorphism in C(k). As C(k) is a stable model category
(see [Ho1, §7]) this clearly implies that C(x, y) → D( f(x), f(y)) is in fact
a quasi-isomorphism. 
�
Corollary 2.5 Let C → D be a quasi-fully faithful morphism in dg − Cat
and B be any dg-category. Then, the induced morphism

Map(B, C) −→ Map(B, D)

induces an injection on π0 and an isomorphism on πi for i > 0. Furthermore,
the image of

π0(Map(B, C)) = [B, C] −→ [B, D] = π0(Map(B, D))

consists of all morphism such that the induced functor [B] → [D] factors
through the essential image of [C] → [D].
Proof: Only the last statement requires a proof. For this we can of course
assume that B is cofibrant. Furthermore, one can replace C by its quasi-
essential image in D. The statement is then clear by the description of [B, C]
and [B, D] as homotopy classes of morphisms between B and C or D. 
�

3 Modules over dg-categories

Let C ∈ dg − CatU be a fixed U-small dg-category. Recall that a U-small
C-dg-module F (or simply a C-module) consists of the following data.

• For any object x ∈ C a complex F(x) ∈ C(k)U.
• For any two objects x and y in C, a morphism of complexes

C(x, y) ⊗ F(x) −→ F(y),

satisfying the usual associativity and unit conditions.

Note that a C-module is nothing else than a morphism of dg-categories
F : C → C(k), where C(k) is a dg-category in the obvious way, or equiv-
alently as a C(k)-enriched functor from C to C(k). For two C-dg-modules
F and G, a morphism from F to G is simply the data of morphisms
fx : F(x) → G(x) commuting with the structure morphisms. This is noth-
ing else than a C(k)-enriched natural transformation between the corres-
ponding C(k)-enriched functors. The U-small C-modules and morphisms
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between them form a category, denoted by C − ModU. Once again, when
the universe U is irrelevant we will simply write C − Mod for C − ModU.

Let z ∈ C be an object in C. One defines a C-module hz ∈ C − Mod, by
the formula hz(x) := C(z, x), and with structure morphisms

C(z, x) ⊗ C(x, y) −→ C(z, y)

being the composition in C.

Definition 3.1 Let C ∈ dg − Cat and f : F → G be a morphism of C-
modules. The morphism f is an equivalence (resp. a fibration) if for any
x ∈ C the morphism

fx : F(x) −→ G(x)

is an equivalence (resp. a fibration) in C(k).

We recall that as C(k) is cofibrantly generated, the above definition
endows C −Mod with a structure of a cofibrantly generated model category
(see for example [Hi, §11]). The natural C(k)-enrichment of C − Mod
endows furthermore C − Mod with a structure of a C(k)-model category
in the sense of [Ho1, 4.2.18]. The C(k)-enriched Hom’s of the category
C − Mod will be denoted by Hom, and its derived version by

RHom : Ho(C − Mod)op × Ho(C − Mod) −→ Ho(C(k)).

The notion of modules over dg-categories has the following natural gen-
eralization. Let M be a C(k)U-model category in the sense of [Ho1, 4.2.18],
and let us suppose that it is U-cofibrantly generated in the sense of [HAGI,
Appendix A]. Then, for a U-small dg-category C one has a category of
C(k)-enriched functors MC from C to M. Furthermore, it can be endowed
with a structure of a U-cofibrantly generated model category for which
equivalences and fibrations are defined levelwise in M (see e.g. [Hi, 11.6]).
The category MC has itself a natural C(k)-enrichment induced from the one
on M, making it into a C(k)-model category. When M = C(k)U itself, the
model category MC can be identified with C − ModU.

Let f : C → D be a morphism in dg − Cat. Composing with f gives
a restriction functor

f ∗ : M D −→ MC.

This functor has a left adjoint

f! : MC −→ M D.

The adjunction ( f!, f ∗) is clearly a Quillen adjunction, compatible with the
C(k)-enrichment.
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Proposition 3.2 Let f : C → D be a quasi-equivalence between U-small
dg-categories. Let M be a U-cofibrantly generated C(k)-model category,
such that the domain and codomain of a set of generating cofibrations are
cofibrant objects in M. We assume that one of the following conditions is
satisfied.

1. For any cofibrant object A ∈ M, and any quasi-isomorphism X → Y in
C(k), the induced morphism

X ⊗ A −→ Y ⊗ A

is an equivalence in M.
2. All the complexes of morphisms of C and D are cofibrant objects in C(k).

Then the Quillen adjunction ( f!, f ∗) is a Quillen equivalence.

Proof: The functor f ∗ clearly preserves equivalences. Furthermore, as f
is quasi-essentially surjective, the functor f ∗ : Ho(M D) → Ho(MC) is
easily seen to be conservative. Therefore, one is reduced to check that the
adjunction morphism Id ⇒ f ∗

L f! is an isomorphism.
For x ∈ C, and A ∈ M, one writes hx ⊗ A ∈ MC for the object defined

by

hx ⊗ A : C −→ M
y �−→ C(x, y) ⊗ A.

The model category MC is itself cofibrantly generated, and a set of gener-
ating cofibration can be chosen to consist of morphisms of the form

hx ⊗ A −→ hx ⊗ B

for some generating cofibration A → B in M. By assumption on M, any
object F ∈ Ho(MC) can thus be written as a homotopy colimit of objects
of the form hx ⊗ A, for certain cofibrant A ∈ M, and certain x ∈ C. As the
two functors f ∗ and L f! commute with homotopy colimits it is then enough
to show that the natural morphism

hx ⊗ A −→ f ∗
L f!(hx ⊗ A)

is an isomorphism in Ho(MC). By adjunction, one clearly hasL f!(hx⊗A) �
h f(x) ⊗ A. Therefore, the adjunction morphism

hx ⊗ A −→ f ∗
L f!(hx ⊗ A) � f ∗(h f(x) ⊗ A)

evaluated at y ∈ C is the morphism

fx,y ⊗ IdA : C(x, y) ⊗ A −→ D( f(x), f(y)) ⊗ A.

The fact that this is an isomorphism in Ho(M) follows from the fact that f
is quasi-fully faithful, one of our hypothesis (1) and (2), and the fact that
M is a C(k)-model category. 
�
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Another important property of the model category MC is the following.

Proposition 3.3 Let C be a U-small dg-category with cofibrant complexes
of morphisms (i.e. C(x, y) is cofibrant in C(k) for all x and y), and M be
a U-cofibrantly generated C(k)-model category. Then, for any x ∈ C the
evaluation functor

x∗ : MC −→ M
F �−→ F(x)

preserves fibrations, cofibrations and equivalences.

Proof: For fibrations and equivalences this is clear by definition. The func-
tor x∗ commutes with colimits, and thus by a small object argument one is
reduced to show that x∗ sends generating cofibrations to cofibrations. One
knows that the generating set of cofibrations in MC can be chosen to consist
of morphisms of the form hz ⊗ A → hz ⊗ B for some cofibration A → B
in M. The image by x∗ of such a morphism is

C(z, x) ⊗ A −→ C(z, x) ⊗ B.

As by assumption C(z, x) is a cofibrant object in C(k), one sees that this
morphism is a cofibration in M. 
�

Two important cases of application of Proposition 3.3 is when C itself
is a cofibrant dg-category (see Proposition 2.3), or when k is a field.

Corollary 3.4 The conclusion of Proposition 3.2 is satisfied when M is of
the form D − ModU, for a U-small dg-category D with cofibrant complexes
of morphisms (in particular for M = C(k)).

Proof: This follows easily from Proposition 3.3 and the fact that C(k) itself
satisfies the hypothesis (1) of Proposition 3.2. 
�

Let U ∈ V be two universes. Let M be a C(k)U-model category which
is supposed to be furthermore V-small. We define a V-small dg-category
Int(M) in the following way2. The set of objectsof Int(M) is the set of
fibrant and cofibrant objects in M. For two such objects F and E one sets

Int(M)(E, F) := Hom(E, F) ∈ C(k)U,

where Hom(E, F) is the C(k)-valued Hom of the category M. The dg-
category Int(M) is of course only V-small as its sets of objects is only
V-small. However, for any E and F in Int(M) the complex Int(M)(E, F)
is in fact U-small.

The following is a general fact about C(k)-enriched model categories.

2 The notation Int is taken from [Hir-Si]. As far as I understand it stands for internal.
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Proposition 3.5 There exists a natural equivalence of categories

[Int(M)] � Ho(M).

Proof: This follows from the formula

H0(RHom(X, Y )) � [k,RHom(X, Y )]C(k) � [X, Y ]M,

for two objects X and Y in M. 
�
For x ∈ C, the object hx ∈ C − ModU is cofibrant and fibrant, and

therefore the construction x �→ hx , provides a morphism of dg-categories

h− : Cop −→ Int(C − ModU),

where Cop is the opposite dg-category of C (Cop has the same set of objects
than C and Cop(x, y) := C(y, x)). The morphism h− can also be written
dually as

h− : C −→ Int(Cop − ModU).

The dg-functor h− will be considered as a morphism in dg − CatV, and is
clearly quasi-fully faithful by an application of the C(k)-enriched Yoneda
lemma.

Definition 3.6 1. Let C ∈ dg − CatU, and F ∈ Cop − ModU be a Cop-
module. The object F is called representable (resp. quasi-representable)
if it is isomorphic in Cop − ModU (resp. in Ho(Cop − ModU)) to hx for
some object x ∈ C.

2. Dually, let C ∈ dg − CatU, and F ∈ C − ModU be a C-module. The
object F is called corepresentable (resp. quasi-corepresentable) if it is
isomorphic in C − ModU (resp. in Ho(C − ModU)) to hx for some object
x ∈ C.

As the morphism h− is quasi-fully faithful, it induces a quasi-equivalence
between C and the full dg-category of Int(Cop −ModU) consisting of quasi-
representable objects. This quasi-equivalence is a morphism in dg − CatV.

4 Mapping spaces and bi-modules

Let C and D be two objects in dg − Cat. One has a tensor product C ⊗ D ∈
dg − Cat defined in the following way. The set of objects of C ⊗ D is
Ob(C) × Ob(D), and for (x, y) and (x ′, y′) two objects in Ob(C ⊗ D) one
sets

(C ⊗ D)((x, y), (x ′, y′)) := C(x, y) ⊗ D(x ′, y′).

Composition in C ⊗ D is given by the obvious formula. This defines a sym-
metric monoidal structure on dg − Cat, which is easily seen to be closed.
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The unit of this structure will be denoted by 1, and is the dg-category with
a unique object and k as its endomorphism ring.

The model category dg − Cat together with the symmetric monoidal
structure − ⊗ − is not a symmetric monoidal model category, as the ten-
sor product of two cofibrant objects in dg − Cat is not cofibrant in gen-
eral. A direct consequence of this fact is that the internal Hom object
between cofibrant-fibrant objects in dg − Cat can not be invariant by quasi-
equivalences, and thus does not provide internal Hom’s for the homotopy
categories Ho(dg − Cat). This fact is the main difficulty in computing the
mapping spaces in dg − Cat, as the naive approach simply does not work.

However, it is true that the monoidal structure ⊗ on dg − Cat is closed,
and that dg − Cat has corresponding internal Hom objects C D satisfying
the usual adjunction rule

Homdg−Cat(A ⊗ B, C) � Hom(A, C B).

This gives a natural equivalence of categories

MC⊗D � (MC)D

for any C(k)-enriched category M. Furthermore, when M is a U-cofibrantly
generated model category, this last equivalence is compatible with the model
structures on both sides.

The functor − ⊗ − can be derived into a functor

− ⊗L − : dg − Cat × dg − Cat −→ dg − Cat

defined by the formula

C ⊗L D := Q(C) ⊗ D,

where Q is a cofibrant replacement in dg−Cat which acts by the identity on
the sets of objects. Clearly, the functor −⊗L− preserves quasi-equivalences
and passes through the homotopy categories

− ⊗L − : Ho(dg − Cat) × Ho(dg − Cat) −→ Ho(dg − Cat).

Note that when C is cofibrant, one has a natural quasi-equivalence C ⊗L D
→ C ⊗ D.

We now consider (C ⊗ Dop)−Mod, the category of (C ⊗ Dop)-modules.
For any object x ∈ C, there exists a natural morphism of dg-categories
Dop → (C ⊗ Dop) sending y ∈ D to the object (x, y), and

Dop(y, z) −→ (C ⊗ Dop)((x, y), (x, z)) = C(x, x) ⊗ Dop(y, z)

being the tensor product of the unit k → C(x, x) and the identity on
Dop(y, z). As C and Q(C) has the same set of objects, one sees that for any
x ∈ C one also gets a natural morphism of dg-categories

ix : Dop −→ Q(C) ⊗ Dop = C ⊗L Dop.
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Definition 4.1 Let C and D be two dg-categories. An object F ∈ (C ⊗L
Dop) − Mod is called right quasi-representable, if for any x ∈ C, the
Dop-module i∗x(F) ∈ Dop − Mod is quasi-representable in the sense of
Definition 3.6.

We now let U ∈ V be two universes, and let C and D be two U-small
dg-categories. Let Γ∗ be a co-simplicial resolution functor in dg − CatU
in the sense of [Hi, §16.1]. Recall that Γ∗ is a functor from dg − CatU to
dg − Cat∆

U
, equipped with a natural augmentation Γ0 → Id, and such the

following two conditions are satisfied.

• For any n, and any C ∈ dg − CatU the morphism Γn(C) → C is a quasi-
equivalence.

• For any C ∈ dg − CatU, the object Γ∗(C) ∈ dg − Cat∆
U

is cofibrant for
the Reedy model structure.

• The morphism Γ0(C) → C is equal to Q(C) → C.

The left mapping space between C and D is by definition the U-small
simplicial set

Mapl(C, D) := Hom(Γ∗(C), D) : ∆op −→ SetU
[n] �−→ Hom(Γn(C), D).

Note that the mapping space Mapl(C, D) defined above has the correct
homotopy type as all objects are fibrant in dg − CatU.

For any [n] ∈ ∆, one considers the (non-full) sub-category
M(Γn(C), D) of (Γn(C) ⊗ Dop) − ModU defined in the following way.
The objects of M(Γn(C), D) are the (Γn(C) ⊗ Dop)-modules F such that
F is right quasi-representable, and for any x ∈ Γn(C) the Dop-module
F(x,−) is cofibrant in Dop − ModU. The morphisms in M(Γn(C), D) are
simply the equivalences in (Γn(C) ⊗ Dop) − ModU. The nerve of the cat-
egory M(Γn(C), D) gives a V-small simplicial set N(M(Γn(C), D)). For
[n] → [m] a morphism in ∆, one has a natural morphism of dg-categories
Γn(C) ⊗ Dop → Γm(C) ⊗ Dop, and thus a well defined morphism of sim-
plicial sets

N(M(Γm(C), D)) −→ N(M(Γn(C), D))

obtained by pulling back the modules from Γm(C) ⊗ Dop to Γn(C) ⊗ Dop.
This defines a functor

N(M(Γ∗(C), D)) : ∆op −→ SSetV
[n] �−→ N(M(Γn(C), D)).

The set of zero simplices in N(M(Γn(C), D)) is the set of all objects in
the category M(Γn(C), D). Therefore, one defines a natural morphism of
sets

Hom(Γn(C), D) −→ N(M(Γn(C), D))0
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by sending a morphism of dg-categories f : Γn(C) → D, to the
(Γn(C) ⊗ Dop)-module φ( f ) defined by φ( f )(x, y) := D(y, f(x)) and the
natural transition morphisms. Note that φ( f ) belongs to the sub-category
M(Γn(C), D) as for any x ∈ Γn(C) the Dop-module φ( f )(x,−) = h f(x)
is representable and thus quasi-representable and cofibrant. By adjunction,
this morphism of sets can also be considered as a morphism of simplicial
sets

φ : Hom(Γn(C), D) −→ N(M(Γn(C), D)),

where the set Hom(Γn(C), D) is considered as a constant simplicial set. This
construction is clearly functorial in n, and gives a well defined morphism
of bi-simplicial sets

φ : Hom(Γ∗(C), D) −→ N(M(Γ∗(C), D)).

Passing to the diagonal one gets a morphism in SSetV

φ : Mapl(C, D) −→ d(N(M(Γ∗(C), D))).

Finally, the diagonal d(N(M(Γ∗(C), D))) receives a natural morphism

ψ : N(M(Γ0(C), D)) = N(M(Q(C), D)) −→ d(N(M(Γ∗(C), D))).

Clearly, the diagram of simplicial sets

Mapl(C, D)
φ−→ d(N(M(Γ∗(C), D)))

ψ←− N(M(Q(C), D))

is functorial in C.

The main theorem of this work is the following.

Theorem 4.2 The two morphisms in SSetV

Mapl(C, D)
φ−→ d(N(M(Γ∗(C), D)))

ψ←− N(M(Q(C), D))

are weak equivalences.

Proof: For any n, the morphism Γn(C) ⊗ Dop → Q(C) ⊗ Dop is a quasi-
equivalence of dg-categories. Therefore, Proposition 3.4 implies that the
pull-back functor

(Q(C) ⊗ Dop) − Mod −→ (Γn(C) ⊗ Dop) − Mod

is the right adjoint of a Quillen equivalence. As these functors obviously
preserve the notion of being right quasi-representable, one finds that the
induced morphism

N(M(Q(C), D)) −→ N(M(Γn(C), D))

is a weak equivalence. This clearly implies that the morphism ψ is a weak
equivalence.

It remains to show that the morphism φ is also a weak equivalence.
For this, we start by proving that it induces an isomorphism on connected
components.
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Lemma 4.3 The induced morphism

π0(φ) : [C, D] � π0(Mapl(C, D)) −→ π0(d(N(M(Γ∗(C), D))))

is an isomorphism.

Proof: First of all, replacing C by Q(C) one can suppose that Q(C) = C
(one can do this because of Proposition 3.4). One then has π0(Mapl(C, D)) �
[C, D], and π0(d(N(M(Γ∗(C), D)))) � π0(N(M(C, D))) is the set of iso-
morphism classes in Ho((C ⊗ Dop) − Mod)rqr , the full sub-category of
Ho((C ⊗ Dop) − Mod) consisting of all right quasi-representable objects.
The morphism φ naturally gives a morphism

φ : [C, D] −→ Iso(Ho((C ⊗ Dop) − Mod)rqr),

which can be described as follows. For any f ∈ [C, D], represented by
f : C → D in Ho(dg − Cat), φ( f ) is the C ⊗ Dop-module defined by
φ( f )(x, y) := D(y, f(x)).

Sub-lemma 4.4 With the same notations as above, let M be aU-cofibrantly
generated C(k)U-model category, which is furthermore V-small. Let
Iso(Ho(MC)) be the set of isomorphism classes of objects in Ho(MC).
Then, the natural morphism

Hom(C, Int(M)) −→ Iso(Ho(MC))

is surjective.

Proof of Sub-lemma 4.4: Of course, the morphism

Hom(C, Int(M)) −→ Iso(Ho(MC))

sends a morphism of dg-categories C → Int(M) to the corresponding object
in MC. Let F ∈ Ho(MC) be a any cofibrant and fibrant object. This object is
given by a C(k)-enriched functor F : C → M. Furthermore, as F is fibrant
and cofibrant, Proposition 3.3 tells us that F(x) is fibrant and cofibrant in
M for any x ∈ C. The object F can therefore be naturally considered as
a morphism of V-small dg-categories

F : C −→ Int(M),

which gives an element in Hom(C, Int(M)) sent to F by the map of the
lemma. 
�

Let us now prove that the morphism φ is surjective on connected
component. For this, let F ∈ Ho((C ⊗ Dop) − ModU) be a right quasi-
representable object. One needs to show that F is isomorphic to some φ( f )
for some morphism of dg-categories f : C → D. Sub-lemma 4.4 applied
to M = Dop − ModU implies that F corresponds to a morphism of V-small
dg-categories

F : C −→ Int(Dop − ModU)
qr,
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where Int(Dop − Mod)qr is the full sub-dg-category of Int(Dop − ModU)
consisting of all quasi-representable objects.

One has a diagram in dg − CatV

C ��F Int(Dop − ModU)qr

D.

OO

h

As the morphism h is a quasi-equivalence, and as C is cofibrant, one finds
a morphism of dg-categories f : C → D, such that the two morphisms

F : C −→ Int(Dop − ModU)
qr

h f(−)
= φ( f ) : C −→ Int(Dop − ModU)

qr

are homotopic in dg − CatV. Let

C

��
i0

��

F

OO
OO

OO
OO

OO
OO

O

C ′ ��H Int(Dop − ModU)qr

C

OO

i1

��

φ( f )

ooooooooooooo

be a homotopy in dg − CatV. Note that C ′ is a cylinder object for C, and
thus can be chosen to be cofibrant and U-small. We let p : C′ → C the
natural projection, such that p ◦ i0 = p ◦ i1 = Id. This diagram gives rise
to an equivalence of categories (by Proposition 3.4)

i∗0 � i∗1 � (p∗)−1 : Ho((C ′ ⊗ Dop) − ModU) −→ Ho((C ⊗ Dop) − ModU).

Furthermore, one has

F � i∗0(H) � i∗1(H) � φ( f ).

This shows that the two C ⊗ Dop-modules F and φ( f ) are isomorphic
in Ho((C ⊗ Dop) − ModU), or in other words that φ( f ) = F in
Iso(Ho((C ⊗ Dop) − ModU)). This finishes the proof of the surjectivity
part of the Lemma 4.3.

Let us now prove that φ is injective. For this, let f, g : C → D be two
morphisms of dg-categories, such that the two (C ⊗ Dop)-modules φ( f )
and φ(g) are isomorphic in Ho((C ⊗ Dop) − ModU)). Composing f and g
with

h : D −→ Int(Dop − ModU)
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one gets two new morphisms of dg-categories

f ′, g′ : C −→ Int(Dop − ModU).

Using that h is quasi-fully faithful Corollary 2.5 implies that if f ′ and g′ are
homotopic morphisms in dg − CatV, then f and g are equal as morphisms
in Ho(dg − CatV). As the inclusion Ho(dg − CatU) → Ho(dg − CatV) is
fully faithful (see remark after Definition 2.1), we see it is enough to show
that f ′ and g′ are homotopic in dg − CatV.

Sub-lemma 4.5 Let M be a C(k)U-model category which is U-cofibrantly
generated and V-small. Let u and v be two morphisms in dg − CatV

u, v : C −→ Int(M)

such that the corresponding objects in Ho(MC) are isomorphic. Then u
and v are homotopic as morphisms in dg − CatV.

Proof of Sub-lemma 4.5: First of all, any isomorphism in Ho(MC) between
levelwise cofibrant and fibrant objects can be represented as a string of
trivial cofibrations and trivial fibrations between levelwise cofibrant and
fibrant objects. Therefore, Sub-lemma 4.4 shows that one is reduced to the
case where there exists an equivalence α : u → v in MC which is either
a fibration or a cofibration.

Let us start with the case where α is a cofibration in MC. The morphism α
can also be considered as an object in (MI )C , where I is the category with
two objects 0 and 1 and a unique morphism 0 → 1. The category MI ,
which is the category of morphisms in M, is endowed with its projective
model structure, for which fibrations and equivalences are defined on the
underlying objects in M. As the morphism α is a cofibration in MC , we
see that for x ∈ C the corresponding morphism αx : u(x) → v(x) is
a cofibration in M, and thus is a cofibrant (and fibrant) object in MI because
of Proposition 3.3. This implies that α gives rise to a morphism of dg-
categories

α : C −→ Int(MI ).

Now, let Int(M) → Int(MI) be the natural inclusion morphism, sending
a cofibrant and fibrant object in M to the identity morphism. This a mor-
phism in dg − CatV which is easily seen to be quasi-fully faithful. We let
C ′ ⊂ Int(MI ) be the quasi-essential image of Int(M) in Int(MI ). It is easy to
check that C ′ is the full sub-dg-category of Int(MI) consisting of all objects
in MI corresponding to equivalences in M. The morphism α : C → Int(MI )
thus factors through the sub-dg-category C′ ⊂ Int(MI ). The two objects 0
and 1 of I give two projections

C ′ ⊂ Int(MI )⇒ Int(M),



The homotopy theory of dg-categories and derived Morita theory 637

both of them having the natural inclusion Int(M) → Int(MI) as a section.
We have thus constructed a commutative diagram in dg − CatV

Int(M)

C ��α

��
u

wwwwwwwww

��
v

GG
GG

GG
GG

G C ′

OO

��
Int(M)

which provides a homotopy between u and v in dg − CatV.
For the case where α is a fibration in MC , one uses the same argument,

but endowing MI with its injective model structure, for which equivalences
and cofibrations are defined levelwise. We leave the details to the reader.


�
We have finished the proof of Sub-lemma 4.5, which applied to M =

Dop − ModU finishes the proof of the injectivity on connected components,
and thus of Lemma 4.3. 
�

In order to finish the proof of the theorem, one uses the functoriality of
the morphisms φ and ψ with respect to D. First of all, the simplicial set
Mapl(C, D) = Hom(Γ∗(C), D) is obviously functorial in D. One thus has
a functor

Mapl(C,−) : dg − CatU −→ SSetV

D �−→ Mapl(C, D).

The functoriality of N(M(C, D)) in D is slightly more complicated. Let
u : D → E a morphism in dg − CatU. One has a functor

(Id ⊗ u!) : (C ⊗ Dop) − ModU −→ (C ⊗ Eop) − ModU.

This functor can also be described as

(u!)C : (Dop − ModU)
C −→ (Eop − ModU)

C,

the natural extension of the functor u! : Dop − ModU → Eop − ModU.
Clearly, the functor (u!)C sends the sub-category M(C, D) to the sub-
category M(C, E) (here one uses that (u!)C preserves equivalences because
the object F ∈ M(C, D) are such that F(x,−) is cofibrant in Dop − ModU).
Unfortunately, this does not define a presheaf of categories M(C,−) on
dg − CatU, as for two morphisms

D
u−→ E

v−→ F

of dg-categories one only has a natural isomorphism (v◦u)! � (v!)◦u! which
in general is not an identity. However, these natural isomorphisms makes
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D �→ M(C, D) into a lax functor from dg−CatU to CatV. Using the standard
rectification procedure, one can replace up to a natural equivalence the lax
functor M(C,−) by a true presheaf of categories M′(C,−). Furthermore,
the natural morphism

Hom(C, D) −→ M(C, D)

from the set of morphisms Hom(C, D), considered as a discrete category,
to the category M(C, D) clearly gives a morphism of lax functors

Hom(C,−) −→ M(C,−).

By rectification this also induces a natural morphism of presheaves of cate-
gories

Hom(C,−) −→ M′(C,−).

Passing to the nerve one gets a morphism of functors from dg − CatU to
SSetV

Hom(C,−) −→ N(M′(C,−)).

This morphism being functorial in C give a diagram in (SSetV)dg−CatU

Mapl(C,−) = Hom(Γ∗(C),−)
φ′

−→ d(N(M′(Γ∗(C),−)))
ψ′

←− N(M′(Q(C),−)).

These morphisms, evaluated at an object D ∈ dg − CatU gives a diagram
of simplicial sets

Mapl(C, D) −→ d(N(M′(Γ∗(C), D))) ←− N(M′(Q(C), D)),

weakly equivalent to the diagram

Mapl(C, D) −→ d(N(M(Γ∗(C), D))) ←− N(M(Q(C), D)).

In order to finish the proof of the theorem it is therefore enough to show
that the two morphism φ′ and ψ′ are weak equivalences of diagrams of
simplicial sets. We already know that ψ′ is a weak equivalence, and thus we
obtain a morphism well defined in Ho((SSetV)dg−CatU)

k : (ψ′)−1 ◦ φ : Mapl(C,−) −→ N(M′(Q(C),−)).

Using our Corollary 3.4 it is easy to see that the functor N(M′(Q(C),−))
sends quasi-equivalences to weak equivalences. Furthermore, the standard
properties of mapping spaces imply that so does the functor Mapl(C,−).

Sub-lemma 4.6 Let k : F → G be a morphism in (SSetV)dg−CatU . Assume
the following conditions are satisfied.

1. Both functors F and G send quasi-equivalences to weak equivalences.
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2. For any diagram in dg − CatU

C

��
p

D �� E

with p a fibration, the commutative diagrams

F(C ×E D) ��

��

F(C)

��

G(C ×E D) ��

��

G(C)

��
F(D) �� F(E) G(D) �� G(E)

are homotopy cartesian.
3. F(∗) � G(∗) � ∗, where ∗ is the final object in dg − Cat.
4. For any C ∈ dg − CatU the morphism kC : π0(F(C)) → π0(G(C)) is

an isomorphism.

Then, for any C ∈ dg − CatU the natural morphism

kC : F(C) −→ G(C)

is a weak equivalence.

Proof of Sub-lemma 4.6: Condition (1) implies that the induced functors

Ho(F), Ho(G) : Ho(dg − CatU) −→ Ho(SSetV)

have natural structures of Ho(SSetU)-enriched functors (see for example
[HAGI, Thm. 2.3.5]). In particular, for any K ∈ Ho(SSetU), and any C ∈
Ho(dg − CatU) one has natural morphisms in Ho(SSetU)

F(CRK) −→ Map(K, F(C)) G(CRK) −→ Map(K, G(C)).

Our hypothesis (2) and (3) tells us that when K is a finite simplicial set,
these morphisms are in fact isomorphisms, as the object CRK can be functo-
rially constructed using successive homotopy products and homotopy fiber
products. Therefore, condition (4) implies that for any finite K ∈ Ho(SSetU)
and any C ∈ dg − CatU, the morphism kC induces an isomorphism

kCRK : π0(F(CRK)) � [K, F(C)] −→ [K, G(C)] � π0(G(CRK)).

This of course implies that F(C) → G(C) is a weak equivalence. 
�
In order to finish the proof of Theorem 4.2 it remains to show that the

two functors Mapl(C,−) and N(M′(Q(C),−)) satisfy the conditions of
Sub-lemma 4.6. The case of Mapl(C,−) is clear by the standard properties
of mapping spaces (see [Ho1, §5.4] or [Hi, §17]). It only remains to show
property (2) of Sub-lemma 4.6 for the functor N(M′(Q(C),−)).
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Sub-lemma 4.7 Let C be a cofibrant U-small dg-category, and let

D ��u

��
v

D1

��
p

D2
��

q D3

be a cartesian diagram in dg − CatU with p a fibration. Then, the square

N(M′(C, D)) ��

��

N(M′(C, D1))

��
N(M′(C, D2)) �� N(M′(C, D3))

is homotopy cartesian.

Proof: We start by showing that the morphism

N(M′(C, D)) −→ N(M′(C, D1)) ×h
N(M′(C,D3))

N(M′(C, D2))

induces an injection on π0 and an isomorphism on all πi for i > 0. For this,
we consider the induced diagram of dg-categories

C ⊗ Dop ��u

��
v

C ⊗ Dop
1

��
p

C ⊗ Dop
2

��
q C ⊗ Dop

3 ,

where we keep the same names for the induced morphisms after tensoring
with C. It is then enough to show that for F and G in M(C, D) the square
of path spaces

ΩF,G N(M′(C, D)) ��

��

Ωu!F,u!G N(M′(C, D1))

��
Ωv!F,v!G N(M′(C, D2)) �� Ωw! F,w!G N(M′(C, D3)),

is homotopy cartesian (where w = p◦u). Using the natural equivalence be-
tween path spaces in nerves of sub-categories of equivalences in model cat-
egories and mapping spaces of equivalences (see [D-K1], and also [HAGII,
Appendix A]), one finds that the previous diagram is in fact equivalent to
the following one

Mapeq(F, G) ��

��

Mapeq(u!F, u!G)

��
Mapeq(v!F, v!G) �� Mapeq(w!F, w!G),
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where Mapeq denotes the sub-simplicial set of the mapping spaces consisting
of all connected components corresponding to equivalences. By adjunction,
this last diagram is equivalent to

Mapeq(F, G) ��

��

Mapeq(F, u∗u!G)

��
Mapeq(F, v∗v!G) �� Mapeq(F, w∗w!G).

Therefore, to show that this last square is homotopy cartesian, it is enough
to prove that for any G ∈ M(C, D) the natural morphism

G −→ u∗u!G ×h
w∗w!G v∗v!G

is an equivalence in C ⊗ Dop − ModU. As this can be tested by fixing some
object x ∈ C and considering the corresponding morphism

G(x,−) −→ (

u∗u!G ×h
w∗w!G v∗v!G

)

(x,−)

in Dop − ModU, we see that one can assume that C = 1. One can then write
G = hx for some point x ∈ D. For z ∈ D, one has natural isomorphisms

u∗u!G(z) = D1(u(z), u(x)) v∗v!G(z) = D2(v(z), v(x))
w∗w!G(z) = D3(w(z),w(x)).

We therefore find that for any z ∈ D the morphism

G(z) −→ (

u∗u!G ×h
w∗w!G v∗v!G

)

(z)

can be written as

D(z, x) −→ D1(u(z), u(x)) ×h
D3(w(z),w(x)) D2(v(z), v(x)),

which by assumption on the morphism p is a quasi-isomorphism of com-
plexes. This implies that the morphism

G −→ u∗u!G ×h
w∗w!G v∗v!G

is an equivalence, and thus that

N(M′(C, D)) −→ N(M′(C, D1)) ×h
N(M′(C,D3))

N(M′(C, D2))

induces an injection on π0 and an isomorphisms on all πi for i > 0. It only
remains to show that the above morphism is also surjective on connected
components.

The set π0(N(M′(C, D1))×h
N(M′(C,D3))

N(M′(C, D2))) can be described
in the following way. We consider a category N whose objects are 5-tuples
(F1, F2, F3; a, b), with Fi ∈ M(C, Di) and where a and b are two mor-
phisms in M(C, D3)

a : p!(F1) −→ F3 ←− q!(F2) : b.
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Morphisms in N are defined in the obvious way, as morphisms Fi → Gi in
M(C, Di), commuting with the morphisms a and b. It is not hard to check
that π0(N(N )) is naturally isomorphic to π0(N(M′(C, D1)) ×h

N(M′(C,D3))

N(M′(C, D2))). Furthermore, the natural map

π0(N(M(C, D))) −→ π0(N(N ))

is induced by the functor M(C, D) → N that sends an object F ∈ M(C, D)
to (u!F, v! F, w!F; a, b) where a and b are the two natural isomorphisms

p!u!(F) � w!(F) � q!v!(F).

Now, let (F1, F2, F3; a, b) ∈ N , and let us define an object F ∈
Ho((C ⊗ Dop) − ModU) by the following formula

F := u∗(F1) ×h
w∗(F3)

v∗(F1).

Clearly, one has natural morphisms in Ho(C ⊗ Dop
i − ModU)

Lu!(F) −→ F1 Lv!(F) −→ F2 Lw!(F) −→ F3.

We claim that F is right quasi-representable and that these morphisms are
in fact isomorphisms. This will clearly finish the proof of the surjectivity on
connected components. For this one can clearly assume that C = 1. One can
then write Fi = hxi

, for some xi ∈ Di . As p is a fibration, the equivalence

a : p!(hx1
) = h p(x1)

−→ hx3

can be lifted to an equivalence hx1
→ hx′

1
in Dop

1 − Mod. Replacing x1

by x ′
1 one can suppose that p(x1) = x3 and a = id. In the same way, the

equivalence

b : q!(hx2
) −→ h p(x1)

can be lifted to an equivalence hx′′
1

→ hx1
in Dop

1 − Mod. Thus, replacing
x1 by x ′′

1 one can suppose that q(x2) = p(x1) = x3 and that a and b are the
identity morphisms. Then, clearly F � hx , where x ∈ D is the point given
by (x1, x2, x3). This shows that F is right quasi-representable, and also that
the natural morphisms

u!(F) −→ F1 v!(F) −→ F2 w!(F) −→ F3

are equivalences. 
�
We have now finished the proof of Sub-lemma 4.7 and thus of The-

orem 4.2. 
�
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Recall that M(Q(C), D) has been defined as the category of equiva-
lences between right quasi-representable Q(C)⊗ Dop-modules F such that
F(x,−) is cofibrant in Dop −Mod for any x ∈ C. This last condition is only
technical and useful for functorial reasons and does not affect the nerve.
Indeed, let F (Q(C), D) be the category of all equivalences between right
quasi-representable (Q(C) ⊗ Dop)-modules. The natural inclusion functor

M(Q(C), D) −→ F (Q(C), D)

induces a weak equivalence on the corresponding nerves as there exists
a functor in the other direction just by taking a cofibrant replacement (note
that a cofibrant (Q(C) ⊗ Dop)-module F is such that F(x,−) is cofibrant
for any x ∈ Q(C), because of Proposition 3.3). In particular, Theorem 4.2
implies the existence of a string of weak equivalences

Mapl(C, D) −→ d(N(M(Γ∗(C), D))) ←− N(M(Q(C), D)) −→ N(F (Q(C), D)).

The following corollary is a direct consequence of Theorem 4.2 and the
above remark.

Corollary 4.8 Let C and D be twoU-small dg-categories. Then, there exists
a functorial bijection between the set of maps [C, D] in Ho(dg − CatU),
and the set of isomorphism classes of right quasi-representable objects in
Ho((C ⊗L Dop) − ModU).

Another important corollary of Theorem 4.2 is the following.

Corollary 4.9 Let C be a U-small dg-categories. Then, there exists a func-
torial isomorphism between the set [1, C] and the set of isomorphism classes
of the category [C].
Proof: The Yoneda embedding h : C → Int(Cop − ModU) induces a fully
faithful functor

[C] −→ [Int(Cop − ModU)].
The essential image of this functor clearly is the sub-category of quasi-
representable Cop-modules. Therefore, [h] induces a natural bijection be-
tween the isomorphism classes of [C] and the isomorphism classes of quasi-
representable objects in [Int(Cop−ModU)]. As one has a natural equivalence
[Int(Cop − ModU)] � Ho(Cop − ModU) Corollary 4.8 implies the result. 
�

More generally, one can describe the higher homotopy groups of the
mapping spaces by the following formula.

Corollary 4.10 Let C be a U-small dg-category, and x ∈ C be an object.
Then, one has natural isomorphisms of groups

π1(Map(1, C), x) � Aut[C](x)
πi(Map(1, C), x) � H1−i(C(x, x)) ∀ i > 1.
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Proof: We use the general formula

π1(N(W ), x) � AutHo(M)(x)
πi(N(W ), x) � πi−1(MapM(x, x), Id) ∀ i > 1

for a model category M, its sub-category of equivalences W and a point
x ∈ M (see e.g. [HAGII, Cor. A.0.4]). Applied to M = Cop − ModU and
using Theorem 4.2 one finds

π1(Map(1, C), x) � AutHo(Cop−Mod)(hx),

πi(Map(1, C), x) � πi−1(MapCop−Mod(hx, hx), Id) ∀ i > 1.

Using that the morphism h is quasi-fully faithful one finds

AutHo(Cop−Mod)(hx) � Aut[C](x),
πi−1(MapCop−Mod(hx, hx), Id) � H1−i(C(x, x)).


�
Corollary 4.11 Let C and D be two U-small dg-categories. Let
Int((C ⊗L Dop) − Modrqr

U
) be the full sub-dg-category of Int((C ⊗L Dop) −

ModU) consisting of all right quasi-representable objects. Then,
Int((C ⊗L Dop) − Modrqr

U
) is isomorphic in Ho(dg − CatV) to a U-small

dg-category.

Proof: Indeed, we know by Corollary 4.8 that the set of isomorphism classes
of [Int((C ⊗L Dop) − Modrqr

U
)] is essentially U-small, as it is in bijection

with [C, D]. Let us choose an essentially U-small full sub-dg-category E
in Int((C ⊗L Dop) − Modrqr

U
) which contains a set of representatives of

isomorphism classes of objects. As we already know that the complexes of
morphisms in Int((C ⊗L Dop) − Modrqr

U
) are U-small,the dg-category E is

essentially U-small, and thus isomorphic to a U-small dg-category. As E is
quasi-equivalent to Int((C ⊗L Dop) − Modrqr

U
) this implies the result. 
�

We finish by the following last corollary.

Corollary 4.12 Let C and D be two U-small dg-categories, and let f, g :
C → D be two morphisms with corresponding (C ⊗L Dop)-modules φ( f )
and φ(g). Then, there exists a natural weak equivalence of simplicial sets

Ω f,gMapdg−Cat(C, D) � Mapeq
(C⊗LDop)−Mod(φ( f ), φ(g)),

where Mapeq(φ( f ), φ(g)) is the sub-simplicial set of Map(φ( f ), φ(g)) con-
sisting of equivalences.

Proof: This follows immediately from Theorem 4.2 and the standard rela-
tions between path spaces of nerves of equivalences in a model category
and its mapping spaces (see e.g. [HAGII, Appendix A]). 
�
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5 The simplicial structure

Let K ∈ SSetU be a U-small simplicial set and C ∈ dg − CatU. One can
form the derived tensor product K ⊗L C ∈ Ho(dg − CatU), as well as the
derived exponential CRK . One has the usual adjunction isomorphism

[K ⊗L C, D] � [C, DRK ] � [K, Map(C, D)].
Let ∆(K ) be the simplex category of K . An object of ∆(K ) is therefore
a pair (n, a) with n ∈ ∆ and x ∈ Kn. A morphism (n, x) → (m, y) is the
data of a morphism u : [n] → [m] in ∆ such that u∗(y) = x. The simplicial
set K is then naturally weakly equivalent to the homotopy colimit of the
constant diagram

∆(K ) −→ ∗ ∈ SSet.

In other words, one has a natural weak equivalence

N(∆(K )) � K.

We now consider ∆(K )k the k-linear category freely generated by the cate-
gory ∆(K ), and consider ∆(K )k as an object in dg − CatU.

Theorem 5.1 Let C and D be two U-small dg-categories, and K ∈ SSetU.
Then, there exists a functorial injective map

[K ⊗L C, D] −→ [

∆(K )k ⊗L C, D
]

.

Moreover, the image of this map consists exactly of all morphism
∆(K )k ⊗L C → D in Ho(dg − CatU) such that for any c ∈ C the in-
duced functor

∆(K )k −→ [D]
sends all morphisms in ∆(K )k to isomorphisms in [D].
Proof: Using our Theorem 4.2 one finds natural equivalences

[K ⊗L C, D] � [K, Map(C, D)] � [K, N(M(Q(C), D))].
We then use the next technical lemma.

Lemma 5.2 Let M be aV-small U-combinatorial model category and K ∈
SSetU. Let W ⊂ M be the sub-category of equivalences in M. Then, there
exists a natural bijection between [K, N(W )]SSetV and the set of isomorphism
classes of objects F ∈ Ho(M∆(K )) corresponding to functors F : ∆(K )
→ M sending all morphisms of ∆(K ) to equivalences in M.
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Proof: First of all, the lemma is invariant by changing M up to a Quillen
equivalence, and thus by [Du] one can suppose that M is a simplicial model
category. The proof of the lemma will use some techniques of simplicial
localizations à la Dwyer-Kan, as well as some result about S-categories. We
start by a short digression on the subject.

We recall the existence of a model category of S-categories, as shown
in [Be], and which is similar to the one we use on dg-categories. This model
category will be denoted by S − Cat (or S − CatV if one needs to specify
the universe). For any V-small category C with a sub-category S ⊂ C,
one can form a V-small S-category L(C, S) by formally inverting the mor-
phisms in S in a homotopy meaningful way (see e.g. [D-K2]). Using the
language of model categories, this means that for any V-small S-category
T , there exists functorial isomorphisms between [L(C, S), T ]S−Cat and the
subset of [C, T ]S−Cat consisting of all morphisms sending S to isomor-
phisms in [T ] (the category [T ] is defined by taking connected component
of simplicial sets of morphisms in T ). Finally, one can define a functor
N : Ho(S −CatV) → Ho(SSetV) by sending an S-category to its nerve. It is
well known that the functor N becomes an equivalence when restricted to
S-categories T such that [T ] is a groupoid (this is just another way to state
delooping theory). Finally, for any category C with a sub-category S ⊂ C,
one has a natural weak equivalence N(L(C, S)) � N(C).

Now, as explained in [HAGII, Prop. A.0.6], N(W ) can be also interpreted
as the nerve of the S-category G(M), of cofibrant and fibrant objects in M
together with their simplicial sets of equivalences. One therefore has natural
isomorphism

[K, N(W )] � [N(∆(K )), N(G(M))] � [L(∆(K ),∆(K )),G(M)].
Furthermore, as all morphisms in [G(M)] are isomorphisms one finds
a bijection between [K, N(W )] and [∆(K ),G(M)]. Let Int(M) be the
S-category of fibrant and cofibrant objects in M together with their sim-
plicial sets of morphisms. Then, as G(M) is precisely the sub-S-category of
Int(M) consisting of equivalences, the set [∆(K ),G(M)] is also the subset
of [∆(K ), Int(M)] consisting of all morphisms such that the induced func-
tor ∆(K ) → [Int(M)] � Ho(M) sends all morphisms to isomorphisms.
Finally, it turns out that the same results as our Lemmas 4.4 and 4.5 are valid
in the context of S-categories (their proofs are exactly the same). There-
fore, we see that [∆(K ), Int(M)] is in a natural bijection with isomorphism
classes of objects in Ho(M∆(K )). Putting all of this together gives the lemma.


�
We apply the previous lemma to the case where M := (C ⊗L Dop) −

ModU, and we find a natural injection [K, N(W )] ↪→ Iso(Ho(M∆(K ))),
whose image consists of all functors ∆(K ) → M sending all morphisms
of ∆(K ) to equivalences in M. Composing with the natural inclusion
M(Q(C), D) ⊂ M provides a natural injection of

[K, N(M(Q(C), D))] ⊂ [K, N(W )] ⊂ Iso(Ho(M∆(K ))).
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By the construction of the bijection of Lemma 5.2 one easily sees that the
image of this inclusion consists of all functors F : ∆(K ) → W such that for
any k ∈ K one has F(k) ∈ M(Q(C), D). Finally, one clearly has a natural
equivalence of categories, compatible with the model structures

M∆(K ) � (C ⊗L Dop) − Mod∆(K )k
U

� (

∆(K )k ⊗ C ⊗L Dop
) − ModU,

inducing a bijection between Iso(Ho(M∆(K ))) and the isomorphism classes
of objects in Ho((∆(K )k ⊗ C ⊗L Dop) − ModU). Another application of
Theorem 4.2 easily implies the result. 
�

6 Internal Hom’s

Let us recall that Ho(dg − CatU) is endowed with the symmetric monoidal
structure ⊗L. Recall that the monoidal structure ⊗L is said to be closed if for
any two objects C and D in Ho(dg−CatU) the functor A �→ [A⊗LC, D] is
representable by an objectRHom(C, D) ∈ Ho(dg−CatU). Recall also from
Corollary 4.11 that the V-small dg-category Int((C ⊗L Dop) − Modrqr

U
) is

essentially U-small and therefore can be considered as an object in Ho(dg−
CatU).

Theorem 6.1 The monoidal category (Ho(dg − CatU),⊗L) is closed. Fur-
thermore, for any two U-small dg-categories C and D one has a natural
isomorphism in Ho(dg − CatU)

RHom(C, D) � Int
(

(C ⊗L Dop) − Modrqr
U

)

.

Proof: The proof is essentially the same as for Theorem 4.2 and is also
based on the same Lemmas 4.4 and 4.5. Indeed, from these two lemmas one
extracts the following result.

Lemma 6.2 Let M be C(k)U-enriched U-cofibrantly generated model cate-
gory which is V-small. We assume that the domain and codomain of a set of
generating cofibrations are cofibrant in M. Let M0 be a full sub-category of
M which is closed by equivalences, and Int(M0) be the full sub-dg-category
of Int(M) consisting of all objects belonging to M0. Let A be a cofibrant and
U-small dg-category, and let Ho(M A

0 ) be the full sub-category of Ho(M A)

consisting of objects F ∈ Ho(M A) such that F(a) ∈ M0 for any a ∈ A.
Then, one has a natural isomorphism

φ : [A, Int(M0)] � Iso
(

Ho
(

M A
0

))

.

Proof: The morphism

φ : [A, Int(M0)] −→ Iso
(

Ho
(

M A
0

))

simply sends a morphism A → Int(M0) to the corresponding object in M A
0 .

Using our Proposition 3.2 it is easy to see that this maps sends homo-
topic morphisms to isomorphic objects in Ho(M A

0 ), and is therefore well
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defined. As for the proof of Lemma 4.4, the morphism φ is clearly sur-
jective. Let u, v : A → Int(M0) be two morphisms of dg-categories such
that the corresponding objects in Ho(M A

0 ) are isomorphic. Then, these ob-
jects are isomorphic in Ho(M A), which implies by Lemma 4.5 that the two
compositions

u′, v′ : A −→ Int(M0) −→ Int(M)

are homotopic in dg − CatV. Let

A

��

u′

GG
GG

GG
GG

G

��
A′ ��H Int(M)

A

��

v′

wwwwwwwww

OO

be a homotopy between u′ and v′. As M0 is closed by equivalences in M
one clearly sees that the morphism H factors through the sub-dg-category
Int(M0), showing that u and v are homotopic. 
�

We come back to the proof of Theorem 6.1. Using our Theorem 4.2 one
has a natural isomorphism

[A ⊗L C, D] � Iso
(

Ho
(

((A ⊗L C) ⊗L Dop) − Modrqr
U

))

� Iso
(

Ho
((

(C ⊗L Dop) − Modrqr
U

)A))

.

An application of Lemma 6.2 (with M = (C ⊗L Dop) − ModU and M0 the
full sub-category of right quasi-representable objects) shows that one has
a natural isomorphism

[

A, Int
(

(C ⊗L Dop) − Modrqr
U

)] � Iso
(

Ho
((

(C ⊗L Dop) − Modrqr
U

)A))

.

Putting this together one finds a natural isomorphism

[A ⊗L C, D] � [

A, Int
(

(C ⊗L Dop) − Modrqr
U

)]

showing the theorem. 
�
Corollary 6.3 For any C and D two U-small dg-categories, and any K ∈
SSetU, one has a functorial isomorphism in Ho(dg − CatU)

K ⊗L (C ⊗L D) � (K ⊗L C) ⊗L D.

Proof: This follows easily from Theorem 5.1, Theorem 6.1 and the Yoneda
lemma applied to Ho(dg − CatU). 
�
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Corollary 6.4 For any C, D and E three U-small dg-categories one has
a functorial isomorphism in Ho(SSetU)

Map(C ⊗L D, E) � Map(C,RHom(D, E)).

Proof: By Corollary 6.3, for any K ∈ SSetU, one has functorial isomor-
phisms

[K, Map(C ⊗L D, E)] � [K ⊗L (C ⊗L D), E] � [(K ⊗L C) ⊗L D, E]
� [K, Map(C,RHom(D, E))]. 
�

Corollary 6.5 Let C ∈ dg − CatU be a dg-category. Then the functor

− ⊗L C : dg − CatU −→ dg − CatU

commutes with homotopy colimits.

Proof: This follows formally from Corollary 6.4. 
�
Corollary 6.6 Let C → D be a quasi-fully faithful morphism in dg−CatU.
Then, for any B ∈ dg − CatU the induced morphism

RHom(B, C) −→ RHom(B, D)

is quasi-fully faithful.

Proof: Using Lemma 2.4 it is enough to show that RHom(B,−) preserves
homotopy monomorphisms. But this follows formally from Corollary 6.4.


�

7 Morita morphisms and bi-modules

In this section we will use the following notations. For any C ∈ dg − CatU
one sets

̂C := Int
(

Cop − ModU
) ∈ dg − CatV.

By Theorem 6.1 and Lemma 6.2, one has an isomorphism in Ho(dg−CatV)

̂C � RHom
(

Cop, Int(C(k)U)
) ∈ Ho(dg − CatV).

Indeed, Lemma 6.2 implies that for any A ∈ dg − CatU one has

[A, ̂C] � Iso
(

Ho
(

(A ⊗L Cop) − ModU
)) � [A ⊗L Cop,̂1].

Note also that

Int(C(k)U) �̂1.
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We will also consider ̂Cpe the full sub-dg-category of ̂C consisting of Cop-
modules which are homotopically finitely presented. In other words, a Cop-
module F is in ̂Cpe if for any filtered diagram of objects Gi in Cop − ModU,
the natural morphism

ColimiMap(F, Gi) −→ Map(F, Colimi Gi)

is a weak equivalence. It is easy to check that the objects in ̂Cpe are precisely
the objects equivalent to retracts of finite cell Cop-modules. To be more
precise, an object F ∈ Ho(̂C) is in Ho(̂Cpe) if and only if it is a retract in
Ho(̂C) of an object G for which there exists a finite sequence of morphisms
of Cop-modules

0 −→ G1 −→ G2 −→ · · · −→ Gn = G,

in such a way that for any i there exists a push-out square

Gi
�� Gi+1

A ⊗ hx

OO

�� B ⊗ hx

OO

for some x ∈ C, and some cofibration A → B in C(k) with A and B
bounded complexes of projective modules of finite type.

Objects in ̂Cpe will also be called compact or perfect (note that they are
precisely the compact objects in the triangulated category [̂C], in the usual
sense). More generally, for any dg-category T , we will write Tpe for the full
sub-dg-category of T consisting of compact objects (i.e. the objects x such
that [T ](x,−) commutes with (infinite) direct sums).

Let us consider C and D two U-small dg-categories, and u : ̂C → ̂D
a morphism in Ho(dg − CatV). Then, u induces a functor, well defined up
to an (non-unique) isomorphism

[u] : [̂C] −→ [̂D].
We will say that the morphism u is continuous if the functor [u] commutes
withU-small direct sums. Note that [̂C] and [̂D] are the homotopy categories
of the model categories of Cop-modules and Dop-modules, and thus these
two categories always have direct sums. More generally, we will denote
by RHomc(

̂C, ̂D) the full sub-dg-category of RHom(̂C, ̂D) consisting of
continuous morphisms.

Definition 7.1 Let C and D be two U-small dg-categories.

1. The dg-category of Morita morphisms from C to D is RHomc(
̂C, ̂D).

2. The dg-category of perfect Morita morphisms from C to D is
RHom(̂Cpe, ̂Dpe).
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We warn the reader that there are in general no relations between the dg-
category RHom(̂Cpe, ̂Dpe) and RHomc(

̂C, ̂D)pe. An example where these
two objects agree will be given in Theorem 8.15.

Theorem 7.2 Let C ∈ dg−CatU, and let us consider the Yoneda embedding
h : C → ̂C. Let D be any U-small dg-category.

1. The pull-back functor

h∗ : RHomc(
̂C, ̂D) −→ RHom(C, ̂D)

is an isomorphism in Ho(dg − CatV).
2. The pull-back functor

h∗ : RHom(̂Cpe, ̂Dpe) −→ RHom(C, ̂Dpe)

is an isomorphism in Ho(dg − CatV).

Proof: We start by proving (1).
Using the universal properties of internal Hom’s one reduces the problem

to show that for any A ∈ dg − CatU, the morphism3

l := h : C −→ ̂C

induces a bijective morphism

l∗ : [̂C ⊗L A, ̂D]c −→ [C ⊗L A, ̂D],
where by definition [̂C ⊗L A, ̂D]c is the subset of [̂C ⊗L A, ̂D] consisting
of morphisms f : ̂C ⊗L A → ̂D such that for any object a ∈ A the induced
morphism f(−, a) : ̂C → ̂D is continuous. Now, as ̂D = RHom(Dop,̂1),
one has natural bijections

[C ⊗L A, ̂D] � [C, ̂Aop ⊗L D] [̂C ⊗L A, ̂D]c � [̂C, ̂Aop ⊗L D]c.

Therefore, we have to prove that for any A the induced morphism

l∗ : [̂C, ̂Aop ⊗L D]c −→ [C, ̂Aop ⊗L D]
is bijective. For this, we consider the quasi-fully faithful morphism in dg −
CatW for some universe V ∈W
̂Aop ⊗L D � Int

(

(A⊗LDop) − ModU
)

−→ ̂Aop ⊗L DV := Int((A ⊗L Dop) − ModV).

3 We prefer to change notation from h to l during the proof, just in order to avoid future
confusions.
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One has a commutative square

[̂C, ̂Aop ⊗L D]c
��

��

[

̂C, ̂Aop ⊗L DV
]

c

��

[C, ̂Aop ⊗L D] ��
[

C, ̂Aop ⊗L DV
]

.

We claim that the right vertical morphism is bijective. For this, we use
Lemma 6.2 which implies that it is enough to show the following lemma.

Lemma 7.3 Let C be a U-small dg-category and M a V-combinatorial
C(k)V-model category which isW-small for some V ∈ W. We assume that
the domain and codomain of a set of generating cofibrations are cofibrant
in M. We also assume that for any cofibrant object X ∈ M, and any quasi-
isomorphism Z → Z ′ in C(k), the induced morphism

Z ⊗ X −→ Z ′ ⊗ X

is an equivalence in M. Then, the Quillen adjunction

l! : MC −→ M
̂C MC ←− M

̂C : l∗

induces a fully faithful functor

Ll! : Ho(MC) −→ Ho(M
̂C)

whose essential image consists of all ̂C-modules corresponding to continu-
ous morphisms in Ho(dg − CatW).

Proof: First of all, the modules F ∈ Ho(M̂C) corresponding to continuous
morphisms are precisely the ones for which for any U-small family of
objects xi ∈ ̂C, the natural morphism

L
⊕

F(xi) −→ F(⊕i xi)

is an isomorphism in Ho(M).
We start by showing that Ll! is fully faithful. As both functors Ll! and l∗

commute with homotopy colimits, it is enough to show that for any x ∈ C
and any X ∈ M, the adjunction morphism

X ⊗L hx −→ l∗Ll!(X ⊗L hx)

is an isomorphism in Ho(MC). But this follows immediately from the fact
that the morphism of dg-categories l is fully faithful and our hypothesis
on M.
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It remains to show that for any F ∈ Ho(M̂C), corresponding to a con-
tinuous morphism, the adjunction morphism

Ll!l∗(F) −→ F

is an isomorphism in Ho(M̂C). As we already know that Ll! is fully faithful
it is enough to show that the functor l∗ is conservative when restricted
to the sub-category of modules corresponding to continuous functors. Let
u : F → G be morphism between such modules, and let us assume that
l∗(F) → l∗(G) is an isomorphism in Ho(MC). We need to show that u
itself is an isomorphism in Ho(M̂C).

Sub-lemma 7.4 Let F : ̂C → M be a morphism of dg-categories corres-
ponding to a continuous morphism.

1. Let X : I → Cop − ModU be a U-small diagram of cofibrant objects in
Cop − ModU. Then, the natural morphism

Hocolimi F(Xi) −→ F(Hocolimi Xi)

is an isomorphism in Ho(M).
2. Let Z ∈ C(k)U and X ∈ M. Then, the natural morphism

Z ⊗L F(X) −→ F(Z ⊗L X)

is an isomorphism in Ho(M).

Proof of Sub-lemma 7.4: (1) As any homotopy colimit is a composition of
homotopy push-outs and infinite (homotopy) sums, it is enough to check
the sub-lemma for one of these colimits. For the direct sum case this is
our hypothesis on F. It remains to show that F commutes with homotopy
push-outs. For this we assume that F is fibrant and cofibrant, and thus is
given by a morphism of dg-categories ̂C → Int(M).

We consider the commutative diagram of dg-categories

(̂C)op ��F

��

Int(M)op

��
Int(̂C − ModV) ��

F!
Int(Int(M) − ModV),

where the vertical morphisms are the dual Yoneda embeddings h(−). The
functor F! being left Quillen clearly commutes, up to equivalences, with ho-
motopy push-outs. Furthermore, as the model categories ̂C − ModV and
Int(M) − ModV are stable model categories, this implies that F! also
commutes, up to equivalence, with homotopy pull-backs. Furthermore,
the morphism h(−) sends homotopy push-out squares to homotopy pull-
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back squares, and moreover a square in Int(M) is a homotopy push-out
square if and only if its image by h is a homotopy pull-back square in
Int(M)−ModV. We deduce from these remarks that F preserves homotopy
push-out squares.

(2) Any complex Z can be constructed from the trivial complex k
using homotopy colimits and loop objects. As we already know that F
commutes with homotopy colimits, it is enough to see that it also com-
mutes with loop objects. But the loop functor is inverse, up to equivalence,
to the suspension functor. The suspension being a homotopy push-out,
F commutes with it, and therefore F commutes with the loop functor.


�
Now, let us come back to our morphism u : F → G such that l∗(u) is an

equivalence. Let X be an object in ̂C. We know that X can be written as the
homotopy colimit of objects of the form Z ⊗L hx with x ∈ C and Z ∈ C(k).
Therefore, one has a commutative diagram in Ho(M)

Hocolimi F
(

Zi ⊗L hxi

)

��

��u HocolimiG
(

Zi ⊗L hxi

)

��
F(X) ��u G(X).

By the Sub-lemma (7.4) the vertical morphisms are isomorphisms in Ho(M),
and the top horizontal morphism is also by hypothesis and the Sub-lemma
(7.4). Thus, the bottom horizontal morphism is an isomorphism in Ho(M),
and this for any X ∈ ̂C. This shows that l∗ is conservative when restricted
to continuous morphisms, and thus finishes the proof of the Lemma 7.3. 
�

We come back to our commutative diagram

[̂C, ̂Aop ⊗L D]c
��

��

[

̂C, ̂Aop ⊗L DV
]

c

��

[C, ̂Aop ⊗L D] ��
[

C, ̂Aop ⊗L DV
]

.

Lemma 7.3 shows that the right vertical morphism is bijective, and Corol-
lary 2.5 implies that the horizontal morphisms are injective. It remains

to show that a morphism u ∈ [̂C, ̂Aop ⊗L DV]c, whose restriction C →
̂Aop ⊗L DV factors thought ̂Aop ⊗L D, itself factors through ̂Aop ⊗L D. But

this is true as by Sub-lemma 7.4 the image by u of any Cop-module can be
written as a U-small homotopy colimit of objects of the form Z ⊗L u(l(x))
for Z ∈ C(k)U and x ∈ C. Therefore, if the restriction of u to C has
U-small images, then so does u itself. This finishes the proof of The-
orem 7.2 (1).
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(2) We consider the quasi-fully faithful morphism ̂Dpe → ̂D. We there-
fore have a homotopy commutative diagram

RHom
(

̂Cpe, ̂Dpe
)

��

��

RHom
(

̂Cpe, ̂D
)

��
RHom

(

C, ̂Dpe
)

�� RHom(C, ̂D),

where the horizontal morphisms are quasi-fully faithful by Corollary 6.6.
We claim that the right vertical morphism is a quasi-equivalence. For this,
using the universal properties of internal Hom’s, it is enough to show that
the induced morphism

[

̂Cpe, ̂D
] −→ [C, ̂D]

is bijective for any D. Using our Lemma 6.2 one sees that it is enough to
prove the following lemma.

Lemma 7.5 Let C be a cofibrant and U-small dg-category and M a V-
combinatorial C(k)V-model category satisfying the same assumption as in
Lemma 7.3.

1. Then, the Quillen adjunction

l! : MC −→ M ̂Cpe MC ←− M ̂Cpe : l∗

is a Quillen equivalence.
2. For any F ∈ M ̂Cpe, and any a U-small diagram of perfect and cofi-

brant objects in Cop − ModU, X : I → Cop − ModU, the natural
morphism

Hocolimi F(Xi) −→ F(Hocolimi Xi)

is an isomorphism in Ho(M).
3. For any F ∈ M ̂Cpe , and any perfect complex Z ∈ C(k)U and any X ∈ M,

the natural morphism

Z ⊗L F(X) −→ F(Z ⊗L X)

is an isomorphism in Ho(M).

Proof: This is the same as for Lemma 7.3 and Sub-lemma 7.4. 
�
Coming back to our square of dg-categories one sees that the horizontal

morphisms are quasi-fully faithful and that the right vertical morphism is
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a quasi-equivalence. This formally implies that the left vertical morphism
is quasi-fully faithful. We now consider the square of sets

[

̂Cpe, ̂Dpe
]

��

��

[

̂Cpe, ̂D
]

��
[

C, ̂Dpe
]

�� [C, ̂D],

obtained from the square of dg-categories by passing to equivalence classes
of objects. Again, the right vertical morphism is a bijection and the ho-
rizontal morphisms are injective. For u ∈ [C, ̂Dpe], its image in [C, ̂D]
comes from an element v ∈ [̂Cpe, ̂D]. For any x ∈ C, v(l(x)) ∈ ̂D is
a perfect Dop-module, and thus so is v(Z ⊗L l(x)) � Z ⊗L v(l(x)) for
any perfect complex Z of k-modules. As any perfect Cop-module is con-
structed as a retract of a finite homotopy colimit of objects of the form
Z ⊗L l(x), we deduce that v(X) is a perfect Dop-module for any X ∈ ̂Cpe.
Therefore, Corollary 2.5 implies that v comes in fact from an element in
[̂Cpe, ̂Dpe]. This shows that [̂Cpe, ̂Dpe] → [C, ̂Dpe] is surjective, and thus
that

RHom
(

̂Cpe, ̂Dpe
) −→ RHom

(

C, ̂Dpe
)

is quasi-essentially surjective. This finishes the proof of the theorem. 
�
The following corollary is the promised derived version of Morita theory.

Corollary 7.6 Let C and D be two U-small dg-categories, then there exists
a natural isomorphism in Ho(dg − CatV)

RHomc(
̂C, ̂D) � ̂Cop ⊗L D � Int

(

(C ⊗L Dop) − ModU
)

.

In particular, there exists a natural weak equivalence

Mapc(̂C, ̂D) � ∣

∣(C ⊗L Dop) − ModU
∣

∣,

where Mapc(̂C, ̂D) is the sub-simplicial set of continuous morphisms in
Map(̂C, ̂D) and where |(C⊗LDop)−ModU| is the nerve of the sub-category
of equivalences between C ⊗L Dop-modules.

Proof: The first part follows from the universal properties of internal Hom’s,
as by Theorem 7.2

RHomc(
̂C, ̂D) � RHom(C,RHom(Dop,̂1))

� RHom(C ⊗L Dop,̂1) � ̂Cop ⊗L D.
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The second part follows from the relation between mapping spaces and
internal Hom’s, as well as Proposition 6.4. Indeed, one has

Mapc(̂C, ̂D) � Map
(

1,RHomc(
̂C, ̂D)

) � Map(1,RHom(C ⊗L Dop,̂1))

� Map(1, ̂Cop ⊗L D).

By Theorem 4.2 this last simplicial set is weakly equivalent to the nerve of
the category of equivalences between quasi-representable V-small
̂Cop ⊗L D-modules. The enriched Yoneda lemma for the model category

C ⊗L Dop − Mod easily implies that this nerve is weakly equivalent to the
nerve of equivalences between U-small C ⊗L Dop-modules. 
�

8 Applications

In this last section we present three kinds of applications of our main results.
A first application explains the relation between Hochschild cohomology
and internal Hom’s of dg-categories. In the same spirit, we present a rela-
tion between the negative part of Hochschild cohomology and the higher
homotopy groups of the classifying space of dg-categories, as well as an in-
terpretation of the fundamental group of this space as the so-called derived
Picard group. As a second application, we present a proof of the existence
of a good localization functor for dg-categories. This implies for example
the existence of a quotient of a dg-category by a full sub-dg-category, satis-
fying the required universal property. Finally, our last application states that
the (derived) dg-category of morphisms between the dg-categories of quasi-
coherent complexes over some (reasonable) schemes is naturally equivalent
to the dg-category of quasi-coherent complexes over their product. Under
smoothness and properness conditions the same statement stays correct
when one replaces quasi-coherent by perfect. This last result can be con-
sidered as a solution to a question of D. Orlov, concerning the existence of
representative objects for triangulated functors between derived categories
of smooth projective varieties.

8.1 Hochschild cohomology, classifying space of dg-categories, and de-
rived Picard groups. As a first application we give a formula relating
higher homotopy groups of mapping spaces between dg-categories and
Hochschild cohomology. For this, let us recall that for any U-small dg-
category C, one defines its Hochschild cohomology groups as

HH
i(C) := Hi(RHomC⊗LCop(C, C)),

where C is the C ⊗L Cop-module defined by the trivial formula C(x, y) :=
C(x, y), and where RHomC⊗LCop are the Ho(C(k))-enriched Hom’s of the
category Ho(C ⊗L Cop − ModU). More generally, the Hochschild complex
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of C is defined by

HH(C) := RHomC⊗LCop(C, C),

which is a well defined object in the derived category Ho(C(k)) of complexes
of k-modules.

Corollary 8.1 With the notation above, there exists an isomorphism in
Ho(C(k))

HH(C) � RHom(C, C)(Id, Id),

where Id is the identity of C, considered as an object of the dg-category
RHom(C, C). In particular, one has

HH
i(C) � Hi(RHom(C, C)(Id, Id)).

Proof: Using Theorem 6.1, one has

RHom(C, C)(Id, Id) � Int
(

C ⊗L Cop − Modrqr
U

)

.

Furthermore, through this identification the identity morphism of C goes to
the bi-module C itself. This implies the result by the definition of Hochschild
cohomology. 
�

An important consequence of Corollary 8.1 is the following Morita
invariance of Hochschild cohomology.

Corollary 8.2 With the notation above, there exists an isomorphism in
Ho(C(k))

HH(C) � HH(̂C).

Proof: Indeed, the identity of ̂C is clearly continuous, and thus by Theo-
rem 7.2 (1) one has

HH(̂C) � RHom(̂C, ̂C)(Id, Id) � RHom(C, ̂C)(h, h),

where h : C → ̂C is the Yoneda embedding. As the morphism h is quasi-
fully faithful, Corollary 6.6 implies that the morphism

h∗ : RHom(C, ̂C)(h, h) −→ RHom(C, C)(Id, Id)

is a quasi-isomorphism. Corollary 8.1 implies the result. 
�
Corollary 8.3 With the notation above one has isomorphisms of groups

πi(Map(C, C), Id) � HH1−i(C)

for any i > 1. For i = 1, one has an isomorphism of groups

π1(Map(C, C), Id) � HH0(C)∗ = AutHo(C⊗LCop−ModU)(C).
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Proof: This follows immediately from Theorem 4.2, the well-known rela-
tions between mapping spaces and classifying spaces of model categories
(see e.g. [HAGII, Cor. A.0.4]) and the formula

H−i(RHomC⊗LCop(C, C)) � πi(MapC⊗LCop−ModU(C, C)). 
�
Let |dg − Cat| be the nerve of the category of quasi-equivalences in

dg − CatU. Using the usual relations between mapping spaces in model
category and nerve of categories of equivalences (see e.g. [HAGII, Appendix
A]) one finds the following consequence.

Corollary 8.4 For a U-small dg-category C, one has

πi(|dg − Cat|, C) � HH2−i(C) ∀ i > 2.

Moreover, one has

π2(|dg − Cat|, C) � HH0(C)∗.

Remark 8.5 The above corollary only gives an interpretation of negative
Hochschild cohomology groups. The positive part of the Hochschild co-
homology can also be interpreted in terms of deformation theory of dg-
categories as done for example in [HAGII, §8.5].

For a (U-small) dg-algebra A, one can define the derived Picard group
RPic(A) of A, as done for example in [Ro-Zi,Ke2,Ye]. Using our notations
and definitions, the group RPic(A) can be defined in the following way.
To simplify notations let us assume that the underlying complex of A is
cofibrant, and we will consider A as a dg-category with a unique object
which we denote by BA. Note that the category (A ⊗ Aop) − ModU, of
A ⊗ Aop-dg-modules, is also the category (BA ⊗ BAop) − ModU. This
category can be endowed with the following monoidal structure. For X
and Y two (A ⊗ Aop)-dg-modules, we can form the internal tensor product
X⊗AY ∈ (A⊗Aop)−ModU as the coequalizer of the two natural morphisms

(X ⊗ A ⊗ Y )⇒ X ⊗ Y.

This endows the model category (A ⊗ Aop) − ModU with a structure of
monoidal model category (see for example [K-T] where the simplicial ana-
log is considered). Deriving this monoidal structure provides a monoidal
category (Ho((A ⊗ Aop) − ModU),⊗LA). By definition, the group RPic(A)
is the group of isomorphism classes of objects in Ho((A ⊗ Aop) − ModU)
which are invertible for the monoidal structure ⊗LA.

Corollary 8.6 There is a group isomorphism

RPic(A) � π1
(|dg − CatV|,̂BA

)

.

Proof: This easily follows from the formula

π1
(|dg − CatV|, ̂C

) � AutHo(dg−Cat)(̂C)

and Corollary 7.6. 
�
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8.2 Localization and quotient of dg-categories. Let C be a U-small dg
category, and S be a set of morphisms in [C]. For any U-small dg-category
D, we consider MapS(C, D) the sub-simplicial set of Map(C, D) being the
union of all connected components corresponding to morphisms f : C → D
in Ho(dg − Cat) such that [ f ] : [C] → [D] sends S to isomorphisms in
[D].
Corollary 8.7 The Ho(SSetU)-enriched functor

MapS(C,−) : Ho(dg − CatU) −→ Ho(SSetU)

is co-represented by an object LS(C) ∈ Ho(dg − CatU).

Proof: Let Ik be the dg-category with two objects 0 and 1, and freely
generated by a unique morphism 0 → 1. Using Theorem 4.2 one eas-
ily sees that Map(Ik, C) can be identified with the nerve of the category
(Cop − ModU)I

rqr , of morphisms between quasi-representable Cop-modules.
Using the dg-Yoneda lemma one sees that [Ik, C] is in a natural bijection
with isomorphism classes of morphisms in [C]. In particular, the set S can
be classified by a morphism in Ho(dg − CatU)

S :
∐

f ∈S

Ik −→ C.

We consider the natural morphism Ik → 1, and we define LSC to be the
homotopy push-out

∐

f ∈S Ik ��

��

C

��
∐

f ∈S 1 �� LSC.

For any D one has a homotopy pull-back diagram

Map(LSC, D) ��

��

∏

f ∈S Map(1, D)

��
Map(C, D) ��

∏

f ∈S Map(Ik, D).

Therefore, in order to see that LSC has the correct universal property, it is
enough to check that Map(1, D) → Map(Ik, D) induces an injection on
π0, a bijection on πi for i > 0, and that its image in [Ik, D] consists of all
morphisms in [D] which are isomorphisms. Using Theorem 4.2 once again
we see that this follows from the following very general fact: if M is a model
category, then the Quillen adjunction Mor(M)� M (where Mor(M) is the
model category of morphisms in M), sending a morphism in M to its target,
induces a fully faithful functor Ho(M) → Ho(Mor(M)), whose essential
image consists of all equivalences in M. 
�
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Corollary 8.8 Let C ∈ dg−CatU be a dg-category and S a set of morphisms
in [C]. Then, the natural morphism C → LSC induces for any D ∈ dg−CatU
a quasi-fully faithful morphism

RHom(LSC, D) −→ RHom(C, D),

whose quasi-essential image consists of all morphisms C → D in
Ho(dg − Cat) sending S to isomorphisms in [D].
Proof: This follows formally from Corollary 8.7, Theorem 6.1 and Lem-
ma 2.4. 
�

One important example of application of the localization construction
is the existence of a good theory of quotients of dg-categories. For this, let
C be a U-small dg-category, and {Xi}i∈I be a sub-set of objects in C. We
assume that [C] has a zero object 0. One consider S the set of morphisms
in [C] consisting of all Xi → 0. The dg-category LSC is then denoted by
C/ < Xi >, and is called the quotient of C by the sub-set of objects {Xi}i∈I .
This terminology is justified by the fact that for any dg-category D with
a zero object, the morphism

l∗ : RHom(C/ < Xi >, D) −→ RHom(C, D)

is quasi-fully faithful, and its image consists of all morphisms f : C → D
such that for all i ∈ I [ f(Xi)] � 0 in [D].
8.3 Maps between dg-categories of quasi-coherent complexes. We now
pass to our last application describing maps between dg-categories of quasi-
coherent complexes on k-schemes. For this, let X be a quasi-compact
and separated scheme over Spec k. We consider QCoh(X) the category
of U-small quasi-coherent sheaves on X. As this is a Grothendieck cate-
gory we know that there exists a U-cofibrantly generated model category
C(QCoh(X)) of (unbounded) complexes of quasi-coherent sheaves on X
(the cofibrations being the monomorphisms and the equivalences being the
quasi-isomorphisms, see e.g. [Ho2]). It is easy to check that the natural
C(k)U-enrichment of C(QCoh(X)) makes it into a C(k)U-model category,
and thus as explained in Sect. 3 we can construct a V-small dg-category
Int(C(QCoh(X)). This dg-category will be denoted by Lqcoh(X). Note that
[Lqcoh(X)] is naturally equivalent to the (unbounded) derived category of
quasi-coherent sheaves Dqcoh(X), and will be identified with it.

We need to recall that an object E in Lqcoh(X) is homotopically finitely
presented, or perfect in the sense of Sect. 7, if and only if it is a compact
object of Dqcoh(X), and thus if and only if it is a perfect complex on X (see
for example [B-V]). We will use this fact implicitly in the sequel.

Theorem 8.9 Let X and Y be two quasi-compact and separated schemes
over k, and assume that one of them is flat over Spec k. Then, there exists
an isomorphism in Ho(dg − CatV)

RHomc(Lqcoh(X), Lqcoh(Y )) � Lqcoh(X ×k Y ).
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Proof: We start noticing that the model categories C(QCoh(X)) and
C(QCoh(Y )) are stable, proper, cofibrantly generated, and admit a com-
pact generator (see [B-V]). Therefore, they satisfy the conditions of the
main theorem of [S-S], and thus one can find two objects EX and EY in
Lqcoh(X) and Lqcoh(Y ), and two Quillen equivalences

C(QCoh(X))� Aop
X − ModU C(QCoh(Y ))� Aop

Y − ModU,

where AX (resp. AY ) is the full sub-dg-category of Lqcoh(X) (resp. of
Lqcoh(Y )) consisting of EX (resp. EY ) only (in other words, AX is the dg-
category with a unique object andREnd(EX) as endomorphism dg-algebra).
In the following we will write AX for both, the dg-category and the cor-
responding dg-algebra REnd(EX) (and the same with AY ). These Quillen
equivalences are C(k)-enriched Quillen equivalences, and with a bit of care
one can check that they provide natural isomorphisms in Ho(dg − CatV)

Lqcoh(X) � ̂AX Lqcoh(Y ) � ̂AY .

Lemma 8.10 There exists an isomorphism in Ho(dg − CatV)

̂AY � ̂Aop
Y .

Proof: By the general theory of [S-S] it is enough to show that the trian-
gulated category Dqcoh(Y ) � [Lqcoh(Y )] possesses a compact generator FY
such that the dg-algebra REnd(FY ) is naturally equivalent to REnd(EY )op.
For this we take FY = E∨

Y to be the dual perfect complex of EY . Let < FY >
be the smallest thick triangulated sub-category of Dparf(Y ) containing FY .
We let φ : Dparf(Y ) → Dparf(Y )op be the involution sending a perfect com-
plex E to its dual E∨. Then, clearly φ(< FY >) = < EY > = Dparf(Y ).
This shows that FY classically generates Dparf(Y ), and thus by [B-V,
Thm. 2.1.2] that FY is a compact generator of Dqcoh(Y ). 
�
Lemma 8.11 There exists an isomorphism in Ho(dg − CatV)

̂AX ⊗Lk AY � Lqcoh(X ×k Y ).

Proof: This follows from the fact that the external product EX � EY is
a compact generator of Dqcoh(X ×k Y ), as explained in [B-V, Lem. 3.4.1].
Indeed, flat base change induces a natural quasi-isomorphism of dg-algebras
(one uses here that either X or Y is flat over k)

REnd(EX � EY ) � REnd(EX) ⊗Lk REnd(EY ) � AX ⊗Lk AY .

�

We are now ready to prove Theorem 8.9. Indeed, using Theorem 7.2 one
finds

RHomc(Lqcoh(X), Lqcoh(Y )) � RHomc(
̂AX , ̂AY ) � RHom(AX , ̂AY ).
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Lemma 8.10 and the universal properties of internal Hom’s give an iso-
morphism

RHom(AX , ̂AY ) � RHom
(

AX , ̂Aop
Y

) � ̂AX ⊗Lk AY .

Finally Lemma 8.11 implies the theorem. 
�
Corollary 8.12 Under the same conditions as in Theorem 8.9, there exists
a bijection between [Lqcoh(X), Lqcoh(Y )]c, the sub-set of [Lqcoh(X), Lqcoh(Y )]
consisting of continuous morphisms, and the isomorphism classes of objects
in the derived category Dqcoh(X ×k Y ).

Proof: Readily follows from Theorem 8.9 and the fact that
[Lqcoh(X ×k Y )] � Dqcoh(X ×k Y ). 
�

Tracking back the construction of the equivalence in Theorem 8.9 one
sees that the bijection of Corollary 8.12 can be described as follows. Let
E ∈ Dqcoh(X ×k Y ) be an object, and let us consider the two projections

pX : X ×k Y −→ X pY : X ×k Y −→ Y.

We consider the functor

φE : Dqcoh(X) −→ Dqcoh(Y )

defined by

φE(F) := R(pY )∗
(

Lp∗
X (F) ⊗L E

)

for any F ∈ Dqcoh(X). Then, the functor φE is the natural functor induced
by the morphism Lqcoh(X) → Lqcoh(Y ) in Ho(dg − Cat), corresponding to
E via the bijection of Corollary 8.12.

Corollary 8.13 Let X be a quasi-compact and separated scheme, flat over
Spec k. Then, one has

π1(Map(Lqcoh(X), Lqcoh(X), Id)) � OX(X)∗,
πi(Map(Lqcoh(X), Lqcoh(X), Id)) � HH1−i(AX ) � 0 ∀ i > 1.

Proof: Indeed Theorem 8.9, Theorem 4.2, Corollary 4.10 and Corollary 6.4
give

Map(Lqcoh(X), Lqcoh(X)) � Map(∗, Lqcoh(X ×k X)).

Furthermore, the identity on the right is clearly sent to the diagonal ∆X in
Lqcoh(X ×k X). Therefore, one finds for any i > 1

πi(Map(Lqcoh(X), Lqcoh(X)), Id)) � πi(Map(∗, Lqcoh(X ×k X)),∆X)

� H1−i(Lqcoh(X ×k X)(∆X,∆X))

� Ext1−i
X×k X(∆(X),∆(X)) � 0.



664 B. Toën

For i = 1, one has

π1(Map(Lqcoh(X), Lqcoh(X)), Id) � π1(Map(∗, Lqcoh(X ×k X)),∆X)

� AutDqcoh(X×k X )(∆X) � OX(X)∗. 
�
Corollary 8.13 combined with the usual relations between mapping

spaces and nerves of categories of equivalences also has the following
important consequence.

Corollary 8.14 Let X be a quasi-compact and separated scheme, flat
over k. Then, one has

πi(|dg − Cat|, Lqcoh(X)) � 0 ∀ i > 2.

In particular, the sub-simplicial set of |dg − Cat| corresponding to
dg-categories of the form Lqcoh(X), for X a quasi-compact and separated
scheme flat over k, is a 2-truncated simplicial set.

We finish by a refined version of Theorem 8.9 involving only perfect
complexes instead of all quasi-coherent complexes. For this, we will denote
by Lparf(X) the full sub-dg-category of Lqcoh(X) consisting of all perfect
complexes.

Theorem 8.15 Let X and Y be two smooth and proper schemes over Spec k.
Then, there exists an isomorphism in Ho(dg − CatV)

RHom(Lparf(X), Lparf(Y )) � Lparf(X ×k Y ).

Proof: The triangulated category Dqcoh(X) being generated by its compact
objects, one sees that the Yoneda embedding

Lqcoh(X) −→ ̂Lparf(X)

is an isomorphism in Ho(dg − CatV). Using our Theorem 7.2 we see that
RHom(Lparf(X), Lparf(Y )) can be identified, up to quasi-equivalence, with
the full sub-dg-category of RHomc(Lqcoh(X), Lqcoh(Y )) consisting of all
morphisms Lqcoh(X) → Lqcoh(Y ) which preserve perfect complexes. Using
Theorem 8.9, we see that RHom(Lparf(X), Lparf(Y )) is quasi-equivalent to
the full sub-dg-category of Lqcoh(X ×k Y ) consisting of objects E such
that for any perfect complex F on X, the complex R(pY )∗(p∗

X(F) ⊗L E)
is perfect on Y . To finish the proof we thus need to show that an object
E ∈ Dqcoh(X ×k Y ) is perfect if and only if the functor

ΦE := R(pY )∗
(

p∗
X(−) ⊗L E

) : Dqcoh(X) −→ Dqcoh(Y )

preserves perfect objects. Clearly, as X is flat and proper over Spec k,
ΦE preserves perfect complexes if E is itself perfect.

Conversely, let E be an object in Dqcoh(X ×k Y ) such that ΦE preserves
perfect complexes.
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Lemma 8.16 Let Z be a smooth and proper scheme over Spec k, and E ∈
Dqcoh(Z). If for any perfect complex F on Z, the complex of k-modules
RHom(F, E) is perfect, then E is perfect on Z.

Proof of the lemma: We let AZ be a dg-algebra over k such that Lqcoh(Z) is
quasi-equivalent to ̂AZ (with the same abuse of notations that AZ also means
the dg-category with a unique object and AZ as endomorphism dg-algebra).
As Z is flat and proper over Spec k, the underlying complex of k-modules of
AZ is perfect. Furthermore, as Z is smooth, the diagonal ∆ : Z ↪→ Z ×k Z
is a local complete intersection morphism, and thus ∆∗(OZ) is a perfect
complex on Z. Equivalently, the AZ ⊗Lk Aop

Z -dg-module AZ is perfect, or

equivalently lies in the smallest sub-dg-category of ̂Aop
Z ⊗Lk AZ containing

AZ ⊗L Aop
Z and which is stable by retracts, homotopy push-outs and the loop

functor (or the shift functor).
We now apply our Theorem 7.2 in order to translate this last fact in

terms of dg-categories of morphisms. Let F : ̂AZ → ̂AZ be the morphism
of dg-categories sending an Aop

Z -dg-module M to the free Aop
Z -dg-module

F(M) := M ⊗L Aop
Z ,

where M is the underlying complex of k-modules of M. By what we
have seen, the identity morphism lies in the smallest sub-dg-category of
RHomc(

̂AZ , ̂AZ) containing the object F and which is stable by retracts,
homotopy push-outs and the loop functor. Evaluating the identity of the
dg-category ̂AZ at an object M, we get that the object M ∈ ̂AZ lies in the
smallest sub-dg-category of ̂AZ containing M ⊗L Aop

Z and stable by retracts,
homotopy push-outs and by the loop functor. Now, by our hypothesis the
object E corresponds to M ∈ ̂AZ such that M is a perfect complex of
k-modules. Therefore, M itself belongs to the smallest sub-dg-category of
̂AZ containing Aop

Z and which stable by retracts, homotopy push-outs and
the loop functor. By definition of being perfect, this implies that M ∈ ̂AZ pe,
and thus that E is a perfect complex on Z. 
�

Let now EX and EY be compact generators of Dqcoh(X) and Dqcoh(Y ).
Then, by the projection formula one has

R(pY )∗
((

E∨
X � E∨

Y

) ⊗L E
) � R(pY )∗

(

p∗
X

(

E∨
X

) ⊗L E
) ⊗L E∨

Y ,

which is perfect on Y . This implies in particular that

RHom(EX � EY , E) � RΓ(Y,R(pY )∗
((

E∨
X � E∨

Y

) ⊗L E
)

is a perfect complex of k-modules. As the perfect complex EX � EY is
a generator on Dqcoh(X ×k Y ), one sees that for any perfect complex F on
X×k Y , the complex of k-modulesRHom(F, E) is perfect. The Lemma 8.16
implies that E is perfect on X ×k Y , which finishes the proof of the theorem.


�
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