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1 Introduction

Let k be a field and K0(Var/k) be the Grothendieck ring of varieties over k, that is
the ring generated by isomorphism classes [X ] of algebraic varieties X over k with
srelations

[X ] = [Z ] + [U ]
for every closed subvariety Z ⊂ X with open complement U ⊂ X . The product
structure is induced by products of varieties, and the unit is [Spec(k)], the class of a
point.

The ring K0(Var/k) is a very basic object of algebraic geometry introduced by
A.Grothendieck in his correspondence with J.-P. Serre. The class of an algebraic
variety X in that ring is an important invariant that has a clear “motivic nature”. In
this aspect, it is a close relative of the class of the derived category D(X) of X in the
Bondal–Larsen–Lunts ring K0(DG-cat/k) (see [2]), or of themotiveM(X) of X in the
category of Chow motives (or in the Voevodsky category of geometric motives). It is
an interesting and important question to understand relations between these invariants.

1.1 D-equivalence

We write D(X) for the bounded derived category of coherent sheaves on a smooth
projective variety X . We say that smooth projective varieties are D-equivalent,
if D(X) ∼= D(Y ). The relation between derived categories and motives was discussed
by Orlov in [26], where besides other things there was suggested a conjecture stating
D-equivalence of two smooth projective varieties implies an equality of their Chow
motives with rational coefficients. The question that we suggest to discuss is a relation
between the other two invariants.

Question 1.1 Assume X and Y areD-equivalent smooth projective varieties. What is
the relation between the classes [X ] and [Y ] in the Grothendieck ring K0(Var/k)?

There are quite many examples of D-equivalent varieties: among them there are
birational examples, K3 surfaces, Abelian varieties, some non-birational Calabi–Yau
varieties. A general source of derived equivalences is provided by homological pro-
jective duality [16,19] for varieties with rectangular Lefschetz decompositions.

For some of theD-equivalences, the classes in theGrothendieck ring of the involved
varieties were related (we list some examples below). In some cases, the relation is
rather trivial, but in other cases, it is a bit unexpected.

To explain the relation denote the class of an affine line in the Grothendieck ring
by

L = [A1] = [P1] − [Spec(k)].
Let us start with the most boring situation. If X or Y has ample canonical or

anticanonical class, then a D-equivalence between them implies that X and Y are
isomorphic so that [X ] = [Y ].

It is a bit more interesting to weaken the assumption of ampleness of the canonical
class of X to the assumption that X is of general type. Then if D(X) ∼= D(Y ) is a
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D-equivalence, the canonical rings of X and Y are isomorphic, hence X and Y are
birational, and moreover K-equivalent [11, Theorem 1.4(2)] (i.e., there is a smooth
projective variety Z with birational morphisms Z → X and Z → Y such that the
relative canonical classes are equal, i.e., KZ/X = KZ/Y ). We discuss K-equivalent
varieties in the following example.

Example 1.2 Assume X and Y are K-equivalent. A conjecture of Kawamata [11,
Conjecture 1.2] says that X and Y are then D-equivalent. On the other hand, motivic
integration [13] proves that the classes of X and Y are equal in the completion of the
localization K0(Var/k)[L−1] of the Grothendieck ring with respect to the dimension
filtration of K0(Var/k)[L−1]. The explicit statement one gets unraveling the comple-
tion and localization is that there are two sequences of integers ri , di such that the
difference ri − di tends to infinity while the class ([X ] − [Y ])Lri can be expressed
as a linear combination of classes of varieties of dimension at most di . If one could
avoid the completion at this point, that would just mean that [X ]Lr = [Y ]Lr in the
Grothendieck ring for some integer r .

Note that in cases when we can actually prove D-equivalence of K-equivalent
varieties X and Y , we can even show that [X ] = [Y ]. For instance, consider the
situation of a simple flop (see [3, Theorem 3.6] for a proof of D-equivalence in that
case). In other words, assume that X and Y are smooth varieties containing ruled
subvarieties PS(E) ↪→ X and PS(F) ↪→ Y with the same base S and locally free
sheaves E andF on S of the same rank such that X\PS(E) ∼= Y\PS(F). Of course we
have [X \ PS(E)] = [Y\PS(F)]. Moreover, [PS(E)] = [S][Pd ] = [PS(F)] (where
d + 1 is the rank of E and F). Summing up these equalities we deduce [X ] = [Y ].
Example 1.3 In [29] an example of birational, D-equivalent, but not K-equivalent
varieties is constructed. The example is provided by an appropriate pair of complex
rational elliptic surfaces X and Y . Then [X ] = [Y ] because D-equivalence of complex
surfaces implies equality of their Picard numbers, and for a complex rational smooth
projective surface X with Picard number ρ one has [X ] = 1 + ρL + L

2.

So far, one could imagine that D-equivalent varieties have the same class in the
Grothendieck ring. This, however, is far too naive, as Examples 1.4 and 1.5 show.

Example 1.4 Let X and Y be Calabi–Yau threefolds from the Pfaffian–Grassmannian
correspondence, see [6]. Then D(X) ∼= D(Y ) by [6] and [15]. On the other hand,
Borisov showed in [5] that [X ] − [Y ] is annihilated by a power of L, and Martin [25]
improved his result by showing that

([X ] − [Y ])L6 = 0.

It is not known whether 6 is the minimal power of L annihilating [X ] − [Y ], but it is
not hard to show that such power is positive, i.e., that [X ] �= [Y ] in the Grothendieck
ring (see Proposition 2.2).

Example 1.5 Let X and Y be Calabi–Yau threefolds of Ito–Miura–Okawa–Ueda, [9].
By [21] we haveD(X) ∼= D(Y ). On the other hand, the main result of [9] is the relation

([X ] − [Y ])L = 0.
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Again, it is easy to show that [X ] �= [Y ], so the power of L annihilating the difference
in this case is definitely minimal.

1.2 L-equivalence

Examples 1.4 and 1.5 suggest a less naive conjecture.
We say that varieties X and Y are L-equivalent, if

([X ] − [Y ])Lr = 0

for some integer r ≥ 0, in other words, if the classes of X and Y in the localized
Grothendieck ring K0(Var/k)[L−1] are equal, i.e., if

[X ] − [Y ] ∈ Ker(K0(Var/k) → K0(Var/k)[L−1]).

If [X ] = [Y ] in K0(Var/k), we say that X and Y are trivially L-equivalent.
It is easy to see that L-equivalence and trivial L-equivalence are indeed equivalence

relations on the set of isomorphism classes of smooth projective algebraic varieties
over k.

The following conjecture is quite challenging. Its far reaching consequences are
discussed below.

Conjecture 1.6 If X and Y are smooth projective simply connected varieties such that
D(X) ∼= D(Y ), then there is a nonnegative integer r ≥0 such that ([X ]−[Y ])Lr =0. In
other words,D-equivalence of simply connected varieties implies their L-equivalence.

The assumption of simple connectedness in the conjecture is necessary. As wewere
informed by A. Efimov and independently by K. Ueda, one can construct examples of
D-equivalent complex abelian varieties which are not L-equivalent (the invariant dis-
tinguishing between them is the integral Hodge structure on first cohomology group).

Of course, it is possible that the relation between the classes of X and Y is more
complicated. For instance, it well may be that one has to consider the same completion
of the localizedGrothendieck ring as inmotivic integration, and just say that the classes
of X and Y in that completion are the same.

Conjecture 1.6 is analogous to Orlov’s conjecture [26, Conjecture 1] saying that
Chow motives with rational coefficients of D-equivalent varieties are isomorphic, and
similarly to Orlov’s conjecture and to Kawamata’s conjecture the converse implication
definitely does not work in general—L-equivalence of varieties does not imply their
D-equivalence. The simplest example here is provided byP

1×P
1 and the blowup ofP2

in a point. Both these surfaces have class 1+2L+L
2 in the Grothendieck ring, but are

not D-equivalent by [4]. Note however that for any pair X , Y of L-equivalent varieties
their derived categories have the same class [D(X)] = [D(Y )] in the Bondal–Larsen–
Lunts ring K0(DG-cat/k) because the homomorphism K0(Var/k) → K0(DG-cat/k)

sends L to 1 and thus factors through K0(Var/k)[L−1].
Before going further, let us discuss some consequences of Conjecture 1.6.
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First of all, L-equivalence of varieties X and Y implies equality of their Hodge
numbers. Indeed, evaluating the Hodge polynomial (considered as a ring homomor-
phism h : K0(Var/k) → Z[u, v]) on the left and right hand sides of the relation
[X ]Lr = [Y ]Lr , we deduce an equality hX (u, v)(uv)r = hY (u, v)(uv)r in Z[u, v],
which of course implies an equality of Hodge polynomials hX (u, v) = hY (u, v) and
hence an equality of the Hodge numbers. A similar argument shows that L-equivalent
varieties also have the same (motivic) zeta-functions. Thus, Conjecture 1.6 predicts
equality of Hodge numbers, zeta-functions (and any other multiplicative motivic
invariant whose value on the class L is not a zero divisor) for any pair of D-equivalent
simply connected varieties.

Besides that, validity of Conjecture 1.6 would provide a lot of nontrivial elements
of the Grothendieck ring annihilated by a power of L. Indeed, the difference of any
pair of derived equivalent non-birational Calabi–Yau varieties gives such an element,
see Proposition 2.2. So, another natural question to ask in this direction is:

Question 1.7 Do differences [X ] − [Y ] of L-equivalent smooth projective varieties
generate the kernel of the localization morphism K0(Var/k) → K0(Var/k)[L−1]?

A positive answer to this question would be helpful in certain birational geometry
problems, for instance in rationality questions for cubic hypersurfaces [7].

Let us also discuss how Conjecture 1.6 could be proved. Of course, a natural way to
attack it would be by considering the kernel of a Fourier–Mukai functor providing an
equivalence of derived categories and cooking a relation in the Grothendieck ring from
it. It is not, however, clear, how this approach could be realized, even in the simplest
case when X is a K3 surface, Y is a two-dimensional fine moduli space of sheaves
on X and the Fourier–Mukai kernel is given by the universal sheaf on X × Y . Note
however, that in all examples, including the main result of this paper (see Theorem 1.9
below), the proof of L-equivalence of X and Y uses a correspondence that is evidently
related to such a Fourier–Mukai kernel.

In this direction one more question seems natural.

Question 1.8 Assume X and Y are both D-equivalent and L-equivalent. What is the
categorical meaning of the minimal integer r such that ([X ] − [Y ])Lr = 0?

It seems plausible that this integer is related to the rank of a Fourier–Mukai kernel
defining an equivalence. Indeed, in the known cases of D-equivalence in Example 1.2
this kernel can be taken to be of rank 0 (as an object in the derived category of the
product X × Y ), and as we explained, in these cases the corresponding integer r is
also zero.

1.3 K3 surfaces and quadrics

One of the main goals of this paper is to construct a new example of L-equivalence
between D-equivalent varieties. To be more precise, we consider an example of D-
equivalent K3 surfaces, in fact, the simplest such example, and prove that these K3
surfaces are L-equivalent.
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We start with a K3 surface X of degree 8 (i.e., an intersection of three quadrics
inP

5), and take Y to be the correspondingK3 surface of degree 2 (i.e., the double cover
of P

2 branched over the sextic discriminant curve of the net of quadrics defining X ).
Then it is well known (for instance, see [17]) that Y carries a natural 2-torsion Brauer
class αY ∈ Br(Y ) (this class depends on X ), such that

D(X) ∼= D(Y, αY ),

the category in the right hand side being the twisted derived category of Y (it can
be thought of as the derived category of sheaves of coherent modules over the corre-
sponding Azumaya algebra on Y ). In general, the Brauer class αY is not trivial, and
we show that it vanishes if and only if X contains a curve of odd degree. We prove that
as soon as αY = 0 so that D(X) ∼= D(Y ), X and Y are also L-equivalent. Moreover,
we show that in general this L-equivalence is not trivial (it does not follow from an
isomorphism of K3 surfaces).

More precisely, our result can be stated as follows.

Theorem 1.9 Let k be a field of characteristic not equal to 2. Let X be a smooth
intersection of three quadrics in P

5. Assume that the corresponding double cover
Y → P

2 is also smooth and let αY ∈ Br(Y ) be the corresponding Brauer class.
If X has a k-point not lying on a line contained in X and αY = 0 then X and Y are
D-equivalent and L-equivalent; explicitly

D(X) ∼= D(Y ) and ([X ] − [Y ])L = 0.

Moreover, if k = C there is a countable union M ′ of locally closed codimension 1
subsets of the moduli space of polarized K3 surfaces of degree 8 such that for
every X in M ′ we have αY = 0, but [X ] − [Y ] �= 0.

Existence of a line on X is a codimension one condition on the moduli space
of K3 surfaces of degree 8. If X contains a line defined over k then the Brauer
class αY vanishes automatically. However, in this case Y ∼= X , so that the constructed
L-equivalence is trivial.

The components of the subset M ′ mentioned in the theorem are the moduli spaces
of K3 surfaces with rank 2 Neron–Severi lattice and some special values of the dis-
criminant, see Lemma 3.10 for details.

Our approach to the theorem is based on studying families of quadrics and relations
between their classes in the Grothendieck ring. We establish a general result in this
direction by proving for a flat family of n-dimensional quadrics Q → S which has a
regular section a relation

[Q] = [S](1 + L
n) + [Q̄]L,

where Q̄ is the hyperbolic reduction ofQ—a family of quadrics over S of dimension
n − 2 constructed from the section. In case n = 2 we prove a strengthening of this
result—firstwe show that Q̄ is nothing but the determinant double cover of S associated
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to the family Q; second we check that one can use a rational section of the family
instead of a regular one to get the same relation; finally we show that existence of
a rational section is equivalent to the vanishing of the associated Brauer class. We
discuss this material in Sect. 2.

The simple relations in the Grothendieck ring associated with families of quadrics
that we discussed above is probably only the tip of an iceberg. They can be considered
as the Grothendieck ring analogs of the simplest results about motives of quadrics over
non algebraically closed fields, see e.g. [28, Proposition 2]. A good question is to find
other relations between quadrics in the Grothendieck ring and to understand what are
the Grothendieck ring incarnations of such fascinating objects as Rost motives [28].
A related result is the computation by Kollár of the subring of K0(Var/k) generated
by classes [C] of conics over k [12].

In Sect. 3 we apply these results as follows. We start with a family of quadrics
through X that we think of as a family Q → P

2 of four-dimensional quadrics
over P

2. We use the hyperbolic reduction with respect to a k-point P ∈ X to reduce
the dimension of the family of quadrics Q by 2, and get in this way a family Q̄P of
two-dimensional quadrics over P

2. We show that its total space is isomorphic to the
blowup of P

4 with center in X ′, the projection of X to P
4 from P . Using this blowup

representation to control the Chow groups of Q̄P , we show that the family Q̄P → P
2

has a rational section if and only if X contains a curve of odd degree. Since the deter-
minant double cover of P

2 associated with the family of quadrics Q̄P is nothing but Y ,
we deduce a relation [Q̄P ] = [P2](1 + L

2) + [Y ]L, which in a combination with the
blowup relations for Q̄P → P

4 and X ′ → X implies [X ]L = [Y ]L.
For the second part of the Theorem we use a criterion of Madonna and Nikulin [24]

for an isomorphism of X and Y . It works very nicely when the Neron–Severi group
of X is of rank 2, and in this case it is formulated in terms of arithmetic properties of
its discriminant. We check that there is a countable set of discriminants that ensures
that the surfaces are not isomorphic, and kills the Brauer class αY at the same time.

Of course, it would be very interesting to consider other examples of D-equivalent
K3 surfaces. In an example of Sect. 2.6.2 we discuss a pair of K3-surfaces Y1 and Y2 of
degree 2 associated with a Verra fourfold. Each of them comes with a natural Brauer
class, and we show that as soon as both classes vanish, we have an L-equivalence
([Y1] − [Y2])L = 0. However, it is not clear yet that the surfaces are not isomorphic
with this assumption. We plan to discuss this question in future.

Also, in a work in progress we construct an L-equivalence related to a derived
equivalence between a K3 surface X of degree 16 and a twisted K3 surface Y of
degree 4.We show that, similarly to the situation in Theorem 1.9, as soon as the Brauer
class on the degree 4 surface Y vanishes, we have an L-equivalence ([X ]−[Y ])L3 = 0
between X and Y .

We also have a result for K3 surfaces of degree 12. It is one of classical Mukai’s
examples that there is an involution on the moduli space of such K3 surfaces such that
K3 surfaces in involution are D-equivalent (note that a Brauer class does not appear
here, so this case, in a sense, is much simpler then the cases discussed above). We can
show, in fact, that ([X ] − [Y ])L7 = 0 for such K3 surfaces. More precise results on
L-equivalence in this case has been proved independently by Ito, Miura, Okawa, and
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Ueda [10] (with relation ([X ]− [Y ])L3 = 0) and by Hassett and Lai [8] (with relation
([X ] − [Y ])L = 0).

The authors would like to thank Tom Bridgeland, Sasha Efimov, Sergey Galkin,
Valery Lunts, Viacheslav Nikulin, Shinnosuke Okawa, Dima Orlov, Alex Perry,
Alexander Vishik, Kazushi Ueda, Ziyu Zhang for discussions and interest in our work,
Daniel Huybrechts for his comments on a draft of this paper and the referee for the sug-
gestions on improving the exposition. The authors are grateful to the Higher School of
Economics and the School of Mathematics and Statistics at the University of Sheffield
for providing numerous opportunities for collaboration.

2 Quadric fibrations in the Grothendieck ring

Unless stated otherwise all schemes are of finite type over a field k of characteristic
not equal to 2.

2.1 Preliminaries on the Grothendieck ring

We start with discussing a couple of well-known properties of the Grothendieck ring.
The first is elementary.

Lemma 2.1 Assume M → S is a Zariski locally trivial fibration with fiber F. Then
[M] = [S][F].
Proof We use Noetherian induction on S. When S is empty, there is nothing to prove.
Otherwise, let U ⊂ S be an open subset over which the fibration is trivial. Then
MU ∼= U × F , hence [MU ] = [U ][F]. On the other hand, if Z = S\U then MZ → Z
is a Zariski locally trivial fibration with fiber F , hence by induction [MZ ] = [Z ][F].
Summing up these relations, we deduce the lemma. 	


The next property is much less trivial and relies on deep results in birational geom-
etry.

Proposition 2.2 [23, Corollary 1] Let k be a field of characteristic zero. Assume X
and Y are smooth projective Calabi–Yau varieties over k. If [X ] = [Y ] in K0(Var/k)

then X is birational to Y .

Proof If [X ] = [Y ] then of course the images of [X ] and [Y ] in the quotient ring
K0(Var/k)/L are equal. By [22] this quotient is isomorphic to the free abelian group
generated by stable birational classes of smooth projective varieties. So, it follows
that X × P

m is birational to Y × P
n for some integers m and n. Let X × P

m ��� X̄
and Y × P

n ��� Ȳ be the maximal rationally connected quotients [14]. Then X̄
and Ȳ are birational, since X ×P

m and Y ×P
n are. Moreover, the map X ×P

m ��� X̄
evidently factors through X , hence X̄ is the maximal rationally connected quotient
of X , and since X is a Calabi–Yau variety, X̄ is birational to X . Analogously, Ȳ is
birational to Y . Thus X is birational to Y . 	
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2.2 Families of quadrics and hyperbolic reduction

Let S be an algebraic variety and p : Q → S a flat family of n-dimensional quadrics
over S. In other words, we assume that there is a vector bundle E of rank n + 2
over S, a line bundleL, and an embedding of vector bundles q : L → S2E∨. A natural
isomorphism

H0(PS(E), π∗L∨ ⊗ OPS(E)/S(2)) ∼= H0(S,L∨ ⊗ S2E∨) ∼= Hom(L, S2E∨),

where π : PS(E) → S is the projection, associates to q a section of the line bundle
π∗L∨ ⊗ OPS(E)/S(2) on PS(E). The family of quadrics associated with q is its zero
locus Q ⊂ PS(E), so that we have a diagram

Q

p

PS(E)

π

S

Given a family of quadrics as above we consider the sheaf

C := Coker(E q−→ E∨ ⊗ L∨),

called the cokernel sheaf of the family. We denote by S≥k ⊂ S the locus where
the corank of the map q is at least k. Equivalently, this is the locus where the rank
of the sheaf C is at least k. The locus S≥k ⊂ S has a natural scheme structure (its
ideal is generated by the minors of q of appropriate size). Note that flatness of the
quadric fibration p : Q → S is equivalent to the rank of the quadrics being everywhere
nonzero, that is to S≥n+2 = ∅.

For every k ≥ 0 we denote by Fk(Q/S) the relative Hilbert scheme of projective k-
spaces in fibers of Q over S. We denote by pk : Fk(Q/S) → S the natural projection.
We have a diagram

Fk(Q/S)

pk

GrS(k + 1, E)

πk

S

where GrS(k+1, E) is the relative Grassmannian of (k+1)-dimensional subspaces in
the fibers of E and πk is its natural projection. Note that F0(Q/S) = Q and p0 = p.

We define a k-section of Q → S to be a regular morphism s : S → Fk(Q/S)

such that pk ◦ s = idS . Thus a 0-section of Q is simply a section of Q → S. We
call a k-section s nondegenerate if for any geometric point x ∈ S the linear space
s(x) ⊂ Qx does not intersect Sing(Qx ).

Giving a k-section s is equivalent to giving a vector subbundle Uk+1 ↪→ E of
rank k + 1, which is isotropic with respect to q, i.e., such that the composition

Uk+1 ↪→ E q−→ E∨ ⊗ L∨ � U∨
k+1 ⊗ L∨
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is zero. A section sUk+1 corresponding to a vector subbundle Uk+1 is nondegenerate if

andonly if the compositionE q−→ U∨
k+1⊗L∨ of the twomaps above is an epimorphism.

Indeed, this map is not an epimorphism if and only if the dual map Uk+1 ⊗L → E∨ is
not a monomorphism at some closed point x ∈ S, that is there is a vector u ∈ Uk+1,x
such that q(u, Ex ) = 0. But then u is a singular point of the quadric Qx that lies on
the linear space s(x) = P(Uk+1,x ).

Remark 2.3 If the total space Q of a flat family of quadrics is smooth, then every
k-section sk : S → Fk(Q/S) is nondegenerate. Indeed, the differential of the compo-

sition PS(Uk+1) ↪→ Q
p−→ S is surjective (since the projection map PS(Uk+1) → S

is smooth), hence the differential of the map p : Q → S is surjective at any point
of PS(Uk+1) ⊂ Q. Therefore, every such point is a smooth point of the corresponding
fiber.

If Q → S is a family of n-dimensional quadrics and s = sUk+1 is its nondegenerate
k-section, we define a new family of quadrics as follows. We consider a complex

0 → Uk+1 −→ E q−→ U∨
k+1 ⊗ L∨ → 0 (1)

We define Ēs to be the middle cohomology sheaf of this complex, in other words

Ēs = U⊥
k+1/Uk+1 ⊂ E/Uk+1, where U⊥

k+1 := Ker(E q−→ U∨
k+1 ⊗L∨). The sheaf Ēs is

locally free since s is nondegenerate. Since this is the only cohomology sheaf of (1),
the dual complex

0 → Uk+1 ⊗ L q−→ E∨ −→ U∨
k+1 → 0

also has the only cohomology sheaf, which sits in the middle term, and is isomorphic
to Ē∨

s . Moreover, we have a natural self-adjoint commutative diagram

0 Uk+1 E q

q

U∨
k+1 ⊗ L∨ 0

0 Uk+1
q E∨ ⊗ L∨ U∨

k+1 ⊗ L∨ 0

(2)

By passing to the cohomology sheaves of the complexes, it induces a self-adjoint
morphism of vector bundles q̄ : Ēs → Ē∨

s ⊗L∨, i.e., a family of quadrics of dimension
n − 2k − 2

Q̄s ⊂ PS(Ēs).
We call it the hyperbolic reduction of Q with respect to section s (cf. [1, Section 1.3]).
Note that Q̄s is not necessary flat, but there is a simple criterion for its flatness.

Lemma 2.4 The corank stratification for the quadric fibration Q̄s coincides with
the corank stratification for Q. In particular, if dim Q/S = n and s is a k-section,
then Q̄s is flat iff S≥n−2k = ∅.



Grothendieck ring of varieties, D- and L-equivalence…

Proof As it was already mentioned, the corank stratification of Q is the rank strat-

ification for the sheaf C := Coker(E q−→ E∨ ⊗ L∨). On the other hand, from the

diagram (2) it easily follows that C ∼= C̄ := Coker(Ēs q̄−→ Ē∨
s ⊗ L∨). Therefore,

this stratification coincides with the rank stratification for C̄, i.e., with the corank
stratification of Q̄s .

Since the nonflat locus of Q̄s is the same as the zero locus of q̄ , i.e., the corank
n − 2k locus of q̄ (note that the rank of E is equal to n + 2 and the rank of Ēs is
(n+2)−2(k+1) = n−2k), we conclude that q̄ is flat if and only if the locus S≥n−2k
is empty. 	


Homological properties of Q and Q̄s are closely related. One can check that the
sheaves of even parts of Clifford algebras on S corresponding to the families of
quadrics Q and Q̄s are Morita-equivalent (this is proved in [1, Theorem 1.8.7] under
assumption S≥2 = ∅, but the fact is more general). It follows then from [17, Theo-
rem 4.2] that the interesting parts of the derived categories D(Q) and D(Q̄s) are the
same.

When S = Spec(k), the Chow motive of Q is up to Tate motives equal to the Tate
twist of the Chow motive of Q̄s [28, Proposition 2], and the same result must be true
for the motives of Q and Q̄s in the Voevodsky category of motives over the general
base S.

Our first goal is to relate the classes of Q and Q̄s in the Grothendieck ring.

2.3 The hyperbolic reduction relation

Let Q → S be a family of n-dimensional quadrics and let s : S → Fk(Q/S) be
its non-degenerate k-section. Let Uk+1 ↪→ E be the subbundle corresponding to the
section s so that we have PS(Uk+1) ⊂ Q.

Proposition 2.5 The blow up f : Q′ → Q with the center in PS(Uk+1) fits into a
diagram

Q′
f g

PS(Uk+1) Q PS(E/Uk+1) Q̄s

where the map g has fibers P
k+1 over Q̄s and fibers P

k over its complement, and is
Zariski locally trivial over both strata.

Proof The blowup of a projective space P
n+1 in a linear subspace P

k is a P
k+1-bundle

over a smaller projective space P
n−k . We think of PS(Uk+1) ⊂ PS(E) as of a relative

version of P
k ⊂ P

n+1; then the relative version of P
n−k is PS(E/Uk+1). Denote by H

and H ′ the relative hyperplane classes of PS(E) and PS(E/Uk+1) respectively. Define
a vector bundle Uk+2 of rank k + 2 on PS(E/Uk+1) from the diagram
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0 π ′∗Uk+1 Uk+2 O(−H ′) 0

0 π ′∗Uk+1 π ′∗E π ′∗(E/Uk+1) 0,

(3)

where π ′ : PS(E/Uk+1) → S is the projection and the top line is the pullback of
the bottom line with respect to the right vertical map. The relative version of the
isomorphism mentioned above is then the isomorphism at the top of the following
diagram

Q′

f g

BlPS(Uk+1)(PS(E))

f̃

∼
PPS(E/Uk+1)(Uk+2)

g̃

Q PS(E) PS(E/Uk+1)

We obtain a chain of maps (the dotted arrow of the above diagram)

Q′ := BlPS(Uk+1)(Q) ↪→ BlPS(Uk+1)(PS(E)) ∼= PPS(E/Uk+1)(Uk+2) → PS(E/Uk+1).

Our goal is to describe the fibers of this composition g : Q′ → PS(E/Uk+1). To
unburden formulas we will use the same notation for the pullbacks of vector bundles
with respect to natural morphisms as for the bundles themselves. We will also denote
by D the divisor class of the line bundle L∨, and by E the exceptional divisor of the
blowup BlPS(Uk+1)(PS(E)).

We have a natural relation in the Picard group of the blowup

H ′ = H − E . (4)

On the other hand, Q′ ⊂ BlPS(Uk+1)(PS(E)) is a divisor in the class 2H + D − E .
By (4) it can be rewritten as H + H ′ + D. Since H is also a relative hyperplane
class for g̃ : PPS(E/Uk+1)(Uk+2) → PS(E/Uk+1), while D and H ′ are pullbacks
from PS(E/Uk+1), it follows that the general fiber of g : Q′ → PS(E/Uk+1) is a
hyperplane P

k in P
k+1, while special fibers are the whole spaces P

k+1.
The locus over which the fibers jump is the zero locus of the section q ′ of the

pushforward of the line bundle O(H + H ′ + D) with respect to the map g̃. By
projection formula, we have

g̃∗O(H + H ′ + D) ∼= (g̃∗O(H))⊗O(H ′ + D) ∼= U∨
k+2(H

′ + D) ∼= U∨
k+2 ⊗L∨(H ′),

and we have a section q ′ ∈ H0(PS(E/Uk+1),U∨
k+2 ⊗ L∨(H ′)) corresponding to Q′.

To analyze the zero locus of q ′ we consider two short exact sequences on
PS(E/Uk+1)

0 → U∨
k+2 ⊗ L∨(H ′) → S2U∨

k+2 ⊗ L∨ → S2U∨
k+1 ⊗ L∨ → 0, (5)

0 → L∨(2H ′) → U∨
k+2 ⊗ L∨(H ′) → U∨

k+1 ⊗ L∨(H ′) → 0 (6)
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obtained from thedefining sequence (3) ofUk+2 by taking symmetric square, dualizing,
and twisting.

The section of the middle term of (5) given by q vanishes when projected to the
third term (since Uk+1 is an isotropic subbundle of E), and gives a section q ′ of the
first term corresponding to Q′.

The projection of q ′ to the third term of (6) corresponds under the isomorphism

H0(PS(E/Uk+1),U∨
k+1 ⊗ L∨(H ′)) � H0(S,U∨

k+1 ⊗ L∨ ⊗ (E/Uk+1)
∨)

to the map E/Uk+1
q−→ U∨

k+1 ⊗ L∨ of bundles on S, which is surjective by non-
degeneracy of s, and its kernel is the bundle Ēs = U⊥

k+1/Uk+1. Thus the zero locus of
the projection of q ′ to the third term of (6) is equal to PS(Ēs) ⊂ PS(E/Uk+1). When
restricted to this projective subbundle, the section q ′ comes from a section q̄ of the
first term of (6). This section q̄ defines a quadric in PS(Ēs), and it is easy to see that it
coincides with the quadric Q̄s .

The maps g−1(Q̄s) → Q̄s and g−1(PS(E/Uk+1)\Q̄s) → PS(E/Uk+1)\Q̄s are
Zariski locally trivial because the divisor H provides a relative hyperplane class for
both of them. 	

Remark 2.6 When k = 0 one can show that the map g : Q′ → PS(E/Uk+1) is the
blowup of PS(E/Uk+1) with center in Q̄s . We omit the proof of this fact, because we
will not need it.

The geometric relation between Q and Q̄s described in the above Proposition has
an immediate consequence for their Grothendieck ring classes.

Corollary 2.7 Assume p : Q → S is a flat family of n-dimensional quadrics that
admits a non-degenerate k-section s : S → Fk(Q/S). Then

[Q] = [S][Pk](1 + L
n−k) + [Q̄s]Lk+1.

Proof The map f : Q′ → Q is a blowup with smooth center PS(Uk+1) of codimen-
sion n − k, hence

[Q′] =
(
[Q]−[PS(Uk+1)]

)
+[PS(Uk+1)][Pn−k−1]=[Q]+[S][Pk](L+· · ·+L

n−k−1).

Similarly, the map g is a stratified Zariski locally trivial fibration, hence

[Q′] =
(
[PS(E/Uk+1)] − [Q̄s]

)
[Pk] + [Q̄s][Pk+1] = [S][Pn−k][Pk] + [Q̄s]Lk+1.

The two equalities combined imply the required relation. 	

Example 2.8 Let us apply Corollary 2.7 to the case when S = Spec(k) and Q is
a smooth n-dimensional quadric over k. Then as soon as Q contains a linear k-
dimensional subspace defined over k with k < �n/2�, one has [Q] = 1 + L +
· · · + L

k + [Q̄]Lk+1 + L
n−k + · · · + L

n where Q is a (n − 2k − 2)-dimensional
quadric.
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Furthermore, if Q has a maximal isotropic subspace (i.e., with k = �n/2�) defined
over k, then Q is empty and Proposition 2.5 implies that [Q] = [Pn] + L

n/2 (with the
second summand present only for even n).

Conversely, onemayaskwhether [Q] ≡ [Pn]+L
n/2

(
mod L

k+1
)
for some k ≤ [ n

2

]
implies existence of a k-dimensional linear space on Q. For instance, when the base
field k has characteristic zero this holds for k = 0 by the Larsen–Lunts theorem [22]:
if [Q] ≡ 1 (mod L), then Q is stably rational, and hence has a rational point.

In course of proof of Proposition 2.5 we obtained the following explicit description
of the hyperbolic reduction Q̄s which we will need later:

Lemma 2.9 The subscheme Q̄s ⊂ PS(E/Uk+1) is the zero locus of the section q ′ of
the middle term U∨

k+2 ⊗ L∨(H ′) of the short exact sequence (6) of vector bundles
on PS(E/Uk+1).

The isomorphism class of the hyperbolic reduction Q̄s depends in general on the
choice of a k-section s (in fact, even the isomorphism class of the vector bundle Ēs
depends on s). However, it easily follows from Corollary 2.7 that the L-equivalence
class of Q̄s is independent of s. The next lemma shows that this L-equivalence in fact
is trivial.

Lemma 2.10 The class [Q̄s] in the Grothendieck ring is independent on the choice
of a nondegenerate k-section s.

Proof Assume s and s′ are two nondegenerate k-sections of Q. We want to show that
[Q̄s] = [Q̄s′ ]. The proof uses Noetherian induction on S.

We may assume that S is an irreducible variety, and let K = k(S) be the function
field of S. Over K the quadratic form qK decomposes into an orthogonal direct sum of
its hyperbolic reduction and a split (hyperbolic) quadratic form q0 of rank 2k. Thus,
we have orthogonal direct sum decompositions

qK � q̄s,K ⊥ q0 and qK � q̄s′,K ⊥ q0.

By theWitt Cancellation Theorem for quadratic forms over fields, we have an isomor-
phis q̄s,K ∼= q̄s′,K . It extends to an isomorphism of the corresponding quadrics

Q̄s,U � Q̄s′,U

over some dense open subset U ⊂ S. Therefore [Q̄s,U ] = [Q̄s′,U ]. By Noetherian
induction we also have [Q̄s,S\U ] = [Q̄s′,S\U ]. Summing up these equalities gives the
result. 	


2.4 Reduction to the double cover

Assume that n = 2k + 2 is even. Recall that the rank of E is n+ 2 = 2k + 4. Consider
the determinant of the map q : E → E∨ ⊗ L∨. It is a map

det(q) : det(E) → det(E)∨ ⊗ (L∨)2k+4.
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In particular, it gives a section of the line bundle (det(E)∨ ⊗ (L∨)k+2)2, whose zero
locus coincides scheme-theoretically with the discriminant divisor S≥1 ⊂ S. We
denote by

S̃ := SpecS(OS ⊕ (det(E) ⊗ Lk+2)) (7)

the corresponding double cover branched along S≥1, and call it the determinant
double cover.

Amore invariant way to construct S̃ is as follows. Consider the sheaf of even parts of
Clifford algebras on S associated with the family of quadrics Q (see [17, Section 3.3]).
Then the center of this sheaf (in case of even dimension) can be identified as an OS-
module with OS ⊕ (det(E) ⊗ Lk+2) and its algebra structure, given by the Clifford
multiplication, is the one discussed above, see [17, Section 3.5].

Remark 2.11 Note that the double cover S̃ is well defined for any flat family Q of
even-dimensional quadrics, even in case when S≥1 = S (i.e., when all quadrics in the
family are degenerate). Indeed, in this case, the sheaf of algebras in the right hand side
of (7) is nilpotent, so S̃ in nonreduced, but still it is a flat S-scheme. Note also that
formation of the determinant double cover commutes with arbitrary base changes.

Lemma 2.12 Let p : Q → S be a flat family of quadrics of dimension n = 2k + 2
with S≥2 = ∅. If s : S → Fk(Q/S) is a nondegenerate regular k-section then Q̄s ∼= S̃.
In particular, Q̄s does not depend on a choice of s.

Proof The family of quadrics Q̄s is flat (Lemma 2.4) of dimension 0 over S, hence
the sheaf of even parts of Clifford algebras of Q̄s is commutative of rank 2 and its
(relative over S) spectrum is isomorphic to Q̄s . On the other hand, this sheaf isMorita-
equivalent to the sheaf of even parts of Clifford algebras of Q (see [1, Theorem 1.8.7]),
hence is isomorphic to the center of that algebra. But the relative spectrum of the center
is equal to the determinant double cover S̃ by definition. 	

Corollary 2.13 Let p : Q → S be a flat family of quadrics of dimension n = 2k + 2
with S≥2 = ∅. If p : Q → S admits a nondegenerate regular k-section then

[Q] = [S][Pk](1 + L
k+2) + [S̃]Lk+1.

2.5 The Brauer class and rational sections

In this section we assume n = 2, so p : Q → S is a family of two-dimensional
quadrics. Assume furthermore that S≥2 = ∅.
Lemma 2.14 Let p : Q → S be a flat family of two-dimensional quadrics such
that S≥2 = ∅. The map p1 : F1(Q/S) → S factors as

F1(Q/S)
p̃1−−→ S̃ −→ S,

where S̃ is the determinant double cover of S, and the map p̃1 : F1(Q/S) → S̃ is an
étale locally trivial P

1-bundle.
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Proof By [17, Proposition 3.13] there is a sheaf of Azumaya algebras of degree 2 on S̃
whose pushforward to S is isomorphic to the sheaf of even parts of Clifford algebras
of Q, and [18, Lemma 4.2] identifies the corresponding P

1-fibration over S̃ with the
relative Hilbert scheme F1(Q/S). 	


In what follows we denote by αQ ∈ Br(S̃) the class in the Brauer group (considered
as the group of Morita-equivalence classes of Azumaya algebras) of the P

1-fibration
F1(Q/S) → S̃. By construction, it is 2-torsion.

By a (non-degenerate) rational (multi)section of a morphism we understand a reg-
ular (multi)section defined on an open dense subset of the base scheme with the same
notion of non-degeneracy as before.

Proposition 2.15 Let p : Q → S be a flat family of two-dimensional quadrics such
that S≥2 = ∅. The following conditions are equivalent

(1) there is a rational non-degenerate section S ��� Q of p : Q → S;
(1′) there is a rational non-degenerate multisection of p : Q → S of odd degree;
(2) there is a rational section S̃ ��� F1(Q/S) of p̃1 : F1(Q/S) → S̃;
(2′) there is a rational multisection of p̃1 : F1(Q/S) → S̃ of odd degree;
(3) αQ = 0, i.e., p̃1 : F1(Q/S) → S̃ is a projectivization of a rank 2 vector bundle

on S̃.

Proof Statements (2), (2′) and (3) are equivalent because F1(Q/S) → S̃ is the relative
Severi–Brauer variety corresponding to the degree twoAzumaya algebra given by αQ .

Let us prove that (1′) is equivalent to (2′).
Assume Z ⊂ Q is a locally closed subscheme such that Z does not intersect singular

loci of the fibers of p and the map Z → S is finite of odd degree d onto an open subset
U ⊂ S (this is a rational non-degenerate multisection). Let Z1 ⊂ F1(Q/S) be the
subscheme parameterizing lines that intersect Z . Clearly, the map Z1 → S̃ is finite of
degree d on Ũ ⊂ S̃, hence is a rational multisection of odd degree.

Conversely, assume Z1 ⊂ F1(Q/S) is a locally closed subscheme such that the
map Z1 → S̃ is finite of odd degree d onto Ũ ⊂ S̃ for an open subset U ⊂ S.
If S≥1 �= S, we may (shrinking U if necessary) assume that U ∩ S≥1 = ∅. Then
consider the subscheme Z ⊂ Q obtained by the intersections of lines parameterized
by Z1. Clearly, the map Z → S is finite of degree d2 onto U ⊂ S, hence a rational
multisection of odd degree, which is evidently non-degenerate.

Now assume S≥1 = S, so all quadrics in the family are cones. The bases of those
cones form a non-degenerate conic bundle Q′ → S and F1(Q/S) ∼= Q′ ×S S̃ (recall
that in this case S̃ is a nilpotent thickening of S, in particular we have a closed embed-
ding S → S̃). Restricting Z1 ⊂ F1(Q/S) to S ⊂ S̃, we obtain a subscheme Z ′

1 ⊂ Q′.
The open complement of cones vertices Q0 ⊂ Q comes with a map Q0 → Q′ which
is a Zariski locally trivial A

1-fibration, hence there is a rational section Q′ ��� Q0.
If Z ⊂ Q0 ⊂ Q is the image of Z ′

1 under it, it is a rational nondegenerate multisection
of Q → S of degree d.

Finally, note that the above proof of equivalence of (1′) and (2′) proves at the same
time equivalence of (1) and (2) (just keep d = 1 everywhere). 	
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Corollary 2.16 Let p : Q → S be a flat family of two-dimensional quadrics
such that S≥2 = ∅. If p has a nondegenerate rational section, then for any base
change S′ → S the family of quadrics Q′ := Q×S S′ → S′ also has a nondegenerate
rational section.

Proof If Q → S has a section, then F1(Q/S) ∼= PS̃(F), where F is a vector bundle
of rank 2 on S̃. It follows that F1(Q′/S′) ∼= PS̃′(F |S̃′), hence Q′ → S′ also has a
nondegenerate rational section. 	

Remark 2.17 Let p : Q → S be a family of quadrics of arbitrary dimension
where S is a scheme over the field k of characteristic zero. It is known that exis-
tence of a rational section implies existence of a section locally in Zariski topology
on S\S≥1, that is over the complement of the discriminant [27]. Thus, Corollary 2.16
is a stronger version of Panin’s theorem for n = 2.

Theorem 2.18 Let p : Q → S be a flat family of two-dimensional quadrics such
that S≥2 = ∅. If either of equivalent conditions of Proposition 2.15 holds, then

[Q] = [S](1 + L
2) + [S̃]L.

Proof We use Noetherian induction on S. When S is empty, there is nothing to prove.
Otherwise, we choose a rational non-degenerate section s of Q → S and let U ⊂ S
be the open subset where s is regular and non-degenerate. Applying Corollary 2.13
to QU → U we deduce

[QU ] = [U ](1 + L
2) + [Ũ ]L.

On the other hand, denoting by S′ = S\U the complement, by Corollary 2.16 the
conditions of the Theorem hold true for the family of quadrics Q′ := Q ×S S′ → S′.
By induction

[Q′] = [S′](1 + L
2) + [S̃′]L.

Summing up these equalities, we obtain the Theorem. 	


2.6 Some applications

In this section we gather a couple of immediate applications of the above results.

2.6.1 Cubic fourfolds with a plane

Let X ⊂ P
5 be a smooth cubic fourfold containing a 2-plane P ⊂ X . Denote

by X̃ = BlP (X) the blow up of P . Projecting from P we obtain a flat family of
two-dimensional quadrics p : X̃ → P

2 with determinant double cover K3 surface Y .
By Theorem 2.18 we get that as soon as p admits a rational section (by [18, Prop.
4.7] this is equivalent to existence of an algebraic cycle T ∈ CH2(X) such that the
intersection degree T · (H2 − P) is odd), then [X̃ ] = [P2](1 + L

2) + [Y ]L so that

[X ] = 1 + L
2 + L

4 + [Y ]L. (8)
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This generalizes the computation for the case of X admitting two disjoint planes [7,
Example 5.9].

A cubic fourfold as above is rational, and it is plausible that a smooth cubic fourfold
is rational if and only if it has a class in the Grothendieck ring given by (8) for some
K3 surface Y .

2.6.2 Verra fourfolds

Let X → P
2 × P

2 be a double covering branched over a divisor D ⊂ P
2 × P

2 of
bidegree (2, 2). The fibers of the projection p1 : X → P

2 to the first factor are double
coverings of P

2 branched over a conic, hence are two-dimensional quadrics. Thus
p1 : X → P

2 is a family of two-dimensional quadrics. Consequently, its determinant
double cover Y1 → P

2 is a K3 surface that comes with a Brauer class α1. Assuming
that the Brauer class vanishes, we deduce from Theorem 2.18 a relation

[X ] = [P2](1 + L
2) + [Y1]L.

On the other hand, applying the same argument to the projection p2 : X → P
2 to

the second factor, we construct yet another K3 surface double cover Y2 → P
2 with a

Brauer class α2, and assuming again that the Brauer class vanishes we obtain

[X ] = [P2](1 + L
2) + [Y2]L.

Comparing the two relations we deduce an L-equivalence:

([Y1] − [Y2])L = 0.

As we explained above, this holds as soon as the two Brauer classes α1 ∈ Br(Y1)
and α2 ∈ Br(Y2) vanish. However, we do not know a reasonable geometric reformu-
lation of this condition, and did not check that there is an example when this condition
holds, but the surfaces Y1 and Y2 are not isomorphic. We plan to return to this question
in future.

3 Complete intersections of quadrics

3.1 Complete intersections of quadrics and the corresponding families of
quadrics

Let V and W be vector spaces of dimensions

dim V = n + 2, dimW = m + 1,

and choose an embedding q : W ↪→ S2V∨. Denote by Qw ⊂ P(V ) the quadric with
equation q(w) ∈ S2V∨. Assume that

X :=
⋂

w∈W
Qw ⊂ P(V )

is a complete intersection, i.e., dim X = n − m.
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We consider {Qw} as a family of quadrics in P(V ) parameterized by P(W ). Its total
space Q is a divisor inP(V )×P(W ) of bidegree (2, 1)with equation q ∈ S2V∨⊗W∨.
So, by definition

Q → P(W ),

is a flat family of n-dimensional quadrics corresponding to L = OP(W )(−1) and
E = V ⊗ OP(W ) in the notation of Sect. 2. We denote by D ⊂ P(W ) its discriminant
divisor, and when n is even we denote by

Y → P(W )

its determinant double cover. It is a double cover branched over D.
The following criterion of smoothness is well known.

Lemma 3.1 A complete intersection of quadrics X is smooth if and only if the family
of quadrics is regular, i.e., if X does not intersect the singular locus of any quadric in
the family. Furthermore, the discriminant divisor D (and for even n the determinant
double cover Y as well) is smooth if and only if the family of quadrics is regular and
does not contain quadrics of corank 2.

Proof Assume a closed point v of X lies on the singular locus of a quadric Qw.
The tangent space at v to Qw is then equal to the tangent space of P(V ), hence has
dimension n + 1. The tangent space of X is obtained by intersecting it with tangent
spaces of m other quadrics, hence it has dimension at least (n + 1) −m = n −m + 1.
Since the dimension of X is n − m, this point is a singularity of X .

Conversely, assume v is a singular point of X . Then the dimension of the tangent
space at v to X is at least n − m + 1, and its codimension in the tangent space
of P(V ) = P

n+1 is at mostm. But this space is the intersection of (m+1) hyperplanes
(tangents spaces to the quadrics), hence a linear combination of these hyperplanes is
zero. Then the corresponding linear combination of quadrics is singular at v.

For the second part note that D is the intersection of P(W ) ⊂ P(S2V∨) with the
discriminant divisor � ⊂ P(S2V∨). It is singular at a point w ∈ D either if w is a
singular point of �, i.e., the quadric Qw has corank ≥ 2, or if P(W ) is tangent to �

at w. But the tangent space to � at quadric q0 of corank 1 consists of all q such that
q(v0, v0) = 0, where v0 is a generator of Ker q0. Thus, the singular points of D of the
first type appear if and only if P(W ) contains quadrics of corank 2, and those of the
second type appear if and only if v0 is isotropic for all quadrics in P(W ) which means
that the family of quadrics is not regular. 	


It is easy to compute the class of Q in the Grothendieck ring of varieties.

Lemma 3.2 The class of Q in the Grothendieck ring can be written as

[Q] = [Pn+1][Pm−1] + [X ]Lm .
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Proof The restriction of the map Q → P(V ) ∼= P
n+1 to P(V )\X is a Zariski locally

trivial fibration with fiber P
m−1, and its restriction to X is just X × P(W ) ∼= X × P

m .
By Lemma 2.1 we have

[Q] = ([Pn+1] − [X ])[Pm−1] + [X ][Pm] = [Pn+1][Pm−1] + [X ]([Pm] − [Pm−1]),

which is precisely what we need. 	


3.2 Hyperbolic reduction for constant sections

The above lemma relates the class of the intersection of quadrics X to the class of the
family Q. On the other hand, we can use the results of Sect. 2 to express the class
of Q differently.

Lemma 3.3 Assume X is smooth and contains a linear space P ⊂ X of
dimension k. Then

[Q] = [Pm][Pk](1 + L
n−k) + [Q̄P ]Lk+1,

where Q̄P → P(W ) is a family of quadrics of dimension n − 2k − 2.

Proof ByLemma3.1 the space P does not intersect the singular locus of any quadric in
the family. Therefore, the section of Fk(Q/P(W )) given by the family P×P(W ) ⊂ Q
is nondegenerate. So, Corollary 2.7 applies and gives the required formula. 	


The following geometric interpretation of the hyperbolic reduction Q̄P is useful.
Assume P = P(U ), where U ⊂ V is a linear subspace, dim(U ) = k + 1.

Lemma 3.4 The scheme Q̄P can be realized as a complete intersection in
P(W )× P(V/U ) ∼= P

m × P
n−k of k + 1 divisors of bidegree (1, 1) and one divisor of

bidegree (1, 2). Furthermore, all the fibers of the projection Q̄P → P(V/U ) ∼= P
n−k

are linear subspaces in P(W ) ∼= P
m, and if m ≥ k + 1 the general fiber is isomorphic

to P
m−k−2 (and is empty if m = k + 1), and the locus over which the fibers jump is

the image of the linear projection of X from P(U ) to P(V/U ).

Proof We apply the description of Q̄P from Lemma 2.9. In our case S = P(W ),
E = V ⊗ OP(W ) and Uk+1 = U ⊗ OP(W ), thus PS(E/Uk+1) = P(W ) × P(V/U ).

Furthermore, the line bundles L∨ and O(H ′) on P(W ) × P(V/U ) are isomorphic
to O(1, 0) and O(0, 1) respectively and the short exact sequence (6) of Lemma 2.9
rewrites as

0 → O(1, 2) → U∨
k+2 ⊗ O(1, 1) → U∨ ⊗ O(1, 1) → 0

and splits. Thus Uk+2 ∼= U ⊗O⊕O(0,−1) is a pullback from P(V/U ) of the vector
bundleU⊗O⊕O(−1), and Q̄P is the intersection of (k+1) divisors of bidegree (1, 1)
(indexed by a basis in U ), and a divisor of bidegree (1, 2).
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Since the conditions defining Q̄P are linear along P(W ), all fibers of the projection
Q̄P → P(V/U ) are linear spaces. Explicitly the fibers can be described as follows.
The pushforward of U∨

k+2 ⊗O(1, 1) along the projection to P(V/U ) is isomorphic to
W∨ ⊗ (U∨ ⊗ O(1) ⊕ O(2)) and the section q ′ defines a linear map

W ⊗ OP(V/U ) → U∨ ⊗ O(1) ⊕ O(2) (9)

For every point x = Uk+2/U ∈ P(V/U ) evaluating the above map at x gives a linear
map

W
q ′(x)−−−→ U∨

k+2 ⊗ (Uk+2/U )∨ (10)

and the fiber of Q̄P → P(V/U ) over x is the projectivization of the kernel of (10).
Since the dimension of the source of (10) is m + 1, and the dimension of the target
is k + 2 ≤ m + 1, it remains to show that the map is surjective for general Uk+2 and
to describe the set of all Uk+2 for which the surjectivity fails. The dual of (10) can be
rewritten as

Uk+2 ⊗ (Uk+2/U ) → W∨.

Moreover, for any choice of splittingUk+2 ∼= U⊕〈v〉 the abovemaponboth summands
of the decomposition (U ⊗ 〈v〉) ⊕ (〈v〉 ⊗ 〈v〉) ∼= Uk+2 ⊗ (Uk+2/U ) is given up to a
scalar by evaluation of the quadratic form q (but the scalars are different).

Assume that this map is not injective and let u ∈ Uk+2 be an element in the kernel.
If u /∈ U , we can choose v = u for the splitting, and it follows from the above
description that all quadratic forms q(w) vanish on u, hence u ∈ X . In this case the
point Uk+2/U of P(V/U ) is the projection of u from P(U ).

On the other hand, if u ∈ U is in the kernel, then the space Uk+2 is orthogonal
to u with respect to all quadratic forms q(w). Since u ∈ P(U ) ⊂ X , it follows that
the space P(Uk+2) is tangent to X at u, hence the point Uk+2/U of P(V/U ) is on the
projection of the tangent space of X at u from P(U ).

Both arguments work in the opposite direction too, so it follows that the fibers of
the map Q̄P → P(V/U ) jump precisely over the image of BlP (X) under the linear
projection X ��� P(V/U ). It remains to note that

dim X = n − m < n − k = dim P(V/U ),

so that the general fiber of the projection Q̄P → P(V/U ) (away of the image
of BlP (X)) indeed has dimension m − k − 2. 	


In what follows we use these observations and results of Sect. 2 to produce some
relations in the Grothendieck ring of varieties. Our ultimate goal is to express the class
of a family of quadrics Q associated with a complete intersection X of quadrics in
terms of the class P(W ) = [Pm] of the base and the class of the determinant double
cover Y → P

m , and compare it with the relation of Lemma 3.2.
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3.3 Naive examples

In this section we discuss two examples when the above program can be achieved by
a reduction along a constant k-section of Q → P(W ) as in Lemma 3.3.

In the first example we relate the classes of two genus 1 curves.

Corollary 3.5 Let X ⊂ P
3 be a smooth complete intersection of two quadrics and

Y → P
1 is the corresponding determinant double cover. If X has a k-rational point,

then ([X ] − [Y ])L = 0.

Proof Applying Lemma 3.3 with P being a k-rational point on X we deduce an
equality [Q] = [P1](1 + L

2) + [Y ]L (the family Q̄P of 0-dimensional quadrics
coincides with the determinant double cover Y by Lemma 2.12). On the other hand,
[Q] = [P3]+ [X ]L by Lemma 3.2. Since [P1](1+L

2) = [P3], we deduce the desired
equality [X ]L = [Y ]L. 	


In the second example we relate the classes of two K3 surfaces.

Corollary 3.6 Let X ⊂ P
5 be a smooth complete intersection of three quadrics and

let Y → P
2 be the corresponding determinant double cover. If X has a line defined

over k, then ([X ] − [Y ])L2 = 0.

Proof Applying Lemma 3.3 with P being a k-rational line on X we have an
equality [Q] = [P2][P1](1+ L

3) + [Y ]L2 (the family Q̄P of 0-dimensional quadrics
coincides with the determinant double cover Y by Lemma 2.12). On the other hand,
[Q] = [P5][P1] + [X ]L2 by Lemma 3.2. Again we deduce that [X ]L2 = [Y ]L2. 	


However, the two L-equivalences we found here are trivial.

Lemma 3.7 In the situations of Corollaries 3.5 and 3.6we have Y ∼= X. In particular,
[X ] − [Y ] = 0.

Proof In these examples we havem = k+1 and n = 2m = 2k+2. By Lemma 3.4 we
have a map Y → P

n−k = P
k+2, whose general fiber is empty, and which is birational

onto the image of X under the linear projection from P . Thus X and Y are birational.
But since both are either genus 1 curves or K3 surfaces, it follows that X ∼= Y . 	


3.4 A nontrivial example

We consider the same example of two K3 surfaces as above, but weaken the assump-
tions to avoid isomorphism of X and Y .

So, let X ⊂ P
5 be a complete intersection of three quadrics and Y → P

2 be its
determinant double cover. We assume that both X and Y are smooth. By Lemma 3.1
this means that all quadrics in the family Q → P

2 defining X have corank ≤ 1 and
that X does not pass through the singular points of singular quadrics.

Assume X has a k-rational point P , and let Q̄P → P
2 be the family of two-

dimensional quadrics obtained by hyperbolic reduction of Q. We want to check
whether this family admits a rational section. Consider the linear projection P

5 ��� P
4

with center in P , and let X ′ ⊂ P
4 be the image of X .
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Lemma 3.8 Let X ⊂ P
5 be a smooth complete intersection of three quadrics and P

a k-rational point of X that does not lie on a line in X. Then X ′ ∼= BlP (X) and

Q̄P ∼= BlX ′(P4). (11)

Moreover, the family of quadrics Q̄P → P
2 admits a rational section if and only if

there is a curve C ⊂ X of odd degree defined over k.

Proof By Lemma 3.4 we know that Q̄P ⊂ P
2 ×P

4 is the complete intersection of the
divisors of bidegree (1, 1) and (1, 2). Applying [20, Lemma 2.1] to the corresponding
morphism O⊕3

P4
→ OP4(1) ⊕ OP4(2), the incarnation of the morphism (9) in this

particular situation, we conclude that Q̄P is isomorphic to the blowup ofP
4 with center

in the degeneracy locus of that morphism. Furthermore, the argument of Lemma 3.4
identifies this degeneracy locus with X ′, and because X contains no lines passing
through P we have

X ′ ∼= BlP (X). (12)

So in the end we deduce (11), and prove the first part of the lemma.
Let us prove the second part. By Proposition 2.15 the map Q̄P → P

2 has a rational
section if and only if it has a rational multisection of odd degree. Thus we have to
show that there is a cycle Z ⊂ Q̄P of codimension 2, whose intersection with the
class of the fiber of the map Q̄P → P

2 is odd if and only if there is a curve of odd
degree on X .

Because of the blowup representation of Q̄P , its group of codimension 2 cycles
is generated by the square of the hyperplane class of P

4, and the group of 1-cycles
on X ′. More precisely, consider the blowup diagram

E

p

i
Q̄P

π

X ′ j
P
4

Then

CH2(Q̄P ) = π∗ CH2(P4) ⊕ i∗ p∗ CH1(X ′) = ZH ′2 ⊕ i∗ p∗ CH1(X ′),

where H ′ is the hyperplane class of P
4.

Let us first relate the pullbacks to Q̄P of the hyperplane class h of P(W ) to the
classes H ′ and E . For this we compute the canonical class of Q̄P in two ways. The
blowup representation implies KQ̄P

= −5H ′ + E , and the complete intersection

in P
2 × P

4 representation gives

KQ̄P
= −3h − 5H ′ + (h + H ′) + (h + 2H ′) = −h − 2H ′,

whereof we deduce h = 3H ′ − E .
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The class of the fiber of the map Q̄P → P
2 is h2. Thus we need to compute the

parity of the intersection products h2 · H ′2 and h2 · i∗ p∗C for C ∈ CH1(X ′). The first
is easy, it can be expressed as an intersection on P

2 × P
4

h2 · H ′2 · (h + H ′) · (h + 2H ′) = 2h2H ′4 = 2.

Since it is even, we are left with the computation of the second intersection. This inter-
section can be rewritten as p∗i∗h2 · C , so we need to compute p∗i∗(h2) ∈ CH1(X ′).

We start with i∗h = 3p∗(H ′|X ′) − i∗(E), hence

i∗(h2) = 9p∗(H ′|X ′)2 − 6p∗(H ′|X ′)i∗(E) + i∗(E)2.

Since p : E → X ′ is a P
1-fibration, and −i∗(E) is its relative hyperplane class, the

pushforward map p∗ : CH2(E) → CH1(X ′) kills the first summand in the right hand
side and takes the second summand to 6H ′|X ′ . So, it remains to compute p∗i∗(E)2.

For this we use the Grothendieck relation

i∗(E)2 − p∗(c1(N ))i∗E + p∗(c2(N )) = 0,

where N is the normal bundle of X ′ in P
4. Applying p∗ we obtain

p∗i∗(E)2 = −c1(N ).

By adjunction c1(N ) = KX ′ − KP4 |X ′ = E ′ + 5H ′|X ′ , where E ′ is the exceptional
divisor of the blowup X ′ → X . So summarizing we deduce

p∗i∗(h2) = 6H ′|X ′ − (E ′ + 5H ′|X ′) = H ′|X ′ − E ′.

Finally, note that since X ′ is the projection of X from a point, we have H ′|X ′ = H−E ′,
where H is the hyperplane class of X ⊂ P

5. Thus p∗i∗(h2) = H − 2E ′ and its
intersection with C is odd if and only if deg(C) = C · H is. 	

Corollary 3.9 Assume X is a smooth complete intersection of three quadrics in P

5

such that the corresponding double cover Y → P
2 is also smooth. If X contains a

k-point not lying on a line and a curve of odd degree then ([X ] − [Y ]) · L = 0.

Proof We express the class of Q̄P in two ways. First, we use blowup representa-
tions (11) and (12):

[Q̄P ] = [P4] + [X ′]L = [P4] + ([X ] + L)L = [P4] + L
2 + [X ]L.

On the other hand, since X contains a curve of odd degree, by Lemma 3.8 and Theo-
rem 2.18 we have

[Q̄P ] = [P2](1 + L
2) + [Y ]L.

After cancellation, we get [X ]L = [Y ]L. 	
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3.5 Proof of Theorem 1.9

By Proposition 2.15 and Lemma 3.8 the Brauer class αY vanishes if and only if X
contains a curve of odd degree, and in this case byCorollary 3.9we have [X ]L = [Y ]L.
Moreover, by [17] we have in this case equivalences D(X) ∼= D(Y, αY ) = D(Y ), and
this proves the first part of the Theorem.

Now to prove the second part we discuss, in case k = C, the subset of the moduli
space M of polarized K3 surfaces of degree 8 that parametrizes X such that the Brauer
class αY is trivial, but X � Y .

We denote by Md ⊂ M the subset of M parameterizing X with Picard
number 2 of discriminant −d. In other words, we assume that Pic(X) is generated
by the polarization H of degree 8 and a curve class C such that

d = − det

(
H2 C · H

C · H C2

)
= (C · H)2 − 8(C2).

Note that Md ⊂ M is locally closed of codimension 1.

Lemma 3.10 Assume k = C. There is a countable number of discriminants d such
that for any X ∈ Md we have αY = 0 but X � Y .

Proof By Lemma 3.8 and Proposition 2.15 the Brauer class αY vanishes if and only
if X contains a curve of odd degree, i.e., iff C · H is odd, i.e., iff d ≡ 1 (mod 8).
On the other hand, by [24, Theorem 3.1.7] we have X ∼= Y if and only if one of the
equations

a2 − db2 = ±8 (13)

has an integer solution. It is easy to see that when d is an odd square greater than 9,
equation (13) does not have integer solutions. 	


A simple geometric example of a K3 surface X of degree 8 such that X � Y and
withαY = 0 is a smooth complete intersection of three quadrics that contains a rational
normal cubic curve. Indeed, then C · H = 3 and C2 = −2, so d = 25 and X � Y .
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