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Embedding derived categories of Enriques surfaces
in derived categories of Fano varieties

A. G. Kuznetsov

Abstract. We show that the bounded derived category of coherent sheaves
on a general Enriques surface can be realized as a semi-orthogonal compo-
nent in the derived category of a smooth Fano variety with diagonal Hodge
diamond.

Keywords: derived category of coherent sheaves, Fano variety, Enriques
surface.

If a smooth projective variety X over the field C of complex numbers has a full
exceptional collection, then its Hodge diamond is diagonal, that is,

hp,q(X) = 0 when p ̸= q.

It is natural to ask whether the converse is true. A simple counterexample to this
naive question is provided by an Enriques surface S. Its Hodge diamond is of the
form

1
0 0

0 10 0
0 0

1

,

so it is diagonal. On the other hand, its Grothendieck group K0(S) contains
a 2-torsion class (see, for example, [1], Lemma 2.2) and, therefore, its derived cat-
egory cannot be generated by a full exceptional collection because of the following
simple lemma.

Lemma 1 (compare with [2], § 3, [1], Proposition 2.1(5)). Let T be a triangulated
category whose Grothendieck group K0(T ) contains a torsion class. Then T does
not admit a full exceptional collection.

Proof. Assume that T is generated by an exceptional collection of length n. Since
the Grothendieck group is additive with respect to semi-orthogonal decompositions,
we have K0(T ) ∼= Zn. In particular, K0(T ) is torsion-free. �

A slightly less naive question is whether a Fano variety with diagonal Hodge
diamond necessarily has a full exceptional collection. This was asked by Alexey
Bondal in 1989 and raised again in a recent paper [3]. The main goal of this
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note is to show that the answer is still negative, and counterexamples can again be
constructed using Enriques surfaces.

More precisely, we construct a smooth Fano variety X such that its bounded
derived category D(X) of coherent sheaves has a semi-orthogonal decomposition
whose components are several exceptional objects along with D(S), where S is an
Enriques surface. Thus the Hodge diamond of X is diagonal, but the Grothendieck
group K0(X) contains a 2-torsion class (coming from K0(S)) and, therefore, D(X)
has no full exceptional collections by Lemma 1.

In fact, we describe two such constructions.
In the first, S is a general Enriques surface belonging to a certain divisorial family

in the moduli space of Enriques surfaces. Such surfaces S are called ‘nodal Enriques
surfaces’ or ‘Reye congruences’. By Theorem 3.2.2 in [4], an Enriques surface S of
this type can be embedded in the Grassmannian Gr(2, 4), and Lemma 5.1 in [5]
describes a resolution of its structure sheaf.

Consider the blow-up
M = BlS(Gr(2, 4)).

Theorem 2. The variety M is a Fano 4-fold with a semi-orthogonal decomposition

D(M) = ⟨D(S), E1, . . . , E6⟩,

where E1, . . . , E6 are exceptional bundles. The Hodge diamond of M is diagonal,
but K0(M) contains a 2-torsion class. In particular, D(M) has no full exceptional
collections.

Proof. By Lemmas 5.2, 5.3 in [5], M can be embedded in the product Gr(2, 4)×P3

as the zero locus of a regular section of the rank-3 vector bundle S2U ∨ � O(1),
where U is the tautological bundle on the Grassmannian. The determinant of this
vector bundle is isomorphic to O(3) � O(3). Hence, by the adjunction formula,
ω−1

M
∼= (O(1) � O(1))|M is the restriction of an ample line bundle. Thus M is

a Fano 4-fold.
The semi-orthogonal decomposition is obtained from Orlov’s blow-up formula

since D(Gr(2, 4)) is generated by an exceptional collection of length 6. The Hodge
diamond of M is of the form

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

+
1

0 0
0 10 0

0 0
1

=

1
0 0

0 2 0
0 0 0 0

0 0 12 0 0
0 0 0 0

0 2 0
0 0

1

,

a combination of the Hodge diamonds of Gr(2, 4) and S, again thanks to the
blow-up representation. Since the Grothendieck group is additive with respect
to semi-orthogonal decompositions, we have

K0(M) = K0(S)⊕ Z6.

In particular, the 2-torsion class in S gives a 2-torsion class in M . We complete
the proof using Lemma 1. �
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The second construction works for general Enriques surfaces (that is, for all
points of an open subset in the moduli space of Enriques surfaces) at the cost of
the corresponding Fano variety being 6-dimensional.

Let V1 and V2 be 3-dimensional vector spaces. Consider the Veronese embeddings

P(V1) ↪→ P(S2V1) ↪→ P(S2V1 ⊕ S2V2), P(V2) ↪→ P(S2V2) ↪→ P(S2V1 ⊕ S2V2)

and their join J(P(V1), P(V2)) ⊂ P(S2V1 ⊕ S2V2). This is a singular 5-dimensional
variety whose singularities are resolved by the projective bundle

J := PP(V1)×P(V2)(O(−2, 0)⊕ O(0,−2)).

Indeed, let H1 and H2 be the pullbacks to J of the hyperplane classes of the factors
P(V1) and P(V2), H the Grothendieck relative class of the projectivization, and
π : J → P(V1)× P(V2) the projection. Then the natural embedding

OJ(−H) ↪→ π∗(O(−2, 0)⊕ O(0,−2)) ↪→ (S2V1 ⊗ O)⊕ (S2V2 ⊗ O)

induces a morphism J → P(S2V1 ⊕ S2V2) which contracts the divisors

PP(V1)×P(V2)(O(−2, 0)) ⊂ J, PP(V1)×P(V2)(O(0,−2)) ⊂ J

onto the Veronese surfaces P(V1) ↪→ P(S2V1 ⊕ S2V2) and P(V2) ↪→ P(S2V1 ⊕ S2V2)
and takes the fibres of π to the lines joining the corresponding points of them.

In what follows we consider a global section of the vector bundle OJ(H)⊕3 on J.
Note that

H0(J, OJ(H)) ∼= H0(P(V1)× P(V2), O(2, 0)⊕ O(0, 2)) ∼= S2V ∨1 ⊕ S2V ∨2 .

Therefore such a section is given by a linear map

φ : W → S2V ∨1 ⊕ S2V ∨2

from a 3-dimensional vector space W . We denote the corresponding section again
by φ.

Lemma 3. The zero locus S ⊂ J of a general section φ of the bundle OJ(H)⊕3

on J is an Enriques surface. A general Enriques surface can be obtained in this
way.

Proof. Consider another projective bundle

J̃ ∼= PP(V1)×P(V2)(O(−1, 0)⊕ O(0,−1)).

It is isomorphic to the blow-up of the union P(V1) ⊔ P(V2) of two skew planes in
P(V1 ⊕ V2) with exceptional divisors

E1 = PP(V1)×P(V2)(O(−1, 0)) ⊂ J̃, E2 = PP(V1)×P(V2)(O(0,−1)) ⊂ J̃.

Let H̃1 and H̃2 be the pullbacks to J̃ of the hyperplane classes of the factors P(V1)
and P(V2), and let H̃ be the Grothendieck relative class of the projectivization.
Then E1 ≡ H̃ − H̃2 and E2 ≡ H̃ − H̃1.



Embedding derived categories of Enriques surfaces 537

Consider the involution of the vector bundle O(−1, 0) ⊕ O(0,−1) acting with
weight −1 on the first summand and with weight 1 on the second, and let τ be the
corresponding involution of J̃. The fixed-point locus of τ is the union E1 ⊔E2 of
the exceptional divisors, and the quotient J̃/τ is isomorphic to J with the quotient
map f : J̃ → J induced by the projection

S2(O(−1, 0)⊕O(0,−1)) = O(−2, 0)⊕O(−1,−1)⊕O(0,−2) � O(−2, 0)⊕O(0,−2).

We also note that OJ̃(2H̃) ∼= f∗(OJ(H)), and this induces an isomorphism

H0(J̃, OJ̃(2H̃))τ ∼= H0(J, OJ(H)) ∼= S2V ∨1 ⊕ S2V ∨2

between the space of τ -invariant global sections of OJ̃(2H̃) and the space of global
sections of OJ(H). Therefore, the pre-image

S̃ := f−1(S) ⊂ J̃

is the zero locus of a general τ -invariant section of the vector bundle OJ(2H̃)⊕3.
We have

KS̃ ≡ KJ̃ + 6H̃ ≡ (−3H̃1 − 3H̃2) + (H̃1 + H̃2 − 2H̃) + 6H̃

≡ 4H̃ − 2H̃1 − 2H̃2 ≡ 2E1 + 2E2.

Recall that S is defined by a map φ : W → S2V ∨1 ⊕ S2V ∨2 . Clearly, S̃ ∩ Ei is equal
to the intersection of the three conics in P(Vi) corresponding to the induced map
φi : W → S2V ∨i . Hence this set is empty for a general choice of φ. This shows that
the surface S̃ is disjoint from E1 and E2 (and, therefore, KS̃ ≡ 0) for general S.

Furthermore, it is easy to see (for example, using the Koszul resolution of OS̃

on J̃) that H1(S̃,OS̃) = 0 and, therefore, S̃ is a K3-surface. Since S̃ is disjoint from
the fixed-point locus E1 ⊔ E2 of τ , the involution τ acts freely on S̃. Hence,

S ∼= S̃/τ ⊂ J̃/τ = J

is an Enriques surface.
Finally, we note that the surface S̃ defined above coincides with the surface X

in [6], Exercise VIII.18, and the involution τ on S̃ coincides with the involution σ

described there. Hence the quotient S = S̃/τ is a general Enriques surface. �

We now consider the product J × P(W ) that parametrizes the linear system of
sections of OJ(H) cutting out S in J. Write H ′ for the hyperplane class of P(W )
and let

X ⊂ J× P(W )

be the universal divisor in the linear system of the equations of S, that is, the
zero locus on J × P(W ) of the global section of the line bundle OJ(H) � O(H ′)
corresponding to the map φ.
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Theorem 4. The variety X is a Fano 6-fold with a semi-orthogonal decomposition

D(X) = ⟨D(S), F1, . . . , F36⟩,

where F1, . . . , F36 are exceptional bundles. The Hodge diamond of X is diagonal,
but K0(X) contains a 2-torsion class. In particular, D(X) has no full exceptional
collections.

Proof. The canonical class of X is equal to

KX ≡ KJ + KP(W ) + (H + H ′)
≡ (−3H1 − 3H2) + (2H1 + 2H2 − 2H)− 3H ′ + (H + H ′)
≡ −H1 −H2 −H − 2H ′.

We claim that −KX is ample. Indeed, it suffices to check that the line bundle
H + H1 + H2 is ample on J. By Proposition 3.2 in [7], this is equivalent to the
ampleness of its pushforward O(3H1 + H2)⊕O(H1 + 3H2) on P(V1)× P(V2). But
this ampleness follows from that of the summands by Proposition 2.2 in [7]. We
conclude that X is a Fano 6-fold.

The map X → J has general fibre P1, and its fibres jump to P2 over the Enriques
surface S ⊂ J. Therefore,

D(X) = ⟨D(S),D(J),D(J)⟩

either by Theorem 8.8 in [8], or by Proposition 2.10 in [9]. Since J is a P1-bundle
over P2×P2, its derived category is generated by 3 · 3 · 2 = 18 exceptional bundles.
Hence we obtain the required semi-orthogonal decomposition for D(X). Finally,
the Hodge diamond of X is of the form

1
0 0

0 4 0
0 0 0 0

0 0 8 0 0
0 0 0 0 0 0

0 0 0 10 0 0 0
0 0 0 0 0 0

0 0 8 0 0
0 0 0 0

0 4 0
0 0

1

+
1

0 0
0 10 0

0 0
1

=

1
0 0

0 4 0
0 0 0 0

0 0 9 0 0
0 0 0 0 0 0

0 0 0 20 0 0 0
0 0 0 0 0 0

0 0 9 0 0
0 0 0 0

0 4 0
0 0

1

,

a combination of the Hodge diamonds of J × P1 and S. Since the Grothendieck
group is additive with respect to semi-orthogonal decompositions, we have

K0(X) = K0(S)⊕ Z36.

In particular, the 2-torsion class in S gives a 2-torsion class in X. We complete the
proof using Lemma 1. �

Remark 5. The embedding of the derived category of a general Enriques surface
in the derived category of the Fano variety constructed in Theorem 4, solves the
so-called ‘Fano visitor problem’ for such surfaces. This problem was suggested by
Alexey Bondal in 2011; see [10]–[14]. We note that a similar embedding of D(S) in
the derived category of a Fano orbifold was constructed in [12], 6.2.3.
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