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On linear sections of the spinor tenfold. I

A. G. Kuznetsov

Abstract. We discuss the geometry of transverse linear sections of the
spinor tenfold X, the connected component of the orthogonal Grassman-
nian of 5-dimensional isotropic subspaces in a 10-dimensional vector space
endowed with a non-degenerate quadratic form. In particular, we show
that if the dimension of a linear section of X is at least 5, then its integral
Chow motive is of Lefschetz type. We discuss the classification of smooth
linear sections of X of small codimension. In particular, we check that there
is a unique isomorphism class of smooth hyperplane sections and exactly
two isomorphism classes of smooth sections of codimension 2. Using this,
we define a natural quadratic line complex associated with a linear section
of X. We also discuss the Hilbert schemes of linear spaces and quadrics
on X and its linear sections.

Keywords: spinor variety, linear sections, Chow motives, birational trans-
formations, classification of algebraic varieties, Hilbert schemes.

§ 1. Introduction

1.1. Overview. The spinor tenfold

X = Spin(10)/P5 ⊂ P15

is one of the most interesting rational homogeneous spaces. Here Spin(10) is the
simply connected covering of the special orthogonal group SO(10), and P5 is its
parabolic subgroup associated with the last vertex of the Dynkin diagram D5 (the
black vertex in the picture below):

The spinor tenfold is classically represented as a connected component

X ∼= OGr+(5,V)

of the isotropic Grassmannian OGr(5,V) for a non-degenerate quadratic form on
a 10-dimensional vector space V. However, we note that the Plücker embedding
OGr+(5,V) ⊂ Gr(5,V) ⊂ P(

∧
5V) corresponds to the square of the generator of

the Picard group Pic(X).
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One of the most interesting features of the spinor tenfold X is its projective
self-duality : the projective dual variety X∨ ⊂ P̌15 is projectively isomorphic to X
(here P̌15 is the dual projective space of P15, and these two spaces are projectiviza-
tions of the two half-spinor representations S and S∨ of Spin(V)). More canonically,

X∨ ∼= Spin(V)/P4
∼= OGr−(5,V)

(hence X∨ is obtained from X by an outer automorphism of Spin(V) corresponding
to the involution of the Dynkin diagram D5, and one can also describe X∨ as
the other connected component of the isotropic Grassmannian). The self-duality
property is indeed very special. The only self-dual smooth projective varieties
besides the spinor tenfold are the quadrics Qn, the Segre varieties P1 × Pn and the
Grassmannian Gr(2, 5).

The projective self-duality of the spinor tenfold lifts to a higher homological level.
In fact, it is also homologically projectively self-dual (see [1], § 6.2, [2], Theorem 5.5).
This means that there is a nice relation (see Theorem 3.6) between the derived
categories of coherent sheaves of the linear sections of X and X∨.

The goal of this paper is to initiate a systematic study of the geometry of linear
sections

XK = X ∩ P(K⊥) ⊂ P(S) = P15.

Here K ⊂ S∨ is a linear subspace and K⊥ ⊂ S is the orthogonal complement of K.
We are mostly interested in smooth and dimensionally transverse linear sections of
codimension at most 5. We describe the integral Chow motives of all these varieties,
provide a classification in the cases of codimension 1 and codimension 2, discuss
the most special sections of codimension 3 and introduce an important ‘quadratic
invariant’ RK of XK , which will play an important role in subsequent papers.

Actually, a significant part of the results of this paper is known to experts, but
the references are scattered (and some of the results are folklore) and use different
approaches. For example, see [3]–[7]. Therefore we provide proofs of these results
in an effort to keep the paper self-contained.

1.2. Smooth, complete and non-isotrivial families. Before explaining the
content of the paper in detail, we mention an interesting property of the vari-
eties XK . By classical projective duality, in the case when k = dimK 6 5, the
linear section XK is smooth and dimensionally transverse if and only if the corre-
sponding linear subspace P(K) ⊂ P(S∨) = P̌15 possesses the property

X∨ ∩ P(K) = ∅.

It follows that all intermediate linear sections XK ⊂ XK′ ⊂ X (sometimes referred
to as oversections of XK) are also smooth and dimensionally transverse. Moreover,
this simple smoothness criterion has the following striking consequence.

Assume that B is a smooth projective variety and φ : B → Gr(k, S∨) is a map
such that

X∨ ∩ P(Kb) = ∅

for every point b ∈ B, where Kb = φ(b) is the k-dimensional subspace of S∨
associated with the point b ∈ B under the map φ. Since codimP(S∨) X∨ = 5, the



696 A. G. Kuznetsov

assumptions above can easily be satisfied in the case when dim B + k− 1 < 5 (they
hold generically in this case). Then every linear section XKb

⊂ X is smooth and
its codimension in X is equal to k. Consider the total family of these sections

XB := X ×P(S) PB(φ∗(K⊥)),

where K ⊂ S∨ ⊗ O is the tautological subbundle on Gr(k, S∨), and K⊥ ⊂ S⊗ O is
the subbundle of its orthogonal complements. Then it follows that the morphism
XB → B is smooth and, therefore, XB → B is a complete family of smooth
projective varieties. One can easily choose k, B and φ in such a way that this
family is not isotrivial (to do this, one must take k > 2). This gives us one of the
rare known examples of a complete non-isotrivial family of smooth varieties.

1.3. Results. By homological projective duality, every smooth linear section XK

of X of codimension k 6 5 comes with a full exceptional collection of vector
bundles of length 2 dim(X) − 4. The existence of a full exceptional collection
implies that the rational Chow motive of XK is of Lefschetz type. However, it
is unknown whether the existence of a full exceptional collection implies that the
Chow motive with integral coefficients is of Lefschetz type (see [8] for some results
in the 3-dimensional case).

Our first main result (Theorem 4.16) is a proof, by a geometric construction,
that the integral Chow motive of XK is of Lefschetz type. We actually show
(Proposition 4.10) that the blow-up of the projective space P(K⊥) along XK is
a Zariski piecewise-trivial fibration into projective spaces over the 8-dimensional
quadric Q = Spin(V)/P1. Modifying this fibration (Proposition 4.14) to a projec-
tive bundle over a blow-up of Q, we conclude that the motive of XK is a direct
summand in a sum of Lefschetz motives, whence it follows immediately that it
is itself a direct sum of Lefschetz motives. Another geometric argument (Corol-
lary 7.6) proves that every section XK is rational (it is expected, although not
proved, that every smooth projective variety with a full exceptional collection is
rational).

It may seem from the above that all smooth linear sections of X are uniform
and boring. In the rest of the paper we show that this is far from being true, by
exhibiting the rich and interesting geometry associated with them. Even more of
this will appear in subsequent papers.

We first discuss hyperplane sections of X. It is well known (see § 2.3 in [6], or
Corollary 4.2 and preceding references) that there are only two projective isomor-
phism classes of hyperplane sections: smooth and singular. We reprove this and
give a convenient geometric description of hyperplane sections in both cases.

The description for the singular hyperplane section X ′
1 is as follows. We check

that the singular locus of X ′
1 is a 4-space P4 ⊂ X and prove that the blow-up

of X ′
1 along this 4-space is an explicit P3-bundle over Gr(2, 5) (see Corollary 5.3 for

details). In fact, we deduce this isomorphism from a more general result (Proposi-
tion 5.1) which identifies the blow-up of X along a 4-space and the blow-up of P10

along the Grassmannian Gr(2, 5) (contained in a hyperplane P9 ⊂ P10).
For the smooth hyperplane section X ′′

1 of X we similarly show that there is
a unique 6-dimensional quadric Q6 contained in X ′′

1 (Lemma 5.10) and that the
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blow-up of X ′′
1 along this quadric is isomorphic to a P4-bundle over a 5-dimensional

quadric (Corollary 5.11, compare with Lemma 1.17 in [5]). Again, we deduce this
from a more general result (Proposition 5.8) which identifies the blow-up of X
along Q6 and a P4-bundle over another 6-dimensional quadric.

Next, we consider smooth linear sections XK ⊂ X of codimension 2. We show
that there are exactly two isomorphism classes of these. They are distinguished by
the structure of the Hilbert schemes Fp(XK) of their linear p-dimensional subspaces.
First, one has F4(XK) = ∅ for XK of the first type and F4(XK) ∼= P1 for the second
(Proposition 6.1). Second, the scheme F1(XK) is smooth for XK of the first type
and has a unique singular point for the second (Corollary 6.7).

We say that a section XK of the second type is special and the line on XK corre-
sponding to the singular point of F1(XK) is the special line of XK . Geometrically,
a special section XK can be obtained by blowing up a quintic del Pezzo fourfold
inside P8 (this fourfold is contained in a hyperplane P7 ⊂ P8) and then contracting
the strict transform of this hyperplane (Proposition 6.1).

The existence of two isomorphism classes of smooth linear sections of codimen-
sion 2 on X has interesting geometric consequences. To describe them, we study
the subvariety R0 in the Grassmannian Gr(2, S∨) of lines in P(S∨) parametrizing
the special linear sections of X. Consider its closure

R = R0 ⊂ Gr(2, S∨).

We show (Lemma 6.13) that R is a quadratic line complex, that is, a hypersurface
cut out on Gr(2, S∨) by a quadric in the corresponding Plücker space P(

∧
2S∨). We

call R the spinor quadratic line complex.
The singular locus of R is shown (in Corollary 6.16) to be the variety of secant

lines to X∨ (in particular, it follows that its codimension in R is equal to 7). In
Lemma 6.17 we construct a nice resolution of singularities R̃ → R, where R̃ is
isomorphic to a Gr(2, 8)-bundle over OGr(3,V).

We use the spinor quadratic line complex R to define an interesting invariant
for all linear sections of X of codimension at least 2. Given such an XK ⊂ X, we
define the quadratic invariant of XK as

RK := Gr(2,K) ∩R ⊂ Gr(2, S∨).

It is easily shown (Lemma 7.1) that if XK1
∼= XK2 , then the associated quadratic

invariants are also isomorphic: RK1
∼= RK2 . Special linear sections of codimen-

sion 2 can be characterized in terms of the quadratic invariant RK : a section XK

is special if and only if RK is non-empty (this is, of course, a tautological char-
acterization). Associating with every linear section XK its quadratic line complex
RK , we obtain a (rational) map from the moduli stack of linear sections XK ⊂ X
of codimension k to the moduli stack of quadratic line complexes in Gr(2, k). It
would be interesting to understand the relation between these moduli stacks.

We conclude the paper by discussing some properties of the varieties RK . We
show that RK ⊂ Gr(2,K) is almost always a divisor (Lemma 7.11). The only
exception (besides the special linear sections of codimension 2) is the case of a linear
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section XK ⊂ X of codimension 3 containing a 4-space, that is, the case when
F4(XK) 6= ∅. We show (Proposition 7.7) that there is a unique isomorphism class
of such varieties XK and call them very special. Geometrically, a very special XK

can be obtained by blowing up a quintic del Pezzo threefold inside P7 (this threefold
is contained in a hyperplane P6 ⊂ P7) and then contracting the strict transform of
this hyperplane. This transformation and the birational isomorphisms (discussed
above) between X and P10 or between a linear section of codimension 2 of X and P8

are particular cases of special birational transformations of type (2, 1), which were
studied by Fu and Hwang in [7], Proposition 2.12.

1.4. Minifolds. Finally, we say some words about further results. Probably, one
of the most interesting cases to be considered in subsequent papers is that of linear
sections XK ⊂ X of codimension 5. These varieties are especially interesting since
they are minifolds (see [9]), that is, their Hodge diamond is equal to that of P5

and their derived category of coherent sheaves is generated by the minimal possible
number (dim XK + 1 = 6) of exceptional bundles. Besides XK , the only known
minifolds of dimension 5 are P5, Q5, the adjoint G2-Grassmannian and a hyperplane
section of the Lagrangian Grassmannian LGr(3, 6). Among them, XK is the only
minifold with non-trivial moduli. Moreover, besides two other examples in dimen-
sion 3 (the quintic del Pezzo threefold and prime Fano threefolds of genus 12), the
only minifolds known to date are projective spaces and odd-dimensional quadrics.

One of our motivations in starting this project was the following strange obser-
vation. Consider the three 5-dimensional minifolds of index 3: the adjoint G2-
Grassmannian, a hyperplane section of the Lagrangian Grassmannian LGr(3, 6),
and a fivefold XK . For each of them, the Hilbert scheme of lines is again a Fano
variety of dimension 5. It is immediately seen that for the first of them, the Hilbert
scheme of lines is isomorphic to the quadric Q5. It is much less evident (see, how-
ever, [10], Corollary 6.7) that for the second of them, the Hilbert scheme of lines
is isomorphic to the adjoint G2-Grassmannian. In particular, the Hilbert scheme is
a 5-dimensional minifold in both cases! Therefore one might hope that the Hilbert
schemes F1(XK) of lines on the fivefolds XK give new examples of minifolds.

This appeared not to be the case, but still the geometry of F1(XK) is quite
interesting. We shall show in a forthcoming paper that there is a natural Sarkisov
link between the Hilbert scheme F1(XK) of lines and the quadratic line complex
RK ⊂ Gr(2,K), which in this case is a Gushel–Mukai fivefold (see [11]). Explicitly,
there are natural P1-bundles over RK and F1(XK), related by a flop

P1
RK
oo //______ P1

F1(XK).

The flopping locus on both sides is a P2-bundle over the curve F2(XK) (the Hilbert
scheme of planes on XK). This locus may also be described as the subvariety
in Gr(3,K) of very special oversections of XK of codimension 3. In particular, it
follows that F1(XK) is smooth if and only if RK is smooth, and that the Hodge num-
bers of F1(XK) and RK are the same (see Proposition 3.1 in [15] for the Hodge
numbers of RK), whence F1(XK) is not a minifold.

Actually, the Hilbert scheme F1(XK) has already been considered in [4]. In
particular, it was proved in Theorem 8.6 of [4] that F1(XK) can be realized as the
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variety of sums of powers for a general cubic threefold (and some of the invariants
of F1(XK) have been calculated). It would be very interesting to understand the
relation between the cubic threefold and the Gushel–Mukai fivefold associated with
the minifold XK .

We also note that the derived category of a smooth Gushel–Mukai fivefold has an
interesting semiorthogonal decomposition ([16], Proposition 2.3) consisting of six
exceptional vector bundles and an Enriques-type category ([16], Proposition 2.6).
The relation between F1(XK) and RK suggests that the derived category F1(XK)
may have a semiorthogonal decomposition of the same type (thus the Enriques
category is the obstruction for the minifold property). It would be interesting to
find it.

1.5. Structure of the paper. The paper is organized as follows. In § 2 we give
a short reminder of isotropic Grassmannians, spinor representations and bundles
and prove a useful blow-up lemma (Lemma 2.5). In § 3 we introduce the spinor
tenfold X and describe its Hilbert schemes of lines, planes, and other linear spaces.
We also discuss a criterion for linear sections of X to be smooth, their semiorthog-
onal decompositions and consequences of these for the Chow motives with rational
coefficients. In § 4 we prove that the blow-up of P15 along X is isomorphic to
a P7-bundle over the 8-dimensional quadric Q and deduce many consequences of
this result. Among these there is a description of the Hilbert schemes of quadrics
on X and of the integral Chow motives of linear sections of X. In § 5 we prove that
the blow-up of X along a 4-space is isomorphic to the blow-up of P10 along Gr(2, 5)
and extract from this a description of the singular hyperplane sections of X. We
also prove that the blow-up of X along a 6-dimensional quadric is isomorphic to
a P4-bundle over Q6 and deduce from this a description of the smooth hyperplane
sections of X as P4-bundles over Q5. In § 6 we classify all smooth linear sections of X
of codimension 2, define the spinor quadratic line complex R and briefly describe
its geometry (in particular, we find its singular locus and construct a resolution
of singularities). In § 7 we define the quadratic invariant RK of a linear section
XK ⊂ X and use it to answer some questions about the geometry of linear sections
of X of codimension greater than 2.

1.6. Conventions. We work over a field k, which is assumed to be algebraically
closed of characteristic zero. By Gr(s, V ) we denote the Grassmannian of s-
dimensional vector subspaces of V . In particular, P(V ) = Gr(1, V ) is the projec-
tivization of a vector space V . Similarly, given a vector bundle V on a scheme S,
we write

PS(V ) = Proj
( ∞⊕

p=0

Symp V ∨
)

for the projectivization of V . Let OPS(V )(1) be the Grothendieck line bundle
on PS(V ), normalized by the condition π∗OPS(V )(1) ∼= V ∨. Its first Chern class is
called the relative hyperplane class of PS(V ).

Given a vector bundle E over a scheme S and a point s ∈ S, we denote the fibre
of E at s by Es. It is a vector space over the base field k.
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§ 2. Preliminaries

2.1. Isotropic orthogonal Grassmannians. Let V be a vector space over an
algebraically closed field k of characteristic zero with a non-degenerate quadratic
form qV . We denote by OGr(s, V ) ⊂ Gr(s, V ) the subvariety of the Grassmannian
that parametrizes qV -isotropic s-dimensional subspaces of V . In particular,

OGr(1, V ) = QV ⊂ P(V )

is the smooth quadric defined by qV .
Of course, the isotropic Grassmannian is empty when 2s> dim V . Therefore we

always assume that 2s6 dim V. Every isotropic Grassmannian OGr(s, V ) is a homo-
geneous space (or a disjoint union of homogeneous spaces) for the group Spin(V ).
Restricting ourselves by the case when dim V = 2m is even, so that Spin(V ) is
a group of Dynkin type Dm, we can write

OGr(s, V ) =


Spin(V )/Ps if s 6 m− 2,

Spin(V )/Pm−1,m if s = m− 1,

(Spin(V )/Pm) t (Spin(V )/Pm−1) if s = m,

(2.1)

where PI is the parabolic subgroup in Spin(V ) corresponding to a set I of ver-
tices of the Dynkin diagram. In particular, the maximal isotropic Grassmannian
OGr(m,V ) has two connected components, which are denoted by OGr+(m,V )
and OGr−(m,V ). We will use the convention

OGr+(m,V ) = Spin(V )/Pm and OGr−(m,V ) = Spin(V )/Pm−1.

Note that these varieties are abstractly isomorphic (an isomorphism is induced by an
outer automorphism of Spin(V )). The following property is useful when specifying
the component containing a given isotropic space. Two maximal isotropic subspaces
U ′, U ′′ belong to the same component if and only if dim(U ′ ∩ U ′′) ≡ dim U ′

(mod 2). We also mention the following identifications of isotropic Grassmannians
for small m:

OGr+(1, 2) ∼= Spec(k), OGr+(2, 4) ∼= P1,

OGr+(3, 6) ∼= P3, OGr+(4, 8) ∼= Q6,
(2.2)

and similarly for OGr−(m, 2m). The last isomorphism is a manifestation of triality :

Spin(8)/P1
∼= Spin(8)/P3

∼= Spin(8)/P4.
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Besides the Grassmannians, we also need isotropic flag varieties. Given a vector
space V of even dimension 2m with a non-degenerate quadratic form qV , and given
a sequence 0 < s1 < · · · < sr 6 m of integers, we write

OFl(s1, . . . , sr;V ) = Fl(s1, . . . , sr;V )×Gr(sr,V ) OGr(sr, V )

for the subvariety (in the flag variety) parametrizing qV -isotropic flags. When
sr = m, it has two connected components, which we denote by

OFl±(s1, . . . , sr−1,m;V ) = Fl(s1, . . . , sr−1,m;V )×Gr(m,V ) OGr±(m,V ).

2.2. Spinor spaces and bundles. Concerning the content of this subsection,
we refer to [13] in the case of quadrics and to [14], § 6, in general. Note that the
conventions in the definition of a spinor bundle are opposite in these two references.
Here we stick to the conventions used in [13].

We again assume that dim V = 2m and qV is a non-degenerate quadratic form.
Let ωi be the fundamental weight of Spin(V ) corresponding to the vertex i of the
Dynkin diagram Dm, and let Vλ

Spin(V ) be the irreducible representation of Spin(V )
with highest weight λ. Then

V ∼= Vω1
Spin(V ).

The irreducible representations

S = S+ := (Vωm

Spin(V ))
∨ and S− := (Vωm−1

Spin(V ))
∨,

which correspond to the last two weights, are called half-spinor representations.
Their dimensions are equal to

dim(S) = dim(S−) = 2m−1,

and they are swapped by outer automorphisms of Spin(V ). Half-spinor representa-
tions are either self-dual or mutually dual depending on the parity of m. Explicitly,

S∨ ∼= S(−1)m and S∨− ∼= S(−1)m−1 . (2.3)

A similar construction can be used to define spinor vector bundles on the iso-
tropic Grassmannians of V . Namely, for the maximal isotropic Grassmannians
OGr±(m,V ), the spinor bundles are just the anti-ample generators of the Picard
groups:

S1 = S1,+ := O(−ωm) ∈ Pic(OGr+(m,V )),

S1,− := O(−ωm−1) ∈ Pic(OGr−(m,V ))

(the integer subscripts stand for the ranks of the bundles). In what follows
we denote S∨1,± simply by O(1) and regard these line bundle as polarizations
of OGr±(m,V ). Note that if U± are the tautological bundles of rank m on
OGr±(m,V ), then

detU ∨
±
∼= O(2). (2.4)
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Similarly, when s 6 m− 2 we consider the isotropic flag varieties OFl±(s,m;V )
with projections prs and prm,± to OGr(s, V ) and OGr±(m,V ) respectively and
define

S2m−s−1 = S2m−s−1,+ :=
(
prs∗(pr∗m(S∨1 ))

)∨
,

S2m−s−1,− :=
(
prs∗(pr∗m,−(S∨1,−))

)∨
,

where the subscripts again specify the ranks. There is an analogue of the duality
isomorphisms (2.3) for spinor bundles, but it involves a twist.

Lemma 2.1 (compare with [13], Theorem 2.8, [14], Corollary 6.5, Proposition 6.6).
Suppose that dim V = 2m. If s 6 m − 2, then the spinor bundles S and S−
on OGr(s, V ) have the following properties :

S∨ ∼= S(−1)m−s(1) and S∨− ∼= S(−1)m−s−1(1).

In particular, det(S±) ∼= O(−2m−s−2).

Furthermore, there are identifications S∨± = H0(OGr(s, V ),S∨±). They induce
canonical evaluation morphisms S∨± ⊗ OOGr(s,V ) → S∨±, which are surjective by
the homogeneity of OGr(s, V ). By duality, we obtain fibrewise monomorphisms
S± ↪→ S± ⊗ OOGr(s,V ). When s = m this yields embeddings

OGr±(m,V ) → P(S±). (2.5)

When m ∈ {1, 2, 3}, we obtain the first three isomorphisms in (2.2). When m = 4,
we obtain the embedding OGr±(4, 8) ↪→ P7 as a quadric, thus giving the last
isomorphism in (2.2). In general, (2.5) is called the spinor embedding. By (2.4),
the Plücker embedding OGr±(m,V ) ↪→ Gr(m,V ) ↪→ P(

∧
mV ) is the composition

of the spinor embedding and the double Veronese embedding.
When s = 1 (so that OGr(1, V ) = Q = QV ), the embeddings S± → S± ⊗ OQ

extend to exact sequences.

Lemma 2.2 (see [13], Theorem 2.8). If Q ⊂ P(V ) is an even-dimensional quadric,
then there are canonical exact sequences

0 → S → S⊗ OQ → S−(1) → 0 and 0 → S− → S− ⊗ OQ → S(1) → 0.

The situation is more complicated for OGr(s, V ) when s > 1. Instead of short
exact sequences, one extends the spinor bundle to a filtration whose factors involve
the spinor bundles S± and the tautological vector bundle Us on the isotropic Grass-
mannian.

Lemma 2.3 (compare with [14], Proposition 6.3). Suppose that dim V = 2m.
If s 6 m − 2, then the trivial vector bundle S ⊗ OOGr(s,V ) has a natural filtra-
tion whose factors are isomorphic to

S(−1)i ⊗
∧

iU ∨
s , 0 6 i 6 s.
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Similarly, the trivial vector bundles S ⊗ OOGr+(m,V ) and S− ⊗ OOGr+(m,V ) have
natural filtrations whose factors are isomorphic to

S ⊗
∧

2iU ∨
m , 0 6 2i 6 m, for S⊗ OOGr+(m,V ),

S ⊗
∧

2i+1U ∨
m , 0 6 2i + 1 6 m, for S− ⊗ OOGr+(m,V ).

Remark 2.4. By choosing a point [Um] ∈ OGr+(m,V ) and trivializing the spinor
line bundle S at this point, we obtain from Lemma 2.3 filtrations on the vector
spaces S and S− whose factors are isomorphic to

∧
2iU∨

m for the first and
∧

2i+1U∨
m

for the second. Given a point [Um,−] ∈ OGr−(m,V ), we similarly obtain filtrations
on S and S− whose factors are isomorphic to

∧
2i+1U∨

m,− for the first and
∧

2iU∨
m,−

for the second.
We note that these filtrations are compatible with the duality between S and S∨.

In particular, when m is odd, the first term k =
∧

0U∨
m,− of the first filtration gives

a vector in S∨ = S− (which corresponds to the point [Um,−] ∈ OGr−(m,V ) under
the half-spinor embedding OGr−(m,V ) ↪→ P(S−) = P(S∨)), and the corresponding
hyperplane in P(S) corresponds to the projection S →

∧
mU∨

m,− onto the last factor
of the second.

2.3. A blow-up lemma. The following result of Ein and Shepherd-Barron [17]
will be used repeatedly to prove that certain birational isomorphisms are smooth
blow-ups. Given a projective morphism f : X → Y , we denote its relative Picard
number by ρ(f).

Lemma 2.5. Assume that there is a commutative diagram

E
� � i //

p

��

X

f

��
Z

� � j // Y,

where X , Y , Z are smooth varieties, codimY (Z) > 2, E is an irreducible divisor
in X , f is a projective birational morphism, p is surjective, and i and j are closed
embeddings. If ρ(f) = 1, then f is the blow-up of Y along Z , X ∼= BlZ(Y ), and
E is the exceptional divisor of f .

Proof. Since X and Y are smooth, the exceptional locus of f is a divisor. This
divisor is irreducible because ρ(f) = 1. Since it contains E, we conclude that E is
the exceptional locus of f . By Zariski’s connectedness theorem, f−1(Z) lies in the
exceptional locus of f , whence f−1(Z) = E set-theoretically, and f : X \E → Y \Z
is an isomorphism. Thus Z is the base locus of f−1. Since E is the set-theoretic
pre-image of Z, Theorem 1.1 in [17] yields that f is a blow-up of Z and E is its
exceptional divisor. �

The following assertion is also well known and very useful.

Lemma 2.6. When f : X → Y is the projectivization of a vector bundle, X is
smooth if and only if Y is smooth. When f : X → Y is the blow-up along Z ⊂ Y
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and Z is a locally complete intersection in Y , X is smooth if and only if both
Y and Z are smooth.

Proof. The first part and one direction of the second part are evident. Hence we
assume that X = BlZ(Y ) is smooth and prove that Y and Z are smooth. Clearly,
Y is smooth outside Z. Put c = codimY (Z) and let f1, . . . , fc be the local equations
of Z in Y . Then X ⊂ Y × Pc−1 is given by the equations uifj − ujfi = 0, where
(u1 : · · · : uc) are the homogeneous coordinates on Pc−1. These equations may be
rewritten as fi − uifc = 0, i = 1, . . . , c − 1, in the chart uc 6= 0 (where we can
put uc = 1 and regard u1, . . . , uc−1 as coordinates). It follows that X is a locally
complete intersection in Y × Pc−1. Since X is smooth, we conclude that Y × Pc−1

is smooth along X. In particular, it is smooth along the exceptional divisor of the
blow-up, that is, along Z×Pc−1. Thus Y is smooth along Z and hence everywhere.
Finally, the smoothness of Z can easily be deduced from that of X by comparing
the Jacobian matrices corresponding to the equations of X in Y × Pc−1 and those
of Z in Y . �

Remark 2.7. One can also prove this lemma using derived categories. For exam-
ple, if Z ⊂ Y is a locally complete intersection, then the derived category D(X)
of X = BlZ(Y ) has a semiorthogonal decomposition with one component equivalent
to D(Y ), and the others equivalent to D(Z). If X is smooth, then the category
D(X) is Ext-finite, whence its subcategories D(Y ) and D(Z) are also Ext-finite
and, therefore, Y and Z are smooth.

§ 3. The spinor tenfold and its linear sections

The spinor tenfold X and its projective dual variety X∨ (which is abstractly
isomorphic to X) were described in the introduction. We first recall some notation
introduced earlier.

3.1. Notation. We fix a vector space V of dimension 10 (in the notation of § 2
this means that m = 5) and a non-degenerate quadratic form qV on it. We will
always identify V and V∨ by means of qV. Let S and S∨ ∼= S− be the corresponding
16-dimensional half-spinor representations (see (2.3)). Recall that

X := OGr+(5;V) ∼= Spin(V)/P5 ⊂ P(S),

X∨ := OGr−(5;V) ∼= Spin(V)/P4 ⊂ P(S∨).

We usually write points of X as [U5], and points of X∨ as [U5,−], where U5, U5,− ⊂ V
are the corresponding 5-dimensional isotropic subspaces. Accordingly, we denote
the tautological vector bundles on X and X∨ by U5 and U5,− respectively, often
abbreviating this notation to U and U−. Furthermore, we put

Q := OGr(1,V) ∼= Spin(V)/P1 ⊂ P(V),

which is a smooth 8-dimensional quadric, and

Q := OFl+(1, 5;V) ∼= Spin(V)/P1,5 ⊂ Q×X,

Q− := OFl−(1, 5;V) ∼= Spin(V)/P1,4 ⊂ Q×X∨.
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Then we have a diagram

Q

����
��

��
��

��>
>>

>>
>>

> Q−

~~}}
}}

}}
}}

!!D
DD

DD
DD

D

X Q X∨,

(3.1)

whose outer (resp. inner) arrows are P4-fibrations (resp. fibrations into smooth
6-dimensional quadrics). To be more precise, on the one hand, we have isomor-
phisms

Q ∼= PX(U ), Q− ∼= PX∨(U−) (3.2)

and, on the other, there are canonical embeddings

Q ↪→ PQ(S8), Q− ↪→ PQ(S8,−) (3.3)

in projectivizations of the spinor bundles. These embeddings are relative versions
of the last embedding in (2.2). In most cases we regard Q and Q− as families of
6-dimensional quadrics Qv ⊂ X and Qv,− ⊂ X∨ parametrized by v ∈ Q (see
also (3.4)).

Remark 3.1. We note for later use that the families of quadrics Q and Q− in (3.1)
have the following interpretation. Let Qv and Qv,− be the fibres of Q and Q− over
a point v ∈ Q. The outer arrows in the diagram induce the following identifications
of these 6-dimensional quadrics:

Qv = OGr+(4, v⊥/v) ⊂ X and Qv,− = OGr−(4, v⊥/v) ⊂ X∨ (3.4)

(the embeddings in X are defined as in (3.9) below). Thus Qv parametrizes the
subspaces U5 ⊂ V such that v ∈ U5 or, equivalently, U5 ⊂ v⊥, and similarly
for Qv,−.

We recall that the two components X and X∨ of the Grassmannian OGr(5,V)
can be distinguished by the parity of the dimension of the intersection of subspaces:

dim(U ′
5 ∩ U ′′

5 ) ≡

{
0 (mod 2) if U ′

5 and U ′′
5 are in distinct components,

1 (mod 2) if U ′
5 and U ′′

5 are in the same component.
(3.5)

We write OX(−1) = S1, OX∨(−1) = S1,− for the spinor line bundles on X
and X∨. Then, by (2.4),

detU ∼= OX(−2), det U− ∼= OX∨(−2). (3.6)

The canonical line bundle of X can be written as

ωX
∼= (detU )⊗4 ∼= OX(−8). (3.7)
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3.2. Linear spaces on the spinor tenfold. In this subsection we describe all
linear spaces on the spinor tenfold. We write

Fd(X) = Hilb(t+1)···(t+d)/d!(X) (3.8)

for the Hilbert scheme of linearly embedded Pd ⊂ X ⊂ P(S).
Let Us ⊂ V be a qV-isotropic subspace of dimension s. Denote by U⊥

s ⊂ V its
orthogonal complement with respect to qV. Then Us ⊂ U⊥

s , and the quotient space
U⊥

s /Us is (10−2s)-dimensional and has a canonical quadratic form induced by qV.
Moreover, for every isotropic subspace of dimension d in U⊥

s /Us, its pre-image
in U⊥

s ⊂ V is a qV-isotropic subspace of dimension d + s. In particular, we have
a natural embedding

OGr+(5− s, U⊥
s /Us) ⊂ OGr+(5,V) = X (3.9)

and, under this embedding, the line bundle OX(1) restricts to the ample generator
of the Picard group. For example, (2.2) shows that for every isotropic 2-dimensional
subspace U2 ⊂ V the subvariety

Π3
U2

:= OGr+(3, U⊥
2 /U2) ∼= P3 ↪→ X (3.10)

is a linearly embedded 3-space and, for every isotropic 3-dimensional subspace
U3 ⊂ V, the subvariety

LU3 := OGr+(2, U⊥
3 /U3) ↪→ X (3.11)

is a line on X. In the same vein we define a line on X∨ by

L−U3
:= OGr−(2, U⊥

3 /U3) ↪→ X∨. (3.12)

Note that the total space for the family of 3-spaces (3.10) on X is given by the
diagram

OFl+(2, 5;V) ∼

yysssssssssss
POGr(2,V)(S4)

''OOOOOOOOOOO

X OGr(2,V),

(3.13)

and the total spaces for the families of lines (3.11) and (3.12) on X and X∨ are
given by the diagram

OFl+(3, 5;V)

��

∼ POGr(3,V)(S2)

%%LLLLLLLLLL
POGr(3,V)(S2,−) ∼

xxqqqqqqqqqq
OFl−(3, 5;V)

��
X OGr(3,V) X∨,

(3.14)
where S4, S2 and S2,− are the corresponding spinor bundles of ranks 4, 2 and 2
respectively, and the isomorphisms are relative versions of (2.2).
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On the other hand, consider a point of X∨ and let U5,− ⊂ V be the corresponding
isotropic subspace. Then we have a natural embedding Gr(4, U5,−) ⊂ OGr(4,V).
Furthermore, by (3.9) and (2.2), every isotropic subspace in V of dimension 4
extends uniquely to a 5-dimensional subspace corresponding to a point of X. This
defines a regular map OGr(4,V) → X. Combining these two observations, we
obtain an embedding

Π4
U5,−

:= Gr(4, U5,−) ∼= P4 ↪→ X. (3.15)

This is a linearly embedded 4-space that parametrizes the subspaces U5 ⊂ V such
that dim(U5 ∩ U5,−) = 4. The total space of this family is given by the diagram

PX(U ∨(−1))

||yy
yy

yy
yy

y

∼ OGr(4, V )

yyrrrrrrrrrr

&&MMMMMMMMMM
PX∨(U ∨

− (−1))

$$H
HHHHHHHH

∼

X OGr+(5,V) OGr−(5,V) X∨.

(3.16)

Finally, we note that for every subspace Us ⊂ U5,− there is a natural embedding

Π4−s
Us,U5,−

:= Gr(4− s, U5,−/Us) ↪→ Gr(4, U5,−) ↪→ X, (3.17)

and this is a linear subspace of dimension 4− s on X. When s = 3, this yields an
alternative description of the line (3.11):

LU3 = Π1
U3,U5,−

(3.18)

for every isotropic flag U3 ⊂ U5,− (in particular, the line Π1
U3,U5,−

is independent
of U5,−).

Theorem 3.2. Every linear space on X is one of the following.
1) If L ⊂ X is a line, then there is a unique isotropic 3-dimensional subspace

U3 ⊂ V such that L = LU3 .
2) If Π ⊂ X is a plane, then there is a unique isotropic flag U2 ⊂ U5,− ⊂ V

such that Π = Π2
U2,U5,−

.
3) If Π ⊂ X is a 3-space, then exactly one of the following two possibilities

holds :
a) either there is a unique isotropic 2-dimensional subspace U2 ⊂ V such that

Π = Π3
U2

,
b) or there is a unique isotropic flag U1 ⊂ U5,− ⊂ V such that Π = Π3

U1,U5,−
.

4) If Π ⊂ X is a 4-space, then there is a unique isotropic subspace U5,− ⊂ V
such that Π = Π4

U5,−
.

In particular, there are no linear subspaces on X of dimension d > 5. Further-
more, the Hilbert schemes of linear spaces on X are the following Spin(V)-varieties :

F1(X) ∼= Spin(V)/P3
∼= OGr(3, V ),

F2(X) ∼= Spin(V)/P2,4
∼= OFl−(2, 5;V),

F3(X) ∼= Spin(V)/P2 t Spin(V)/P1,4
∼= OGr(2,V) tOFl−(1, 5;V),

F4(X) ∼= Spin(V)/P4
∼= OGr−(5,V) = X∨.

(3.19)



708 A. G. Kuznetsov

Proof. This follows from a general result of Lansberg and Manivel ([12], Theo-
rem 4.9). By this result, to describe Fd(X), we should consider all minimal sets
of vertices of the Dynkin diagram D5 such that one of the connected components of
their complements is a Dynkin diagram of type Ad with vertex 5 as an endpoint.
The following picture shows all the possibilities:

d = 1 d = 2 d = 3 d = 4

Here solid segments form the subdiagram of type Ad with vertex 5 as an endpoint,
and solid vertices form the minimal set whose complement contains Ad as a con-
nected component. This gives (3.19). Furthermore, using the Tits construction
explained in [12], § 4, we obtain the description of linear spaces on X stated in the
theorem. �

3.3. Linear sections and their derived categories. The main characters of
this paper are linear sections of X. Let

K ⊂ S∨

be a vector subspace of dimension k and let

K⊥ := Ker(S → K∨) ⊂ S

be its orthogonal complement (of codimension k and dimension 16− k). We define

XK := X ∩ P(K⊥) and X∨
K := X∨ ∩ P(K) (3.20)

to be the corresponding linear sections of the spinor tenfold and its projective dual.
If the intersections are dimensionally transverse, then

dim XK = 10− k, dim X∨
K = 10− (16− k) = k − 6

with the convention that the dimension of the empty set is an arbitrary negative
number. The following simple observation is extremely useful.

Lemma 3.3. A linear section XK is smooth and dimensionally transverse if and
only if X∨

K is smooth and dimensionally transverse. In particular, when k =
dim K 6 5, a linear section XK is smooth and dimensionally transverse if and
only if X∨

K = ∅.

Proof. The proof is the same as in [11], Proposition 2.24. �

Remark 3.4. The same argument proves that if XK is dimensionally transverse
with hypersurface singularities, then the same holds for X∨

K and there is a bijection
between the singular points of XK and X∨

K . This may lead to a simplification of
the proof of the main result in [18] in the case when g = 7.

In what follows we often abbreviate ‘smooth and dimensionally transverse’ to
just ‘smooth’.
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The tautological bundle U and the structure sheaf OX give a very nice excep-
tional collection on X. We write D(X) for the bounded derived category of coherent
sheaves on X.

Proposition 3.5 (see [1], § 6.2). There is a full exceptional collection in D(X) of
the form

D(X) = 〈OX ,U ∨,OX(1),U ∨(1), . . . ,OX(7),U ∨(7)〉.

This exceptional collection is Lefschetz and rectangular in the terminology of [19],
[2], which simply means that it consists of several twists of the starting block
〈OX ,U ∨〉 ⊂ D(X). Moreover, the main result of § 6.2 in [1] (see also [2], The-
orem 5.5) ensures that the classical projective duality between the spinor ten-
folds X ⊂ P(S) and X∨ ⊂ P(S∨) extends to a homological projective duality. The
main theorem of homological projective duality ([19], Theorem 6.3) then yields
the following semiorthogonal decomposition relating the derived categories of XK

and X∨
K .

Theorem 3.6. Assume that linear sections XK and X∨
K are dimensionally trans-

verse and k = dim K 6 8. Denote the restriction U |XK
of the tautological bundle

by UXK
. Then there is a semiorthogonal decomposition

D(XK) = 〈D(X∨
K),OXK

,U ∨
XK

, . . . ,OXK
(7− k),U ∨

XK
(7− k)〉.

The smoothness of XK and X∨
K is unnecessary in this theorem, but we shall

usually assume it in what follows. When k > 8, there is a similar semiorthogonal
decomposition with the roles of XK and X∨

K interchanged.

Remark 3.7. Let us spell out what these semiorthogonal decompositions tell us.
a) When 0 6 k 6 5, the assumption of dimensional transversality ensures that

XK is a smooth Fano variety of dimension 10 − k and X∨
K = ∅. Therefore the

semiorthogonal decomposition reduces just to an exceptional collection of length
16− 2k = 2 dim(X)− 4,

D(XK) = 〈OXK
,U ∨

XK
, . . . ,OXK

(7− k),U ∨
XK

(7− k)〉, (3.21)

which may be regarded as a reduced replica of the original collection.
b) When k = 6, the assumption of dimensional transversality ensures that XK

is a Fano fourfold and X∨
K is a finite scheme of length 12. Assuming also that X∨

K

is reduced (by Lemma 3.3, this is equivalent to the smoothness of XK), we obtain
a semiorthogonal decomposition

D(XK) = 〈E1,E2, . . . ,E12,OXK
,U ∨

XK
,OXK

(1),U ∨
XK

(1)〉, (3.22)

where E1, . . . , E12 is a completely orthogonal exceptional collection. One can check
that each Ei is in fact a vector bundle of rank 2.

c) When k = 7, the assumption of dimensional transversality ensures that XK

is a Fano threefold and X∨
K is a curve of arithmetic genus 7 (note that by the main

theorem in [20] every smooth curve of genus 7 having no linear systems of type g1
4

can be obtained in this way). The semiorthogonal decomposition takes the form

D(XK) = 〈D(X∨
K),OXK

,U ∨
XK

〉. (3.23)
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In the smooth case one can check that X∨
K is isomorphic to the moduli space of

vector bundles of rank 2 on XK , and the embedding of the derived category is
given by the Fourier–Mukai functor with the universal bundle as kernel; see [21],
Corollary 2.5, Theorem 4.4.

d) When k = 8, the assumption of dimensional transversality ensures that XK

and X∨
K are polarized K3-surfaces of degree 12. The semiorthogonal decomposition

reduces to an equivalence of categories

D(XK) ∼= D(X∨
K). (3.24)

In the smooth case, this is the classical equivalence discovered by Mukai ([22],
Example 1.3); the surface X∨

K can again be identified with the moduli space of
vector bundles of rank 2 on XK , and the equivalence of derived categories is given
by the Fourier–Mukai functor with the universal bundle as kernel.

The semiorthogonal decompositions in Theorem 3.6 have many consequences for
the geometry of the varieties involved. The simplest of these is a computation of the
Grothendieck group:

rkK0(XK) =

{
16− 2k when 0 6 k 6 5,

16 when k = 6
(3.25)

(the first line follows from (3.21) and the second from (3.22)), as soon as XK is
smooth.

3.4. Rational Chow motives. Given a smooth projective variety Y , we write
M(Y ) for its Chow motive and MQ(Y ) for its Chow motive with rational coeffi-
cients.

Corollary 3.8. Let XK be a smooth linear section of codimension k 6 6 of the
spinor tenfold. Then the rational Chow motive of XK is of Lefschetz type. More
precisely, MQ(XK) is equal to

1⊕ LQ ⊕ L2
Q ⊕ 2L3

Q ⊕ 2L4
Q ⊕ 2L5

Q ⊕ 2L6
Q ⊕ 2L7

Q ⊕ L8
Q ⊕ L9

Q ⊕ L10
Q when k = 0,

1⊕ LQ ⊕ L2
Q ⊕ 2L3

Q ⊕ 2L4
Q ⊕ 2L5

Q ⊕ 2L6
Q ⊕ L7

Q ⊕ L8
Q ⊕ L9

Q when k = 1,

1⊕ LQ ⊕ L2
Q ⊕ 2L3

Q ⊕ 2L4
Q ⊕ 2L5

Q ⊕ L6
Q ⊕ L7

Q ⊕ L8
Q when k = 2,

1⊕ LQ ⊕ L2
Q ⊕ 2L3

Q ⊕ 2L4
Q ⊕ L5

Q ⊕ L6
Q ⊕ L7

Q when k = 3,

1⊕ LQ ⊕ L2
Q ⊕ 2L3

Q ⊕ L4
Q ⊕ L5

Q ⊕ L6
Q when k = 4,

1⊕ LQ ⊕ L2
Q ⊕ L3

Q ⊕ L4
Q ⊕ L5

Q when k = 5,

1⊕ LQ ⊕ 12L2
Q ⊕ L3

Q ⊕ L4
Q when k = 6.

Moreover, CHi(XK)⊗Q ∼= Qni , where the dimension ni is equal to the multiplicity
of the corresponding Lefschetz motive Li

Q in MQ(XK).

Proof. The motive of XK is of Lefschetz type by Theorem 1.1 in [23]; see also the
simplified proof in [9], Proposition 2.1. The multiplicities in the case k = 0 can be
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read off the Hodge diamond of X, that is well known. Alternatively, one can argue
as follows. Clearly,

MQ(XK) =
10⊕

i=0

niLi
Q,

where 1 = n0 6 n1 6 n2 6 n3 6 n4 6 n5 > n6 > n7 > n8 > n9 > n10 = 1 by
Lefschetz’ theorem. Moreover, n10−i = ni by Poincaré duality, and

∑
ni = 16 since

this sum is equal to the rank of the Grothendieck group K0(X); see (3.25). Thus,
to determine the ni, it suffices to verify that n5 6 2. Assume, on the contrary,
that n5 > 3. Then for every smooth hyperplane section X1 ⊂ X, since MQ(X1)
is of Lefschetz type, it follows from Lefschetz’ theorem on hyperplane sections that

MQ(X1) =
( 4⊕

i=0

niLi
Q

)
⊕

( 10⊕
i=6

niLi−1
Q

)
.

By the assumption,

4∑
i=0

ni +
10∑

i=6

ni =
10∑

i=0

ni − n5 6 16− 3 = 13 < 14 = rkK0(X1);

see (3.25). This contradiction proves that n5 6 2 and thus gives the required expres-
sion for MQ(X).

The description of MQ(XK) for 1 6 k 6 6 now follows by combining Lefschetz’
theorem on hyperplane sections (which enables us to determine the multiplicities of
all the Lefschetz motives except possibly the middle one) and (3.25) (which enables
us to determine the multiplicity of the middle Lefschetz motive when k is even).
The result for the Chow groups follows immediately from the expression for the
motive. �

Remark 3.9. Most probably, an analogous result holds (in the Voevedsky category)
for threefold linear sections of X with mild singularities:

MQ(XK) = 1⊕MQ(X∨
K)⊗ LQ ⊕ L3

Q.

Using motivic cohomology, one can deduce from this an isomorphism

CH1(XK)⊗Q ∼= CH0(X∨
K)⊗Q.

Hence the rank of the rational Weil class group Cl(XK)⊗Q is equal to the number
of irreducible components of the curve X∨

K . This relation should be useful for
classifying G-Fano threefolds of genus 7; see [24].

§ 4. The blow-up of the spinor tenfold

In this section we discuss a description of the blow-up of the projective space
P(S) along the spinor tenfold X and its consequences for linear sections of X.

4.1. The blow-up of the space of spinors along X. We use the notation
of § 3.1. The following result can be extracted from Theorem III.3.8(4) in [3]. For
completeness we provide a proof using the blow-up lemma (Lemma 2.5).
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Proposition 4.1. Let X ⊂ P(S) be the spinor tenfold, Q ⊂ P(V) the correspond-
ing 8-dimensional quadric, and S = S8 the spinor bundle on Q. The left part of
the diagram (3.1) extends to a commutative diagram

BlX(P(S)) ∼

fS

��

PQ(S8)

p
vvmmmmmmmmmmmmmm

Q?
_oo

wwppppppppppppppp

%%LLLLLLLLLLLL

P(S) X?
_oo Q.

(4.1)

Under the isomorphism BlX(P(S)) ∼= PQ(S8), the exceptional divisor of the blow-up
morphism fS coincides with the family of quadrics Q ⊂ PQ(S8). Moreover, if HS
is the hyperplane class of P(S) and HQ is the hyperplane class of Q, then the class
of the divisor Q in Pic(PQ(S8)) can be expressed as

Q = 2HS −HQ. (4.2)

Proof. The canonical embedding of bundles S8 ↪→ S ⊗ OQ induces a Spin(V)-
equivariant morphism

p : PQ(S8) → P(S). (4.3)

We claim that this morphism is the blow-up along the spinor tenfold X.
First, let us check that the morphism p is birational. Indeed, by Lemmas 2.2

and 2.1, the quotient of S ⊗ OQ by S8 is isomorphic to S∨8,− and, therefore, the
image of PQ(S8) in Q × P(S) is the zero locus of a global section of the vector
bundle S∨8,− � O(1). Hence the fibres of (4.3) are the zero loci of global sections
of S∨8,−. Since S∨8,− is globally generated of rank 8 with top Chern class equal to 1
(see [13], Remark 2.9), it follows that the generic fibre is a single point, whence p
is birational.

Next, we apply the blow-up lemma to the morphism p : PQ(S8) → P(S). We
have Pic(PQ(S8)) ∼= Z2 while Pic(P(S)) ∼= Z, whence the relative Picard number
ρ(p) is equal to 1. On the other hand, we have a natural embedding Q ↪→ PQ(S8)
(see (3.3)). Its composition with the map p is defined by the restriction of the
relative hyperplane class from PQ(S8). The discussion in § 3.1 shows that this
class is equal to the pullback of the hyperplane class of X. Hence the middle
parallelogram in (4.1) is commutative. Since Q ⊂ PQ(S8) is a divisor and its image
p(Q) = X ⊂ P(S) is smooth of codimension 5, we conclude by Lemma 2.5 that p
is the blow-up of X and Q is its exceptional divisor.

Finally, the equation of the relative quadric Q ⊂ PQ(S8) is induced by the
self-duality isomorphism S∨8 ∼= S8(HQ) (see Lemma 2.1). This means that we have
a linear equivalence Q = 2HS −HQ, thus proving (4.2). �

Proposition 4.1 has several useful consequences for the geometry of X. First, it
gives a simple proof of the transitivity of the Spin(V)-action on P(S)\X (the fact of
transitivity is well known; see, for example, Proposition 1.13 in [20], Proposition 2.1
in [6], Remark 2.13(1) in [7], and also Proposition 31 in [25]).

Corollary 4.2. The action of Spin(V) on P(S) \X is transitive.
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Proof. The blow-up morphism fS in (4.1) induces a Spin(V)-equivariant isomor-
phism

P(S) \X ∼= PQ(S8) \Q.

Since the action of Spin(V) on the quadric Q is transitive, it is enough to check that
the stabilizer of a point v ∈ Q in Spin(V) acts transitively on P(S8,v) \ Qv. But
this stabilizer contains the group Spin(v⊥/v) ∼= Spin(S8,v) as a subgroup, whence
the claim. �

As another consequence, we find a resolution for the structure sheaf OX on P(S),
which was earlier computed using other tools (see [26], § 5.1).

Corollary 4.3. There is an exact sequence

0 → O(−8) → V(−6) → S∨(−5) → S(−3) → V(−2) → O → OX → 0.

In particular, if XK ⊂ X is a dimensionally transverse linear section of codimen-
sion k 6 10, then XK is an intersection of quadrics parametrized by the space
H0(P(K⊥), IXK

(2)) ∼= V.

Proof. It was explained in the proof of Proposition 4.1 that the projective bundle
PQ(S8) can be written inside Q × P(S) as the zero locus of a global section of the
vector bundle S∨8,− � O(1). Therefore its structure sheaf has a Koszul resolution

0→
∧

8S8,−�O(−8)→
∧

7S8,−�O(−7)→ · · · →S8,−�O(−1)→O →OPQ(S8)→ 0.

By Proposition 4.1, the projective bundle PQ(S8) is isomorphic to the blow-up
of P(S) along X and, by (4.2), we have a linear equivalence HQ = 2HS −Q. Hence
the pushforward of OPQ(S8)(HQ) is isomorphic to IX(2). Below we compute this
pushforward using the Koszul resolution.

The wedge products of S8,− are direct sums of irreducible homogeneous vector
bundles on Q. The corresponding weights of the group Spin(V) are listed in the
second lines of the following two tables:

O S8,−
∧

2S8,−
∧

3S8,−
∧

4S8,−
0 ω4 − ω1 ω3 − 2ω1 ω2 + ω5 − 3ω1 2ω2 − 4ω1 2ω5 − 3ω1

V S 0 S∨[−1] V[−1] 0∧
5S8,−

∧
6S8,−

∧
7S8,−

∧
8S8,−

ω2 + ω5 − 4ω1 ω3 − 4ω1 ω4 − 4ω1 −4ω1

0 k[−2] 0 0

The third lines of the tables contain the cohomology (computed by the Borel–Bott–
Weil theorem) of the corresponding bundles on X twisted by OQ(HQ) ∼= OQ(ω1)
with the cohomological degree in square brackets. As a result, we obtain an exact
sequence

0 → O(−6) → V(−4) → S∨(−3) → S(−1) → V ⊗ O → IX(2) → 0.

All the assertions of the corollary follow easily. �
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A similar argument gives a resolution of the square I2
X of the ideal sheaf of X.

Corollary 4.4. There is an exact sequence

0 → S∨(−9) →
∧

2V(−8) →
∧

3V(−6) → S⊗V
S∨

(−5) → Sym2 V
k

(−4) → I2
X → 0.

In particular, if XK ⊂ X is a dimensionally transverse linear section of codimen-
sion k 6 10, then there is a unique quadratic relation between the quadrics passing
through XK . It is given by qV ∈ Sym2 V.

Proof. By (4.2), the pushforward of OPQ(S8)(2HQ) is isomorphic to I2
X(4). Using

the Koszul resolution and Borel–Bott–Weil theorem to compute it, we deduce the
required exact sequence.

It follows from the resolution that H0(P(K⊥), I2
XK

(4)) ∼= (Sym2 V)/k, which
means that there is a unique quadratic relation between the quadrics through XK .
In the case K =0 this relation is Spin(V)-invariant and, therefore, is given by the
element qV ∈ Sym2 V. By restriction, the same holds for all K. �

The following result is also very useful (compare with the main theorem in [20]).

Corollary 4.5. Let XK1 , XK2 be dimensionally transverse linear sections of X
of codimension k 6 7. If XK1

∼= XK2 , then there is an element g ∈ Spin(V) such
that g(XK1) = XK2 and g(K1) = K2.

Proof. Let ϕ : XK1 → XK2 be an isomorphism. By Lefschetz’ theorem, Pic(XK1)
and Pic(XK2) are generated by the restrictions H1 and H2 of the hyperplane class
of X ⊂ P(S). Therefore,

ϕ∗(OXK2
(H2)) ∼= OXK1

(H1).

By choosing such an isomorphism of line bundles, we obtain an isomorphism ϕ of
vector spaces

K⊥
1
∼= H0(XK1 ,OXK1

(H1))∨ ∼= H0(XK2 ,OXK2
(H2))∨ ∼= K⊥

2

such that the following diagram is commutative:

XK1

ϕ //

��

XK2

��
P(K⊥

1 )
ϕ // P(K⊥

2 ),

where the vertical arrows are the natural embeddings. By Corollary 4.3, the map ϕ
induces an isomorphism

V = H0(P(K⊥
1 ), IXK1

(2)) ∼= H0(P(K⊥
2 ), IXK2

(2)) = V,

that is, an element g′ ∈ GL(V). Since qV ∈ Sym2 V corresponds by Corollary 4.4 to
the unique relation between the quadrics passing through XK1 and XK2 , it follows
that g preserves qV up to a scalar, whence g′ ∈ GO(V). The element g ∈ Spin(V)
may be defined as any lift to Spin(V) of the image of g′ in PSO(V). We easily
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see that the induced action of gV on P(S) takes XK1 and K1 to XK2 and K2

respectively. �

The following well-known isomorphism is another useful consequence of the
proposition.

Corollary 4.6. The normal bundle of the spinor tenfold can be described as

NX/P(S)
∼=

∧
4U ∨ ∼= U (2),

where U is the restriction of the tautological bundle.

Proof. Since, on the one hand, the exceptional divisor of a blow-up is isomorphic
to the projectivization of the normal bundle of the blow-up centre and, on the
other, Q ∼= PX(U ) by (3.2), it follows from Proposition 4.1 that the normal bundle
of X is isomorphic to a twist of U . By the adjunction formula and (3.7) we have
detNX/P(S)

∼= OX(8) while det U ∼= OX(−2) by (3.6). Hence the required twist is
given by OX(2). �

Of course, the proof of Proposition 4.1 applies to the blow-up of P(S∨) along
X∨, with a completely analogous result (or one can formally apply an outer auto-
morphism of Spin(V) to the diagram (4.1)). In the next diagram we merge the
resulting diagram with (4.1):

Q

����
��

��
��

��
��

��
��

��
�

��

Q−

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

��
PQ(S8)

p
��~~

~~
~~

~

q
��;

;;
;;

;;
PQ(S8,−)

q−
����

��
��

��

p− ""E
EE

EE
EE

E

X // P(S) Q P(S∨)
γ

oo_ _ _ _ _ _ _ X∨.oo

(4.4)

The rational map γ := q− ◦ p− : P(S∨) 99K Q will play an important role in what
follows.

4.2. Quadrics on the spinor tenfold. One can also use Proposition 4.1 to
describe quadrics on X. Denote by

Gd(X) = Hilb(t+1)···(t+d−1)(2t+d)/d!(X) (4.5)

the Hilbert scheme of quadrics of dimension d on X. We recall that the family (3.1)
of 6-dimensional quadrics Qv ⊂ P(S8,v) = q−1(v) that are parametrized by the
points v ∈ Q was defined in § 3.1; see Remark 3.1.

Corollary 4.7. Let Z ⊂ X be a quadric of dimension d. Then d 6 6 and
a) either there is a unique point v ∈ Q and a linear subspace Pd+1 ⊂ P(S8,v)

such that
Z = p(Pd+1 ∩Qv),

b) or d 6 3 and there is a unique linear space Πd+1 ⊂ X such that Z ⊂ Πd+1.
In particular, all maximal (6-dimensional) quadrics on X are of the form Qv ,

where v ∈ Q.
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Proof. Let Π := 〈Z〉 ⊂ P(S) be the linear span of Z in P(S). If Π is contained
in X, we are in part b) and there is nothing to prove (since linear spaces in X have
dimension at most 4 by Theorem 3.2, the dimension of such quadrics Z does not
exceed 3).

Therefore we assume that Π 6⊂ X. Since X is an intersection of quadrics (Corol-
lary 4.3), we have a scheme-theoretic equality Π ∩ X = Z. Hence the map q
contracts the strict transform Π̃ of Π in BlX(P(S)) to a point of Q. Denoting this
point by v, we see that Π̃ ⊂ q−1(v) = P(S8,v) and Z = p(Π̃) ∩ X = p(Π̃ ∩ Qv).
At the same time Π̃ ∼= BlZ(Π) ∼= Π ∼= Pd+1. �

Remark 4.8. In fact, one can strengthen the results of Corollary 4.7 to get the
following description of the Hilbert schemes Gd(X) of d-dimensional quadrics on X:

BlPOGr(3,V)(Sym2(S2))(G0(X)) ∼= BlOGrQ(2,S8)(GrQ(2,S8)),

BlPOFl−(2,5;V)(Sym2(U5,−/U2))(G1(X)) ∼= BlOGrQ(3,S8)(GrQ(3,S8)),

BlPOGr(2,V)(Sym2(S4))(G2(X)) ∼= BlOGrQ(4,S8)(GrQ(4,S8)),

G3(X) ∼= GrQ(5,S8) t POGr−(5,V)(Sym2(U5,−)),

G4(X) ∼= GrQ(6,S8),

G5(X) ∼= GrQ(7,S8),

G6(X) ∼= Q.

However, we do not need these results, so we omit their proofs.

In what follows we shall need a description of the intersections of maximal
quadrics Qv with maximal linear spaces Π4

U5,−
(see (3.15)) on the spinor tenfold X.

It turns out that these are either points or 3-spaces.

Lemma 4.9. Let Π4
U5,−

⊂X be a linear 4-space and let Qv ⊂X be a 6-dimensional
quadric on the spinor tenfold X . Then

Π4
U5,−

∩Qv =

{
Spec(k) if v 6∈ U5,−,

Π3
v,U5,−

otherwise.

Proof. Recall that Qv = OGr+(4, v⊥/v) (see (3.4)). Thus the intersection Π4
U5,−

∩Qv

parametrizes isotropic subspaces U5 ⊂ V with v ∈ U5 and dim(U5 ∩ U5,−) = 4.
We first assume that v /∈ U5,−. Then the vector v is not orthogonal to U5,− (since

U⊥
5,− =U5,−) and, therefore, the intersection U5,− ∩ v⊥ is 4-dimensional. On the

other hand, if U5 is an isotropic subspace containing v and having a 4-dimensional
intersection with U5,−, then this intersection is contained in v⊥, whence U5 is equal
to the linear span 〈v, U5,− ∩ v⊥〉, and this is the only intersection point of Π4

U5,−

and Qv.
We now assume that v ∈ U5,−. Then the isotropic subspaces U5⊂V having

a 4-dimensional intersection with the space U5,− are parametrized by the 4-space
Π4

U5,−
= Gr(4, U5−), and those of them that contain v are parametrized by the

3-space Π3
v,U5,−

∼= Gr(3, U5,−/v). �
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4.3. Blow-ups of linear sections. The diagram (4.4) induces similar diagrams
for linear sections of the spinor tenfold. To state the result, we introduce the
following notation.

Let K ⊂ S∨ be a subspace of dimension k. Consider the following composition
of morphisms of sheaves on Q:

σK : K ⊗ OQ ↪→ S∨ ⊗ OQ � S∨8 , (4.6)

where the first morphism is induced by the embedding K ↪→ S∨ and the second is
the evaluation morphism for the natural identification H0(Q,S∨8 ) ∼= S∨ (see § 2.2).
We denote by

Q = D>0(σK) ⊃ D>1(σK) ⊃ D>2(σK) ⊃ · · ·

the discriminant stratification of the quadric Q by the corank strata of the mor-
phism σK . In other words, D>c(σK) is the subscheme of Q where the corank of σK

is not smaller than c (the ideal of this subscheme is generated by the minors of
order k − c + 1 of the map (4.6)). We also put

Dc(σK) := D>c(σK) \D>c+1(σK).

By a piecewise-Zariski locally trivial fibration we mean a morphism whose base
admits a stratification such that the morphism is locally trivial over each stratum.

Proposition 4.10. Assume that XK and X∨
K are dimensionally transverse linear

sections of X and X∨ respectively. Then there is a commutative diagram

BlXK
(P(K⊥))

p

zzuuuuuuuuu
q

""E
EE

EE
EE

EE
BlX∨

K
(P(K))

q−

}}{{
{{

{{
{{ p−

##G
GG

GG
GG

GG

XK
� � // P(K⊥) Q P(K)

γ
oo_ _ _ _ _ _ _ _ X∨

K ,? _oo

(4.7)

where p, q, p− and q− are the restrictions of the maps of the same name in (4.4).
The maps p and p− are blow-ups while q and q− are piecewise-Zariski locally trivial
fibrations whose fibres over the stratum Dc(σK) ⊂ Q are isomorphic to P7+c−k

and Pc−1 respectively. In particular,

D>1(σK) = q−(BlX∨
K

(P(K))).

Proof. Consider the diagram (4.4). By the transversality assumption,

p−1(P(K⊥)) ∼= BlXK
(P(K⊥)).

On the other hand, the p-pre-image in BlX(P(S)) ∼= PQ(S8) of a hyperplane in P(S)
is a relative hyperplane section of q : PQ(S8) → Q. Therefore, p−1(P(K⊥)) is the
zero locus in PQ(S8) of the natural section of the vector bundle K∨ ⊗OPQ(S8)(HS)
that corresponds to the morphism σK or, more precisely, to its dual

σ∨K : S8 ↪→ S⊗ OQ � K∨ ⊗ OQ. (4.8)
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Hence the fibre of the map q in (4.7) over a point v ∈ Q is the projectivization of
the kernel of σ∨K at v. Therefore q is a piecewise-Zariski locally trivial fibration over
Q and its fibre over the stratum Dc(σ∨K) = Dc(σK) ⊂ Q is isomorphic to P7+c−k.

Furthermore, the first map in (4.8) is a fibrewise monomorphism and, by Lem-
mas 2.1 and 2.2, its cokernel is the natural epimorphism S ⊗ OQ � S∨8,−, while
the second map in (4.8) is an epimorphism whose kernel is the natural fibrewise
monomorphism K⊥⊗OQ ↪→ S⊗OQ. Hence the rank stratification of (4.8) coincides
with that of the composition

σ⊥K : K⊥ ⊗ OQ ↪→ S⊗ OQ � S∨8,− (4.9)

of the kernel and cokernel maps mentioned above. Taking the dual of σ⊥K and repeat-
ing these arguments, we conclude that q− is also a piecewise-Zariski locally trivial
fibration over Q and its fibre over the stratum Dc(σ⊥K) ⊂ Q is isomorphic to Pc−1.
But we have already checked that Dc(σ⊥K) = Dc(σK). Since D>1(σ⊥K) is the locus
of the non-empty fibres of q−, we conclude that D>1(σK) = q−(BlX∨

K
(P(K))). �

The following particular case of the proposition will be used very extensively.
We recall Lemma 3.3.

Corollary 4.11. Assume that the linear section XK of X is smooth of codimen-
sion k = dim K 6 5 in X , so that X∨

K = ∅ and BlX∨
K

(P(K)) = P(K). Then the
rational map q− ◦ p−1

− in (4.7) is a regular closed embedding

γ := q− ◦ p−1
− : P(K) ↪→ Q

such that γ∗(OQ(1)) ∼= OP(K)(2). In particular, γ(P(K)) ⊂ Q is the isomor-
phic image of the Veronese variety P(K) ⊂ P(Sym2 K) under a linear projection
Sym2 K → V.

The map q has fibres P8−k over γ(P(K)) and P7−k over its complement.

Proof. We first check that D(σK)>2 = ∅. By Proposition 4.10 it is enough to
check that no fibre of q− contains a P1. But if P1 ⊂ q−1

− (v) ⊂ P(S8,−,v), then
q−1
− (v) ∩Qv,− 6= ∅ and, therefore,

∅ 6= p−(q−1
− (v) ∩Qv,−) ⊂ X∨ ∩ P(K) = X∨

K ,

contrary to the hypotheses. Thus, q− : BlX∨
K

(P(K)) → Q is a closed embedding
and, since the map p− : BlX∨

K
(P(K)) → P(K) is an isomorphism, the composition

γ = q− ◦ p−1
− : P(K) → Q is also a closed embedding.

We further note that P(K) = BlX∨
K

(P(K)) ⊂ BlX∨(P(S∨)) is disjoint from the
exceptional divisor Q− ⊂ PQ(S8,−) and, therefore, the class of Q− restricts trivially
to P(K). Using the analogue of (4.2) for the right half of the diagram (4.4), we
obtain an isomorphism γ∗(OQ(1)) ∼= OP(K)(2). The last assertion of the corollary
follows immediately from Proposition 4.10. �

Remark 4.12. We spell out the conclusion of Proposition 4.10 in the case when XK

(and hence also X∨
K) is smooth and dimensionally transverse of codimension k > 6.
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1) Assume that k = 6. Then X∨
K is the set of 12 reduced points and the map q−

contracts the strict transforms of the 66 lines joining these points. Hence we have
three strata: D2(σK) consists of 66 points (the images of the strict transforms of
the lines), D>1(σK) = q−(BlX∨

K
(P(K))), and D0(σK) is its open complement.

2) Assume that k = 7. Then X∨
K is a smooth (canonical) curve of genus 7 and

the map q− contracts the strict transforms of its secant lines. Hence, as before,
we have three strata: D2(σK) ∼= Sym2(X∨

K) is the image of the secant variety,
D>1(σK) = q−(BlX∨

K
(P(K))), and D0(σK) is its open complement.

3) Assume that k = 8. Then X∨
K is a smooth K3-surface of degree 12 and

the map q− contracts the strict transforms of its secant lines and the strict trans-
forms of planes intersecting X∨

K along a conic. Hence we have at most four strata:
D3(σK) is a finite (possibly empty) set of points (the images of the planes spanned
by the conics in X∨

K), D>2(σK) is the image of the secant variety (a contraction
of Sym2(X∨

K)), D>1(σK) = q−(BlX∨
K

(P(K)), and D0(σK) is its open complement.

Remark 4.13. Considering the fibres of the map q : BlXK
(P(K⊥)) → Q in the case

when k = 7, one can also show that D>2(σK) is isomorphic to G1(XK), the Hilbert
scheme of conics on the Fano threefold XK . Combining this with Remark 4.12
yields a geometric construction of an isomorphism

G1(XK) ∼= Sym2(X∨
K).

This isomorphism was first established in [21], Theorem 5.3, by means of derived
categories.

The diagram (4.7) is sometimes inconvenient since the map q is not flat. However,
when k 6 5, this map can be transformed to a flat P7−k-bundle by another blow-up.

Proposition 4.14. Let XK be a smooth and dimensionally transverse linear sec-
tion of X of codimension k 6 5, so that X∨

K = ∅. Then there is a commutative
diagram

BlXK
(P(K⊥))

p

{{www
ww

ww
ww q

  A
AA

AA
AA

A
Blq−1(γ(P(K)))(BlXK

(P(K⊥)))eroo
eq

))RRRRRRRRRRRRR

XK
� � // P(K⊥) Q Blγ(P(K))(Q),roo

(4.10)
where r and r̃ are blow-up morphisms and q̃ is the natural projection of the pro-
jectivization of a vector bundle of rank 8− k.

Proof. Since the scheme-theoretic pre-image of the subscheme γ(P(K)) ⊂ Q in
BlXK

(P(K⊥)) is q−1(γ(P(K))) (by definition), its scheme-theoretic pre-image
in Blq−1(γ(P(K)))(BlXK

(P(K⊥))) is the exceptional divisor of the blow-up r̃. There-
fore, by the universal property of blow-ups, the composition q ◦ r̃ factors through
the blow-up Blγ(P(K))(Q), thus defining the map q̃ that makes the diagram com-
mutative. It remains to show that q̃ is the projectivization of a vector bundle.

Consider the morphisms σ∨K and σ⊥K defined in (4.8) and (4.9). Arguing as in
the proofs of Proposition 4.10 and Corollary 4.11, we see that the corank of σ∨K
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is everywhere less than or equal to 1, and its degeneration scheme D>1(σ∨K) coin-
cides with the subscheme γ(P(K)) ⊂ Q. Therefore its cokernel is a line bundle
on γ(P(K)). Moreover, the proof of the equality D>1(σ∨K) = D>1(σ⊥K) shows that
the cokernel sheaf is isomorphic to the γ-pushforward of the line bundle OP(K)(1).
In other words, we have an exact sequence

S8
σ∨K−−−→ K∨ ⊗ OQ → γ∗(OP(K)(1)) → 0.

Pulling it back to the blow-up Blγ(P(K))(Q), we obtain an exact sequence

r∗(S8)
r∗(σ∨K)−−−−−−→ K∨ ⊗ OBlγ(P(K))(Q) → i∗ pr∗(OP(K)(1)) → 0, (4.11)

where i : E ↪→ Blγ(P(K))(Q) is the embedding of the exceptional divisor of the
blow-up r while pr : E → P(K) is the natural projection. Since E is a Cartier
divisor, the image and the kernel of the morphism r∗(σ∨K) are vector bundles. We
denote this kernel by F and rewrite the resulting exact sequence in the form

0 → F → r∗(S8)
r∗(σ∨K)−−−−−−→ K∨ ⊗ OBlγ(P(K))(Q) → i∗ pr∗(OP(K)(1)) → 0, (4.12)

where the first map is a fibrewise monomorphism. Below we shall prove that the
map q̃ is the natural projection of the projectivization of the vector bundle F .

First, we consider the composition

f : PBlγ(P(K))(Q)(F ) ↪→ PBlγ(P(K))(Q)(r∗(S8)) → PQ(S8) ∼= BlX(P(S)),

where the first map is induced by the first map in (4.12), the second is induced by
the blow-up r, and the third is the isomorphism in Proposition 4.1. Clearly, the
image of f is the strict transform of P(K⊥), that is, BlXK

(P(K⊥)) ⊂ BlX(P(S)).
Moreover, the composition

PBlγ(P(K))(Q)(F )
f−−→ BlXK

(P(K⊥))
q−−→ Q

coincides by construction with the composition

PBlγ(P(K))(Q)(F ) → Blγ(P(K))(Q) r−−→ Q.

Therefore, the scheme-theoretic pre-image of the subscheme γ(P(K)) ⊂ Q under
this composition is a Cartier divisor. It follows that the map f factors through
a map

f̃ : PBlγ(P(K))(Q)(F ) → Blq−1(γ(P(K)))(BlXK
(P(K⊥))).

We now note that f̃ is a proper map between smooth varieties of the same dimension
15 − k and an isomorphism over the open subset Q \ γ(P(K)) ⊂ Q. Hence it is
birational. Therefore it is the blow-up of an ideal. But these two varieties have the
same Picard number 3, whence f̃ is an isomorphism. �

Remark 4.15. Probably, one can construct a similar birational flattening of q in
the case when k = 6. A natural guess is to start by blowing up the 66-point set
D2(σK) and then blow up the strict transform of D>1(σK) = q−(Bl12(P(K))) (see
Remark 4.12). This blow-up should carry a rank-2 vector bundle whose projec-
tivization is also an iterated blow-up of BlXK

(P(K⊥)). Such a description would
be useful for describing the Chow motive of XK .
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4.4. Integral Chow motives. We use the blow-up relation obtained above to
give a description of the integral Chow motive of XK . To be precise, we prove an
analogue of Corollary 3.8 at the integral level.

Theorem 4.16. Let XK be a smooth linear section of the spinor tenfold X of
codimension k 6 5. Then the integral Chow motive of XK is of Lefschetz type.
More precisely, M(XK) is equal to

1⊕ L⊕ L2 ⊕ 2L3 ⊕ 2L4 ⊕ 2L5 ⊕ 2L6 ⊕ 2L7 ⊕ L8 ⊕ L9 ⊕ L10 when k = 0,

1⊕ L⊕ L2 ⊕ 2L3 ⊕ 2L4 ⊕ 2L5 ⊕ 2L6 ⊕ L7 ⊕ L8 ⊕ L9 when k = 1,

1⊕ L⊕ L2 ⊕ 2L3 ⊕ 2L4 ⊕ 2L5 ⊕ L6 ⊕ L7 ⊕ L8 when k = 2,

1⊕ L⊕ L2 ⊕ 2L3 ⊕ 2L4 ⊕ L5 ⊕ L6 ⊕ L7 when k = 3,

1⊕ L⊕ L2 ⊕ 2L3 ⊕ L4 ⊕ L5 ⊕ L6 when k = 4,

1⊕ L⊕ L2 ⊕ L3 ⊕ L4 ⊕ L5 when k = 5.

Moreover, CHi(XK) ∼= Zni , where the ranks ni are equal to the multiplicities of the
corresponding Lefschetz motives Li in M(XK).

Proof. By Proposition 4.14 we have an isomorphism

Blq−1(γ(P(K)))(BlXK
(P(K⊥))) ∼= PBlγ(P(K))(Q)(F ),

where F is a vector bundle of rank 8− k. Using the blow-up formula for motives,
we deduce that

M(Blq−1(γ(P(K)))(BlXK
(P(K⊥)))) = M(P(K⊥))⊕M(XK)⊗ (L⊕ L2 ⊕ L3 ⊕ L4)

⊕M(P(K))⊗M(P7+c−k)⊗ (L⊕ · · · ⊕ L7−k).

In a similar vein, using the blow-up formula and the projective bundle formula, we
deduce that

M(PBlγ(P(K))(Q)(F )) = M(Blγ(P(K))(Q))⊗M(P7−k)

=
(
M(Q)⊕M(P(K))⊗ (L⊕ · · · ⊕ L8−k)

)
⊗ (1⊕ L⊕ · · · ⊕ L7−k).

The left-hand sides of the equalities are isomorphic. On the other hand, the
right-hand side of the second equality is a sum of Lefschetz motives. Therefore,
M(XK)⊗ L, being a summand of the first equality, is a sum of Lefschetz motives.
Hence so is M(XK).

Of course, the multiplicities of the motives Li in M(XK) are determined by the
multiplicities of Li

Q in the decomposition (computed in Corollary 3.8) of the motive
MQ(XK). This proves the desired formulae for M(XK). The isomorphisms of
the Chow groups of XK follow immediately from the resulting expressions for the
motive M(XK). �

Using the approach sketched in Remark 4.15, one can also show that

M(XK) = 1⊕ L⊕ 12L2 ⊕ L3 ⊕ L4

in the case when k = 6.
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§ 5. Linear sections of codimension 1

As already mentioned (Corollary 4.2), the Spin(V)-action on the projective
space P(S∨) of hyperplanes in P(S) has exactly two orbits, the dual spinor vari-
ety X∨ ⊂ P(S∨) and its complement P(S∨)\X∨. Hence there are two isomorphism
classes of hyperplane sections of X, singular and smooth. In this section we give
a geometric description of each.

5.1. Blow-up of a 4-space on X. Let U5,− ⊂ V be the isotropic subspace cor-
responding to a point of X∨. We recall the definition of the associated 4-space
Π4

U5,−
= Gr(4, U5,−) ∼= P(

∧
4U5,−) ⊂ X ⊂ P(S); see (3.15). Consider the corre-

sponding embedding
∧

4U5,− ↪→ S and put

W := S/
∧

4U5,−. (5.1)

This is a vector space of dimension 11, and P(W ) ∼= P10.
The following result can be found in [3] (Theorem III.3.8(5)) and the rational

map fX ◦f−1
W constructed below is an example of a special birational transformation

of type (2, 1) in [7]. We give an independent proof using the blow-up lemma.

Proposition 5.1. We have an embedding Gr(2, U5,−) ↪→ P(
∧

2U5,−) ↪→ P(W ), an
isomorphism of blow-ups BlΠ4

U5,−
(X) ∼= BlGr(2,U5,−)(P(W )) and a diagram

EΠ
//

����
��

��
�

BlΠ4
U5,−

(X) ∼

fX

~~}}
}}

}}
}}

BlGr(2,U5,−)(P(W ))

fW %%KKKKKKKKKKK
EGr

oo

""E
EEEEEEEE

Π4
U5,−

// X
fW ◦f−1

X //__________________ P(W ) Gr(2, U5,−).oo

(5.2)

If HX and HW denote the hyperplane classes of X and P(W ) while EΠ and EGr

denote the exceptional divisors of the blow-ups, then we have linear equivalences

HX = 2HW − EGr, HW = HX − EΠ,

EΠ = HW − EGr, EGr = HX − 2EΠ.
(5.3)

Finally, the birational map fW ◦f−1
X : X 99K P(W ) is induced by the linear projection

S → W in (5.1) or, in other words, it is the linear projection centred at Π4
U5,−

.
Moreover, fW (EΠ) ⊂ P(W ) is the hyperplane containing Gr(2, U5,−).

The divisor fX(EGr) will also be described in (5.13) below.

Proof. Consider an abstract 5-dimensional vector space V5 and define

W =
∧

2V5 ⊕ k (5.4)

(later we shall identify V5 with U5,−, and the direct sum just defined will be identi-
fied with the quotient space S/

∧
4U5,− in (5.1)). Then we have a natural embedding
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Gr(2, V5) ↪→ P(
∧

2V5) ↪→ P(W ). Consider the blow-up

fW : BlGr(2,V5)(P(W )) → P(W ).

Below we construct a map fX from the blow-up BlGr(2,V5)(P(W )) to the spinor
tenfold X = OGr+(5,V) by producing an isotropic rank-5 vector subbundle in the
trivial vector bundle with fibre V. Then we will check that fX is birational and
apply the blow-up lemma to show that fX is the blow-up of a 4-space on X.

Recall the following natural resolution on P(
∧

2V5):

0 → O(−5)
ξ∧ξ−−−→ V ∨

5 (−3)
ξ−−→ V5(−2)

ξ∧ξ−−−→ O → OGr(2,V5) → 0,

where ξ ∈ H0(P(
∧

2V5),
∧

2V5(1)) is the tautological section and ξ ∧ ξ is its exte-
rior square in H0(P(

∧
2V5),

∧
4V5(2)). Combining this resolution with the Koszul

resolution
0 → OP(W )(−1)

η−−→ OP(W ) → OP(∧2V5) → 0,

where η ∈ H0(P(W ),OP(W )(1)) is the equation of the hyperplane P(
∧

2V5) ⊂ P(W ),
we obtain the following resolution on P(W ):

0 → OP(W )(−6)

“ −η
ξ∧ξ

”
−−−−−−→ OP(W )(−5)⊕ V ∨

5 ⊗ OP(W )(−4)“
ξ∧ξ η
0 ξ

”
−−−−−−−→ (V ∨

5 ⊕ V5)⊗ OP(W )(−3)“
ξ −η
0 ξ∧ξ

”
−−−−−−−→ V5 ⊗ OP(W )(−2)⊕ OP(W )(−1)

(ξ∧ξ,η)−−−−−−→ OP(W ) → OGr(2,V5) → 0. (5.5)

We pull back the complex (5.5) to the blow-up BlGr(2,V5)(P(W )). Of course, it is
no longer exact and, in fact, its cohomology sheaves are isomorphic to the exterior
powers of the excess conormal bundle

N
∨

:= Ker
(

pr∗
(
N ∨

Gr(2,V5)/P(W )

)
// //OEGr(−EGr)

)
(we write pr : EGr → Gr(2, V5) for the projection of the exceptional divisor). In
other words, we have the following exact sequences on BlGr(2,V5)(P(W )):

0 → F ′ → V5 ⊗ O(−2HW )⊕ O(−HW ) → O → OEGr → 0,

0 → F ′′ → (V ∨
5 ⊕ V5)⊗ O(−3HW ) → F ′ → N

∨ → 0,

0 → F ′′′ → O(−5HW )⊕ V ∨
5 ⊗ O(−4HW ) → F ′′ →

∧
2N

∨ → 0,

0 → O(−6HW ) → F ′′′ →
∧

3N
∨ → 0.

(5.6)

Consider the vector space V ∨
5 ⊕ V5 with its natural non-degenerate quadratic form

(induced by the pairing between the summands). We claim that the sheaf

F ′′ := Ker
(

(V ∨
5 ⊕V5)⊗O(−3HW )

“
ξ −η
0 ξ∧ξ

”
−−−−−−−→ V5⊗O(−2HW )⊕O(−HW )

)
, (5.7)
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which is defined by the second exact sequence in (5.6), is an isotropic subbun-
dle of rank 5 in (V ∨

5 ⊕ V5) ⊗ O(−3HW ) and therefore defines a regular map
BlGr(2,V5)(P(W )) → OGr+(5, V ∨

5 ⊕ V5) = X.
Indeed, the sheaf OEGr in the first sequence in (5.6) is locally free on a divisor,

whence the sheaf F ′ is locally free of rank 5. Similarly, the sheaf N
∨

in the
second sequence in (5.6) is locally free on a divisor, whence the kernel of the map
F ′ → N

∨
is locally free of rank 5. Therefore the sheaf F ′′ is locally free of rank 5

and its embedding in (V ∨
5 ⊕ V5)⊗ O(−3HW ) is a fibrewise monomorphism.

Let us show that the subbundle F ′′ of (V ∨
5 ⊕V5)⊗O(−3HW ) is isotropic. Clearly,

it suffices to verify this on the open subset

P(W ) \ P(
∧

2V5) ⊂ BlGr(2,V5)(P(W )), (5.8)

the complement of the linear span of the Grassmannian. Another way to describe
this open subset is by the inequality η 6= 0. Hence, by rescaling, we may assume
that η = 1 on (5.8) and use ξ as a coordinate.

On the open set (5.8), the complex (5.5) is acyclic and, therefore, the bun-
dle F ′′ is just the image of the second map of the complex. Since the image of
the first map

( −1
ξ∧ξ

)
surjects over the first summand O(−5) of the second term

O(−5)⊕V ∨
5 ⊗O(−4), we see that F ′′ is the image of the second summand. Thus,

F ′′|P(W )\P(∧2V5) = Im
(

V ∨
5 ⊗ O(−4)

“
1
ξ

”
−−−−→ (V ∨

5 ⊕ V5)⊗ O(−3)
)

.

In other words, F ′′|P(W )\P(∧2V5) is the graph of the map

V ∨
5 ⊗ O(−4)

ξ−−→ V5 ⊗ O(−3).

The map ξ is skew-symmetric by definition and, therefore, its graph is isotropic
with respect to the natural quadratic form.

Next, we choose an isomorphism

V ∼= V ∨
5 ⊕ V5

compatible with the quadratic forms on these vector spaces and such that the
isotropic subspace V5 ⊂ V ∨

5 ⊕ V5
∼= V corresponds to the point [U5,−] of X∨ (this

identifies the subspaces V5 and U5,−). Then we obtain a map

fX : BlGr(2,V5)(P(W )) → X

such that f∗X(U ) ∼= F ′′(3HW ). Indeed, the map to OGr(5,V) is given by the
universal property of the Grassmannian, and its image lies in the connected com-
ponent X because the graph of any map V ∨

5 → V5 is disjoint from the subspace
V5 ⊂ V ∨

5 ⊕V5 and hence, when isotropic, corresponds by (3.5) to a point of X. This
proves that the image of the open subset (5.8) lies in X. Hence the same holds for
the whole scheme BlGr(2,V5)(P(W )) by continuity.
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To show that fX is birational, merely note that its restriction to the open
subset (5.8) is an isomorphism onto the open subset of X ∼= OGr+(5, V ∨

5 ⊕ V5)
parametrizing the isotropic subspaces disjoint from the subspace V5. Indeed, every
such subspace is the graph of a map V ∨

5 → V5, and a graph is isotropic if and only
if the corresponding map is skew-symmetric.

Using the exact sequences (5.6), we easily compute that

c1(F ′(3HW )) = 4HW + EGr,

c1(F ′′(3HW )) = −(4HW + EGr) + 3EGr = −2(2HW − EGr).

Since c1(U ) = −2HX by (3.6), it follows that HX = 2HW − EGr. This proves
the first relation in (5.3). In other words, the rational map fX ◦ f−1

W is given by
quadrics passing through Gr(2, V5).

We now consider the restriction of the map fX ◦ f−1
W to P(

∧
2V5) ⊂ P(W ), the

linear span of the Grassmannian. It is well known that the map given by the Plücker
quadrics determines an isomorphism

BlGr(2,V5)(P(
∧

2V5)) ∼= PGr(4,V5)(
∧

2U4), (5.9)

where U4 is the tautological vector bundle of rank 4 on Gr(4, V5) (actually, this is
an analogue for Gr(2, 5) of the isomorphism in Proposition 4.1). Hence the map fX

contracts the strict transform of the hyperplane P(
∧

2V5) onto Gr(4, V5) ⊂ X. In
other words, we have a commutative diagram

PGr(4,V5)(
∧

2U4)

��

� � // BlGr(2,V5)(P(W ))

fX

��
Gr(4, V5)

� � // X.

Clearly, the relative Picard number for fX is equal to 1. Therefore, by Lemma 2.5
we conclude that fX is the blow-up of Gr(4, V5)⊂X and

EΠ := PGr(4,V5)(
∧

2U4)

is the exceptional divisor of fX . Moreover, the above argument shows that EΠ is the
strict transform of the hyperplane P(

∧
2V5) ⊂ P(W ) containing Gr(2, V5). Hence

fW (EΠ) = P(
∧

2V5) and we have a linear equivalence EΠ = HW −EGr. Combining
it with the linear equivalence HX = 2HW − EGr proved above, we deduce (5.3).
This completes the proof of the first two parts of the proposition. It remains to
identify the image Gr(4, V5) = fX(EΠ) ⊂ X with Π4

U5,−
, the space (5.4) with (5.1),

and the rational map fW ◦ f−1
X with the linear projection from Π4

U5,−
.

First, by (5.3) we have an isomorphism

S∨ ∼= H0(X, OX(HX)) ∼= H0(P(W ), IGr(2,V5)(2HW )).

The right-hand side is the space of quadrics in P(W ) through Gr(2, V5). Hence
(5.5) yields an exact sequence

0 → W∨ η−−→ S∨ →
∧

4V ∨
5 → 0,
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whose first term is the space of quadrics containing the hyperplane P(
∧

2V5) ⊂ P(W )
and the last term is the space of quadrics in P(

∧
2V5). After dualization we obtain

0 →
∧

4V5 → S → W → 0 (5.10)

and, therefore, the image fX(EΠ) of the exceptional divisor EΠ is identified with
Gr(4, V5) = P(

∧
4V5) ⊂ P(S). This gives an identification of the space W (defined

in (5.4)) with the quotient (5.1), using the identification (established above) of the
spaces V5 and U5,−. Moreover, the composition of fX and the linear projection
P(S) 99K P(W ) coincides with the map given by the linear system of quadrics
in P(W ) containing the hyperplane P(

∧
2V5), which is equivalent to the linear system

of all hyperplanes. This proves that the map fW ◦ f−1
X is the linear projection

from P(
∧

4V5).
Finally, it remains to check that by putting U5,− = V5, we obtain an identification

of P(
∧

4V5) with the 4-space Π4
U5,−

. To do this, we restrict the map fX ◦ f−1
W to the

subscheme P(
∧

2V5) \Gr(2, V5) ⊂ EΠ. On this subscheme of P(W ), we have η = 0
and ξ is a skew-symmetric matrix of rank 4. By (5.7), the intersection of each fibre
of the subbundle F ′′⊂ (V ∨

5 ⊕V5)⊗O(−3HW ) with the subspace V5⊂V ∨
5 ⊕V5 is

the kernel of ξ ∧ ξ : V5 ⊗O(−3HW )→O(−HW ), that is, a 4-dimensional subspace
of V5. Hence the image fX(EΠ) is contained in the locus of those subspaces U5 ⊂ V
that have a 4-dimensional intersection with V5. Thus, P(

∧
4V5) ⊂ Π4

V5
= Π4

U5,−
.

Since both sides are 4-spaces, this is an equality. �

Remark 5.2. Note that the direct-sum decomposition (5.4), which was used in the
proof of the proposition, is not canonical (actually, it corresponds to the isotropic
direct sum decomposition V = V ∨

5 ⊕ V5 obtained from (5.4) in the course of the
proof). On the other hand, there is a canonical exact sequence

0 →
∧

2U5,− → W → k → 0, (5.11)

where we identify V5 = U5,− as in the proof. Indeed, the subspace
∧

2U5,− corre-
sponds to the linear span of the Grassmannian Gr(2, U5,−) ⊂ P(W ) (the centre of
the blow-up fW ).

5.2. Blow-ups of 4-spaces on hyperplane sections of X. As before we let
U5,− ⊂ V be an isotropic subspace corresponding to a point of X∨, and let W be the
space defined by (5.1). Consider the pre-image in S of the hyperplane

∧
2U5,− ⊂ W

(see (5.11)) with respect to the linear projection S → W of (5.1). This is a hyper-
plane in S. We denote the corresponding hyperplane section of X by XU5,− ⊂ X.
Denote by U2 the tautological rank-2 bundle on Gr(2, U5,−) and by U ⊥

2 the tau-
tological rank-3 bundle on the same Grassmannian.

Corollary 5.3. The singular locus of the hyperplane section XU5,− ⊂ X is the
4-space Π4

U5,−
⊂ X . Moreover, there is an isomorphism

BlΠ4
U5,−

(XU5,−) ∼= PGr(2,U5,−)(U ⊥
2 ⊕ O(−1))
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such that the exceptional divisor E′
Π of the blow-up is identified with the projective

bundle PGr(2,U5,−)(U ⊥
2 ), and there is a commutative diagram

E′
Π

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz

��

∼ PGr(2,U5,−)(U ⊥
2 )

��

∼ Fl(2, 4;U5,−)

uu

BlΠ4
U5,−

(XU5,−) ∼

zzvvvvvvvvv
PGr(2,U5,−)(U ⊥

2 ⊕ O(−1))

��
Π4

U5,−
// XU5,−

fW ◦f−1
X //_____________ Gr(2, U5,−).

(5.12)

Proof. We use the notation introduced in the proof of Proposition 5.1 with the iden-
tification V5 = U5,−. Consider the pre-image f−1

W (P(
∧

2U5,−)) ⊂ BlGr(2,U5,−)(P(W ))
of the hyperplane P(

∧
2U5,−) ⊂ P(W ). Since Gr(2, U5,−) ⊂ P(

∧
2U5,−), this pre-

image contains the exceptional divisor EGr. On the other hand, the strict transform
of this hyperplane is the exceptional divisor EΠ. Since EΠ + EGr = HW by (5.3),
it follows that there are no other components in the pre-image, that is,

f−1
W (P(

∧
2U5,−)) = EΠ ∪ EGr.

The morphism fX contracts EΠ to the 4-space Π4
U5,−

and maps EGr to a hyper-
plane section of the spinor tenfold X, singular along Π4

U5,−
(this follows from

the linear equivalence EGr =HX − 2EΠ). On the other hand, since the rational
map fW ◦ f−1

X : X 99K P(W ) in Proposition 5.1 is the linear projection induced by
the map S → W , the strict transform of the hyperplane P(

∧
2U5,−) in X is the

hyperplane section XU5,− ⊂ X. Hence the morphism fX induces a birational map
EGr → XU5,− , so that

XU5,− = fX(EGr). (5.13)

Furthermore, EGr is the strict transform of XU5,− in BlΠ4
U5,−

(X) and, therefore,

BlΠ4
U5,−

(XU5,−) ∼= EGr
∼= PGr(2,U5,−)(NGr(2,U5,−)/P(W )).

It remains to show that XU5,− \ Π4
U5,−

is smooth and that the normal bundle of
the Grassmannian Gr(2, U5,−) in P(W ) is isomorphic to a twist of U ⊥

2 ⊕ O(−1).
Clearly, the first follows from the smoothness of EGr. For the second we use the
exact sequence

0 → NGr(2,U5,−)/P(∧2U5,−) → NGr(2,U5,−)/P(W ) → OP(W )(1)|Gr(2,U5,−) → 0

whose last term is the restriction of the normal bundle of the hyperplane
P(

∧
2U5,−) ⊂ P(W ). It is well known that the first term is isomorphic to U ⊥

2 (2)
(see, for example, [11], Proposition A.7). Hence the middle term is an extension
of O(1) by U ⊥

2 (2). On the other hand, the Borel–Bott–Weil theorem yields that

Ext1(O(1),U ⊥
2 (2)) ∼= H1(Gr(2, U5,−),U ⊥

2 (1)) = 0,



728 A. G. Kuznetsov

whence the extension splits and we deduce an isomorphism

NGr(2,U5,−)/P(W )
∼= U ⊥

2 (2)⊕ O(1).

Since projectivization is not affected by a twist, we obtain the required isomorphism.
Finally, we have to describe the exceptional divisor E′

Π. The argument above
shows that E′

Π = EΠ ∩ EGr, whence E′
Π is nothing but the exceptional divisor of

the blow-up of P(
∧

2U5,−) along Gr(2, U5,−). Therefore,

E′
Π
∼= PGr(2,U5,−)(NGr(2,U5,−)/P(∧2U5,−)) ∼= PGr(2,U5,−)(U ⊥

2 ),

which embeds in PGr(2,U5,−)(U ⊥
2 ⊕O(−1)) as the projectivization of the first sum-

mand. �

Remark 5.4. It is easy to see that the hyperplane section XU5,− considered above
is nothing but the singular hyperplane section of X associated with the point
[U5,−] ∈ X∨ (recall that X∨ is the projective dual of X). This can be done
as follows. By projective duality, every singular hyperplane section of X corre-
sponds to a point of X∨. We denote the point corresponding to XU5,− by [U ′

5,−].
Then the map [U5,−] 7→ [U ′

5,−] is an automorphism of X∨, which is canonical
and, therefore, Spin(V)-equivariant. Hence it belongs to the centre of the group
Aut(X∨) ∼= PSO(V), which is trivial.

As an application of our results, we describe the Hilbert scheme F4(XU5,−) of
4-spaces on XU5,− and the Hilbert scheme G6(XU5,−) of 6-quadrics on XU5,− .

Corollary 5.5. If XU5,− ⊂ X is the singular hyperplane section of X correspond-
ing to an isotropic subspace U5,− ⊂ V, then F4(XU5,−) ∼= Cone(Gr(3, U5,−)) (the
cone in the Plücker embedding).

Proof. By Theorem 3.2, every 4-space on X is equal to Π4
U ′

5,−
for some isotropic

subspace U ′
5,− ⊂ V. Let us check that the following three conditions are equivalent:

1) Π4
U ′

5,−
⊂ XU5,− ;

2) dim(U ′
5,− ∩ U5,−) > 3;

3) Π4
U ′

5,−
∩Π4

U5,−
6= ∅.

2) ⇒ 3). If dim(U ′
5,− ∩ U5,−) > 3, then by (3.5) we have U ′

5,− =U5,− and there
is nothing to prove. Therefore we assume that dim(U ′

5,− ∩ U5,−) = 3 and let U3 be
the intersection. By (3.18) we have

Π1
U3,U5,−

= LU3 = Π1
U3,U ′

5,−
,

whence LU3 ⊂ Π4
U ′

5,−
∩Π4

U5,−
and 3) holds.

3) ⇒ 2). Let [U5] ∈ Π4
U ′

5,−
∩Π4

U5,−
be a point in the intersection of the 4-spaces.

Using their definition (3.15), we conclude that dim(U5∩U5,−) = dim(U5∩U ′
5,−) = 4,

which yields 2).
1) ⇒ 3). Assume that Π4

U ′
5,−
⊂XU5,− but Π4

U ′
5,−
∩Π4

U5,−
= ∅. Then the linear

projection fW ◦f−1
X in (5.2) is regular on Π4

U ′
5,−

and its image is a 4-space in P(W ),



On linear sections of the spinor tenfold. I 729

which is contained in Gr(2, U5,−) by Corollary 5.3. But this Grassmannian contains
no 4-spaces. The resulting contradiction proves the implication.

3) ⇒ 1). If Π4
U ′

5,−
∩ Π4

U5,−
6= ∅, then the linear projection fW ◦ f−1

X restricted

to Π4
U ′

5,−
has fibres of positive dimension. Hence the strict transform of Π4

U ′
5,−

in BlΠ4
U5,−

(X) is contained in the exceptional divisor EGr of fW and, therefore,

Π4
U ′

5,−
⊂ fX(EGr), which coincides with XU5,− by (5.13).

We conclude from the equivalence of 1) and 2) that

F4(XU5,−) = {U ′
5,− | dim(U ′

5,− ∩ U5,−) > 3}.

It remains to show that this is a cone over the Grassmannian. To do this, we
consider the scheme F̃4(XU5,−) parametrizing pairs of subspaces (U3, U

′
5,−) such

that U3 ⊂ U ′
5,− ∩ U5,−. Forgetting U ′

5,− defines a regular map ϕ : F̃4(XU5,−) →
Gr(3, U5,−) ⊂ OGr(3,V) whose fibre over a point [U3] ∈ Gr(3, U5,−) is the line
L−U3

⊂ X∨ defined in (3.12). The description of the universal line L− in the right
half of (3.14) shows that

F̃4(XU5,−) = PGr(3,U5,−)(ϕ∗(S2,−)),

where S2,− is the spinor bundle on OGr(3,V). By Remark 2.4, the restriction of
this spinor bundle to Gr(3, U5,−) admits a filtration which takes the form of a short
exact sequence

0 → O → S2,−|Gr(3,U5,−) →
∧

2(U5,−/U3)∨ → 0.

Clearly, the last term is isomorphic to O(−1) and since there are no non-trivial
extensions between O(−1) and O on Gr(3, U5,−), the restriction of the spinor bundle
is isomorphic to O ⊕ O(−1). Therefore,

F̃4(XU5,−) ∼= PGr(3,U5,−)(O ⊕ O(−1)).

The projection F̃4(XU5,−) → F4(XU5,−), of course, contracts the exceptional section
of this projective bundle (that parametrizes the pairs (U3, U

′
5,−) with U ′

5,− = U5,−)
to the point of F4(XU5,−) corresponding to the subspace U5,−. The result of this
contraction is the cone Cone(Gr(3, U5,−)). �

Lemma 5.6. If XU5,− ⊂ X is the singular hyperplane section of X corresponding
to an isotropic subspace U5,− ⊂ V, then G6(XU5,−) ∼= P(U5,−).

Proof. Recall that every 6-dimensional quadric on X is equal to Qv (Corollary 4.7)
and that the intersection Π4

U5,−
∩ Qv is either a point or a 3-space (Lemma 4.9).

In the first case, the image of Qv under the linear projection fW ◦f−1
X from Π4

U5,−

is a P6, and if Qv ⊂ XU5,− , then Corollary 5.3 yields that this P6 is contained
in Gr(2, U5,−), which is absurd.

In the second case, the linear projection fW ◦ f−1
X , restricted to Qv, has fibres of

positive dimension. Therefore, the strict transform of Qv in BlΠ4
U5,−

(X) is contained
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in the exceptional divisor EGr of fW , whence Qv ⊂ fX(EGr), which coincides
with XU5,− by (5.13).

It remains to note that, by Lemma 4.9, the intersection Π4
U5,−

∩Qv is a 3-space
if and only if v ∈ P(U5,−). Hence we have an isomorphism G6(XU5,−) ∼= P(U5,−). �

One can also use Proposition 5.1 to give a description of smooth hyperplane sec-
tions of X. The following birational transformation is another example of a special
birational transformation of type (2, 1) in [7].

Corollary 5.7. Let κ ∈ P(S∨)\X∨ be a point, and let Xκ ⊂ X be the correspond-
ing smooth hyperplane section of X . If Π4

U5,−
⊂ Xκ, then we have an isomorphism

BlΠ4
U5,−

(Xκ) ∼= BlZκ(P(Wκ)) and a diagram

EΠ,κ //

����
��

��
��

BlΠ4
U5,−

(Xκ) ∼

{{wwwwwwwww
BlZκ

(P(Wκ))

$$I
IIIIIIIII

EZκ
oo

��>
>>

>>
>>

>

Π4
U5,−

// Xκ P(Wκ) Zκ,oo

(5.14)

where Wκ⊂W is the hyperplane corresponding to κ, and Zκ = Gr(2, U5,−)∩P(Wκ)
is a smooth hyperplane section of the Grassmannian.

Proof. Since the map fW ◦f−1
X : X 99K P(W ) is a linear projection centred at Π4

U5,−
,

the hyperplanes in P(S) containing Π4
U5,−

correspond to the hyperplanes in P(W ).
Let Wκ ⊂ W be the hyperplane corresponding to κ. Note that it is distinct from
the hyperplane

∧
2U5,− ⊂ W since the latter corresponds to a singular hyperplane

section of X. Therefore the intersection Zκ = Gr(2, U5,−)∩P(Wκ) is dimensionally
transverse.

The pre-image of P(Wκ) in BlGr(2,U5,−)(P(W )) is isomorphic to the blow-up
BlZκ

(P(Wκ)) and, at the same time, it is the strict transform of Xκ and, therefore,
is isomorphic to the blow-up BlΠ4

U5,−
(Xκ). This gives the required diagram.

It remains to check that Zκ is smooth. To do this, we note that BlΠ4
U5,−

(Xκ) is
smooth and Zκ is a locally complete intersection. Therefore Lemma 2.6 applies. �

Later we will show that F4(Xκ) 6= ∅ (Corollary 5.12), so the above description
is applicable.

5.3. Blow-up of a 6-quadric on X. We present another description of the
spinor tenfold X by projecting from a maximal quadric and use it to give an alter-
native description of its smooth hyperplane sections. Recall that for each point
v ∈ Q there is an exact sequence

0 → S8,v → S → S8,−,v → 0 (5.15)

(this is the fibre at v of the sequence in Lemma 2.2). In this sequence, the projective
spaces P(S8,v) and P(S8,−,v) contain smooth 6-dimensional quadrics

Qv ⊂ P(S8,v) and Qv,− ⊂ P(S8,−,v);
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see (3.3). Recall also that

Qv = OGr+(4, v⊥/v) ⊂ X and Qv,− = OGr−(4, v⊥/v) ⊂ X∨;

see (3.4). We write U4 and U4,− for the tautological bundles on Qv and Qv,−
regarded as isotropic Grassmannians.

Proposition 5.8. There is an isomorphism

BlQv
(X) ∼= PQv,−(O(−1)⊕U ∨

4,−(−1))

such that the exceptional divisorEQ of the blow-up is identified with PQv,−(U
∨
4,−(−1)),

so that we have a commutative diagram

EQ

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{

��

∼ PQv,−(U ∨
4,−(−1))

��
BlQv (X) ∼

gX

{{wwwwwwwww
PQv,−(O(−1)⊕U ∨

4,−(−1))

gQ

��
Qv

// X
gQ◦g−1

X //______________ Qv,−.

(5.16)

If HX and HQ denote the hyperplane classes of X and Qv,− while EQ denotes
the exceptional divisor of the blow-up gX , then there is a linear equivalence

HQ = HX − EQ. (5.17)

The rational map gQ ◦ g−1
X : X 99K Qv,− in the diagram is induced by the linear

projection P(S) 99K P(S8,−,v) given by the second map in (5.15).

Proof. Consider the diagram

Qv,− ×X∨ OGr(4,V) //

��

OGr(4,V) //

��

X

Qv,− // X∨

(5.18)

obtained from the right half of the diagram (3.16) by base change along the embed-
ding Qv,− ↪→ X∨. Then

Qv,− ×X∨ OGr(4,V) ∼= PQv,−

(
U ∨

5,−(−1)|Qv,−

)
.

On the other hand, since Qv,− = OGr−(4, v⊥/v) parametrizes those isotropic sub-
spaces U5,− ⊂ V that contain the vector v, we have an exact sequence

0 → O
v−−→ U5,−|Qv,− → U4,− → 0. (5.19)

Using the Borel–Bott–Weil theorem, we see that Ext1(U4,−,O) = 0. Hence the
sequence splits and after dualization and twist we obtain an isomorphism

U ∨
5,−(−1)|Qv,−

∼= O(−1)⊕U ∨
4,−(−1).
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Composing the arrows in the top row of (5.18), we obtain a map

gX : PQv,−(O(−1)⊕U ∨
4,−(−1)) ∼= Qv,− ×X∨ OGr(4,V) → X.

By definition, its fibre over a point [U5] of X is the intersection of the 4-space
Gr(4, U5)⊂X∨ with the 6-quadric OGr−(4, v⊥/v). The argument in Lemma 4.9
(applied to X∨ instead of X) shows that this intersection consists of a single point
(unless v ∈U5). Hence the map gX is birational (and it is an isomorphism over the
complement of Qv = OGr+(4, v⊥/v) ⊂ X, which parametrizes the subspaces U5

containing the vector v).
Finally, consider the scheme

EQ := OGr(3, v⊥/v) ∼= PQv,−(U ∨
4,−(−1)) ∼= PQv (U ∨

4 (−1)).

Clearly, it is a subscheme in OGr(4,V) and its projection to X∨ equals Qv,−.
Hence it is contained in the fibre product in (5.18) and is a divisor in it. On the
other hand, its projection to X equals Qv and, therefore, we have the following
commutative diagram:

EQ PQv
(U ∨

4 (−1))

��

� � // PQv,−(O(−1)⊕U ∨
4,−(−1))

gX

��
Qv

� � // X.

It is easy to see that the relative Picard number of the map gX is equal to 1. Since
EQ is a divisor in PQv,−(O(−1) ⊕ U ∨

4,−(−1)), it follows from Lemma 2.5 that gX

is the blow-up of Qv ⊂ X and EQ is its exceptional divisor.
Under the identification EQ

∼= PQv (U ∨
4 (−1)), the divisor EQ is equal to the

zero locus of the natural map

O(−HX) = g∗XO(−1) → g∗Q(O(−1)⊕U ∨
4,−(−1)) → g∗QO(−1) = O(−HQ).

We deduce that EQ = HX −HQ. This proves (5.17).
Finally, (5.17) shows that the map gQ◦g−1

X is given by the complete linear system
|HX −EQ|. Hence it is a linear projection from the quadric Qv and is induced by
the linear projection of P(S) from its linear span P(S8,v). �

Remark 5.9. Consider the quadratic cone

Q̃v,− := ConeP(S8,v)(Qv,−) ⊂ P(S) (5.20)

over Qv,− ⊂ P(S8,−,v) with vertex P(S8,v) ⊂ P(S) (with respect to the linear
projection in (5.15)). Since the projection of X from P(S8,v) is contained in Qv,−

by Proposition 5.8, the quadric Q̃v,− contains X. This is a geometric way of
describing some of the quadrics passing through X; see Corollary 4.3.

Similarly, the quadratic cone

Q̃v := ConeP(S8,−,v)(Qv) ⊂ P(S∨) (5.21)

is a quadric containing X∨.
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5.4. Blow-ups of 6-quadrics on smooth hyperplane sections of X. Propo-
sition 5.8 can be applied when describing smooth hyperplane sections of X. Before
doing this, we check that every such section contains a 6-quadric. Recall the
map γ = q− ◦ p− : P(S∨) \X∨ → Q defined in the diagram (4.4).

Lemma 5.10. Suppose that κ ∈ P(S∨) \ X∨ and let Xκ be the corresponding
smooth hyperplane section of X . Then Xκ contains a unique 6-dimensional quadric,
that is,

G6(Xκ) ∼= Spec(k),

and this quadric is nothing but Qv = OGr+(4, v⊥/v), where v = γ(κ) ∈ Q.

Proof. It follows from the description of 6-dimensional quadrics in Corollary 4.7
that the Hilbert scheme G6(Xκ) is equal, as a subscheme of G6(X) ∼= Q, to the
zero locus of the global section of the vector bundle

q−∗p
∗
−(OP(S∨)(1)) ∼= S∨8

on Q (see the diagram (4.4)) that corresponds to the vector κ ∈ S∨ = H0(Q,S∨8 ).
But this zero locus is just the point γ(κ); this can be explained by an argument
that is completely analogous to the argument in Proposition 4.1 with X replaced
by X∨, and S∨8,− replaced by S∨8 . �

Suppose that κ ∈ P(S∨) \ X∨ and put v = γ(κ). Then we have an inclusion
κ ∈ q−1

− (v) = P(S8,−,v). Define a 5-quadric

Qκ,− = Qv,− ∩ P(κ⊥), (5.22)

where P(κ⊥) is the orthogonal in the space P(S8,−,v) to the point κ with respect
to the natural quadratic form on this space. This is a hyperplane section of the
smooth quadric Qv,− and, as will be seen below, it is itself smooth. Recall that by
triality the vector bundle U4,− on the 6-dimensional quadric Qv,− can be identified
with one of its spinor bundles, and the bundle U ∨

4,−(−1) with the other. The
restrictions of both bundles to the 5-dimensional quadric Qκ,− are then identified
with the unique spinor bundle S4 on it.

Combining Proposition 5.8 and Lemma 5.10, we obtain the following result that
was also mentioned in [5], Lemma 1.17.

Corollary 5.11. If Xκ is a smooth hyperplane section of X , v = γ(κ), and
Qv ⊂ X is the 6-dimensional quadric contained in Xκ, then we have an isomor-
phism BlQv

(Xκ) ∼= PQκ,−(O(−1)⊕ S4) and a commutative diagram

E′
Q

����
��

��
��

��
��

��
��

��

��

∼ PQκ,−(S4)

��

∼ OFl(1, 3; 7)

ss

BlQv
(Xκ) ∼

gX
~~||

||
||

||
PQκ,−(O(−1)⊕ S4)

gQ

��
Qv

// Xκ Qκ,− .

(5.23)

Moreover, the 5-dimensional quadric Qκ,− is smooth.
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Proof. Since the map gQ◦g−1
X : X 99K Qv,−constructed in Proposition 5.8 is a linear

projection, the hyperplane P(κ⊥) ⊂ P(S) defined by κ ∈ P(S∨) is the pre-image of
a hyperplane in the ambient space P(S8,−,v) of the quadric Qv,−. To understand
which hyperplane it is, we recall that besides (5.15) we have the following exact
sequence (the second sequence in Lemma 2.2 for S∨ ∼= S−):

0 → S8,−,v → S∨ → S8,v → 0. (5.24)

The duality between S and S∨ is compatible with these sequences, that is, the
sequence above is dual to (5.15), and the induced pairing on S8,−,v coincides
with the one given by the natural quadratic form on it (whose associated quadric
is Qv,−). This proves that the hyperplane in P(S8,−,v) corresponding to the hyper-
plane in P(S) defined by κ is orthogonal to κ with respect to the natural quadratic
form.

Taking the strict transform of the hyperplane section Xκ in the left half of the
diagram (5.16) and the pre-image of the hyperplane section Qκ,− of the quadric
Qv,− in the right half, we deduce the isomorphism stated in the corollary and obtain
the diagram (5.23).

Since Xκ and Qv are smooth, the blow-up BlQv
(Xκ) is smooth and, therefore,

the quadric Qκ,− is also smooth by Lemma 2.6. �

Corollary 5.12. If Xκ ⊂ X is a smooth hyperplane section of X , then

F4(Xκ) ∼= Qκ,−

and the universal family of 4-spaces on Xκ is given by PQκ,−(O(−1)⊕ S4).

Proof. Assume that Π = Π4
U5,−

is a 4-space lying on Xκ. By Lemma 4.9, its
intersection with Qv is either a point or a 3-space. If it is a point, then the image
of Π in the smooth 5-dimensional quadric Qκ,− must be a 3-space, which is of
course impossible. Therefore the intersection is a 3-space, the image of Π in Qκ,−
is just a point, and Π is a fibre of the map gQ : PQκ,−(O(−1) ⊕ S4) → Qκ,−. �

The isomorphism of the corollary gives an alternative proof of Theorem 4.16 for
smooth hyperplane sections of X.

§ 6. Linear sections of codimension 2
and the spinor quadratic line complex

The situation with linear sections of codimension 2 is more interesting than
the one with hyperplane sections. We shall show that there are two isomorphism
classes of smooth linear sections of codimension 2. We use this result to define an
important subvariety of Gr(2, S∨), which we call the spinor quadratic line complex.

6.1. Special linear sections of codimension 2. Let K ⊂ S∨ be a subspace of
dimension dim K = 2 such that X∨ ∩ P(K) = ∅, so that XK is a smooth linear
section of X of codimension 2. The easiest way to distinguish between different
isomorphism classes of XK is by looking at their Hilbert scheme F4(XK) of 4-spaces.
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We need some preparation.1 Recall that the trivial vector bundle on Q =
OGr(1,V) with fibre S∨ has a natural filtration with factors S8,− and S∨8 respec-
tively. Similarly, the trivial vector bundle on OGr(3,V) with the same fibre S∨
has a natural filtration with factors S2,−, S2⊗U ∨

3 , S2,−⊗
∧

2U ∨
3 and S2⊗

∧
3U ∨

3

respectively (see the discussion before Lemma 6.17 below). Pulling back these two
filtrations to OFl(1, 3;V) we obtain the common refinement with factors

S2,−, S2 ⊗ (U3/U1)∨, S2,− ⊗
∧

2(U3/U1)∨,

S2 ⊗U ∨
1 , S2,− ⊗U ∨

1 ⊗ (U3/U1)∨, S2 ⊗U ∨
1 ⊗

∧
2(U3/U1)∨,

where U1 ⊂ U3 ⊂ V ⊗ O is the tautological flag, the rows collect into the two
factors S8,− and S∨8 of the first filtration, and the columns into the four factors
of the second filtration. In particular, the first two columns are the factors of the
natural filtration (6.14) of the pullback of the subbundle W− ⊂ S∨ ⊗ OOGr(3,V)

defined in (6.13) below.
Recall also the closed embedding γ : P(K)→Q defined in Corollary 4.11. Since

γ∗OQ(1) ∼= OP(K)(2), its image γ(P(K)) ⊂ Q is a conic. We also recall the 11-
dimensional quotient space (5.1) associated with an isotropic subspace U5,− ⊂ V.
Finally, we recall the line L−U3

⊂ X∨ associated with an isotropic subspace U3 ⊂ V;
see (3.12). The birational transformation in the following proposition is another
example of a special birational transformation of type (2, 1) in [7].

Proposition 6.1. Let XK be a smooth dimensionally transverse linear section
of X of codimension 2. Then the following conditions are equivalent :

1) the Hilbert scheme F4(XK) of linear 4-spaces on XK is non-empty ;
2) the linear span of the conic γ(P(K)) ⊂ Q is contained in Q.
If these conditions hold, then

F4(XK) = L−U3
(6.1)

as subschemes of F4(X) ∼= X∨, where P(U3) ⊂ P(V) is the linear span of the
conic γ(P(K)). Moreover, if Π4

U5,−
is a 4-space on XK , then we have an isomor-

phism BlΠ4
U5,−

(XK) ∼= BlZK
(P(WK)) and a commutative diagram

EΠ,K //

����
��

��
��

BlΠ4
U5,−

(XK) ∼

{{xx
xx

xx
xx

x
BlZK

(P(WK))

$$I
IIIIIIIII

EZK
oo

��=
==

==
==

=

Π4
U5,−

// XK P(WK) ZK ,oo

(6.2)

where WK ⊂ W is the 9-dimensional vector subspace corresponding to K , and
ZK = Gr(2, U5,−) ∩ P(WK) is a smooth linear section of the Grassmannian of
codimension 2.

Proof. For each point κ ∈ P(K), the hyperplane section Xκ of X is smooth by
Lemma 3.3. By Corollary 5.12, the Hilbert scheme F4(Xκ) of 4-spaces in Xκ is

1Editor’s Note. Pages 735, 736 contain corrections made by the author at the proof stage.
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equal to the 5-dimensional quadric Qκ,− as a subscheme in F4(X) ∼= X∨; see (3.19).
Since

F4(XK) =
⋂

κ∈P(K)

F4(Xκ) =
⋂

κ∈P(K)

Qκ,− (6.3)

and Qκ,− ⊂ Qv,− = OGr−(4, v⊥/v), where v = γ(κ), we see that condition 1)
implies the existence of a common point [U5,−] of all OGr−(4, v⊥/v) ⊂ X∨ when
v ∈ γ(P(K)). In other words, this means that the conic γ(P(K)) is contained in
the 4-space P(U5,−) ⊂ Q. Therefore, the linear span of the conic is contained in Q.
This proves the implication 1) ⇒ 2).

For the converse, assume that the linear span of the conic γ(P(K)) is contained
in Q. Then it is equal to P(U3) for an isotropic subspace U3 ⊂ V. It follows that
the intersection of all OGr−(4, v⊥/v), where v = γ(κ) and κ ranges over P(K), is
equal to the line L−U3

. This proves that

F4(XK) ⊂ L−U3
.

We now show that this embedding is an equality. Regard the plane P(U3) as the
fibre of OFl(1, 3;V) over the point [U3] ∈ OGr(3,V). The restriction to this plane
of the filtration of S∨ ⊗ O discussed before the proposition takes the form

S2,−,U3 ⊗ OP(U3), S2,U3 ⊗ ΩP(U3)(1), S2,−,U3 ⊗ OP(U3)(−1),

S2,U3 ⊗ OP(U3)(1), S2,−,U3 ⊗ TP(U3)(−1), S2,U3 ⊗ OP(U3),

and again, the first line corresponds to a filtration of S8,−|P(U3) ⊂ S∨⊗OP(U3), while
the first two columns correspond to a filtration of W−,U3 ⊗ OP(U3) ⊂ S∨ ⊗ OP(U3).
Recall that by definition the map γ factors through the embedding

P(K) ⊂ PP(U3)(S8,−|P(U3)) ⊂ P(U3)× P(S∨),

and therefore the tautological embedding OP(K)(−1) ⊂ K⊗OP(K) ⊂ S∨⊗OP(K) fac-
tors through the subbundle γ∗S8,−, that is, it sits in the first row of the above filtra-
tion. Since γ(P(K)) ⊂ P(U3) is a conic, the restriction of this filtration to γ(P(K))
takes the form

S2,−,U3 ⊗ OP(K), S2,U3 ⊗ OP(K)(−1)⊕2, S2,−,U3 ⊗ OP(K)(−2).

Since Hom(OP(K)(−1),OP(K)(−2)) = 0, it follows that OP(K)(−1) sits in the first
two factors of this filtration, hence in the first two columns of the previous filtration,
hence in the subspace W−,U3 ⊗ OP(K) ⊂ S∨ ⊗ OP(K). So we conclude that

K ⊂ W−,U3 ⊂ S∨.

We now recall from the proof of Lemma 6.17 below that the 4-spaces parameterized
by the line L−U3

span the subspace WU3 ⊂S, and that this subspace is annihilated by
the subspace W−,U3 ⊂ S∨. Therefore, it is also annihilated by K. This means that
all these 4-spaces are contained in the linear section XK , hence

L−U3
⊂ F4(XK).

This proves that the conditions 1) and 2) are equivalent and that (6.1) holds.
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We now assume that conditions 1) and 2) hold, and let U5,− be the subspace
corresponding to a point of F4(XK). Consider the isomorphism of Proposition 5.1.
Let

X̃K
∼= BlΠ4

U5,−
(XK)

be the strict transform of XK in the blow-up of X along Π4
U5,−

. Every hyperplane
in S corresponding to a point of P(K) ⊂ P(S∨) contains the 4-space Π4

U5,−
. Hence,

by (5.3), it corresponds to a hyperplane in P(W ) that intersects the linear span
of the Grassmannian Gr(2, U5,−) transversally. Therefore X̃K is isomorphic to
the blow-up of a codimension-2 subspace P(WK) ⊂ P(W ) along the corresponding
linear section ZK of the Grassmannian Gr(2, U5,−).

If the linear section ZK is not dimensionally transverse, then its pre-image in X̃K

is an irreducible component of the latter, which is absurd. Since X̃K is smooth,
it follows that ZK is also smooth; see Lemma 2.6. �

Definition 6.2. A smooth linear section XK ⊂ X of codimension 2 in the spinor
tenfold is said to be special if the equivalent conditions of Proposition 6.1 hold
for XK .

Remark 6.3. The birational transformation in Proposition 6.1 shows that a special
section XK of X is unique up to isomorphism (and hence up to the Spin(V)-action;
see Corollary 4.5). Indeed, this follows from the classical fact that a smooth linear
section of Gr(2, 5) of codimension 2 is unique up to projective isomorphism.

Here is another characterization of special linear sections.

Lemma 6.4. A smooth linear section XK ⊂ X of codimension 2 is special if and
only if there is a line L ⊂ XK such that

NL/XK
∼= OL(−2)⊕ OL(1)⊕6. (6.4)

Moreover, such a line is unique and coincides with the intersection of all 4-spaces
lying on XK .

Proof. We will use the notation introduced in the proof of Proposition 6.1. In
particular, let P(U3) ⊂ Q be the linear span of the conic γ(P(K)) ⊂ Q.

We first prove that the line L = LU3 is contained in XK and has the required
normal bundle. To do this, we note that there is a pencil of 4-spaces passing
through L (it corresponds to the pencil of the spaces U5,− containing U3) and L
is the scheme-theoretic intersection of any two distinct 4-spaces Π1 and Π2 in this
pencil. Hence there is a natural embedding of vector bundles

NL/Π1 ⊕NL/Π2 ↪→ NL/XK
.

We note that the left-hand side is isomorphic to OL(1)⊕6 while the right-hand side
is a bundle of rank 8 − 1 = 7 and degree 6 − 2 = 4. Therefore the cokernel of
the embedding is isomorphic to OL(−2). This gives the required formula for the
normal bundle of L.
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For the converse, assume that L = LU3 ⊂ XK is a line with normal bundle as
in (6.4). Let Π be any 4-space on X containing L (such 4-spaces correspond to
the subspaces U5,− containing U3 and hence form a pencil). If we can show that
Π is contained in XK , then this will mean that F4(XK) 6= ∅ and, therefore, XK

is special. It also means that L is contained in the intersection of the pencil of
4-spaces on XK and, therefore, it is the only such line on XK . So we consider the
following diagram:

NL/Π

��zz
0 // NL/XK

// NL/X
// NXK/X |L // 0.

Its bottom row can be rewritten as

0 //OL(−2)⊕ OL(1)⊕6 //O⊕3
L ⊕ OL(1)⊕6 //OL(1)⊕2 //0 (6.5)

(for the first term we use the hypothesis of the lemma and for the second we use
Lemma 8.1 in [4]). Tensoring it by OL(−1) and passing to cohomology, we obtain
an exact sequence

0 → k6 → k6 → k2 → k2 → 0,

where the first three spaces come from the multiplicities of OL(1) in (6.5) and
the last space is equal to H1(L,OL(−3)). It follows that the map k6 → k6 is
an isomorphism and, therefore, the first map in (6.5) is an isomorphism on the
summands OL(1). Since moreover NL/Π

∼= OL(1)⊕3, it follows that the vertical
arrow in the diagram factors through the dotted arrow. Geometrically, this means
that the tangent space to Π at each point of L is contained in the tangent space
to XK . But since Π ⊂ X and XK is a linear section of X, it follows that Π ⊂ XK . �

Definition 6.5. The line L on a special linear section XK ⊂ X of codimension 2
such that (6.4) holds is called its special line.

One can also describe the normal bundle for non-special lines.

Lemma 6.6. Let XK be a smooth linear section of X of codimension 2, and
let L be a non-special line on XK . Then

NL/XK
∼= O⊕3

L ⊕ OL(1)⊕4 or NL/XK
∼= OL(−1)⊕ OL ⊕ OL(1)⊕5.

Proof. As in the proof of Lemma 6.4, we have an exact sequence

0 //NL/XK
//O⊕3

L ⊕ OL(1)⊕6 //OL(1)⊕2 //0. (6.6)

The restriction of the right map to the second summand OL(1)⊕6 → OL(1)⊕2

is a map of constant rank. If the rank equals 2, then NL/XK
∼= O⊕3

L ⊕ OL(1)⊕4.
If the rank equals 1, then NL/XK

∼= OL(−1)⊕ OL ⊕ OL(1)⊕5. Finally, if the rank
equals 0, then NL/XK

∼= OL(−2)⊕OL(1)⊕6 and the corresponding line is special. �
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The characterization in Lemma 6.4 may be restated as follows.

Corollary 6.7. Let XK ⊂ X be a smooth linear section of codimension 2. The
Hilbert scheme F1(XK) of lines on XK is singular if and only if XK is special.
Moreover, if XK is special, then the singular locus of F1(XK) consists of a single
point and this point corresponds to the special line on XK .

Proof. By Lemma 6.6 we have H1(L,NL/XK
) 6= 0, that is, the Hilbert scheme

F1(XK) is singular at a point [L] if and only if (6.4) holds and, therefore, XK is
special and L is its special line. �

6.2. Non-special linear sections of codimension 2. In this subsection we
show that there is a unique isomorphism class of non-special smooth linear sections
XK ⊂ X of codimension 2.

Given a subspace K ⊂ S (of any codimension) and a point κ ∈ P(K) \X∨, we
consider the quadric

Qκ,K := Qv ∩ P(K⊥), (6.7)

where v = γ(κ) and Qv = OGr+(4, v⊥/v). Note that the quadric Qv is contained
in the hyperplane P(κ⊥) (Lemma 5.10). Hence Qκ,K is a linear section of Qv of
codimension at most k − 1, where k = dim K.

We also recall the smooth 5-dimensional quadric Qκ,− defined in (5.22). Finally,
recall the spinor bundle S4 on the 5-quadric Qκ,− and note that c4(S4) = 0 (see [13],
Remark 2.9). Since S∨4 is globally generated, it is standard (see, for example, [27],
§ 4, Lemma 4.3.2) that a general morphism S4 → OQκ,− is surjective. Denoting the
kernel of such a morphism by S4, we have an exact sequence

0 → S4 → S4 → OQκ,− → 0. (6.8)

Then S4 is a vector bundle of rank 3 on Qκ,−. Since the group Spin(7) acts
transitively on the open subset of P(Hom(S4,OQκ,−)) corresponding to surjective
morphisms (see the proof of Proposition 6.8 for more details), this bundle is defined
uniquely up to the action of Spin(7) on Qκ,−.

Proposition 6.8. Let XK be a smooth dimensionally transverse linear section
of X of codimension 2. Then the blow-up BlQκ,K

(XK) is a relative hyperplane
section in the P4-bundle PQκ,−(O(−1) ⊕ S4) over Qκ,−. It is a flat P3-bundle if
and only if XK is non-special, that is, F4(XK) = ∅. In this case,

BlQκ,K
(XK) ∼= PQκ,−(O(−1)⊕ S4),

where S4 is the bundle of rank 3 defined in (6.8). In particular, the non-special
section XK of codimension 2 is unique up to isomorphism.

Proof. Let κ, κ′ ∈ P(K) be a basis. We put v = γ(κ), so that Qκ,K = Qv ∩P(κ′⊥).
Consider the isomorphism BlQv (Xκ) ∼= PQκ,−(O(−1)⊕S4) in Corollary 5.11. Then
the strict transform of XK = Xκ ∩ P(κ′⊥) is isomorphic to the blow-up of XK

along Qκ,K . On the other hand, it is a relative hyperplane section of the projective
bundle PQκ,−(O(−1)⊕ S4) corresponding to the composition

O(−1)⊕ S4 ↪→ S⊗ O
κ′−−→ O. (6.9)
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Hence we only have to check that the composition (6.9) is surjective if and only if
F4(XK)= ∅. Indeed, if the morphism is not surjective at some point, then the fibre
P4 of the bundle PQκ,−(O(−1)⊕S4) over this point is contained in BlQκ,K

(XK) and
hence gives a 4-space on XK . Conversely, if Π ⊂ XK is a 4-space, then Π ⊂ Xκ

and we know by Corollary 5.12 that Π is the image of a fibre of PQκ,−(O(−1)⊕S4)
over some point of Qκ,−. Furthermore, this fibre is equal to the strict transform
of Π in BlQκ,K

(XK) and, therefore, the morphism (6.9) is zero at this point.
We now assume that the composition (6.9) is surjective. Its component S4 → O

is determined by a global section of the bundle S∨4 on Qκ,−. The space of such
global sections is the 8-dimensional spinor representation of Spin(7) and can be
identified with S8,v. The Spin(7)-action on its projectivization has two orbits,
the smooth 6-dimensional quadric Qv ⊂ P(S8,v) and its open complement. It is
easy to see that each global section of S∨4 corresponding to a point of the closed
orbit Qv vanishes on a certain plane P2 ⊂ Qκ,− and, therefore, its extension to
a morphism (6.9) is not surjective (at least along a line P1 ⊂ P2). Thus, if (6.9) is
surjective, then its kernel is an extension of O(−1) by S4. It is easy to check that
Ext1(O(−1),S4) = 0 on the 5-quadric Qκ,− and, therefore, the kernel of (6.9) is
isomorphic to O(−1)⊕ S4.

Hence XK is the image of PQκ,−(O(−1)⊕S4) under the map given by the linear
system of relative hyperplane sections. Its uniqueness up to isomorphism follows
from the uniqueness of S4 up to the action of Spin(7). �

Combining this with Remark 6.3, we obtain the following assertion.

Corollary 6.9. There are exactly two isomorphism classes of smooth linear sec-
tions XK ⊂ X of codimension 2, the special and the non-special. They are described
in Propositions 6.1 and 6.8 respectively.

Using Corollary 4.5, we can restate this in the following form.

Corollary 6.10. There are exactly two orbits of the Spin(V)-action on the open
subset of Gr(2, S∨) parametrizing lines that do not intersect the spinor tenfold X∨.
One of them is open and the other is closed.

This corollary, together with Lemma 6.13 below, provides a refinement of Propo-
sition 32 in [25].

By using the description of singular hyperplane sections, one can also describe the
orbits of Spin(V) on the subset of Gr(2, S∨) parametrizing lines that intersect X∨.
We leave this to the interested reader.

For future use, we also prove the following fact about the quadrics Qκ,K defined
in (6.7).

Corollary 6.11. If dim K = 2 and XK is a non-special smooth linear section
of X , then the quadric Qκ,K is smooth for every κ ∈ K . If, on the contrary, XK

is special, then the quadric Qκ,K is singular for every κ ∈ K .

Proof. The first assertion follows immediately from Lemma 2.6 since the blow-up
of XK along Qκ,K is a P3-bundle over a smooth quadric Qκ,− and is therefore
smooth.
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To prove the second, note that the zero locus of the morphism (6.9) is equal
to F4(XK) ∼= P1. Hence the corresponding relative hyperplane section BlQκ,K

(Xκ)
in PQκ,−(O(−1)⊕S4) is not smooth and, therefore, the blow-up centre Qκ,K is not
smooth. �

Remark 6.12. We easily see that G6(XK) = ∅ for all XK of codimension 2 while
G5(XK) ∼= P(K) and the corresponding family of 5-quadrics consists of the quad-
rics Qκ,K . Thus the smoothness of the universal family of 5-quadrics gives another
characterization of non-special linear sections of X of codimension 2.

6.3. The spinor quadratic line complex. We write

R0 ⊂ Gr(2, S∨)

for the Spin(V)-orbit in Gr(2, S∨) parametrizing the 2-dimensional subspaces K⊂S∨
such that XK is smooth and special, and let

R := R0

be its closure in Gr(2, S∨).

Lemma 6.13. The subscheme R ⊂ Gr(2, S∨) is a divisor cut out by a smooth
Spin(V)-invariant quadric in P(

∧
2S∨).

Proof. Let K2 ⊂ S∨⊗O denote the tautological bundle of rank 2 on the Grassman-
nian Gr(2, S∨). Consider the composition

V ⊗ O → Sym2 S⊗ O → Sym2K∨2 , (6.10)

where the first map is induced by the embedding of V regarded as the space of
quadratic equations of X∨ (see Corollary 4.3) and the second is tautological. Then
the dual map Sym2K2 → V⊗O of (6.10) induces a universal version of the quadratic
map γ : P(K2) → Q ⊂ P(V) discussed in Corollary 4.11.

We now consider the composition

O
qV−−−→ Sym2 V ⊗ O → Sym2(Sym2K∨2 ) → Sym4K∨2 , (6.11)

where the first map is given by the equation of the quadric Q (using the identifi-
cation V ∼= V∨ given by qV), the second is the symmetric square of (6.10), and
the last is the multiplication map. The composition map is identically equal to
zero because for general [K2] ∈ Gr(2, S∨) we have γ(P(K2)) ⊂ Q by Corollary 4.11.
Hence the composition of the first two arrows factors through the kernel of the
third, which is nothing but

Ker
(

Sym2(Sym2K∨2 ) → Sym4K∨2
)
∼= Sym2(

∧
2K∨2 ) ∼= OGr(2,S∨)(2),

and thus gives a global section of OGr(2,S∨)(2) which determines a quadratic divisor
on Gr(2, S∨). Furthermore, for general [K2], this global section vanishes at the point
[K2] if and only if the composition of the first two arrows in (6.11) vanishes at [K2],
that is, if and only if the linear span of the conic γ(P(K2)) ⊂ Q is contained in Q.
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By Proposition 6.1 this is equivalent to the speciality of XK2 . Thus the resulting
global section of OGr(2,S∨)(2) defines the subscheme R.

Since the divisor R ⊂ Gr(2, S∨) is Spin(V)-invariant, we conclude that the
quadric in P(

∧
2S∨) corresponding to the constructed global section of OGr(2,S∨)(2)

is also Spin(V)-invariant. On the other hand,
∧

2S∨ is an irreducible representation
of Spin(V) (actually, its highest weight is ω3 and thus it is isomorphic to

∧
3V).

Hence every Spin(V)-invariant quadratic form on P(
∧

2S∨) is non-degenerate and
the corresponding quadric is smooth. �

Quadratic divisors on Grassmannians of lines are traditionally referred to as
quadratic line complexes. The divisor R constructed in this lemma is very important
for the geometry of linear sections of the spinor tenfold. Therefore we suggest the
following terminology.

Definition 6.14. The quadratic divisor R ⊂ Gr(2, S∨) described in Lemma 6.13
is called the spinor quadratic line complex.

Before proceeding, we discuss some properties of the spinor quadratic line com-
plex R.

For every point κ ∈ P(S∨) there is a natural isomorphism between the projective
space P(S∨/κ) ∼= P14 and the closed subvariety of Gr(2, S∨) parametrizing the lines
through κ in P(S∨). We shall use this isomorphism implicitly and regard P(S∨/κ)
as a subvariety of Gr(2, S∨). We write

Rκ := R ∩ P(S∨/κ) ⊂ P(S∨/κ). (6.12)

The following lemma describes these subschemes of P(S∨/κ). We recall the quad-
ratic cone Q̃v ⊂ P(S∨) (see (5.21)) where v = γ(κ), and note that κ ∈ P(S8,−,v)
lies at its vertex.

Lemma 6.15. Suppose that κ ∈ P(S∨)\X∨ and put v = γ(κ). Then the subscheme
Rκ ⊂ P(S∨/κ) is the image of the quadratic cone Q̃v under the linear projection
from κ, so that Q̃v = Coneκ(Rκ). In particular, Rκ is equal to ConeP(S8,−,v/κ)(Qv)
and contains the image of the projection of X∨ from κ.

Proof. Let Xκ ⊂ X be the smooth hyperplane section of X associated with κ. By
the definition of R, the subscheme Rκ is the closure of the locus of all hyperplanes
in P(κ⊥) ⊂ P(S) such that the corresponding hyperplane section of Xκ is special.
By Corollary 6.11, such a linear section is special if and only if the hyperplane
section Qv ∩ P(κ′⊥) of the smooth quadric Qv is singular (see (6.7)). Thus Rκ

is the cone over the projective dual quadric Q∨
v whose vertex is the orthogonal

complementof the linear span of Qv.
Since the linear span of Qv is P(S8,v) ⊂ P(S), its orthogonal in P(S∨) is P(S8,−,v)

and its orthogonal in P(S∨/κ) is P(S8,−,v/κ). On the other hand, the quadric Qv

is self-dual under the identification of P(S∨8,v) with P(S8,v) in terms of the natural
quadratic form. Thus the scheme Rκ = ConeP(S8,−,v/κ)(Qv) is the image of Q̃v.
Finally, Rκ contains the projection of X∨ since the cone over Rκ with vertex at κ
is the quadric Q̃v, which contains X∨ by Remark 5.9. �
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Corollary 6.16. The spinor quadratic line complex R contains the locus of
lines in P(S∨) intersecting X∨. The singular locus of R is the variety of secant lines
of X∨, that is, the image of the relative Grassmannian GrQ(2,S8,−) under the
natural map GrQ(2,S8,−) → Gr(2, S∨). In particular, codimR(Sing(R)) = 7.

Proof. To verify the first assertion, it suffices to note that, by Lemma 6.15, the
quadric Rκ contains the projection of X∨ for all κ /∈ X∨. To prove the second,
we consider PR(K2) and the natural map PR(K2) → P(S∨), where K2 is the
restriction to R of the tautological vector bundle of rank 2 on Gr(2, S∨). This
is a (non-flat) quadratic fibration whose fibres over the points outside X∨ are
the quadrics Rκ ⊂ P14 described above and whose fibres over the points of X∨

are the spaces P14 (thus X∨ is the non-flat locus). Note that the singular locus
of PR(K2) is equal to PSing(R)(K2). On the other hand, it certainly contains the
P6-fibration PP(S∨)\X∨(γ∗S8,−/O(−1)) over P(S∨) \X∨ swept out by the singular
loci of the quadrics Rκ. Its projection to Gr(2, S∨) is the variety of secant lines
of X∨ and, therefore, lies in Sing(R). It is also easy to see that R is smooth outside
the locus of secant lines.

To show that the locus of secant lines is equal to the image of the Grassmannian
GrQ(2,S8,−), it is enough to note that each secant line of X∨ is contracted by the
rational map q−◦p−1

− to a point and, therefore, its strict transform in BlX∨(P(S∨)) ∼=
PQ(S8,−) is contained in a fibre over Q, that is, it corresponds to a point of the
relative Grassmannian GrQ(2,S8,−).

This enables us to compute the codimension of Sing(R). Indeed,

dim(GrQ(2,S8,−))= 8+ 2·6 =20 and dim R = dim(Gr(2, S∨))− 1 =2·14− 1 =27,

whence codimR(Sing(R)) = 7. �

We conclude this section by constructing a useful resolution of singularities of R.
For every point U3 of the isotropic Grassmannian OGr(3,V) we consider the induced
filtration on S⊗O (see Lemma 2.3) with factors S2, S2,− ⊗U ∨

3 , S2 ⊗
∧

2U ∨
3 , and

S2,− ⊗
∧

3U ∨
3 , where S2 and S2,− are the spinor bundles of rank 2 and U3 is the

tautological bundle of rank 3. Let W ⊂ S⊗O be the subbundle of rank 8 generated
by the first two factors. We put W− := (S/W )∨ ⊂ S∨ ⊗ O, which is an analogous
subbundle of rank 8 in the dual space. Thus we have a collection of exact sequences:

0 → W → S⊗ O → W ∨
− → 0, 0 → W− → S∨ ⊗ O → W ∨ → 0 (6.13)

(the second sequence is dual to the first) and, in view of Lemma 2.1,

0 → S2 → W → S2,− ⊗U ∨
3 → 0, 0 → S2,− → W− → S2 ⊗U ∨

3 → 0. (6.14)

Recall that R0 ⊂ R denotes the open subset parametrizing the points [K2] ∈ R
with X∨∩P(K2) = ∅, that is, those corresponding to smooth special linear sections
of X of codimension 2.

Lemma 6.17. The natural map

R̃ := GrOGr(3,V)(2,W−) → Gr(2, S∨)
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is a birational isomorphism onto the hypersurface R ⊂ Gr(2, S∨) and an isomor-
phism over the open subset R0 ⊂ R.

Proof. Choose a point [U3] ∈ OGr(3,V) and let L = LU3 ⊂ X be the corresponding
line (3.11). Recall from Lemma 6.4 that L is the special line of a special linear
section XK ⊂ X of codimension 2 if and only if XK contains all 4-spaces in X
containing L.

The 4-spaces in X containing L are parametrized by the line L−U3
⊂X∨; see (3.12).

Let us check that their linear span in S is equal to the fibre WU3 of the subbundle
W ⊂ S⊗O at the point [U3]. Indeed, for every point s ∈ P(S2,−,U3) = L−U3

let U5,−

be the corresponding point of the line L−U3
. Then the tautological exact sequence

0 → U3 → U5,− → U5,−/U3 → 0 gives an exact sequence

0 → (U5,−/U3)⊗ det(U3) →
∧

4U5,− → det(U5,−/U3)⊗ det(U3)⊗ U∨
3 → 0,

which can be rewritten as the sequence

0 → S2,U3 →
∧

4U5,− → s⊗ U∨
3 → 0

induced by the restriction of the first sequence in (6.14) to the point [U3] by means
of the embedding s ⊗ U∨

3 ⊂ S2,−,U3 ⊗ U∨
3 . Since the linear span of the pencil of

planes P(s⊗ U∨
3 ) ⊂ P(S2,−,U3 ⊗ U∨

3 ) parametrized by s ∈ P(S2,−,U3) is the 5-space
P(S2,−,U3 ⊗ U∨

3 ), it follows that the linear span of the pencil of 4-spaces Π4
U5,−

is
the fibre WU3 of the subbundle W ⊂ S⊗ O at [U3].

It follows that XK contains all 4-spaces containing L if and only if K is contained
in the orthogonal of WU3 ⊂ S, and this orthogonal is nothing but the fibre W−,U3 of
the bundle W− at the point [U3]. Thus the relative Grassmannian R̃ parametrizes
all pairs (L,K) where L is a line on X and K ⊂ S∨ is a two-dimensional subspace
such that XK contains the pencil of 4-spaces on X containing L. In particular,
the image of R̃ in Gr(2, S∨) contains the open subset R0 of the hypersurface R
and (by the uniqueness of the special line on a special variety XK ; see Lemma 6.4)
the map from R̃ is an isomorphism over it. Since R̃ is irreducible and

dim R̃ = dim OGr(3, 10) + dim Gr(2, 8) = 15 + 12 = 27 = dim R,

it follows that the image is equal to R and the map is birational. Finally, since R̃
is smooth, the map R̃ → R is a resolution of singularities. �

Remark 6.18. It is easy to check that the intersection of X∨ with the projectivized
fibre P(W−,U3) ⊂ P(S∨) of the bundle W− is the 5-dimensional cubic Segre cone

ConeP(S2,−,U3 )(P(S2,U3)× P(U∨
3 )) ⊂ P(W−,U3)

(it is swept out by the pencil of 4-spaces in X∨ passing through the line L−U3
). In

particular, the pre-image of the complement R\R0 is the subvariety of R̃ parametriz-
ing the secant lines to this cone. Hence it is a divisor in R̃ of relative degree 3 over
OGr(3,V). Thus the resolution R̃ → R is not small and is not an identity over the
smooth locus of R.
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The assertion of the lemma may be expressed by a commutative diagram

R0
� � //� o

��>
>>

>>
>>

> R̃

����
��

��
��

GrOGr(3,V)(2,W−)

((QQQQQQQQQQQQ

R //_________________ OGr(3,V).

It determines a rational map (the dashed arrow at the diagram)

λ : R 99K OGr(3,V), (6.15)

which is regular on the open subset R0 ⊂ R.

Corollary 6.19. We have an isomorphism λ∗OOGr(3,V)(1) ∼= OGr(2,S∨)(3)|R0 of
line bundles on R0.

Proof. Let us calculate the canonical class of R̃. If H ′ is the hyperplane class
of Gr(2, S∨) and H ′′ is the hyperplane class of OGr(3,V), then KOGr(3,V) = −6H ′′

and c1(W−) = −2H ′′. Hence,

K eR = −6H ′′ + 4H ′′ − 8H ′ = −8H ′ − 2H ′′.

On the other hand, KR = −14H ′ by adjunction. Hence the discrepancy is
6H ′ − 2H ′′ = 2(3H ′ − H ′′). This shows that the exceptional divisor of the res-
olution R̃ → R is linearly equivalent to 3H ′−H ′′ (multiplicity 2 in the discrepancy
corresponds to codimR(R \R0) = 3). Since the exceptional divisor is disjoint from
R0, the restriction of 3H ′ − H ′′ to R0 is equivalent to zero, whence the required
relation. �

Remark 6.20. The map λ endows R0 with a bunch of vector bundles. Besides
the tautological vector bundle K2 of rank 2 (restricted from Gr(2, S)), these are the
pullback of the tautological bundle U3 of rank 3 and the pullbacks of the spinor
bundles S2,± of rank 2 from OGr(3,V).

§ 7. Linear sections of bigger codimension

In this section we discuss some results about linear sections of X of codimension
higher than 2.

7.1. The quadratic invariant. Let K ⊂ S∨ be a vector subspace of dimension
k > 2 and let XK be the corresponding linear section of X (in most cases we assume
that X∨ ∩P(K) = ∅, so that XK is smooth, but this is not always necessary). We
write

RK := R ∩Gr(2,K) ⊂ Gr(2, S∨) (7.1)

for the intersection of the spinor quadratic line complex R ⊂ Gr(2, S∨) (see Defi-
nition 6.14) with the Grassmannian Gr(2,K) ⊂ Gr(2, S∨). The geometric meaning
of the scheme RK is straightforward: it parametrizes those oversections of XK

(that is, subvarieties XK2 ⊂ X with K2 ⊂ K) of codimension 2 that are special or
singular.
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The following simple lemma shows that RK is an invariant of the isomorphism
class of XK .

Lemma 7.1. If XK1 and XK2 are dimensionally transverse linear sections of X
and there is an isomorphism XK1

∼= XK2 , then RK1
∼= RK2 .

Proof. By Corollary 4.5, an isomorphism XK1
∼= XK2 can be realized by the action

of an appropriate element g ∈ Spin(V) which takes K1 to K2. Since the divisor
R ⊂ Gr(2, S∨) is Spin(V)-invariant, we conclude that g induces an isomorphism
of RK1 and RK2 . �

Lemma 7.2. Let K⊂S∨ be a general subspace of codimension k, 2 6 k 6 5. Then
the subscheme RK ⊂ Gr(2,K) is a smooth quadratic divisor.

Proof. Consider the universal family of schemes RK , where K ranges over the
Grassmannian Gr(k, S∨) of all subspaces K ⊂ S∨ of a fixed dimension k. This
universal family may be written as the relative Grassmannian

R×Gr(2,S∨) Fl(2, k; S∨) ∼= GrR(k − 2, S∨/K2),

where K2 is the restriction of the tautological vector bundle from Gr(2, S∨) to R.
Its dimension is equal to dim R + dim Gr(k − 2, 14) = 27 + (k − 2)(16− k) and, by
Corollary 6.16, its singular locus has dimension 20 + (k− 2)(16− k). The image of
the singular locus in Gr(k, S∨) has codimension

k(16− k)− 20− (k − 2)(16− k) = 12− 2k.

This number is positive when k 6 5. Hence the general fibre of the map

GrR(k − 2, S∨/K2) → Gr(k, S∨)

is smooth. It remains to note that the fibre over a point [K] ∈ Gr(k, S∨) is RK . �

7.2. Birational constructions and rationality. Two birational descriptions of
the spinor tenfold X (Propositions 5.1 and 5.8), which are obtained by projections
from a 4-space and a 6-quadric respectively, can also be used to give descriptions of
the linear sections of X. The first of them is very effective for the sections XK con-
taining a 4-space (see Corollary 5.7 and Proposition 6.1 above and Proposition 7.7
below), but not very useful otherwise. By contrast, the second description is very
useful for all linear sections.

We recall the quadric Qκ,K ⊂ Qv, where v = γ(κ); see (6.7). It is described in
the following lemma.

Lemma 7.3. Let K ⊂ S∨ be a subspace of dimension k 6 5. If XK is a smooth
linear section of the spinor tenfold X , then the quadric Qκ,K has dimension 7−k.
It is smooth if and only if

Rκ,K := P(K/κ) ∩RK ⊂ Gr(2,K) (7.2)

is a smooth quadric.
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Proof. Put v = γ(κ). The inclusion Qv ⊂ P(κ⊥) proved in Lemma 5.10 shows
that dim Qκ,K > 6 − (k − 1) = 7 − k. If the inequality is strict, then there is
a point κ′ ∈ K distinct from κ such that Qv ⊂ P(κ′⊥). By Lemma 5.10 this means
that γ(κ′) = v. Therefore the map γ : P(K) → Q is not injective, contrary to
Corollary 4.11. Thus dim Qκ,K = 7− k.

When K2 ranges over the linear space P(K/κ) of all 2-dimensional subspaces
K2 with κ ⊂ K2 ⊂ K, the quadrics Qκ,K2 run over the linear system of those
hyperplane sections of the smooth quadric Qv that contain Qκ,K . Furthermore,
Corollary 6.11 yields that the quadric Qκ,K2 is singular if and only if [K2] ∈ Rκ,K .
Thus Rκ,K is a linear section of the quadric Q∨

v (which is projectively dual to Qv)
by the subspace orthogonal to the linear span of the quadric Qκ,K . In particular,
using an analogue of Lemma 3.3, we conclude that it is smooth if and only if Qκ,K

is smooth. �

Remark 7.4. The same argument shows that the corank of Qκ,K is equal to the
corank of Rκ,K . This observation is especially useful when dim K = 5 and RK is
smooth. In this case, the corank stratification of the family of quadrics Rκ,K

is controlled by the corresponding EPW-sextic, see Proposition 4.5 in [11].

The following proposition describes the blow-up of XK along the quadric Qκ,K .
We also recall the quadric Qκ,− defined in (5.22).

Proposition 7.5. Let XK be a smooth dimensionally transverse linear section of
the spinor tenfold X of codimension k 6 5. Then there is a piecewise-Zariski locally
trivial fibration

BlQκ,K
(XK) → Qκ,−

whose generic fibre is P5−k and whose special fibres are projective spaces of higher
dimensions.

Proof. We repeat the argument of Proposition 6.8. Consider the isomorphism in
Corollary 5.11. Clearly, the pre-image of the linear section XK = Xκ ∩ P(K⊥)
in BlQv (Xκ) is isomorphic to the blow-up of XK along the quadric Qκ,K . By
Corollary 5.11 it may also be described as a relative linear section of codimension
k − 1 in the P4-bundle PQκ,−(O(−1)⊕ S4). This linear section corresponds to the
composition

O(−1)⊕ S4 ↪→ (S∨/κ)∨ ⊗ O � (K/κ)∨ ⊗ O (7.3)

and it is generically surjective since otherwise the general fibre of the map

BlQκ,K
(XK) ↪→ PQκ,−(O(−1)⊕ S4) → Qκ,−

has dimension at least 6−k and, therefore, dim(BlQκ,K
(XK)) > 5+6−k = 11−k,

contrary to the hypothesis that XK has dimension 10 − k. We now consider
the corank stratification for the morphism (7.3); it follows from the above that the
map BlQκ,K

(XK) → Qκ,− is locally trivial with fibre P5−k−c over the corank-c
stratum. �
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Using Proposition 7.5, we can easily deduce that XK is rational.

Corollary 7.6. If 1 6 k 6 5, then every smooth linear section XK of codimen-
sion k of the spinor tenfold X is rational.

Proof. By Proposition 7.5, the variety XK is birational to a locally trivial P5−k-
fibration over an open subset of the 5-dimensional quadric Qκ,−. Hence it is ratio-
nal. �

One can show by another argument that all smooth linear sections of X of
codimensions 6 and 7 are also rational.

7.3. Linear sections containing 4-spaces. In this subsection we discuss those
linear sections of X of codimension higher than 2 that contain a 4-space. We first
consider sections of codimension 3. The birational transformation in the following
proposition is another example of a special birational transformation of type (2, 1)
in Proposition 2.12 of [7].

Proposition 7.7. Let XK be a smooth dimensionally transverse linear section
of X of codimension 3. Then the following conditions are equivalent.

1) The Hilbert scheme F4(XK) of linear 4-spaces on XK is non-empty.
2) For every 2-dimensional subspace K2 ⊂ K , the oversection XK2 of X is

special, that is, RK = Gr(2,K).
3) The linear span of the Veronese surface γ(P(K)) ⊂ Q ⊂ P(V) is a P4 and is

contained in Q.
If all these conditions hold, then F4(XK) ∼= Spec(k). Moreover, if Π4

U5,−
is the

4-space on XK , then the linear span of γ(P(K)) is equal to P(U5,−)⊂Q and we
have an isomorphism BlΠ4

U5,−
(XK) ∼= BlZK

(P(WK)) and a commutative diagram

(6.2), where WK ⊂ W is the subspace of codimension 3 corresponding to K , and
ZK = Gr(2, U5,−) ∩ P(WK) is a smooth linear section of the Grassmannian of
codimension 3.

Proof. We first prove the equivalence of the conditions.
1) ⇒ 2). Since XK ⊂XK2 , the condition F4(XK) 6= ∅ implies that F4(XK2) 6= ∅

and, therefore, XK2 is special for all K2 ⊂ K.
2) ⇒ 3). The linear span of the surface γ(P(K)) is the projectivization of the

image of the map Sym2 K → V. Hence its dimension is at most 5. On the other
hand, if its dimension is 3 or less, then γ is not a closed embedding, contrary to
Corollary 4.11. Thus the linear span of γ(P(K)) is either a P5 or a P4.

Assume that the linear span of γ(P(K)) is a P5. Then the union of the linear
spans of the conics γ(P(K2)), where K2 ranges over the set of all hyperplanes
in K, is the secant variety of the Veronese surface γ(P(K)), that is, a symmetric
determinantal cubic in P5. By Proposition 6.1 it is contained in the quadric Q. But
then P5 ⊂ Q, which is impossible since Q is smooth of dimension 8.

Therefore the linear span of γ(P(K)) is a P4. Then the union of the linear spans
of the conics γ(P(K2)) is equal to the whole of P4, which then lies in Q by the
hypothesis and Proposition 6.1.
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3) ⇒ 1). Assume that the linear span of the Veronese surface γ(P(K)) is
P(V5) ⊂ Q, where V5 ⊂ V is an isotropic subspace (we do not specify whether it
corresponds to a point of X or of X∨, but later we will see that the second option
holds). For every subspace U4 ⊂ V5, the pre-image γ−1(P(U4)) ⊂ P(K) is a conic.
The conics that can be obtained in this way form a 4-dimensional linear system cor-
responding to the image of the injective map V ∨

5 → Sym2(K∨). Since non-reduced
conics in P(K) are parametrized by a 2-dimensional variety while reducible and
reduced conics are parametrized by a divisor in P(Sym2(K∨)), there is a subspace
U4 ⊂ V5 such that the conic γ−1(P(U4)) is reducible and reduced, that is,

γ−1(P(U4)) = P(K ′
2) ∪ P(K ′′

2 ),

where K ′
2,K

′′
2 ⊂ K are distinct two-dimensional subspaces. Then we have

γ(P(K ′
2)), γ(P(K ′′

2 )) ⊂ P(U4).

Let U ′
3, U

′′
3 ⊂ U4 be the linear spans of the conics γ(P(K ′

2)) and γ(P(K ′′
2 )) res-

pectively and let U4 ⊂ U5,− be the unique extension of the isotropic subspace
U4 ⊂ V5 ⊂ V to the subspace corresponding to a point of X∨. Then

[U5,−] ∈ L−U ′
3
∩ L−U ′′

3
= F4(XK′

2
) ∩ F4(XK′′

2
) = F4(XK);

in the last equality we use the identification

XK = X ∩ P(K⊥) = X ∩ P(K ′
2
⊥) ∩ P(K ′′

2
⊥) = XK′

2
∩XK′′

2
,

whence a 4-space lies on XK if and only if it lies both on XK′
2

and XK′′
2
. This

proves that F4(XK) 6= ∅ and completes the proof of the implication 3) ⇒ 1) and,
therefore, of the equivalence of all three conditions.

We now assume that all three conditions of the proposition hold and U5,− is
a subspace corresponding to a point of F4(XK). Given any subspace K2 ⊂ K, let
P(U3) be the linear span of the conic γ(P(K2)). Then [U5,−] ∈ F4(XK2) = L−U3

by Proposition 6.1 and, therefore, U3 ⊂ U5,−. Thus the linear span of each conic
γ(P(K2)) lies in P(U5,−) and, therefore, the linear span of the surface γ(P(K)) also
lies in P(U5,−). By condition 3), the linear span of γ(P(K)) is equal to P(U5,−)
(in particular, the subspace V5 in the proof of the implication 3) ⇒ 1) is equal
to U5,−). This also proves that F4(XK) ∼= Spec(k).

The rest of the proof (constructing the diagram (6.2) and describing its proper-
ties) is the same as in Proposition 6.1. �

Definition 7.8. A smooth linear section XK ⊂ X of codimension 3 in the spinor
tenfold X is said to be very special if the equivalent conditions of Proposition 7.7
hold for XK .

Remark 7.9. Since a smooth linear section of Gr(2, 5) of codimension 3 is unique
up to projective transformations, it follows that a very special section of X is also
unique.

We claim that if the codimension of K is greater than 3, then there are no smooth
linear sections of X containing a 4-space.
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Lemma 7.10. If XK is a smooth linear section of X of codimension 4 or higher,
then F4(XK) = ∅.

Proof. Let Π = Π4
U5,−

be a 4-space on X. A simple computation shows that
N ∨

Π/X
∼= Ω2

Π(2). Hence, if K is a 4-dimensional space of hyperplanes that contain Π,
there is a morphism

K ⊗ O → IΠ(1) → (IΠ/I2
Π)(1) ∼= Ω2

Π(3)

of sheaves on X. Since c3(Ω2
Π(3)) = 5, every such morphism drops rank to 3 on

some non-empty subscheme of Π. Hence the corresponding linear section XK is
singular along this subscheme. �

Note that c4(Ω2
Π(3)) = 0. This explains the existence of a smooth linear section

of X of codimension 3 containing Π.
We also check that the quadratic line complex RK in codimensions higher than 3

is always a hypersurface in Gr(2,K).

Lemma 7.11. If XK is a smooth linear section of X of codimension 4, then
RK 6= Gr(2,K). Moreover, if XK is general, then there are no very special over-
sections XK3 ⊂ X of codimension 3.

Proof. Assume that RK = Gr(2,K). Then, for every K2 ⊂ K, the linear span
of the conic γ(P(K2)) is contained in Q. Hence the secant variety of γ(P(K)) is
contained in Q. On the other hand, the secant variety of a 3-dimensional Veronese
variety is not contained in a quadric and, therefore, the linear span of γ(P(K)) is
contained in Q. But the dimension of the span is at least 7 while Q contains no
linear spaces of dimension higher than 4.

We now assume that dim K = 4 and XK is general. Then RK ⊂ Gr(2,K) is
a smooth quadratic divisor (Lemma 7.2). In particular, RK contains no planes
by Lefschetz’ theorem. But if XK3 is very special, then the plane Gr(2,K3) is
contained in RK . �
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