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We describe the moduli stack of Gushel–Mukai varieties as a global quotient stack and
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on a comprehensive study of the relation between this stack and the stack of so-called
Lagrangian data defined in our previous works; roughly speaking, we show that the
former is a generalized root stack of the latter. As an application, we define the period
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1. Introduction

This paper is the third in the series started in [6, 7] and devoted to the investigation
of Gushel–Mukai (GM) varieties defined over a field k of characteristic zero. These
varieties are positive-dimensional, dimensionally transverse intersections

X = CGr(2, V5) ∩P(W ) ∩Q,

∗Corresponding author.
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where CGr(2, V5) ⊂ P(k ⊕ ∧2V5) is the cone over the Plücker embedding of the
Grassmannian of two-dimensional vector subspaces in a k-vector space V5 of dimen-
sion 5, P(W ) ⊂ P(k ⊕∧2V5) is a projective space of dimension n+ 4, and Q is a
quadric hypersurface in P(W ). We have

dim(X) = n ∈ {1, . . . , 6}.
Various geometric characterizations of GM varieties can be found in [6, Sec. 2.3];
for instance, [6, Theorem 2.16] shows that smooth GM varieties of dimension n ≥ 3
are exactly the Fano varieties of Picard rank 1, coindex 3, and degree 10.

In [6], we described the set of isomorphism classes of all GM varieties. In partic-
ular, we associated with each GM variety what we called a GM data set. Roughly
speaking, it is a collection (W,V6, V5, μ,q), where W , V6, and V5 are k-vector spaces
of respective dimensions n+ 5, 6, and 5, with V5 ⊂ V6, and

μ : W → ∧
2V5 and q : V6 → Sym2W∨

are k-linear maps. The map μ is the composition of the embedding W ↪→ k⊕∧2V5

coming from the definition of X with the projection onto the second summand,
whereas the map q is obtained by identifying V6 with the space of quadratic equa-
tions of X in P(W ). Under this identification, the hyperplane V5 ⊂ V6 corresponds
to the space of Plücker quadrics defining CGr(2, V5) in P(k ⊕∧2V5).

There are two types of smooth GM varieties: ordinary and special, distinguished
by the injectivity or the noninjectivity of the map μ. When the field k is quadrati-
cally closed, there is a natural bijection between the set of isomorphism classes of
special GM varieties of dimension n and the set of ordinary GM varieties of dimen-
sion n− 1 [6, Lemma 2.33]. On the other hand, special GM varieties can be obtained
from ordinary GM varieties of the same dimension by specialization (except in the
case n = 6, when there are no ordinary GM varieties). However, they behave in a
slightly different way and provide various complications to the theory.

The first main result of [6], Theorem 2.9, provides a bijection between the set of
isomorphism classes of GM varieties of dimension n and an appropriate subset of the
set of isomorphism classes of GM data sets. After introducing in Secs. 3.1 and 3.2
the stacks of GM varieties and of GM data, we present in Sec. 3.3 a version of this
bijection that works for families and promotes the bijection of sets of isomorphism
classes to an isomorphism of moduli stacks (see Theorem 3.7).

The second main result of [6], Theorem 3.6, relates GM data sets of ordinary
GM varieties to so-called Lagrangian data sets. These consist of triples (V6, V5, A),
where V6 is a vector space of dimension 6, V5 ⊂ V6 is a hyperplane, and A ⊂ ∧3V6

is a subspace which is Lagrangian for the det(V6)-valued symplectic form on
∧

3V6

given by wedge product. Theorem 3.6 of [6] establishes a bijection between ordinary
GM data sets of dimension n and Lagrangian data sets with dim(A∩∧3V5) = 5−n,
as well as, (if k is quadratically closed) using the bijection between ordinary and
special GM data sets, a bijection between special GM data sets of dimension n and
Lagrangian data sets such that dim(A ∩∧3V5) = 6 − n.
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A nice feature of this bijection, proved in [6, Theorem 3.16], is that the smooth-
ness of the GM variety associated with a Lagrangian data set (V6, V5, A) only
depends on A: when n ≥ 3, the corresponding GM variety is smooth if and only
if A has no decomposable vectors, that is,

P(A) ∩ Gr(3, V6) = ∅,

the intersection being taken inside P(
∧

3V6).
The main goal of this paper is to combine all these constructions into a sin-

gle construction of the moduli stack of smooth GM varieties. In other words,
we find analogs of the above constructions that work for “mixed” families (with
both ordinary and special varieties as members). The main difficulty is that the
GM/Lagrangian data sets bijection of [6] does not work with these “mixed” fami-
lies. Nevertheless, we define in Sec. 3.5 the stack of Lagrangian data that classifies
all Lagrangian data sets (V6, V5, A) such that

dim
(
A ∩∧3V5

) ∈ {5 − n, 6 − n}
and such that A has no decomposable vectors. We observe in Sec. 4.1 (see Proposi-
tion 4.1) that the natural family version of the construction from [6, Theorem 3.6]
that associates with a family of GM data (S,W ,V6,V5, μ,q) over a scheme S a fam-
ily of Lagrangian data (S,V6,V5,A ) is still well defined and gives a morphism of
stacks. However, this morphism cannot be an isomorphism for the following simple
reason.

For any family of GM data (S,W ,V6,V5, μ,q) over a scheme S, we define in
Sec. 3.4 a closed subset SGM,spe ⊂ S corresponding to points of S that parame-
terize GM data sets of special varieties and endow it with a natural scheme struc-
ture (Definition 3.11). Similarly, given a family of Lagrangian data (S,V6,V5,A ),
we consider the closed subset SLag,spe ⊂ S corresponding to points of S such
that dim(A ∩ ∧3V5) = 6 − n and endow it with a natural scheme structure
(Definition 3.19). An important consequence of Proposition 4.1 is that although the
special loci of an S-family of GM data and of the associated S-family of Lagrangian
data are the same set-theoretically, they have different scheme structures: the ideal
of SLag,spe is the square of the ideal of SGM,spe. Consequently, if we start with a
family of Lagrangian data such that the ideal of its special locus is not a square,
there is no corresponding family of GM data!

However, we prove in Sec. 4.2 that the inverse construction can be made when
the ideal of the subscheme SLag,spe ⊂ S for an S-family of Lagrangian data is a
square and SLag,spe is a Cartier divisor in S (this second condition seems to be of
technical nature but we do not know how to make the inverse construction without
it). This is the central construction of the paper. It is based on two vector bundle
constructions which we develop in Sec. 2 and which are interesting by themselves.

The first is the canonical factorization construction of Proposition 2.8: given a
morphism of vector bundles ϕ : E → F of generic rank r over a scheme S, such
that the rank of ϕ is everywhere at least r− 1 and the degeneration scheme of ϕ is
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a Cartier divisor D ⊂ S, we construct a canonical factorization

E � E1
ϕ1−→ F1 ↪→ F ,

where E1 and F1 are vector bundles of rank r, the first map is an epimorphism,
the last map is a fiberwise monomorphism, and the map ϕ1 is an embedding of
coherent sheaves whose cokernel is a line bundle on D.

Given a family of Lagrangian data (S,V6,V5,A ) such that SLag,spe is a Cartier
divisor in S, we apply in Sec. 4.2 this construction to the composition

ϕ : A ↪→ ∧
3V6

λ3−→ ∧
2V5 ⊗ (V6/V5),

(where the second map is induced by the natural projection λ : V6 → V6/V5) and
obtain a factorization

A � W ′ ϕ1−→ W ′′ ↪→ ∧
2V5 ⊗ (V6/V5). (1)

The cokernel of the morphism ϕ1 is supported on the Cartier divisor D = SLag,spe.
Assuming that this divisor can be written as

D = 2E,

where E is also a Cartier divisor, we find a unique vector bundle W such that the
morphism ϕ1 factors as

W ′ ϕ′
−→ W

ϕ′′
−−→ W ′′,

where both ϕ′ and ϕ′′ are embeddings of sheaves whose cokernels are line bun-
dles on E. We prove in Proposition 4.6 that (S,W ,V6,V5, μ,q), where μ is the
composition

W
ϕ′′
−−→ W ′′ ↪→ ∧

2V5 ⊗ (V6/V5)

and the map q will be defined below, is a family of GM data corresponding to
a smooth family of GM varieties, whose associated family of Lagrangian data is
equivalent to (S,V6,V5,A ).

The construction of the map q : V6 → Sym2W ∨ is carried out in three steps
(there is actually an extra line bundle twist on the target of q, but we will ignore
it here for simplicity). First, we define a map

qA : V6 → Sym2A ∨

by an explicit formula (35), which is just a family version of a formula used in the
proof of [6, Theorem 3.6]. After that we observe that the kernel of the epimorphism
A � W ′ is contained in the kernel of qA , hence there is a morphism

q′ : V6 → Sym2W ′∨ (2)

induced by qA . The last step is the construction of a map

q : V6 → Sym2W ∨ (3)

such that (Sym2ϕ′T ) ◦ q = q′; it uses the second vector bundle construction
from Sec. 2.
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This second construction is explained in Sec. 2.5; we call it the Hecke transform
of a family of quadratic forms. It starts from a morphism V → Sym2E ∨ of vector
bundles over a scheme S (viewed as a family of quadrics in PS(E ) parameterized
by PS(V )), a double Cartier divisor D = 2E on S, and a line subbundle K ⊂ E |D
contained in the kernel of all quadratic forms (restricted to D). We define a new
vector bundle Ẽ on S by the exact sequence

0 → Ẽ ∨ ε−→ E ∨ → K ∨|E → 0

and check in Proposition 2.12 that there is a unique family of quadratic forms
V → Sym2Ẽ ∨ such that the original family of quadratic forms is the composition
of this family with Sym2ε.

We apply this construction to the family of quadratic forms q′ from (2), with
V = V6 and E =W ′, taking D=SLag,spe and K = Ker(ϕ1|D : W ′|D →W ′′|D). The
corresponding Hecke transform W̃ ′ is just W , so Proposition 2.12 provides the
required family q of quadratic forms on W as in (3). We also prove in Proposi-
tion 2.12 that there is a canonical direct sum decomposition

W |E 
 (W ′|E)/(K |E) ⊕ (K |E)(E)

which is orthogonal for all quadrics in the family q|E and which recovers the canon-
ical direct sum decomposition of [6, Proposition 2.30] for special GM data sets. This
observation is essential for proving that the constructed family of GM varieties is
smooth.

In Sec. 5, we use the constructions of Sec. 4 to provide a description of the
moduli stack of smooth GM varieties as a global quotient stack. We first fix a
vector space V6 of dimension 6 and consider the scheme

Sn =
{

(A, V5) ∈ LGr(
∧

3V6) × P(V ∨
6 )
∣∣∣∣ dim(A∩∧3V5) ∈ {5−n, 6−n} and
A has no decomposable vectors

}
.

The first condition dim(A ∩ ∧3V5) ≥ 5 − n is closed, while the other two con-
ditions dim(A ∩ ∧3V5) ≤ 6−n and “A has no decomposable vectors” are open,
so Sn ⊂ LGr(

∧
3V6)×P(V ∨

6 ) is a locally closed subscheme. When n ∈ {3, 4, 5}, this
scheme contains a closed subscheme Sn−1 and its open complement Sn, defined by
the conditions that dim(A∩∧3V5) equals 6−n and 5−n, respectively, while S6 = S5.
The fibers of the projection Sn → LGr(

∧
3V6) over a point [A] are just the strata

of the Eisenbud–Popescu–Walter stratification of P(V ∨
6 ) associated with A (see

[15, Sec. 2] or Sec. 5.1) and the fibers of Sn are unions of these strata. In particular,
the schemes S6 and S5 are smooth, and for n ∈ {3, 4}, one has Sn−1 = Sing(Sn).
Both strata Sn−1 and Sn are Lagrangian intersection loci.

The construction of the moduli stack of smooth GM varieties of dimension n

goes as follows. Assume n ∈ {3, 4, 5} (the case n = 6 is slightly different and we skip
it in this introduction). It was proved in [8] that, if a certain divisibility condition
holds in the group Pic(Sn) (in fact it does not, but we will go back to this point

2050013-5
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later), there is a double covering

S̃n → Sn

branched over Sn−1 such that S̃n is smooth. Note that codimSn
(Sn−1) = 6 − n, so

for n ≤ 4, this is not a classical double covering branched over a hypersurface. We
consider the quotient stack

Ŝn := S̃n/µ2

with respect to the involution of the double covering (this is the canonical stack
of Sn in the terminology of [24]). This is a smooth Deligne–Mumford stack and the
natural PGL(V6)-action on the scheme Sn lifts to a PGL(V6)-action on Ŝn. Our
main theorem, Theorem 5.11, states that there is an isomorphism

MGM
n 
 Ŝn/PGL(V6)

between the moduli stack MGM
n of smooth GM varieties of dimension n ∈ {3, 4, 5}

and the quotient stack Ŝn/PGL(V6).
The main step in the proof of this theorem is the construction of a family of

smooth GM varieties over the stack Ŝn or, more precisely, over a certain scheme ̂̂Sn

that provides a covering of Ŝn in the smooth topology (the morphism ̂̂Sn → Ŝn is
actually a Gm-torsor). There is also a double covering map from ̂̂Sn to a certain
Gm-torsor over Sn which is branched over the preimage of Sn−1. Consequently,
pulling back from Sn, we construct on ̂̂Sn a family of Lagrangian data (S,V6,V5,A )
with trivial V6 = V6 ⊗ O and (pullbacks of) tautological bundles V5 and A . The
Lagrangian special locus of this family is the scheme-theoretic preimage of Sn−1,
that is, the preimage of the branch locus of the double covering, hence its ideal is
the square of the ideal of a certain smooth subscheme in ̂̂Sn. Considering the blow
up β : S → ̂̂Sn of this subscheme, we arrive at the situation of Sec. 4.2.

Applying Proposition 4.6, we obtain a family (S,W ,V6,V5, μ,q) of GM data.
We check that this family is the pullback by β of a family of GM data on the
scheme ̂̂Sn. Moreover, this family is equivariant with respect to the natural action
of the algebraic group

Gn = GL(V6)/µ3(5−n)

and thus descends to a family of GM data over̂̂Sn/Gn 
 Ŝn/PGL(V6). (4)

This construction provides a morphism from the quotient stack Ŝn/PGL(V6) to
the moduli stack of GM data. For the construction in the opposite direction, we
use the much simpler procedure of Proposition 4.1 and a universal property of the
stack Ŝn proved in Proposition A.6. Combining these two constructions, we obtain
an isomorphism between the moduli stack of smooth GM varieties and the global
quotient stack (4).
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To deal with the fact that the double covering S̃n → Sn does not exist (since the
required divisibility condition does not hold in Pic(Sn)), we note that the divisibility
condition holds locally over Sn, so the double covering exists locally. One can obtain
the stack Ŝn by gluing the quotients stacks of the local coverings, as in the standard
construction of the root stack. Alternatively, one can construct the stack Ŝn directly
(see Appendix A). After that, the construction goes as explained above.

To conclude this introduction, we mention that the global quotient stack descrip-
tion of Theorem 5.11 gives, via GIT, a construction of the coarse moduli space for
smooth GM varieties (Theorem 5.15). This provides a foundation for the period
map of GM varieties that was discussed in [7] (see Proposition 6.1). We also use our
results to construct in Sec. 6.2 several examples of complete nonisotrivial families
of smooth GM varieties.

2. Preliminaries on Vector Bundles

All schemes are over a fixed field k.
We first discuss some aspects of the theory of vector bundles on possibly nonre-

duced schemes. Most of the material in Secs. 2.1 and 2.2 is well known but we
collect it for the reader’s convenience. The results of Secs. 2.3, 2.4, and 2.5 seem to
be new and are essential for our treatment of the stack of GM varieties.

2.1. Epimorphisms and fiberwise monomorphisms

Let S be a scheme. By a point of S, we mean a K-point s : Spec(K) → S for some
field K. A geometric point of S is a K-point with K algebraically closed.

A vector bundle E on S is a locally free sheaf of OS-modules of constant finite
rank. Given a K-point s of S, we let Es be the K-vector space E ⊗OS K, the fiber
of E at s.

Lemma 2.1. A morphism ϕ : E → F between vector bundles on the scheme S
is surjective if and only if, for every geometric point s of S, the induced linear
map ϕs : Es → Fs between fibers is surjective.

Proof. Let C be the cokernel of ϕ. Since the tensor product functor is right exact,
we have, for each point s of S, an exact sequence

Es
ϕs−→ Fs → Cs → 0.

By Nakayama’s lemma, C = 0 if and only if Cs = 0 for every geometric point s
of S.

We say that ϕ is a fiberwise monomorphism if, for every geometric point s of S,
the morphism ϕs : Es → Fs is a monomorphism.

Lemma 2.2. A morphism ϕ : E → F between vector bundles on a scheme S is a
fiberwise monomorphism if and only if the dual map ϕ∨ : F∨ → E ∨ is surjective.

2050013-7
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Proof. Since (E ∨)s = (Es)∨, (F∨)s = (Fs)∨, and (ϕ∨)s = (ϕs)∨, the result
follows from Lemma 2.1.

Epimorphisms and fiberwise monomorphisms enjoy the following nice
properties.

Lemma 2.3. Let ϕ : E → F be a morphism between vector bundles on a scheme S.
If ϕ is surjective, Ker(ϕ) is a vector bundle and the natural map Ker(ϕ) → E

is a fiberwise monomorphism.
If ϕ is a fiberwise monomorphism, Coker(ϕ) is a vector bundle and the natural

map F → Coker(ϕ) is surjective.

Proof. The kernel is locally free since this is a local property and the kernel of an
epimorphism of projective modules over a ring is projective. Furthermore, since F

is locally free, we have Tor1(F ,K) = 0 for any K-point s of S, hence the sequence

0 → Ker(ϕ)s → Es → Fs → 0

is exact. By definition, the map Ker(ϕ) → E is therefore a fiberwise monomorphism.
The second part of the lemma follows by duality.

An effective Cartier divisor on a scheme is a subscheme locally defined by a
regular function which is not a zero divisor.

Lemma 2.4. Let S be a scheme, let i : D ↪→ S be an effective Cartier divisor,
let E be a vector bundle on S, and let F be a vector bundle on D. If ϕ : E → i∗F
is surjective, Ker(ϕ) is a vector bundle on S.

Proof. We may assume that D is nonempty. Since D is a Cartier divisor, the
projective dimension as an OS-module of OD, hence also of i∗F , is 1. Therefore,
the projective dimension of Ker(ϕ) is 0, so Ker(ϕ) is locally free.

2.2. Degeneration schemes

Let ϕ : E → F be a morphism between vector bundles on a scheme S. For every
nonnegative integer k, it induces a morphism∧

kϕ :
∧

kE → ∧
kF

locally given by the k × k-minors of a matrix of regular functions defining ϕ. The
rank of ϕ is the smallest integer r such that

∧
r+1ϕ = 0 (identically on S). In

particular, ϕ = 0 if and only if its rank is 0.
Given any nonnegative integer k, we define the rank-k degeneration scheme of ϕ

as the zero locus on S of the morphism
∧

k+1ϕ. If the rank of ϕ is r, we abbreviate
its rank-(r−1) degeneration scheme to just degeneration scheme (the degeneration
scheme of the zero morphism is empty).
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The morphism ϕ : E → F is generically surjective if its rank on every irreducible
component of S equals the rank of F . The cokernel of a generically surjective
morphism ϕ is a torsion sheaf supported on the degeneration scheme of ϕ.

If ϕ has rank r, for any K-point s of S, the rank of the K-linear map ϕs is at
most r. The converse may however not be true: if S = Spec(k[x]/x2), E = F = OS ,
and ϕ = x, the rank of ϕ is 1 and ϕ is generically surjective, but ϕs = 0 at all
points s of S. Its degeneration scheme is Sred.

Lemma 2.5. Let ϕ : E → F be a morphism of positive rank r between vector
bundles on a scheme S. Assume that

∧
r−1ϕs does not vanish for any geometric

point s of S.
The degeneration scheme of ϕ then equals the scheme-theoretic support of the

sheaf Coker(ϕ), that is, the subscheme defined by the annihilator ideal of Coker(ϕ).
Moreover, the sheaf Coker(ϕ) is isomorphic to the pushforward of a line bundle on
this subscheme.

Proof. For any K-point s of S, one of the (r − 1) × (r − 1)-minors of ϕ does not
vanish in K, hence it spans the local ring OS,s; this means that the first Fitting ideal
of Coker(ϕ) (generated by the (r−1)× (r−1)-minors of ϕ) is trivial [10, Corollary-
Definition 20.4]. By [10, Proposition 20.7], the zeroth Fitting ideal (which defines
the degeneration scheme of ϕ) is then equal to the annihilator of Coker(ϕ).

To prove the second part, we base change to the support of Coker(ϕ). By [10,
Corollary 20.5], the first Fitting ideal of Coker(ϕ) is still trivial, while the zeroth
Fitting ideal is equal to zero; [10, Proposition 20.8] then implies that Coker(ϕ) is a
line bundle.

Lemma 2.5 can also be proved by the argument of Proposition 2.8.

Lemma 2.6. Let ϕ : E → F be a morphism between vector bundles of rank r on a
scheme S. Assume that the degeneration scheme of ϕ is a Cartier divisor D on S.

We have Ker(ϕ) = 0 and Coker(ϕ) is supported scheme-theoretically on D.

Proof. Let L := det(E ∨)⊗det(F ). By definition of the degeneration scheme, the
ideal of D is generated by det(ϕ), so the assumption that D be a Cartier divisor
means that det(ϕ), viewed as a section of L , is not a zero divisor. Consider the
diagram

0 �� Ker(ϕ) �� E
ϕ ��

det(ϕ)

��

F ��

det(ϕ)

��

bϕ

�������������
Coker(ϕ) �� 0

0 �� Ker(ϕ) ⊗ L �� E ⊗ L
ϕ �� F ⊗ L �� Coker(ϕ) ⊗ L �� 0,

where ϕ̂ is the composition

F 
 ∧r−1F∨ ⊗ det(F )
Vr−1ϕ∨
−−−−−→ ∧

r−1E ∨ ⊗ det(F ) 
 E ⊗ L ,
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that is, ϕ̂ is the adjoint morphism of ϕ. In particular, the diagram commutes. It
follows that the morphism induced by det(ϕ) on Ker(ϕ) and Coker(ϕ) is zero, hence
both sheaves are supported on D. Since E is torsion free, it follows that Ker(ϕ) = 0.

Lemma 2.7. Let ϕ : E → E ′ be a morphism between vector bundles on a scheme S,
which is surjective on the complement of an effective Cartier divisor, and let F be
a vector bundle on S. Then the map Hom(E ′,F )

◦ϕ−−→ Hom(E ,F ) is injective. In
other words, if a morphism ψ : E → F factors through E ′, such a factorization is
unique.

Proof. Let C be the cokernel of ϕ. By the left exactness of the Hom functor,
it is enough to show that Hom(C ,F ) = 0. The question is local, so we may
assume F =OS . Moreover, since the degeneration scheme is contained in an effec-
tive Cartier divisor, we may assume that C is annihilated by a regular function f

on S which is not a zero divisor. But the image of any morphism C → OS is then
annihilated by f , hence is zero.

If we do not assume that the degeneration scheme of ϕ is contained in an
effective Cartier divisor, the conclusion of Lemma 2.7 may not hold. For example,
let S = Spec(k[x, y]/(xy, y2)), E = OS ⊕ OS , E ′ = F = OS , and ϕ = (x, y).
Consider the nonzero map E ′ → F given by y; its composition with ϕ is zero. The
degeneration scheme of ϕ is defined by the maximal ideal (x, y); it is a Weil divisor,
but not a Cartier divisor.

2.3. Canonical factorization

The following canonical factorization of a morphism between vector bundles seems
to be little known, but it will be crucial for our construction.

Proposition 2.8. Let ϕ : E → F be a morphism of positive rank r between vector
bundles on a scheme S. Assume that its degeneration scheme is a Cartier divisor D
on S and that

∧
r−1ϕs does not vanish for any geometric point s of S. There is a

unique factorization

ϕ : E � E1
ϕ1−→ F1 ↪→ F

such that

• E1 and F1 are vector bundles of rank r,
• the map E � E1 is an epimorphism,
• the map F1 ↪→ F is a fiberwise monomorphism,
• the map ϕ1 is a monomorphism and its cokernel is a line bundle on D.

Proof. For any such factorization, ϕ1 is injective by Lemma 2.6, hence E1 is the
image of ϕ and F1 is the dual of the image of ϕ∨, so the uniqueness is clear. It is

2050013-10
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therefore enough to prove the proposition locally so we may assume that E and F

are trivial vector bundles and that ϕ is given by a matrix of regular functions on S.
Let s be a geometric point on S. The rank of ϕs is either r or r − 1. If it is r,

one of the r × r-minors of ϕ is nonzero at s, hence is invertible in a neighborhood
of s. Restricting to such a neighborhood and considering appropriate bases for the
fibers Es and Fs, we may assume that the minor corresponds to the first r vectors
in each basis. In other words, the matrix has the form

ϕ =

(
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

)
,

where ϕ1,1 is a square matrix of size r with invertible determinant. The matrix ϕ1,1

is therefore invertible and, upon multiplying it by its inverse, we may assume that it
is the identity matrix Ir . Applying elementary transformations to rows and columns,
we may assume that ϕ1,2 = ϕ2,1 = 0. The entries of the matrix ϕ2,2 are then
(r+1) × (r+ 1)-minors of the matrix ϕ, hence they all vanish. In a neighborhood
of s, the map ϕ can therefore be written as a composition of the epimorphism of E

onto the trivial vector bundle of rank r (corresponding to the first r basis vectors)
and its fiberwise monomorphism into F . In particular, ϕ1 is an isomorphism.

If the rank of ϕs is r− 1, restricting to a neighborhood of s and choosing bases
of Es and Fs appropriately, we may assume that ϕ is in the form as above, but
where now ϕ1,1 = Ir−1 and ϕ1,2 = ϕ2,1 = 0. Again, the entries of ϕ2,2 are the
r × r-minors of ϕ, hence they generate the ideal generated by the equation f of
the Cartier divisor D. Therefore, we can write ϕ2,2 = fϕ′

2,2; the ideal generated by
the entries of ϕ′

2,2 is trivial, hence the matrix ϕ′
2,2 vanishes nowhere.

On the other hand, the 2 × 2-minors of the matrix ϕ2,2 are equal to (some)
(r + 1) × (r + 1)-minors of ϕ, hence they all vanish identically; therefore (recall
that f is not a zero divisor), the same is true for the matrix ϕ′

2,2. Applying the
same arguments as above, we can assume the matrix ϕ2,2 has top left entry f

and all other entries 0. In a neighborhood of s, the map ϕ can thus be written
as the composition of the epimorphism of E onto the trivial vector bundle O⊕r

(corresponding to the first r basis vectors), a map ϕ1 given by the diagonal matrix
diag(1, . . . , 1, f), and a fiberwise monomorphism from O⊕r into F . In particular,
ϕ1 is a monomorphism and its cokernel is (locally) the structure sheaf of D.

2.4. Families of quadratic forms and residual families

In this section, we assume that the characteristic of the base field k is not 2. Let E

and V be vector bundles of respective ranks r and k on a scheme S and let

q : V → Sym2E ∨ (5)

be a morphism of sheaves. We may think of q as a family E ⊗E → V ∨ of quadratic
forms on E with values in V ∨.
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When V has rank 1, we define the discriminant subscheme Disc(q) ⊂ S of the
family q as the degeneration scheme of the associated morphism

E
q−→ E ∨ ⊗ V ∨

of rank-r vector bundles, that is, the zero locus of the induced section det(q) of the
line bundle det(E ∨)⊗2 ⊗ (V ∨)⊗r.

Let i : D ↪→ S be an effective Cartier divisor. Let K ⊂ i∗E be a line subbundle
which is contained in the kernel of the quadratic forms i∗q. In other words, the
composition

i∗V
i∗q−−→ Sym2(i∗E ∨) → i∗E ∨ ⊗ K ∨

vanishes (when V has rank 1, this implies that D is contained in the discriminant
Disc(q)). In this situation, we construct a family of quadratic forms on the line
bundle K over D as follows.

Let K̃ ⊂ E be a local extension over an open subset of S of the line subbundle
K ⊂ i∗E . By postcomposition, the family of quadratic forms q induces a map
V → Sym2E ∨ → Sym2K̃ ∨ which by our assumption vanishes on the divisor D,
hence factors through a map

V (D) → Sym2K̃ ∨.

Restricting it to D, we get a map

V (D)|D → Sym2K ∨

which we call the residual family of quadratic forms.

Lemma 2.9. The residual family of quadratic forms on D is independent of the
choices made.

If the rank of V is 1 and Disc(q) = D as subschemes of S, the rank of q on D

is equal to r− 1 and the residual family of quadratic forms vanishes nowhere on D.

Proof. Let s0 be a section of E extending locally a section generating K . Any
other extension can be written as s0 + ts for some section s of E , where t is a local
equation of the divisor D. The evaluation of q on this section is equal to

q(s0 + ts, s0 + ts) = q(s0, s0) + 2tq(s0, s) + t2q(s, s).

The factorization through V (D) is then given by

1
t
(q(s0, s0) + 2tq(s0, s) + t2q(s, s))

∣∣∣∣
t=0

=
(

1
t
q(s0, s0) + 2q(s0, s)

)∣∣∣∣
t=0

.

It remains to note that q(s0, s) vanishes on D since s0 is in the kernel of i∗q.
Let us choose local trivializations of E and V such that q corresponds to

a k-tuple of symmetric matrices (qα
ij)1≤i,j≤r of regular functions on S (where

α ∈ {1, . . . , k}) and the section s0 (defining a local extension K̃ of K ) corresponds

2050013-12
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to the first basis vector of E . The condition that K be in the kernel of i∗q then
means

qα
1i = tq̄α

1i for all 1 ≤ i ≤ r and all 1 ≤ α ≤ k, (6)

and the residual quadric is just q̄α
11|D.

When the rank of V is one (so we have just one symmetric matrix (qij)), we
have

det(qij) ≡ tq̄11 det(qi,j)2≤i,j≤r (mod t2).

The condition Disc(q) = D implies that the last factor det(qi,j)2≤i,j≤r is invertible
(hence the rank of q on D is r − 1) and q̄11 is invertible on D too, so that the
residual family of quadratic forms vanishes nowhere.

2.5. Hecke transform of a family of quadratic forms

We continue working in the set-up of the previous section. We keep the assump-
tion char(k) 
= 2. The construction presented here (which we call Hecke transform)
is a generalization of the construction from [22, Lemma 1.14].

Definition 2.10. An effective Cartier divisor D on a scheme S is a double if there
is an effective Cartier divisor E on S such that D = 2E, that is, the ideal of D is
the square of the ideal of E.

Assume that the effective Cartier divisor D considered in the previous section
is a double and write D = 2E. For any line subbundle K ⊂ E |D, we set

KE := K |E , K ∨
E := K ∨|E , ED := E |D, EE := E |E .

Since K is a line bundle on D and E is a Cartier divisor on S, the kernel of the
natural epimorphism E ∨ → K ∨

E is a vector bundle (Lemma 2.4). We denote by Ẽ

its dual, so that there is an exact sequence

0 → Ẽ ∨ → E ∨ → K ∨
E → 0 (7)

of sheaves on S, whose dual sequence can be written as

0 → E → Ẽ → KE(E) → 0. (8)

The following lemma will be very useful later. We keep the notation of Sec. 2.4.

Lemma 2.11. Assume D = 2E. Let K ⊂ ED be a line subbundle contained in the
kernel of q|D. Define the vector bundle Ẽ by the exact sequence (7). The family of
quadratic forms q : V → Sym2E ∨ then factors through Sym2Ẽ ∨ in a unique way.

Proof. We can use a representation of q by a matrix (qα
ij) as in the proof of

Lemma 2.9 with the same conventions on the coordinates, assuming in particular
that (6) holds. Let u be an equation of E in S, so that the equation of D can be
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written as t = u2. The sequence (7) can then be written in local coordinates on S
as

0 → O⊕r
S

diag(u,1,...,1)−−−−−−−−→ O⊕r
S −→ OE → 0. (9)

The factorization condition that we want to prove just means that qα
11 is divisible

by u2 and qα
12, . . . , q

α
1r are divisible by u; since t = u2, this follows from (6). The

uniqueness of the factorization follows from Lemma 2.7 applied to the symmetric
square of (8).

We denote by q̃ : V → Sym2Ẽ ∨ the induced map and call it the Hecke transform

of q with respect to the line subbundle K ⊂ ED.

Proposition 2.12. Let E and V be vector bundles of respective ranks r and k

on a scheme S. Let q : V → Sym2E ∨ be a family of quadratic forms on E with
values in V ∨. Assume finally that there exist a double Cartier divisor D = 2E
and a line subbundle K ⊂ ED on D which is contained in the kernel of q|D. Let
q̃ : V → Sym2Ẽ ∨ be the Hecke transform of q with respect to K .

(a) The restriction of the sequence (8) to E splits and gives a canonical direct sum
decomposition

ẼE 
 (EE/KE) ⊕ KE(E) (10)

of the restriction ẼE of Ẽ to E.
(b) The summands of (10) are mutually orthogonal with respect to the quadratic

form q̃|E. Moreover, the restriction of q̃|E to the first summand of (10) is
induced by q|E and the restriction of q̃|E to the second summand is the residual
family of quadratic forms for q.

Proof. Consider the vector bundle Ê on S defined as the dual of the kernel of the
natural map E ∨ → K ∨. We have an exact sequence

0 → E → Ê → K (D) → 0. (11)

By construction, the embedding E → Ê factors as E → Ẽ → Ê and the map Ẽ → Ê

fits into the exact sequence

0 → Ẽ → Ê → KE(2E) → 0. (12)

Restricting (8), (12), and (11) to E, we obtain exact sequences

0 → KE → EE → ẼE → KE(E) → 0, (13)

0 → KE(E) → ẼE → ÊE → KE(2E) → 0, (14)

0 → KE → EE → ÊE → KE(2E) → 0. (15)
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Since the composition of the middle arrows of (13) and (14) is the middle arrow
of (15), the composition KE(E) → ẼE → KE(E) is an isomorphism, hence the
sheaf KE(E) is a direct summand of ẼE . The sequence (13) identifies the other
summand with EE/KE . This proves (a).

Let us prove (b). The first map in (8) restricted to E can be written as a
composition

EE � EE/KE ↪→ ẼE.

Taking the symmetric square of these morphisms and dualizing, we see that the
map Sym2Ẽ ∨

E → Sym2E ∨
E can be written as the composition

Sym2Ẽ ∨
E � Sym2(EE/KE)∨ ↪→ Sym2E ∨

E .

By Lemma 2.11, the quadric q|E (considered as a map from V to Sym2E ∨
E ) factors

through Sym2Ẽ ∨
E as q̃|E . Hence it a fortiori factors through the middle term. Such

a factorization is nothing but the induced family of quadratic forms on EE/KE and
the image of q̃|E is the restriction of q|E to EE/KE. These two families of quadratic
forms therefore coincide.

We now show that the summands in (10) are mutually orthogonal and that
the restriction of q̃|E to the summand KE(E) is given by the residual family of
quadratic forms. The question is local, so we can assume that E , K , and V are
trivialized as in the proof of Lemma 2.9. Under these assumptions, the sequence (7)
can be rewritten as in (9). This means that the matrix of q̃ is⎛⎜⎜⎜⎜⎜⎝

qα
11/u

2 qα
12/u · · · qα

1r/u

qα
21/u qα

22 · · · qα
2r

...
...

. . .
...

qα
r1/u qα

r2 · · · qα
rr

⎞⎟⎟⎟⎟⎟⎠.

In particular, its restriction to the summand KE(E) is given by the regular function
(qα

11/u
2)|E = (qα

11/t)|E , which is the residual family of quadratic forms. Moreover,
if we set q̄α

1i := qα
1i/t for all i > 1 as in (6), we have (qα

1i/u)|E = (uq̄α
1i)|E = 0, hence

the summands in (10) are mutually orthogonal.

3. The Moduli Stack of Smooth GM Varieties

In this section, we introduce the stack of GM varieties and the closely related stacks
of GM and Lagrangian data. We mostly work in the étale topology, but one can
also work with the fppf topology. From now on, we assume that the characteristic
of the base field k is zero.
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3.1. The stack of GM varieties

We start with a definition of the stack of GM varieties.

Definition 3.1. A family of smooth polarized GM varieties of dimension n over a

scheme S is a pair (X → S,H ), where

• πX : X → S is a smooth and proper morphism,
• H ∈ PicX /S(S) is a relative πX -ample divisor class,

such that for every geometric point s of S,

• the pair (Xs,H |Xs) is a smooth polarized GM variety of dimension n in the
sense of [6, Definition 2.1].

A morphism of families of GM varieties from (X → S,H ) to (X ′ → S′,H ′)
is a pair (f, ϕ) giving a Cartesian square

X
ϕ ��

πX

��

X ′

πX ′

��
S

f �� S′

(16)

such that H = ϕ∗H ′ in the relative Picard group PicX /S(S).
Families of smooth polarized GM varieties of dimension n form a category

fibered in groupoids over the category Sch/k of schemes over k; we denote it
by MGM

n .

Smooth GM varieties exist in each dimension n ∈ {1, . . . , 6}. A GM variety of
dimension 1 is a Clifford general curve of genus 6 (see [6, Proposition 2.12]), a GM
variety of dimension 2 is a Brill–Noether general polarized K3 surface of genus 6
(see [6, Proposition 2.13]), and their moduli stacks are well studied. Accordingly, we
will concentrate in this paper on GM varieties of dimension n ∈ {3, 4, 5, 6}. There
is then an isomorphism

PicX /S 
 Z

between étale sheaves (see [6, Lemma 2.29]); over a connected scheme S, there is
therefore a unique choice of a relative divisor class H .

Proposition 3.2 ([13, Proposition A.2]). For n ∈ {2, . . . , 6}, the fibered
category MGM

n is a smooth and irreducible Deligne–Mumford stack of dimension
25− (5 − n)(6 − n)/2. It is of finite type over Q with affine diagonal of finite type.

We call MGM
n the moduli stack of smooth polarized GM varieties of dimension n.

We will see later (Theorem 5.11) that MGM
n is separated.
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3.2. The stack of GM data

GM data sets over a field were defined in [6, Definition 2.5]. It will be convenient
to change the definition slightly as follows.

Definition 3.3. A normalized family of GM data of dimension n over a scheme S is
a collection (S,W ,V6,V5, μ,q), where

• W , V6, and V5 are vector bundles on S of respective ranks n+ 5, 6, and 5,
• V5 ↪→ V6 is a fiberwise monomorphism,
• μ : W → ∧

2V5 ⊗ (V6/V5) and
• q : V6 → Sym2W ∨ ⊗ det(V5) ⊗ (V6/V5)⊗2 are morphisms between vector

bundles,

such that the diagram

V5 ⊗ Sym2W

Sym2μ

��

� � �� V6 ⊗ Sym2W

q

��

V5 ⊗ Sym2(
∧

2V5) ⊗ (V6/V5)⊗2 ∧ �� det(V5) ⊗ (V6/V5)⊗2

(17)

commutes (the bottom arrow is given by wedge product).
A morphism of normalized families of GM data (S,W ,V6,V5, μ,q) and

(S′,W ′,V ′
6 ,V

′
5 , μ

′,q′) over schemes S and S′ is a morphism f : S → S′ and iso-
morphisms

ϕV : PS(V6)
∼−→PS(f∗V ′

6 ) and ϕW : PS(W ) ∼−→PS(f∗W ′)

such that ϕV (PS(V5)) = PS(f∗V ′
5 ) and the following diagrams commute:

PS(W )
ϕW ��

μ

���
�
� PS(f∗W ′)

μ′

���
�
�

PS(
V2V5)

V2ϕV �� PS(f∗V2V ′
5 )

and

PS(V6)
ϕV ��

q

���
�
� PS(f∗V ′

6 )

q′

���
�
�

PS(Sym2W ∨) PS(f∗ Sym2W ′∨).
Sym2ϕ∨

W��

It is sometimes convenient to express the commutativity of (17) as the equality

q(v)(w1 , w2) = v ∧ μ(w1) ∧ μ(w2) on V5 ⊗ Sym2W . (18)

Families of normalized GM data of dimension n form a category fibered in groupoids
over the category Sch/k of schemes over k; we denote it by MGM-data

n .

Remark 3.4. One could alternatively define morphisms of families of GM data to
be triples (f, ϕ̃V , ϕ̃W ), where f is a morphism S → S′ and

ϕ̃V : V6
∼−→ f∗V ′

6 and ϕ̃W : W ∼−→ f∗W ′

are isomorphisms compatible with the subbundle V5 ⊂ V6 and the morphisms μ
and q. This also defines a category fibered in groupoids over Sch/k, which we denote
by M̃GM-data

n and call the category of linearized GM data.
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Denoting by Ãut(S,W ,V6,V5, μ,q) the automorphism group scheme in
M̃GM-data

n , we obtain an embedding of group schemes

Gm(S) ↪→ Ãut(S,W ,V6,V5, μ,q)

u �→ (ϕ̃V = u, ϕ̃W = u3).
(19)

We have

Aut(S,W ,V6,V5, μ,q) 
 Ãut(S,W ,V6,V5, μ,q)/Gm(S),

which essentially means that the fibered category of GM data is the rigidification [1,
2] of the fibered category of linearized GM data with respect to the embeddings (19).

This observation implies that any morphism in MGM-data
n over f : S → S′ can

be locally over S′ lifted to a morphism in M̃GM-data
n (and such a lifting is unique

up to composition with the action of Gm(S)). We will frequently use these liftings.

Lemma 3.5. The fibered categories MGM-data
n and M̃GM-data

n are stacks over
Sch/k.

Proof. For the fibered category M̃GM-data
n , this is a consequence of the fact that

quasicoherent sheaves form a stack in the fppf topology: a family of linearized GM
data is a collection of quasicoherent sheaves and morphisms between them that
satisfy some properties that are stable under base change.

For the fibered category MGM-data
n , use [1, Theorem 5.1.5].

3.3. Equivalence of stacks

The main result of this section is a relation between the stack MGM
n of smooth

polarized GM varieties and an open substack of the stack MGM-data
n of normalized

GM data. To define this substack, we use the notion of a GM intersection associated
with a GM data set defined in [6, (2.8)].

Definition 3.6. A family (S,W ,V6,V5, μ,q) of normalized GM data of dimen-
sion n over a scheme S is smooth if for each geometric point s in S, the GM
intersection ⋂

v∈V6,s

{q(v) = 0} ⊂ P(Ws)

corresponding to the GM data set (Ws,V6,s,V5,s, μs,qs) is a smooth GM variety of
dimension n.

By [6, Lemma 2.8], a GM intersection corresponding to a GM data set of dimen-
sion n is a smooth GM variety of dimension n if and only if the GM intersection
has dimension n and is smooth. As we will see in the proof of Lemma 3.8, n is the
expected dimension of the corresponding GM intersection, hence the condition for
the GM intersection to be a smooth GM variety of dimension n is open. Therefore,
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families of smooth normalized GM data of dimension n are classified by an open
substack of MGM-data

n .

Theorem 3.7. For each n ∈ {2, . . . , 6}, the stack of polarized GM varieties MGM
n

is equivalent to the open substack of MGM-data
n classifying families of smooth nor-

malized GM data of dimension n.

Proof. Let (S,W ,V6,V5, μ,q) be a smooth family of normalized GM data over a
scheme S and let πPS(W ) : PS(W ) → S be the natural projection. We have

H0(PS(W ), π∗
PS(W )(V

∨
6 ⊗ det(V5) ⊗ (V6/V5)⊗2) ⊗ OPS(W )(2))


 H0(S,V ∨
6 ⊗ det(V5) ⊗ (V6/V5)⊗2 ⊗ πPS(W )∗OPS(W )(2))


 H0(S,V ∨
6 ⊗ det(V5) ⊗ (V6/V5)⊗2 ⊗ Sym2W ∨)


 Hom(V6, Sym2W ∨ ⊗ det(V5) ⊗ (V6/V5)⊗2).

Thus, the morphism q can be thought of as a global section

q ∈ H0(PS(W ), π∗
PS(W )(V

∨
6 ⊗ det(V5) ⊗ (V6/V5)⊗2) ⊗ OPS(W )(2)). (20)

Consider the closed subscheme X ⊂ PS(W ) defined as the zero locus of this global
section. Define the morphism πX : X → S as the restriction of the projection
πPS(W ) : PS(W ) → S and the polarization H on X as the restriction of the
hyperplane class of PS(W ). Each geometric fiber (Xs,H |Xs) is a smooth polarized
GM variety of dimension n. Moreover, the map πX : X → S is proper by definition
and flat by Lemma 3.8. Since all fibers are smooth (by Definition 3.6), the map πX

is also smooth. Thus, (X → S,H ) is a family of smooth polarized GM varieties.
This construction together with a relative version of [6, Theorem 2.3] implies

PS(W ) 
 PS((πX ∗OX (H ))∨) and PS(V6) 
 PS(πPS(W )∗IX /PS(W )(2)).

(21)

Similarly, given a morphism (f, ϕW , ϕV ) of families of GM data from
(S,W ,V6,V5, μ,q) to (S′,W ′,V ′

6 ,V
′
5 , μ

′,q′), we consider the isomorphism

PS(W )
ϕW−−→ PS(f∗W ′) ∼−→PS′(W ′) ×S′ S.

Since ϕV and ϕW are compatible with q, it induces a morphism ϕ : X →X ′ such
that (16) is a Cartesian square. Moreover, by construction, we have ϕ∗H ′ =H

in PicX /S(S). Therefore, (f, ϕ) is a morphism of families of GM varieties.
This means that we have defined a morphism of stacks

ζ : MGM-data
n,smooth −→ MGM

n

from the open substack of MGM-data
n classifying families of smooth normalized GM

data of dimension n to the stack MGM
n of smooth polarized GM varieties. It remains

to prove that ζ is an isomorphism of stacks.

2050013-19

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
O

R
B

O
N

N
E

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/1

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

February 5, 2020 20:36 WSPC/S0129-167X 133-IJM 2050013

O. Debarre & A. Kuznetsov

Let us check that ζ is faithful: assume that (f1, ϕ1W , ϕ1V ) and (f2, ϕ2W , ϕ2V )
are morphisms between GM data (S,W ,V6,V5, μ,q) and (S′,W ′,V ′

6 ,V
′

5 , μ
′,q′)

such that the corresponding morphisms (f1, ϕ1) and (f2, ϕ2) between the corre-
sponding families of GM varieties X and X ′ are the same. Set f := f1 = f2
and ϕ := ϕ1 = ϕ2. By construction of ϕ, there is a commutative diagram

X
ϕ ��

��

X ′

��
PS(W )

ϕiW �� PS(f∗W ′) �� P(W ′).

By (21), the fiberwise linear span of X in PS(W ) is PS(W ), hence ϕ1W = ϕ2W .
Furthermore, there is a commutative diagram

PS(V6)

q

��

ϕiV �� PS′(V ′
6 )

q′

��
PS(Sym2W ∨) PS′(Sym2W ′∨)

Sym2ϕ∨
iW��

in which the vertical arrows are embeddings (again by (21)) and the maps ϕiV

become isomorphisms after base change to S. Since we already have ϕ1W = ϕ2W ,
the equality ϕ1V = ϕ2V follows. This proves faithfulness.

Next, we check that the morphism of stacks ζ is full. Assume (S,W ,V6,V5, μ,q)
and (S′,W ′,V ′

6 ,V
′
5 , μ

′,q′) are families of smooth normalized GM data, let
(X →S,H ) and (X ′ → S′,H ′) be the corresponding families of GM varieties,
and let (f, ϕ) be a morphism between them. We must show that it comes from a
morphism of GM data. By the stack property and the faithfulness proved above, it
is enough to prove this locally over S′. Moreover, applying base change along f , we
can assume that S′ =S and f = idS . Then ϕ : X →X ′ is an isomorphism, so we
can identify X and X ′ via ϕ.

By construction of the morphism ζ, the line bundles OX (H ) = OPS(W )(1)|X
and OX (H ′) = OPS(W ′)(1)|X agree up to the pullback of a line bundle on S.
Shrinking S if necessary, we can assume that this line bundle is trivial, so we can
choose an isomorphism

ϕH : OX (H ) ∼−→OX (H ′).

Using the formulas (21), we see that ϕH induces isomorphisms of projective bundles
ϕW : PS(W ) ∼−→PS(W ′) and ϕV : PS(V6)

∼−→PS(V ′
6 ). It is easy to see that these

isomorphisms are compatible with the subbundle V5 and the morphisms μ and q,
so that (idS , ϕV , ϕW ) is an isomorphism of GM data. Moreover, the isomorphism
of GM varieties that it induces coincides with the one we started from. This proves
fullness.

Finally, we check that ζ is essentially surjective. Given a family (X → S,H ) of
smooth polarized GM varieties, we need to construct a family of smooth normalized
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GM data (S,W ,V6,V5, μ,q) such that (X → S,H ) = ζ(S,W ,V6,V5, μ,q). Since
we are dealing with stacks and since we already proved that ζ is fully faithful,
it is enough to construct this locally over S. So we can assume that H is the
class of a line bundle on X . Denoting it by OX (H ) and following the proof of
[6, Theorem 2.3], we set

Ŵ := (πX ∗OX (H ))∨, V6 := π
PS( cW )∗(IX (2)),

L := πX ∗(
∧

2UX ⊗ OX (H )).
(22)

These are vector bundles of respective ranks n+ 5, 6, and 1 on S.
To be more precise, we first define the bundle Ŵ by the first equality in (22) and

note that the natural rational map X ��� PS(Ŵ ) is regular and a closed embedding
(both statements can be verified fiberwise and follow from [6, Theorem 2.3]).

Then, we define the bundle V6 by the second equality in (22) (here IX (2)
is the twist of the ideal sheaf of X in PS(Ŵ ) by the square of the hyperplane
bundle O

PS( cW )
(1)).

Finally, we let UX be the excess conormal bundle for the closed embedding
X → PS(Ŵ ) (see [6, Definition A.1]) and define the line bundle L by the third
equality in (22). By [6, Theorem 2.3] again, there is a natural fiberwise monomor-
phism UX → π∗

X V6 inducing a regular map X → GrS(2,V6) and this map factors
through GrS(2,V5) for a unique subbundle V5 ⊂ V6 of rank 5.

Let us renormalize the bundle Ŵ by setting

W := Ŵ ⊗ (V6/V5) ⊗ L .

In order to construct the morphisms μ and q, we use again the construction of
[6, Theorem 2.3] in a relative setting, which produces maps

μ̂ : L ⊗ Ŵ → ∧
2V5, q̂ : V6 → Sym2Ŵ ∨, ε : det(V5)

∼−→L ⊗2.

We then set

μ = μ̂⊗ idV6/V5 , q = ε−1 ◦ q̂.

The relation (18) is equivalent to the relation [6, (2.7)] (with W replaced by Ŵ ),
which is proved in [6, Lemma 2.7]. Thus, we obtain a family of normalized GM data
on S. Finally, by [6, Theorem 2.3] again, the family of GM varieties corresponding
to this family of GM data is isomorphic to (X → S,H ).

The following lemma was used in the proof of Theorem 3.7.

Lemma 3.8. Let (S,W ,V6,V5, μ,q) be a family of normalized GM data over a
scheme S. Consider the subscheme X ⊂ PS(W ) defined as the zero locus of the
global section (20) and assume that for every geometric point s of S, the fiber Xs

of X is a smooth GM variety of dimension n. Then πX : X → S is a (flat) family
of smooth GM varieties.
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Proof. We only have to check that the morphism πX : X → S is flat. Locally
over S, the rational linear projection μ : PS(W ) ��� PS(

∧
2V5) can be lifted to a

linear closed embedding PS(W ) → PS(K ⊕ ∧2V5), where K is a vector bundle
over S. Consider the subscheme MX ⊂ PS(W ) defined as the zero locus of

q|V5 ∈ H0
(
PS(W ), π∗

PS(W )

(
V ∨

5 ⊗ det(V5) ⊗ (V6/V5)⊗2
)⊗ OPS(W )(2)

)
.

By the commutativity of (17), this subscheme can be represented as

MX = PS(W ) ×PS(
V

2V5⊕K ) ConePS(K ) GrS(2,V5),

where ConePS(K ) GrS(2,V5) ⊂ PS(K ⊕∧2V5) is the cone over the relative Grass-
mannian GrS(2,V5) with vertex PS(K ). Furthermore, on MX , the map q defines
a section

qV6/V5 ∈ H0
(
MX , π∗

MX

(
det(V5) ⊗ (V6/V5)

)⊗ OPS(W )(2)|MX

)
whose zero locus is the subscheme X ⊂MX ⊂ PS(W ).

Since every fiber of X → S has dimension n, every fiber of MX has dimension
at most n+ 1. On the other hand, it is the intersection of a codimension-3 subvari-
ety ConePS(K ) GrS(2,V5) ⊂ PS(

∧
2V5 ⊕ K ) with the linear projective subbundle

PS(W ) of dimension n+4, hence each fiber has dimension at least n+1. Combining
these two observations, we see that each fiber of MX has dimension n + 1, hence
the intersection (the fiber product) defining MX is dimensionally transverse.

Let us show that MX is flat over S. The cone ConePS(K ) GrS(2,V5) is flat
over S and MX is cut in it by relative hyperplane sections. Since the intersection
is dimensionally transverse, each of these hyperplanes decreases the dimension of
fibers by 1, hence they form a regular sequence at every fiber. This implies flatness
of MX over S.

Finally, as observed above, X is the zero locus of a global section of a line
bundle on MX and each fiber of X has codimension 1 in the corresponding fiber
of MX . Therefore, this global section is not a zero divisor at every fiber, hence X

is also flat over S.

We can restate Theorem 3.7 as follows.

Corollary 3.9. For each n ∈ {2, . . . , 6}, the stack MGM
n of smooth polarized GM

varieties of dimension n is equivalent to the stack MGM-data
n,smooth of smooth normalized

GM data of dimension n.

From now on, we will identify the stacks MGM
n and MGM-data

n,smooth by using the
equivalence above. In particular, we will sometimes think of an S-point of the
stack MGM

n as a family (S,W ,V6,V5, μ,q) of smooth normalized GM data over S.
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3.4. The ordinary and special substacks

Let (X → S,H ) be a family of smooth GM varieties. Consider the corresponding
family (S,W ,V6,V5, μ,q) of GM data. There is a commutative diagram

V5 ⊗ det(V5)∨ ⊗ ((V6/V5)∨)⊗2 ⊗ W
q

���������������
μ

��
W ∨∧

2V ∨
5 ⊗ (V6/V5)∨,

μT

����������������
(23)

where the vertical arrow is defined as the composition of the map μ with the canoni-
cal morphism V5 ⊗ det(V5)∨ ⊗∧2V5 → ∧

2V ∨
5 . The commutativity of (23) follows

from the commutativity of (17).

Lemma 3.10. The cokernels of the diagonal maps in (23) are isomorphic. They
are line bundles on a closed subscheme of S.

Proof. Let us show that the arrow μ in (23) is surjective. By Lemma 2.1, this can
be done pointwise, so it is enough to consider the case where S is the spectrum of
an algebraically closed field K. Then, (S,W ,V6,V5, μ,q) is just a normalized GM
data set (W,V6, V5, μ,q) over K.

Assume that the map μ is not surjective. Trivializing det(V5) and V6/V5 for
simplicity, we can rewrite the nonsurjectivity condition as follows: there is an ele-
ment ξ ∈ ∧2V5 such that the subspace W0 = Im(μ) ⊂ ∧

2V5 is orthogonal to the
space V5 ∧ ξ ⊂

∧
3V5, that is,

V5 ∧ ξ ⊂W⊥
0 .

The space P(V5 ∧ ξ) contains quite a lot of decomposable vectors — if ξ is decom-
posable, P(V5 ∧ ξ) 
 P2 consists of decomposable vectors only, while if ξ has rank 4,
P(V5 ∧ ξ) 
 P4 contains a P3 of decomposable vectors. But by [6, Proposition 3.13],
the space W⊥

0 is equal to A ∩∧3V5, where A ⊂ ∧3V6 is the Lagrangian subspace
associated with X by [6, Theorem 3.6]. By [6, Theorem 3.16], for smooth GM vari-
eties of dimension n ≥ 3, it contains no decomposable vectors, and for smooth GM
surfaces, the set of decomposable vectors that it contains has dimension at most 1
[6, Remark 3.17]. The arrow μ in (23) is therefore surjective.

The isomorphism between the cokernels of the horizontal arrows then follows
by abstract nonsense. Finally, the rank of the cokernel sheaves is at most 1 by
[6, Proposition 2.28]. Therefore, they are line bundles on a subscheme of S by
Lemma 2.5.

Definition 3.11. Given a GM data set over a scheme S, consider the cokernel
sheaf

C := Coker(μT ) 
 Coker(q) (24)
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discussed in Lemma 3.10 and denote by SGM,spe ⊂ S its (closed) scheme-theoretic
support (we call it the GM-special locus) and by JGM,spe ⊂ OS its ideal.

By Lemma 2.5, the scheme SGM,spe is the degeneration scheme for both mor-
phisms μT and q in (23). We further define

SGM,ord := S\SGM,spe

to be the open complement of SGM,spe in S (we call it the GM-ordinary locus).

Lemma 3.12. For each n ∈ {2, . . . , 6}, there is an open substack MGM
n,ord ⊂ MGM

n

and a closed substack MGM
n,spe ⊂ MGM

n such that

MGM
n,ord(S) = {(X → S,H ) ∈ MGM

n (S) |Sspe = ∅},
MGM

n,spe(S) = {(X → S,H ) ∈ MGM
n (S) |Sspe = S}.

Moreover, MGM
n,ord is the open complement of the closed substack MGM

n,spe ⊂ MGM
n .

Proof. It is enough to prove that the formation of the GM-ordinary SGM,ord ⊂ S

and GM-special SGM,spe ⊂ S loci is functorial in S, that is, that it is compatible
with base change. This follows from the fact that the formation of the cokernel
sheaf commutes with base change (since the pullback functor is right exact).

By [6, Sec. 2.5], the open substack MGM
n,ord ⊂ MGM

n classifies families of smooth
ordinary GM varieties of dimension n, while the closed substack MGM

n,spe ⊂ MGM
n

classifies families of smooth special GM varieties of dimension n.
In the case n = 2, consider also the open substack

MGM
2,ord,ss ⊂ MGM

2,ord (25)

that classifies strongly smooth ordinary GM surfaces [6, Definition 3.15].

Lemma 3.13. The stacks MGM
n,ord for n ∈ {2, . . . , 5} and the stacks MGM

n,spe for
n∈{3, . . . , 6} are smooth Deligne–Mumford stacks of finite type over Q with affine
diagonals of finite type. Moreover,

dim(MGM
n,ord) = 25 − (5 − n)(6 − n)/2, dim(MGM

n,spe) = 25 − (6 − n)(7 − n)/2.

In particular, for n ∈ {3, . . . , 6}, the stack MGM
n,spe has codimension 6 − n in MGM

n .
For n ≥ 4, the stack MGM

n,spe is a µ2-gerbe over the stack MGM
n−1,ord, and the

stack MGM
3,spe is a µ2-gerbe over the stack MGM

2,ord,ss.

Proof. Since MGM
n,ord is an open substack in MGM

n , it inherits the properties of the
latter established in Proposition 3.2; in particular, it has the same dimension.

We show next that for n ≥ 4, the stack MGM
n,spe is a µ2-gerbe over the

stack MGM
n−1,ord. Consider the Gm-gerbes

M̃GM-data
n,spe → MGM

n,spe, M̃GM-data
n−1,ord → MGM

n−1,ord
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obtained by passing to linearized data (see Remark 3.4), so that the arrows
are rigidification functors with respect to the natural Gm-actions. We will show
that M̃GM-data

n,spe is a µ2-gerbe over M̃GM-data
n−1,ord and that the corresponding µ2- and

Gm-actions on objects of M̃GM-data
n,spe commute. This will prove that, after passing

to Gm-rigidifications, there is a morphism of stacks MGM
n,spe → MGM

n−1,ord which is a
µ2-gerbe.

To be more precise, we will show that M̃GM-data
n,spe is the root stack over M̃GM-data

n−1,ord

associated with its line bundle det(V6) in the sense of [2, Sec. B.1] (in fact, this is
the reason why we pass to stacks of linearized data, since the line bundle det(V6)
is just not defined on the stack MGM-data

n−1,ord ). For this, we check that the groupoid
of linearized families (S,W ,V6,V5, μ,q) of special GM data of dimension n over a
scheme S is equivalent to the groupoid of linearized families (S,W0,V6,V5, μ0,q0)
of ordinary GM data of dimension n− 1 equipped with a line bundle W1 and an
isomorphism

q1 : Sym2W1
∼−→ det(V6).

Indeed, given a family of special linearized GM data over a scheme S, we set

W1 := Ker
(
W

μ−→ ∧
2V5 ⊗ (V6/V5)

)
.

This is a line bundle because, by definition of special GM data and Lemma 3.10,
the map μ has constant rank n + 4, while W is a vector bundle of rank n + 5.
Furthermore, we consider the composition

V6 ⊗ Sym2W1 ↪→ V6 ⊗ Sym2W
q−→ det(V5) ⊗ (V6/V5)⊗2 ∼−→ det(V6) ⊗ (V6/V5).

By (18), this map vanishes on the subbundle V5 ⊗ Sym2W1 ⊂ V6 ⊗ Sym2W1 hence
factors through a morphism (V6/V5) ⊗ Sym2W1 → det(V6) ⊗ (V6/V5). Twisting it
by (V6/V5)∨, we obtain a morphism

Sym2W1 −→ det(V6)

which we denote by q1. It is surjective by Lemma 2.1 and [6, Lemma 2.33], hence
an isomorphism by Lemma 2.3, since its source and target are both line bun-
dles. Finally, by [6, Proposition 2.30], there is a canonical direct sum decompo-
sition W 
 W0 ⊕ W1 (orthogonal with respect to all quadrics). We denote by μ0

and q0 the restrictions of μ to W0 and of q to V6 ⊗ Sym2W0. By [6, Lemma 2.33],
(S,W0,V6,V5, μ0,q0) is a linearized family of ordinary GM data of dimension n−1.
This defines a functor between the groupoids (the action of the functor on mor-
phisms is obvious).

Conversely, assume we are given a family (S,W0,V6,V5, μ0,q0) of ordinary GM
data of dimension n − 1, a line bundle W1, and an isomorphism of line bundles
q1 : Sym2W1

∼−→ det(V6). We set

W := W0 ⊕ W1, μ = (μ0, 0), q = q0 ⊕ q1,
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where by an abuse of notation, we still denote by q1 the composition

V6 ⊗ Sym2W1 � (V6/V5) ⊗ Sym2W1
q1−→ (V6/V5) ⊗ det(V6)

∼−→ det(V5) ⊗ (V6/V5)⊗2.

By [6, Lemma 2.33], this is a family of smooth special GM data of dimension n.
It is straightforward to see that the constructed functors are mutually inverse,

so the groupoids are equivalent, hence M̃GM-data
n,spe is the root stack over M̃GM-data

n−1,ord

and MGM
n,spe is a µ2-gerbe over MGM

n−1,ord.
For n = 3, the argument is the same; the only difference is that the ordinary

GM surface associated with a smooth special GM threefold is automatically strongly
smooth (see [6, Sec. 3.4]).

This implies that MGM
n,spe is a smooth Deligne–Mumford stack and gives its

dimension. The other properties of MGM
n,spe follow from Proposition 3.2, since it

is a closed substack in MGM
n . The statement about the codimension is a simple

computation.

Remark 3.14. The proof of Lemma 3.13 shows that the automorphism group
scheme of each object of the stack MGM

n,spe contains the constant group scheme µ2

and that the morphism of stacks MGM
n,spe → MGM

n−1,ord is the µ2-rigidification.

3.5. Lagrangian data

In [6, Sec. 3], we explained the relation between GM and Lagrangian data sets. We
now define families of Lagrangian data and show that they form a stack.

Definition 3.15. A family of Lagrangian data over a scheme S is a quadruple
(S,V6,V5,A ), where V6 is a vector bundle of rank 6 on S, V5 ⊂ V6 is a subbundle
of corank 1, and A ⊂ ∧3V6 is a Lagrangian subbundle.

A morphism between families of Lagrangian data from (S,V6,V5,A ) to
(S′,V ′

6 ,V
′

5 ,A
′) is a pair (f, ϕ) fitting into a Cartesian square

PS(V6)
ϕ ��

��

PS′(V ′
6 )

��
S

f �� S′

and such that ϕ(PS(V5)) = PS′(V ′
5 ) and (

∧
3ϕ)(PS(A )) = PS′(A ′).

Families of Lagrangian data form a category fibered in groupoids over the cat-
egory Sch/k, which we denote MLag.

Remark 3.16. As for GM data (see Remark 3.4), we can define a category M̃Lag

of families of linearized Lagrangian data (fibered in groupoids over Sch/k) with the
same objects as in MLag but with morphisms defined as pairs (f, ϕ̃) formed by a
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morphism f : S → S′ and an isomorphism ϕ̃ : V6
∼−→ f∗V ′

6 such that ϕ̃(V5) = f∗V ′
5

and (
∧

3 ϕ̃)(A ) = f∗A ′.
Denoting by Ãut(S,V6,V5,A ) the automorphism group scheme in M̃Lag, we

obtain an embedding of group schemes

Gm(S) ↪→ Ãut(S,V6,V5,A ) (26)

that takes an invertible function u to the automorphism given by ϕ̃ = u. We have

Aut(S,V6,V5,A ) 
 Ãut(S,V6,V5,A )/Gm(S)

and the fibered category of Lagrangian data is the rigidification of the fibered
category of linearized Lagrangian data with respect to the embeddings (26).

This observation implies that any morphism in MLag over f : S → S′ can be
locally over S′ lifted to a morphism in M̃Lag (and such a lifting is unique up to
the composition with the action of Gm(S)). In what follows, we will frequently use
such a lifting.

The argument of the proof of Lemma 3.5 implies the following.

Lemma 3.17. The fibered categories MLag and M̃Lag are stacks over Sch/k.

Given a family of Lagrangian data (S,V6,V5,A ), we consider the natural epi-
morphism

λ : V6 → V6/V5.

For each p ∈ {2, . . . , 6}, it extends by the Leibniz rule to an epimorphism

λp :
∧

pV6 → ∧
p−1V5 ⊗ (V6/V5)

whose kernel is the subbundle
∧

pV5 ⊂ ∧pV6.

Definition 3.18. We say that a family of Lagrangian data (S,V6,V5,A ) has rank k

if the composition

ϕ : A ↪→ ∧
3V6

λ3−→ ∧
2V5 ⊗ (V6/V5) (27)

has rank at most k and
∧

k−1ϕs does not vanish for any geometric point s in S.
We say that the family of Lagrangian data avoids decomposable vectors if, for each
geometric point s of S, the Lagrangian subspace As ⊂ ∧3V6,s contains no decom-
posable vectors, that is, P(As) ∩ Gr(3,V6,s) = ∅.

The above two conditions define a locally closed substack in MLag classifying
families of Lagrangian data of rank k avoiding decomposable vectors. We denote it
by MLag

k . We will show later (Proposition 5.7) that this stack is a global quotient
stack.

Finally, we define the special and ordinary loci for Lagrangian data.

Definition 3.19. Given a family (V6,V5,A ) of Lagrangian data on a scheme S,
of rank k, we denote by

SLag,spe ⊂ S

2050013-27

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
O

R
B

O
N

N
E

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/1

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

February 5, 2020 20:36 WSPC/S0129-167X 133-IJM 2050013

O. Debarre & A. Kuznetsov

the degeneracy locus of the map ϕ in (27) and by JLag,spe ⊂ OS its ideal (it is
generated by the k × k-minors of ϕ). We call SLag,spe the Lagrangian special locus

of S. Its complement

SLag,ord = S\SLag,spe

is called the Lagrangian ordinary locus.

As in the proof of Lemma 3.12, the above construction gives rise to a closed
substack MLag

k,spe ⊂ MLag
k of special Lagrangian data and an open substack

MLag
k,ord ⊂ MLag

k of ordinary Lagrangian data, such that MLag
k,ord is the open comple-

ment of MLag
k,spe ⊂ MLag

k .

4. Relation Between Families of GM and Lagrangian Data

We consider below two constructions relating GM data to Lagrangian data. We pay
special attention to the relation between their special loci.

4.1. From families of GM data to families of Lagrangian data

Let (S,W ,V6,V5, μ,q) be a family of smooth normalized GM data. We construct
over the same scheme S an associated family of Lagrangian data avoiding decom-
posable vectors (Definition 3.18).

Our construction is a relative (and normalized) version of the construction of the
proof of [6, Theorem 3.6] (with “the odd part” omitted). We consider the diagram

V5 ⊗ W ⊗ (V6/V5)∨
f1 �� ∧3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨)

f2 ��

f3
��

W ∨ ⊗ det(V6)

∧
3V6

(28)

with morphisms defined by

f1(v ⊗ w) = (−v ∧ μ(w), v ⊗ w),

f2(ξ, v ⊗ w)(w′) = ξ ∧ μ(w′) + q(v)(w,w′),

f3(ξ, v ⊗ w) = ξ + v ∧ μ(w)

(we omit factors corresponding to line bundles, which do not matter here). We
have f2 ◦ f1 = 0 by (18) and f3 ◦ f1 = 0. If we set

A := Ker(f2)/Im(f1), (29)

the morphism f3 induces a morphism A → ∧
3V6.

Proposition 4.1. Let (S,W ,V6,V5, μ,q) be a family of smooth normalized GM
data of dimension n ∈ {3, 4, 5, 6}. Define A by (29). Then (S,V6,V5,A ) is a
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family of Lagrangian data of rank n+5 avoiding decomposable vectors. This defines
a morphism of stacks

a : MGM
n → MLag

n+5

(S,W ,V6,V5, μ,q) �→ (S,V6,V5,A ).

Moreover, the Lagrangian and GM special loci in S coincide set-theoretically but
not necessarily scheme-theoretically: we have

JLag,spe = J 2
GM,spe,

that is, the ideal of the Lagrangian special locus is the square of the ideal of the GM
special locus.

Proof. Checking that A is a vector bundle of rank 10 (it is enough for that to
check that f2 is an epimorphism and that f1 is a fiberwise monomorphism) and
that the map A → ∧

3V6 induced by f3 is a fiberwise monomorphism can be done
pointwise and thus follows from the proof of [6, Theorem 3.6].

We now show that A has the Lagrangian property, that is, that the composition

A ⊗ A −→ ∧
3V6 ⊗

∧
3V6

∧−→ det(V6) (30)

vanishes identically. It is not enough to prove this property pointwise, since the
scheme S might be nonreduced, but it is enough to check it locally. It will be con-
venient to compose (30) with the isomorphism λ6 : det(V6)

∼−→det(V5) ⊗ (V6/V5).
We will also use the definition (29) of A and the fact that the map A → ∧

3V6 is
induced by f3. The resulting composition

(
∧

3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨)) ⊗ (
∧

3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨))

f3∧f3−−−−→ det(V6)
λ6−→ det(V5) ⊗ (V6/V5)

is given by

(ξ1, v1 ⊗ w1) ⊗ (ξ2, v2 ⊗ w2) �→ λ6

(
(ξ1 + v1 ∧ μ(w1)) ∧ (ξ2 + v2 ∧ μ(w2))

)
.

(31)

It is thus enough to check that (31) vanishes on Ker(f2) ⊗ Ker(f2).
Since ξ1 and ξ2 are sections of

∧
3V5, we have ξ1 ∧ ξ2 = 0. Choosing locally a

direct sum decomposition V6 = V5 ⊕ (V6/V5) and a generator v0 for the second
summand, we can write

vi = v′i + λ(vi)v0 with v′i ∈ V5,

where we think of λ(vi) as of a scalar. We can rewrite the right side of (31) as

λ6(ξ1 ∧ v2 ∧ μ(w2)) + λ6(v1 ∧ μ(w1) ∧ ξ2) + λ6(v1 ∧ μ(w1) ∧ v2 ∧ μ(w2))

= −λ(v2)ξ1 ∧ μ(w2) + λ(v1)ξ2 ∧ μ(w1)

+λ(v1)v′2 ∧ μ(w1) ∧ μ(w2) − λ(v2)v′1 ∧ μ(w1) ∧ μ(w2)
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= −λ(v2)(ξ1 ∧ μ(w2) + q(v′1)(w1, w2)) + λ(v1)(ξ2 ∧ μ(w1) + q(v′2)(w1, w2))

= −λ(v2)(ξ1 ∧ μ(w2) + q(v1)(w1, w2)) + λ(v2)λ(v1)q(v0)(w1, w2)

+λ(v1)(ξ2 ∧ μ(w1) + q(v2)(w1, w2)) − λ(v1)λ(v2)q(v0)(w1, w2)

= −λ(v2)f2(ξ1, v1 ⊗ w1)(w2) + λ(v1)f2(ξ2, v2 ⊗ w2)(w1)

(in the first equality, we use the Leibniz rule for λ6 and the fact that λ vanishes
on ξi and on μ(wi), as well as the relation

λ2(v1 ∧ v2) = λ(v1)v2 − λ(v2)v1 = λ(v1)v′2 − λ(v2)v′1;

in the second equality, we use (18); in the third equality, we use the definition of
v′i; and in the last equality, we use the definition of f2 and cancel out two sum-
mands equal to ±λ(v1)λ(v2)q(v0)(w1, w2)). It follows that the map (31) vanishes
identically on the subbundle Ker(f2) ⊗ Ker(f2), hence the induced map vanishes
identically on A .

Consider now the map ϕ defined by (27). It is induced by the composition of
the maps in the top row and the right column of the diagram

Ker(f2)
� � ��

����

∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨)

f3 ��

(0,λ)

��

∧
3V6

λ3

��

A
ν �� W

μ �� ∧2V5 ⊗ (V6/V5).

(32)

The right square of the diagram is commutative because λ3 vanishes on
∧

3V5

and λ2 vanishes on
∧

2V5. The arrow (0, λ) vanishes on Im(f1) ⊂ Ker(f2) hence
factors through A , thus defining the arrow ν. Therefore, we obtain a commutative
diagram

A
� � ��

ν

��

ϕ

��������������
∧

3V6

λ3

��

W
μ �� ∧2V5 ⊗ (V6/V5).

(33)

The rank of W is n+ 5, hence the rank of ϕ is at most n+ 5. The fact that it is at
least n+ 4 at each geometric point of S can be verified pointwise and follows from
[6, (3.9)]. Also, [6, (3.9), Theorem 3.16] proves that A has no decomposable vectors
(this is the only place where we use the condition n ≥ 3). Thus, (S,V6,V5,A ) is a
family of Lagrangian data of rank n+ 5 avoiding decomposable vectors.

Let us show that the association a : MGM
n → MLag

n+5 that takes a family of
smooth normalized GM data (S,W ,V6,V5, μ,q) to the family of Lagrangian data
(S,V6,V5,A ), where A is defined by (29), is a morphism of stacks, meaning that
it is defined on morphisms.
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Assume for simplicity that f = idS (the general case reduces to this by
base change). A morphism of families of GM data from (S,W ,V6,V5, μ,q) to
(S,W ′,V ′

6 ,V
′
5 , μ

′,q′) is then given by a pair of isomorphisms of projective bun-
dles ϕV : PS(V6)

∼−→PS(V ′
6 ) and ϕW : PS(W ) ∼−→PS(W ′) over S. The first can

be lifted to an isomorphism

ϕ̃V : V6
∼−→V ′

6 ⊗ δ

for an appropriate line bundle δ on S. Using compatibility with the morphism μ,
we conclude that ϕW lifts to an isomorphism

ϕ̃W : W ∼−→W ′ ⊗ δ⊗3.

It is straightforward to see that the pair (ϕ̃V , ϕ̃W ) defines a morphism from the dia-
gram (28) to the analogous diagram for the family of GM data (S,W ′,V ′

6 ,V
′
5 , μ

′,q′)
twisted by δ⊗3. It follows that the morphism

∧
3 ϕ̃V :

∧
3V6 → ∧

3V ′
6 ⊗ δ⊗3 takes A

to A ′⊗δ⊗3. Therefore, we have
∧

3ϕV (PS(A )) = PS(A ′), hence ϕV is a morphism
between the associated families of Lagrangian data. This operation is compatible
with compositions of morphisms and takes the identity to the identity, hence a is a
morphism of stacks.

Finally, consider the special locus of the family of Lagrangian data constructed
above. Its ideal JLag,spe is generated by the (n + 5) × (n + 5)-minors of the map
ϕ defined by (27). Because of the factorization in (33) (and since the rank of W

is n+5), every such minor is the product of a minor of ν and a minor of μ of
the same size. Consequently, the ideal JLag,spe is the product of two ideals, one
generated by the minors of ν and the other generated by the minors of μ. The latter
ideal is by definition equal to the ideal JGM,spe defining the special GM locus. To
finish the proof, we must show that the minors of ν generate the same ideal.

Since the left vertical arrow in (32) is surjective, this ideal coincides with the
ideal generated by the minors of the map Ker(f2) → W , that is, by Lemma 2.5,
with the annihilator of the cokernel of this map. Since f2 is surjective, the cokernel

of the map Ker(f2)
(0,λ)−−−→ W is isomorphic to the cokernel of the map∧

3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨)
(0,λ)+f2−−−−−→ W ⊕ (W ∨ ⊗ det(V6)).

Since the map (0, λ) is surjective, this sheaf is isomorphic to the cokernel of the

map Ker(0, λ)
f2−→ W ∨ ⊗ det(V6). Altogether, this means

Coker(ν) 
 Coker
(∧

3V5 ⊕ (V5 ⊗ W ⊗ (V6/V5)∨)
(μ,q)−−−→ W ∨ ⊗ det(V6)

)
.

By Lemma 3.10, the images of the two components of the map (μ,q) coincide,
hence the cokernel of their sum equals to the cokernel of each of them, that is,

Coker(ν) 
 C , (34)

where C is the cokernel sheaf of the family of GM data as defined in (24). The
annihilator of Coker(ν) is thus again the ideal JGM,spe of the GM special locus.
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Remark 4.2. The argument of Proposition 4.1 also applies to families of smooth
normalized GM data of dimension n = 2 such that the corresponding GM varieties
are strongly smooth [6, Definition 3.15] ordinary GM surfaces since, by [6, (3.9),
Theorem 3.16], the corresponding Lagrangian subspaces have no decomposable vec-
tors. It defines a morphism of stacks MGM

2,ord,ss → MLag
7 .

We will need some properties of the construction presented above. Consider the
family

qA : V6 ⊗ Sym2A → det(V5) ⊗ (V6/V5)⊗2

v ⊗ a1 ⊗ a2 �→ −λ4(v ∧ a1) ∧ λ3(a2)
(35)

of quadratic forms on A (the formula is symmetric in a1 and a2 by the Lagrangian
property of A ; see the proof of [6, Theorem 3.6] for details).

Lemma 4.3. The quadratic form on A defined by (35) is equal to the form induced
by q via the map ν : A → W .

Proof. Let v be a local section of V6 and let a1 and a2 be local sections of A .
Choose a lift of ai to a local section (ξi, vi ⊗ wi) of

Ker(f2) ⊂
∧

3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨).

We have

λ4(v ∧ f3(ξ1, v1 ⊗ w1)) = λ4(v ∧ (ξ1 + v1 ∧ μ(w1))) = λ(v)ξ1 + λ2(v ∧ v1) ∧ μ(w1)

and

λ3(f3(ξ2, v2 ⊗ w2)) = λ3(ξ2 + v2 ∧ μ(w2)) = λ(v2)μ(w2).

Therefore,

qA (v)(a1, a2) = −λ4(v ∧ f3(ξ1, v1 ⊗ w1)) ∧ λ3(f3(ξ2, v2 ⊗ w2))

= −(λ(v)ξ1 + λ2(v ∧ v1) ∧ μ(w1)) ∧ λ(v2)μ(w2)

= −λ(v2)λ(v)ξ1 ∧ μ(w2) − λ(v2)λ2(v ∧ v1) ∧ μ(w1) ∧ μ(w2).

On the other hand, since (ξ1, v1 ⊗ w1) is in the kernel of f2, we have the relation
ξ1 ∧ μ(w2) = −q(v1)(w1, w2). Using this and (18), the above equals

λ(v2)λ(v)q(v1)(w1, w2) − λ(v2)λ2(v ∧ v1) ∧ μ(w1) ∧ μ(w2)

= q(λ(v2)λ(v)v1 − λ(v2)λ2(v ∧ v1))(w1, w2).

It remains to observe that λ(v2)λ(v)v1 − λ(v2)λ2(v ∧ v1) = λ(v1)λ(v2)v, so that
finally

qA (v)(a1, a2) = λ(v1)λ(v2)q(v)(w1 , w2)

= q(v)(λ(v1)w1, λ(v2)w2)

= q(v)(ν(a1), ν(a2)).

This is precisely the compatibility we were claiming.
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Lemma 4.4. Assume n ≤ 5 and that the GM special locus SGM,spe of a smooth
family of normalized GM data is a Cartier divisor. The map (27) of the correspond-
ing family of Lagrangian data then factors as

A

		 		�
��

��
��

�
ν �� W



�
��

��
��

�
μ �� ∧2V5 ⊗ (V6/V5)

W ′

��								
W ′′,

� �

��









where W ′ and W ′′ are vector bundles of rank n + 5, the left diagonal arrow is
an epimorphism, the right diagonal arrow is a fiberwise monomorphism, the inner
diagonal arrows are monomorphisms, and their cokernels are line bundles on the
subscheme SGM,spe.

Proof. Let W ′ be the image of ν (so that the map A → W ′ is surjective). We
have an exact sequence

0 → W ′ → W → Coker(ν) → 0.

By (34) and Lemma 3.10, Coker(ν) is a line bundle on SGM,spe. Since SGM,spe is a
Cartier divisor, we conclude that W ′ is a vector bundle (Lemma 2.4). Analogously,
considering the dual of the map μ, we construct the vector bundle W ′′ and the
other factorization.

4.2. From families of Lagrangian data to families of GM data

Starting from this section, we assume n ≤ 5. Let (S,V6,V5,A ) be a family of
Lagrangian data of rank n + 5 avoiding decomposable vectors. Let SLag,spe ⊂ S

be its special locus. Assume additionally that SLag,spe is a double Cartier divisor
(Definition 2.10), that is,

SLag,spe = 2E, (36)

(equivalently, JLag,spe = I 2
E), where E is an effective Cartier divisor. We will

construct from (S,V6,V5,A ) a family of smooth normalized GM data on S.
Consider the map (27). By definition, its rank is n + 5, it is at least n + 4 at

every geometric point, and SLag,spe is its degeneration scheme. Since SLag,spe is a
Cartier divisor, Proposition 2.8 applies and implies that the map can be written as
a composition

A � W ′ → W ′′ ↪→ ∧
2V5 ⊗ (V6/V5),

where W ′ and W ′′ are vector bundles of rank n+5, the left arrow is an epimorphism,
the right arrow is a fiberwise monomorphism, and the middle map is a monomor-
phism whose cokernel W ′′/W ′ is a line bundle on SLag,spe = 2E. Tensoring over O2E

the exact sequence 0 → OE(−E) → O2E → OE → 0 with W ′′/W ′, we obtain
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an exact sequence

0 → (W ′′/W ′) ⊗O2E OE(−E) → W ′′/W ′ → (W ′′/W ′) ⊗O2E OE → 0,

where the first and last terms are both line bundles on E. Moreover, this is the
unique representation of W ′′/W ′ as an extension of two line bundles on E.

We define W as the kernel of the map W ′′ � W ′′/W ′ � (W ′′/W ′) ⊗O2E OE ,
so that we have a factorization

ϕ : A � W ′ → W → W ′′ ↪→ ∧
2V5 ⊗ (V6/V5), (37)

where W ′, W , and W ′′ are vector bundles of rank n+ 5, the two middle maps are
monomorphisms, and W /W ′ and W ′′/W are line bundles on E. This is the unique
factorization of ϕ with these properties.

We define the map

μ : W → ∧
2V5 ⊗ (V6/V5)

as the composition of the third and the fourth arrows in (37) and the map

ν : A → W

as the composition of the first and the second arrows. With these definitions, we
have again a commutative square (33).

Lemma 4.5. The family of quadratic forms

qA : V6 ⊗ Sym2A → det(V5) ⊗ (V6/V5)⊗2

defined by (35) induces a family of quadratic forms

q : V6 ⊗ Sym2W → det(V5) ⊗ (V6/V5)⊗2.

Proof. We will proceed in two steps. First, we show that qA induces a family q′

of quadratic forms on W ′. Since A � W ′ is surjective, it is enough to show that
its kernel bundle is contained in the kernel of qA . This is obvious, since the kernel
of that map is contained in the kernel of λ3 (by definition of W ′) which in turn is
contained in the kernel of qA by (35).

We then show that the family of quadratic forms q′ on W ′ induces a family of
quadratic forms on W given by the Hecke transform of q′ as defined in Lemma 2.11.
We set

E := W ′ K := W ′′/W ′(−2E), V := V6 ⊗ det(V5)∨ ⊗ (V6/V5)∨.

Restricting the sequence 0 → W ′ → W ′′ → W ′′/W ′ → 0 to 2E, we obtain

0 → K → W ′
2E → W ′′

2E → W ′′/W ′ → 0,

thus the line bundle K on 2E is the kernel of the map W ′
2E → W ′′

2E . In particu-
lar, it is a line subbundle of E2E . Moreover, K is contained in the kernel of the
map W ′ → ∧

2V5⊗ (V6/V5) restricted to 2E, hence, by the definition of qA in (35),
it is contained in the kernel of q′.
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We are therefore in the set-up of Lemma 2.11. By definition of W , there is an
exact sequence

0 → W ′ → W → KE(E) → 0.

Comparing with (8), we see that the bundle W 
 Ẽ can be identified with the
Hecke transform of W ′ with respect to K , and Lemma 2.11 provides it with a
family of quadratic forms.

We can now prove the main result of this section.

Proposition 4.6. The collection (S,W ,V6,V5, μ,q) constructed above is a family
of smooth normalized GM data of dimension n. Its special locus coincides scheme-
theoretically with the Cartier divisor E.

Proof. To show that (S,W ,V6,V5, μ,q) is a family of GM data, we only have to
verify (18). Since the family of quadratic forms q is induced by qA , it is enough to
check that qA (v)(a1, a2) = v∧μ(ν(a1))∧μ(ν(a2)) for v ∈ V5. But this follows from
the equality λ4(v∧ξ) = −v∧λ3(ξ) for v ∈ V5 and ξ ∈ ∧3V6, and the commutativity
of (33).

The statement about the special locus is also clear, since by construction, the
map μ is a composition W → W ′′ ↪→ ∧

2V5 ⊗ (V6/V5), where the second map is
a fiberwise monomorphism and the degeneration scheme of the first map is equal
to E.

It remains to show that the family of GM data is smooth, that is, that for each
geometric point s of S, the GM intersection corresponding to the GM data at the
point s is smooth.

If s /∈ E, then Ws = W ′
s is the image of the map As

(λ3)s−−−→ ∧
2V5,s ⊗ (V6/V5)s

and the quadratic form q on it is induced by the form qA on As. Therefore, by
[6, Theorem 3.6], the corresponding GM intersection is just the ordinary GM variety
associated with the Lagrangian subspace As ⊂ ∧3V6,s, which has no decomposable
vectors, and the hyperplane V5,s ⊂ V6,s. It is smooth by [6, Theorem 3.16].

Now assume s ∈ E. For brevity, we write V6, V5, A,W
′,W,W ′′ and so on for the

fibers of the corresponding vector bundles at the geometric point s. We also choose
a trivialization for V6/V5 to get rid of it in the formulas. Consider the restriction

A � W ′ → W →W ′′ ↪→ ∧
2V5 (38)

to s of the sequence (37). Denote by KA, K ′, and K the respective kernels of the
first three maps in (38). We have dim(KA) = 5 − n and dim(K ′) = dim(K) = 1.
Since the rank of the composition of the maps in (38) is n+ 4 (because s is a point
of the special locus), it follows that K ′ is equal to the kernel of the composition
W ′ → W → ∧

2V5. Therefore, the map μ : W → ∧
2V5 is injective on W0 = ν(A).
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In particular, we have a canonical direct sum decomposition

W = K ⊕W0. (39)

Note that (W0, V6, V5, μ|W0 ,q|W0) is a GM data set corresponding to a smooth GM
variety X0 of dimension n− 1: this follows from [6, Theorems 3.6 and 3.16].

The direct sum decomposition (39) coincides with the direct sum decomposi-
tion of Proposition 2.12(a) (its construction is the same). Therefore, by Proposi-
tion 2.12(b), the decomposition is orthogonal with respect to the quadrics q(v)
for all v ∈ V6. Furthermore, the subspace K is contained in the kernel of the
quadric q(v) for all v ∈ V5, since (18) holds and K is the kernel of μ. It follows that

MX =
⋂

v∈V5

{q(v) = 0} ⊂ P(W )

is the cone with vertex P(K) ⊂ P(W ) over the Grassmannian hull MX0 ⊂ P(W0)
of X0 (see [6, Sec. 2.4]) and, if v0 ∈ V6\V5, the last quadric q(v0) can be written
as a sum q(v0) = q1 ⊕ q0, where q1 ∈ Sym2K∨ and q0 ∈ Sym2W∨

0 is the equation
of X0 in MX0 .

Let us now show that q1, which by Proposition 2.12(b) is the residual quadric
of q′(v0), is nonzero.

For a general vector v0 ∈ V6\V5, we have A∩ (v0 ∧
∧

2V6) = 0 (see Remark 5.3).
Consider the family of quadratic forms q(v0) in a small neighborhood S0 of s in
S. Upon shrinking S0, we may assume that the vector bundle V6 is trivial with
fiber V6, that ∧

3V6 ⊗ O =
∧

3V5 ⊕ (v0 ∧
∧

2V6) ⊗ O

is a Lagrangian direct sum decomposition, and that A ∩ (v0 ∧∧2V6) ⊗ O = 0 at
all points of S0. By [6, Lemma C.5], we obtain

Coker(qA (v0) : A → A ∨) 
 Coker(ϕ∨ :
∧

2V ∨
5 → A ∨)

(where we assume that the line bundles det(V5) and V6/V5 are trivial on S0). Since
the kernel of the epimorphism A � W ′ is contained in the kernels of both qA (v0)
and ϕ, we can cancel it out and obtain

Coker(q′(v0) : W ′ → W ′∨) 
 Coker(
∧

2V ∨
5 → W ′∨).

The rightmost map factors as an epimorphism
∧

2V ∨
5 → W ′′∨ followed by the dual

of the map W ′ → W ′′. Dualizing the sequence 0 → W ′ → W ′′ → W ′′/W ′ → 0
and taking into account that W ′′/W ′ is a line bundle on the Cartier divisor 2E
(by construction of the bundles W ′ and W ′′ at the beginning of Sec. 4.2), we
deduce that Coker(

∧
2V ∨

5 → W ′∨) is a line bundle on 2E, hence so is the sheaf
Coker(q′(v0) : W ′ → W ′∨). By Lemma 2.5, the discriminant Disc(q′(v0)) is equal
to 2E and by Lemma 2.9, the residual quadric q1 is nonzero.

In particular, the GM intersection X corresponding to the point s is the double
covering of MX0 branched over X0, that is, the special GM variety associated
with X0 (see [6, Lemma 2.33]). It is a smooth GM variety of dimension n.
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4.3. Compositions of the constructions

We show that the constructions introduced in Secs. 4.1 and 4.2 are mutually inverse.
We keep the assumption n ≤ 5.

Let S be a scheme and let E ⊂ S be an effective Cartier divisor. Denote by

MGM
n (S,E) = {(S,W ,V6,V5, μ,q) ∈ MGM

n (S) |SGM,spe = E},
MLag

n+5(S,E) = {(S,V6,V5,A ) ∈ MLag
n+5(S) |SLag,spe = E}

the subgroupoids of MGM
n (S) and MLag

n+5(S) (defined in Secs. 3.1 and 3.5) formed
by all families of smooth normalized GM data of dimension n (respectively, by all
families of Lagrangian data of rank n + 5 avoiding decomposable vectors) over S
whose special locus is E.

Proposition 4.7. Assume n ∈ {3, 4, 5}. For any effective Cartier divisor E ⊂ S,

the morphism of stacks a defined in Proposition 4.1 induces an equivalence of
groupoids

MGM
n (S,E) ∼−→MLag

n+5(S, 2E).

Proof. By Proposition 4.1, the morphism of stacks a doubles the special locus,
hence induces a functor between the groupoids MGM

n (S,E) → MLag
n+5(S, 2E). Let

us show that the construction of Sec. 4.2 defines its quasi-inverse functor. This
construction is clearly functorial, so it remains to consider its compositions with a.

Let us start with a family of smooth normalized GM data (S,W ,V6,V5, μ,q)
with special locus E and let (S,V6,V5,A ) be the family of Lagrangian data obtained
by applying the morphism a. Its special locus is 2E by Proposition 4.1. Applying
the construction of Sec. 4.2 to (S,V6,V5,A ), we must show that the family of GM
data that we get is isomorphic to the original one.

The first step of the construction of Sec. 4.2 is the factorization (37) of the
morphism ϕ defined by (27). Comparing it with the factorization of Lemma 4.4
and using the uniqueness of such a factorization (Proposition 2.8), we deduce that
the bundles W ′, W , W ′′, and the maps ν and μ defined by this factorization agree
with those in the lemma. It remains to show that the quadratic forms q agree. This
follows from the compatibility of Lemma 4.3 and the uniqueness of the induced
quadratic form.

Conversely, let us start with a family of Lagrangian data (S,V6,V5,A ). We
produce a family (S,W ,V6,V5, μ,q) of smooth normalized GM data by the con-
structions of Sec. 4.2 and apply the functor a. In other words, we consider the
diagram (28) and our goal is to show that the cohomology bundle Ker(f2)/Im(f1) of
its upper row is isomorphic to the Lagrangian subbundle A ⊂ ∧3V6 we started with.

For this, we consider the map

f4 : V6 ⊗ A ⊗ (V6/V5)∨ → ∧
3V5 ⊕ (V6 ⊗ W ⊗ (V6/V5)∨)

v ⊗ a �→ (λ4(v ∧ a), v ⊗ ν(a)).
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We have

f2 ◦ f4(v ⊗ a)(w′) = λ4(v ∧ a) ∧ μ(w′) + q(v)(ν(a), w′).

For w′ = ν(a′), we have μ(w′) = μ(ν(a′)) = λ3(a′), hence the right side equals

−qA (v)(a, a′) + q(v)(ν(a), ν(a′)) = 0,

since q is induced by qA via the map ν. This means that the composition

V6 ⊗ A ⊗ A ⊗ (V6/V5)∨
ν−→ V6 ⊗ A ⊗ W ⊗ (V6/V5)∨

f2◦f4−−−→ det(V6)

vanishes. Since ν is surjective on the complement of a Cartier divisor, it follows
from Lemma 2.7 that f2 ◦ f4 = 0. Therefore, the map f4 factors through the kernel
of f2.

Furthermore, the restriction of f4 to V5 ⊗ A ⊗ (V6/V5)∨ can be rewritten as

f4(v ⊗ a) = (λ4(v ∧ a), v ⊗ ν(a)) = (−v ∧ λ3(a), v ⊗ ν(a)) = f1(v ∧ ν(a)),

hence the composition V6⊗A ⊗(V6/V5)∨
f4−→ Ker(f2) → Ker(f2)/Im(f1) factors as

V6 ⊗ A ⊗ (V6/V5)∨
λ−→ A −→ Ker(f2)/Im(f1).

Finally, by the commutativity of (33), we have

f3 ◦ f4(v ⊗ a) = f3(λ4(v ∧ a), v ⊗ ν(a)) = λ4(v ∧ a) + v ∧ μ(ν(a)) = λ(v)a.

Together with the above observation, this means that the composition

A → Ker(f2)/Im(f1)
f3−→ ∧

3V6

is the embedding of A . Since both A and Ker(f2)/Im(f1) are Lagrangian subbun-
dles in

∧
3V6, they are isomorphic.

Remark 4.8. The same argument proves that there is an equivalence
MGM

2,ord,ss(S,E) ∼−→MLag
7 (S, 2E) of groupoids, where MGM

2,ord,ss ⊂ MGM
2,ord is the sub-

stack defined by (25).

We finish this section by stating a combination of the above results (including
Theorem 3.7) which is a simplified version of Proposition 4.7.

Corollary 4.9. Let (S,V6,V5,A ) be a family of Lagrangian data of rank n + 5,
avoiding decomposable vectors, and such that its special locus is a double Cartier
divisor SLag,spe = 2E. There is a unique family of smooth polarized GM varieties
(S,X → S,H ) such that (S,V6,V5,A ) is obtained from the corresponding family
of GM data by the morphism a.

This corollary will be used later for constructing interesting families of GM
varieties.
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5. Descriptions as Global Quotients

We describe the moduli stacks MGM
n and MLag

n (defined in Secs. 3.1 and 3.5) as
global quotients stacks and derive a description of their coarse moduli spaces as the
corresponding GIT quotients.

5.1. EPW sextics

Let V6 be a 6-dimensional k-vector space and let A ⊂ ∧
3V6 be a Lagrangian

subspace for the det(V6)-valued symplectic form defined by wedge product.

Definition 5.1. For any integer �, we set

Y ≥�
A := {[v] ∈ P(V6) | dim(A ∩ (v ∧∧2V6)) ≥ �} (40)

and endow it with a scheme structure as in [15, Sec. 2]. The locally closed subsets

Y �
A := Y ≥�

A \Y ≥�+1
A (41)

of P(V6) form the Eisenbud–Popescu–Walter (EPW) stratification and the sequence
of inclusions

P(V6) = Y ≥0
A ⊃ Y ≥1

A ⊃ Y ≥2
A ⊃ · · ·

is called the EPW sequence. When the scheme YA := Y ≥1
A is not the whole space

P(V6), it is a sextic hypersurface [15, (1.8)] called an EPW sextic. The scheme
Y ≥2

A is nonempty and has everywhere dimension ≥ 2 [15, (2.9)].

The following theorem gathers various results of O’Grady’s (see [6, Theo-
rem B.2]; all these results were proved for k = C but, by the Lefschetz principle,
they extend to any field k of characteristic zero).

Theorem 5.2 (O’Grady). Let A ⊂ ∧3V6 be a Lagrangian subspace. If A contains
no decomposable vectors, that is, if P(A) ∩ Gr(3, V6) = ∅, then

(a) YA is an integral normal sextic hypersurface in P(V6);
(b) Y ≥2

A = Sing(YA) is an integral normal Cohen–Macaulay surface of degree 40;
(c) Y ≥3

A = Sing(Y ≥2
A ) is finite and smooth, and is empty for A general ;

(d) Y ≥4
A is empty.

Remark 5.3. It follows that if the Lagrangian subspace A contains no decom-
posable vectors, we have A ∩ (v0 ∧ ∧2V6) = 0 for v0 general in V6. We used this
observation in the proof of Proposition 4.6.

If A ⊂ ∧
3V6 is a Lagrangian subspace, its orthogonal A⊥ ⊂ ∧

3V ∨
6 is also a

Lagrangian subspace. In the dual projective space P(V ∨
6 ) = Gr(5, V6), the EPW

sequence for A⊥ can be described in terms of A as

Y ≥�
A⊥ = {V5 ∈ Gr(5, V6) | dim(A ∩∧3V5) ≥ �}. (42)

The canonical identification Gr(3, V6) 
 Gr(3, V ∨
6 ) induces an isomorphism between

the intersections P(A)∩Gr(3, V6) and P(A⊥)∩Gr(3, V ∨
6 ) [17, (2.82)]. In particular,
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a Lagrangian A contains no decomposable vectors if and only if the same holds
for A⊥.

We will not need this fact, but if A contains no decomposable vectors, the hyper-
surfaces YA and YA⊥ are projective duals [6, Proposition B.3; 16, Corollary 3.6].

If k = C and A contains no decomposable vectors, O’Grady defined in [18,
Sec. 1.2] a canonical double cover ỸA → YA (called the double EPW sextic). This
construction was generalized in [8, Theorem 5.2] to other EPW strata; it works over
an arbitrary field k of characteristic different from 2 and provides canonical double
coverings

Ỹ ≥0
A → Y ≥0

A , Ỹ ≥1
A → Y ≥1

A , Ỹ ≥2
A → Y ≥2

A

branched over Y ≥1
A , Y ≥2

A , and Y ≥3
A , respectively (the first of these is the usual

double covering of P(V6) branched over the EPW sextic hypersurface). We denote
the quotient stacks of these coverings by their natural involutions by

Ŷ ≥�
A := Ỹ ≥�

A /µ2. (43)

They come with natural maps

ρ�
A : Ŷ ≥�

A −→ Y ≥�
A .

For � = 0, we obtain the root stack of P(V6) with respect to the EPW sextic
hypersurface.

Consider the natural action of the group PGL(V6) on the Lagrangian Grass-
mannian LGr(

∧
3V6) and its natural linearization in the line bundle O(2) (note that

the line bundle O(1) does not admit a linearization). O’Grady showed in [20] that
the GIT quotient

MEPW := LGr(
∧

3V6)//PGL(V6)

is a coarse GIT moduli space for double EPW sextics. The following lemma will be
crucial for us.

Lemma 5.4 (O’Grady). The hypersurface

Σ := {A ∈ LGr(
∧

3V6) |A has decomposable vectors}
is PGL(V6)-invariant and its complement

LGradv(
∧

3V6) = LGr(
∧

3V6)\Σ
is affine and consists of stable points. In particular, for any A ∈ LGradv(

∧
3V6), the

stabilizer PGL(V6)A ⊂ PGL(V6) is finite.

Proof. The stability statement was proved in [20, Corollary 2.5.1] (over k = C,
but stability is defined over the algebraic closure [14, Definition 1.7] and by the
Lefschetz principle, stability over C implies stability over any algebraically closed
field of characteristic zero) and the rest is easy.
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The hypersurface Σ ⊂ LGr(
∧

3V6) has degree 42, the degree of Gr(3, V6). We
denote by ΣEPW the image of Σ in MEPW. Its complement

MEPW := MEPW \ΣEPW = LGradv(
∧

3V6)//PGL(V6) (44)

is affine; it is a coarse moduli space for EPW sextics YA such that A has no decom-
posable vectors.

5.2. The moduli stack of Lagrangian data

We deal here with the easier case of the moduli stack of Lagrangian data.
For each integer n ∈ {2, 3, 4, 5}, we consider the following relative versions of

some EPW strata (we changed the number � in (42) to n = 5 − �):

Sn := {(A, V5) ∈ LGradv(
∧

3V6) × P(V ∨
6 ) | dim(A ∩∧3V5) = 5 − n}

(one could also define Sn for n ≤ 1, but it is empty) and

Sn := {(A, V5) ∈ LGradv(
∧

3V6) × P(V ∨
6 ) | dim(A ∩∧3V5) ∈ {5 − n, 6 − n}}.

The subscheme Sn−1 of Sn is closed and Sn is its open complement. The scheme Sn

is locally closed in LGradv(
∧

3V6)×P(V ∨
6 ) and in LGr(

∧
3V6)×P(V ∨

6 ). In particular,
it is a quasiprojective scheme. We will need the following result.

Lemma 5.5. For n ≥ 2, the scheme Sn is smooth and

dim(Sn) = 60 − 1
2
(5 − n)(6 − n).

For n ∈ {2, 5}, the scheme Sn is smooth; for n ∈ {3, 4}, it is normal and
Sing(Sn) = Sn−1.

Proof. The fiber of the projection Sn → LGradv(
∧

3V6) over a Lagrangian sub-
space A with no decomposable vectors is the union Y 5−n

A⊥ ∪ Y 6−n
A⊥ of strata of the

dual EPW stratification associated with A, hence Theorem 5.2 applies.

Consider now the action of PGL(V6) on the product LGr(
∧

3V6) × P(V ∨
6 ). As

we noted above, the line bundle O(2, 0) has a natural linearization. It is clear
that O(0, 6) also admits a linearization. Consequently, for any m ∈ Z, the line
bundle O(2m, 6) admits a PGL(V6)-linearization.

Corollary 5.6. Take n∈{2, 3, 4, 5}. For sufficiently large m, the subschemes
Sn ⊂ LGr(

∧
3V6)P(V ∨

6 ) and Sn ⊂ Sn consist of PGL(V6)-stable points for the
O(2m, 6)-linearization.

Proof. This follows from Lemma 5.4 and [14, Proposition 2.18] applied to mor-
phisms Sn → LGradv(

∧
3V6) and Sn → LGradv(

∧
3V6).

The action of PGL(V6) on Sn also induces an action of GL(V6). The canonical
morphism

Sn/GL(V6) −→ Sn/PGL(V6)
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of global quotient stacks is a Gm-gerbe, because the center Gm ⊂ GL(V6) acts
trivially on Sn. In fact, this morphism is the rigidification for the natural embedding
of Gm into the automorphism groups of objects of the stack Sn/GL(V6). Recall also
that the stack MLag

n+5 is the rigidification of the stack M̃Lag
n+5 (Remark 3.16).

Proposition 5.7. For each n ∈ {2, 3, 4, 5}, the moduli stack MLag
n+5 of families of

Lagrangian data of rank n+ 5 avoiding decomposable vectors is the global quotient
stack

MLag
n+5 
 Sn/PGL(V6).

In particular, it is a separated Deligne–Mumford stack of finite presentation over Q.
Its special locus is also a global quotient stack

MLag
n+5,spe 
 Sn−1/PGL(V6).

The stack MLag
n+5 is smooth for n ∈ {2, 5}; for n ∈ {3, 4}, it is singular along the

substack MLag
n+5,spe.

Proof. We first prove that the stack of families of linearized Lagrangian data M̃Lag
n

is isomorphic to the quotient stack Sn/GL(V6) by constructing morphisms in both
directions between these stacks.

The scheme Sn comes with the tautological family of Lagrangian data on
the trivial bundle V6 = V6 ⊗ OSn

(the Lagrangian subbundle is pulled back
from LGr(

∧
3V6) and the subbundle V5 is pulled back from P(V ∨

6 ) 
 Gr(5, V6)).
The definition of Sn ensures that this family of Lagrangian data has rank n + 5
and avoids decomposable vectors. Hence, it induces a morphism Sn → M̃Lag

n+5. The
morphism is GL(V6)-equivariant, hence factors through a map from the quotient
stack Sn/GL(V6) to M̃Lag

n+5.
Let us construct the inverse. Let S be a scheme and let (S,V6,V5,A ) be a family

of linearized Lagrangian data of rank n+5, avoiding decomposable vectors. Consider
the GL(V6)-torsor f : S̃ → S associated with the vector bundle V6, so that the pull-
back of V6 to S̃ comes with a canonical trivialization f∗V6 
V6 ⊗OeS . The pullbacks
of the bundles A and V5 can be considered, respectively, as a Lagrangian subbundle
f∗A ↪→ ∧

3V6 ⊗ OeS and as a corank-1 subbundle f∗V5 ↪→ V6⊗OeS . Moreover, these
subbundles are GL(V6)-equivariant. Together they provide a GL(V6)-equivariant
map

S̃ −→ LGr(
∧

3V6) × P(V ∨
6 ).

As the family (S,V6,V5,A ) has rank n + 5 and avoids decomposable vectors, the
map factors through the subscheme Sn. Since this map is GL(V6)-equivariant, it
induces a map

S = S̃/GL(V6) → Sn/GL(V6).

This construction defines a morphism of stacks M̃Lag
n+5 → Sn/GL(V6).
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It is easy to see that the morphisms we constructed above are mutually inverse,
hence define an isomorphism of stacks. Moreover, this isomorphism is compatible
with the embeddings of Gm(S) into the automorphism groups of objects of the
stacks M̃Lag

n+5 and Sn/GL(V6). Therefore, the rigidifications of these stacks, MLag
n+5

and Sn/PGL(V6), are also isomorphic.
Since Sn is quasiprojective and, by Corollary 5.6, consists of PGL(V6)-stable

points, the stack Sn/PGL(V6) is a separated Deligne–Mumford stack of finite pre-
sentation over Q. It is clear that under the isomorphism MLag

n+5 
 Sn/PGL(V6), the
special locus of MLag

n+5 corresponds to the substack Sn−1/PGL(V6). The description
of the singular locus of Sn/PGL(V6) follows immediately from Lemma 5.5.

5.3. The moduli stack of GM varieties

We now describe the moduli stack of smooth GM varieties (which we identify with
the moduli stack of smooth normalized GM data).

As before, consider the product LGr(
∧

3V6) × P(V ∨
6 ). Set V6 := V6 ⊗ O and let

V5 ⊂ V6 and A ⊂ ∧3V6 be the pullbacks of the tautological subbundles from P(V ∨
6 )

and LGr(
∧

3V6), respectively. Note that
∧

3V6/
∧

3V5 is isomorphic to
∧

2V5⊗(V6/V5)
via the map λ3, so that the subscheme Sn ⊂ LGradv(

∧
3V6) × P(V ∨

6 ) is just the
rank-(n + 5) degeneracy locus of the morphism ϕ defined by (27). In particular,
the scheme Sn is a Lagrangian intersection locus (as defined in [8, Sec. 4]) for the
Lagrangian subbundles

A ↪→ ∧
3V6 and

∧
3V5 ↪→

∧
3V6.

Following [8, Sec. 4], we denote by Cn the cokernel sheaf of ϕ on Sn. By definition
of Sn, the rank of Cn is 5 − n. Consider the reflexive hull of its top exterior power

Rn := (
∧

5−nCn)∨∨. (45)

For n ≤ 4, this is a rank-1 reflexive sheaf on Sn, and, for n = 5, we have R5 
 OS5
.

Furthermore, it was shown in the proof of [8, Theorem 4.2] that if Ln is the line
bundle

Ln := (det(V6)15−n ⊗ det(A ∨) ⊗ det(V ∨
5 )⊗6)|Sn

, (46)

there is a natural morphism

mn : Rn ⊗ Rn −→ Ln

which, for n ≤ 4, identifies Ln with the reflexive hull (Rn ⊗Rn)∨∨, and, for n = 5,
is just a global section of L5 (in fact, m5 = det(ϕ)).

Lemma 5.8. The subscheme B(mn) ⊂ Sn, defined by the ideal image of the
map mn twisted by L −1

n , is equal to Sn−1 ⊂ Sn.

Proof. By [8, Definition 2.8], the subscheme B(mn) coincides (locally over Sn)
with the branch locus of the double covering of Sn associated with the reflexive
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sheaf Rn and the morphism mn. Since, by Lemma 5.5, the schemes Sn are smooth
of expected dimensions, [8, Corollary 4.8] identifies the branch locus with the
scheme Sn−1.

We are therefore in the set-up of Appendix A. Accordingly, we consider the root
stack

Ŝn → Sn

of (Rn,mn). For n = 5, the stack Ŝ5 is isomorphic to
√

(L5, det(ϕ))/ S5, the
root stack with respect to the hypersurface S4 ⊂ S5 in the sense of [2, Sec. B.2].
For n ≤ 4, the stacky locus Sn−1 of Ŝn has codimension 6− n ≥ 2; in this sense Ŝn

is a generalized root stack.
We have the following property.

Lemma 5.9. The stack Ŝn is a smooth separated Deligne–Mumford stack. The
action of the group PGL(V6) on Sn lifts to an action on Ŝn such that the mor-
phism Ŝn → Sn is PGL(V6)-equivariant.

Proof. To show that Ŝn is a smooth and separated Deligne–Mumford stack, it
is enough, in view of Proposition A.2, to check that the double étale cover of
Sn associated with the morphism mn and a square root of Ln (which exists
locally over Sn) is smooth. This follows from [8, Lemma 3.6 and Proposition 3.7],
since LGradv(

∧
3V6) × P(V ∨

6 ) is smooth and Sn is smooth of expected codimension
(Lemma 5.5).

To show that the PGL(V6) action on Sn lifts to Ŝn, recall from (A.3) that the
stack Ŝn can be defined as the quotient stack

Ŝn = ̂̂Sn/Gm, where ̂̂Sn := Spec Sn
(OSn

[L ±1
n ,Rn]), (47)

the sheaf of algebras OSn
[L ±1

n ,Rn] is defined in (A.2), and the Gm-action corre-
sponds to its grading. The sheaves Rn and Ln and the morphism mn are GL(V6)-
equivariant and the center Gm ⊂ GL(V6) acts on them with respective weights
3(5 − n) and 6(5 − n) by (45) and (46). Therefore, the group

Gn := GL(V6)/µ3(5−n) (48)

acts on the sheaf of algebras OSn
[L ±1

n ,Rn] defined in (A.2), hence also on its

relative spectrum ̂̂Sn, in such a way that the action of its center Gm/µ3(5−n) 
 Gm

corresponds to the grading of the algebra. Therefore, the stack Ŝn carries an action
of the quotient group

(GL(V6)/µ3(5−n))/(Gm/µ3(5−n)) 
 GL(V6)/Gm = PGL(V6)

and the map Ŝn → Sn is PGL(V6)-equivariant.

The argument of the proof of the lemma also has the following useful
consequence.
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Corollary 5.10. There is an isomorphism of stacks Ŝn/PGL(V6) 
 ̂̂Sn/Gn.

We are now ready to prove the main result of this section.

Theorem 5.11. For n ∈ {3, 4, 5}, the stack of smooth polarized GM varieties MGM
n

is isomorphic to the global quotient stack

MGM
n 
 Ŝn/PGL(V6) 
 ̂̂Sn/Gn.

In particular, it is a smooth separated Deligne–Mumford stack of finite presentation
over Q.

Proof. The first step is the construction of a morphism of stacks

̂̂Sn/Gn 
 Ŝn/PGL(V6) −→ MGM
n .

This is equivalent to the construction of a Gn-equivariant family of smooth GM
varieties over ̂̂Sn, which is accomplished below by a combination of several con-
structions described earlier.

The natural morphism ̂̂Sn → Sn can be factored as the composition

̂̂Sn
f−→ Sn := Spec Sn

(OSn
[L ±1

n ]) = Spec Sn

(⊕
i∈Z

L i
n

)
θ−→ Sn,

where θ : Sn → Sn is the Gm-torsor associated with the line bundle Ln and f is
the double cover associated by [8, Proposition 2.5] with the reflexive sheaf θ∗Rn

and the natural morphism

θ∗Rn ⊗ θ∗Rn
θ∗(mn)−−−−−→ θ∗Ln 
 O.

The sheaf θ∗Rn is the reflexive sheaf associated with the Lagrangian intersection of
the subbundles θ∗A and θ∗(

∧
3V5) on the scheme Sn. Therefore, by [8, Lemma 3.6,

Proposition 3.7], the double cover ̂̂Sn is smooth.
Recall from [8, Definition 2.8] the notions of branch and ramification loci, B(f)

and R(f), for the double cover f . By Lemma 5.8 and [8, Corollary 4.8], we have

B(f) = θ−1(Sn−1), R(f) 
 θ−1(Sn−1) ⊂ ̂̂Sn,

and the preimage f−1(B(f)) is the first-order infinitesimal neighborhood of R(f).
Denote by

S := BlR(f)( ̂̂Sn)
β−→ ̂̂Sn

the blow up of the scheme ̂̂Sn along R(f) and let E be its exceptional divisor. The
preimage of the subscheme Sn−1 under the map β ◦ f ◦ θ is the Cartier divisor 2E.
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The following diagram collects the stacks and morphisms that we constructed:

S
β �� ̂̂Sn 2:1

f ��

Gm

��

Sn

Gm θ

��
Ŝn

root �� Sn
�� LGradv(

∧
3V6) × P(V ∨

6 ).

The labels “2 : 1”, Gm, and “root” in the diagram mean that the corresponding
arrows are a double covering, Gm-torsors, and a root stack, respectively.

On Sn, we have the tautological family (S,V6,V5,A ) of Lagrangian data
described in Proposition 5.7. Its pullback to the blow up S is a family of Lagrangian
data on S of rank n+ 5 avoiding decomposable vectors. Its special locus is the
preimage of Sn−1, that is, the Cartier divisor 2E. Since this divisor is a double, the
construction of Sec. 4.2 applies: by Proposition 4.7, there exists a family of smooth
normalized GM data (S,W ,V6,V5, μ,q) with special locus E. We claim that this
family is the pullback with respect to the blow up morphism β : S → ̂̂Sn. Since this
is the blow up of a smooth scheme along a smooth center, it is enough to check
that the bundles W , V6, and V5 restrict trivially to the fibers of the exceptional
divisor E.

For the bundles V6 and V5, this is obvious, since they are by construction pull-
backs from ̂̂Sn. For W , it is a bit more complicated. This bundle is constructed in
Lemma 4.5 and, according to Proposition 2.12, the restriction of W to E is a direct
sum

W |E 
 (W ′
E/KE) ⊕ KE(E).

The first summand W ′
E/KE is isomorphic to the image of the restriction to E of

the pullback to S of the map ϕ : A → ∧
2V5 ⊗ (V6/V5). In particular, it is trivial

on the fibers of E. The second summand comes by Proposition 2.12 with a natural
isomorphism

q1 : Sym2(KE(E)) ∼−→V6/V5.

Its target is a line bundle trivial on the fibers of E, hence so is its source. Finally,
the fibers of E are projective spaces, hence a line bundle on a fiber, whose square
is trivial, is trivial itself. Thus, KE(E) is trivial on the fibers of E and so is W .

We conclude that there is a family of GM data on ̂̂Sn whose pullback to S is
the family of GM data obtained from the family of Lagrangian data (S,V6,V5,A )
by the construction of Sec. 4.2. Let us check that it is Gn-equivariant. The family
(S,V6,V5,A ) is Gn-equivariant as a family of Lagrangian data (note, however, that
it is not equivariant as a family of linearized Lagrangian data; see Remark 3.16)
because, in Definition 3.15 of a morphism of Lagrangian data, we ask for isomor-
phisms between projectivizations of the appropriate bundles. The construction of
Sec. 4.2 is natural, hence the resulting family of GM data on the blow up S of ̂̂Sn

is also Gn-equivariant.
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Finally, the pullback functor for the blow up β : S → ̂̂Sn is fully faithful, hence
the resulting GM data on ̂̂Sn is Gn-equivariant (again, it is not equivariant as a
family of linearized GM data; see Remark 3.4). Consequently, we obtain a family of
smooth normalized GM data on the quotient stack ̂̂Sn/Gn 
 Ŝn/PGL(V6), which
gives the desired map

Ŝn/PGL(V6) → MGM
n .

Let us construct the morphism in the opposite direction. Recall that MGM
n is a

smooth Deligne–Mumford stack by Proposition 3.2. Let

S → MGM
n

be an étale covering by a smooth scheme S, let (S,W ,V6,V5, μ,q) be the corre-
sponding family of smooth normalized GM data, and let S̃ be the GL(V6)-torsor
associated with the rank-6 bundle V6, so that the pullback of V6 to S̃ is the trivial
bundle V6 ⊗ OeS .

Let (S̃,V6,V5,A ) be the family of Lagrangian data obtained from
(S̃,W ,V6,V5, μ,q) by the construction of Proposition 4.1. Since V6 is trivial, we
obtain a morphism

S̃ → LGr(
∧

3V6) × P(V ∨
6 )

such that the bundles A and V5 are the pullbacks of the tautological bundles.
Since (S̃,V6,V5,A ) has rank n+5 and avoids decomposable vectors, this morphism
factors through Sn. Let us show that it also factors through the stack Ŝn → Sn.

If n = 5, the stack Ŝn is the root stack of the section det(ϕ) of the line bundle L5,
so, by [2, Sec. B.1], it is enough to check that the pullback of the ideal generated
by det(ϕ) is a square. Since this ideal defines the Lagrangian-special locus for the
family (S̃,V6,V5,A ), it is, by Proposition 4.1, the square of the ideal defining the
GM-special locus on S̃. The universal property of the root stack gives the required
factorization.

If n< 5, we apply Proposition A.6. Its assumptions are satisfied because S̃ is
smooth and the locus B(mn) associated with the map mn is equal to Sn−1 by
Lemma 5.8, so, by Proposition 4.1, its preimage in S̃ is set-theoretically equal
to the GM special locus in S̃, which by Lemma 3.13 has codimension at least 2
since n< 5.

Therefore, we obtain a morphism S̃ → Ŝn. This morphism is GL(V6)-equivariant
by construction (where the group GL(V6) acts on Ŝn via its quotient PGL(V6)).
Since the center Gm ⊂ GL(V6) acts trivially on Ŝn, this morphism factors through
a PGL(V6)-equivariant morphism S̃/Gm → Ŝn. Passing to quotients by PGL(V6),
we obtain a morphism

S = S̃/GL(V6) = (S̃/Gm)/PGL(V6) → Ŝn/PGL(V6).
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Furthermore, if we replace the étale covering S → MGM
n by another étale covering

S′ → S → MGM
n , the morphisms S → Ŝn/PGL(V6) and S′ → Ŝn/PGL(V6) are

compatible. Therefore, we obtain a morphism

MGM
n → Ŝn/PGL(V6)

which is inverse to the one constructed before.
In view of Proposition 3.2, the only thing that remains to be proved is the

separatedness of the stack MGM
n . This follows from the fact that the scheme Sn

provides a covering of the stack Sn/PGL(V6) in the smooth topology. The morphism
Ŝn → Sn induced by the morphism

Ŝn/PGL(V6) → Sn/PGL(V6) (49)

on this covering is proper by Corollary A.4 hence, by [23, Lemma 06TZ], so is
the morphism (49). Consequently, the separatedness of Sn/PGL(V6) (proved in
Proposition 5.7) implies the separatedness of MGM

n 
 Ŝn/PGL(V6).

One immediate consequence of Theorem 5.11 is the following.

Corollary 5.12. For n ∈ {3, 4, 5}, the stack MGM
n,ord of ordinary smooth GM vari-

eties of dimension n is isomorphic to the quotient stack Sn/PGL(V6). Similarly,
the stack MGM

2,ord,ss of ordinary strongly smooth GM surfaces is isomorphic to the
quotient stack S2/PGL(V6). These stacks are smooth separated Deligne–Mumford
stacks of finite presentation over Q.

Proof. The first part follows from Theorem 5.11. The second part follows from
Remark 4.8 and Proposition 5.7, since S1 = ∅, hence S2 = S2.

Theorem 5.11 does not describe the stack MGM
6 of smooth GM varieties of

dimension 6. However, since every such variety is special, we have the following
result.

Corollary 5.13. We have an equality of stacks MGM
6 = MGM

6,spe. Therefore, MGM
6

is a µ2-gerbe over MGM
5,ord 
 S5/PGL(V6).

Proof. The first assertion is obvious and the second follows from Lemma 3.13 and
Corollary 5.12.

5.4. Coarse moduli spaces

We use the global quotient descriptions from previous sections to describe the coarse
moduli spaces of GM varieties.

Recall that for any m ∈ Z, the line bundle O(2m, 6) on LGr(
∧

3V6) × P(V ∨
6 )

admits a PGL(V6)-linearization. This line bundle also admits a GL(V6)-linearization
and, since for n ∈ {3, 4, 5}, the subgroup µ3(5−n) ⊂ GL(V6) acts trivially on it, this
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linearization induces a Gn-linearization (where Gn = GL(V6)/µ3(5−n) was defined
in (48)).

Corollary 5.14. For each n ∈ {2, 3, 4, 5} and for m � 0, the scheme ̂̂Sn consists
of Gn-stable points for the O(2m, 6)-linearization.

Proof. As in Corollary 5.6, this follows from Lemma 5.4 and [14, Proposition 2.18]
applied to the morphism ̂̂Sn → LGradv(

∧
3V6).

In the next theorem, we prove that the stacks MGM
n , MGM

n,ord, MGM
n,spe, and MLag

n+5

all admit coarse moduli spaces, which we denote by MGM
n , MGM

n,ord, MGM
n,spe, and

MLag
n+5, respectively, and we describe them as GIT quotients.

Theorem 5.15. (a) For n ∈ {3, 4, 5, 6}, the respective coarse moduli spaces MGM
n

and MLag
n+5 of the stacks MGM

n and MLag
n+5 are both isomorphic to the quasipro-

jective GIT quotient

MGM
n 
 MLag

n+5 
 Sn//PGL(V6)

taken with respect to the natural linearization of the line bundle O(2m, 6) for
sufficiently large m.

(b) For n ∈ {3, 4, 5}, the respective coarse moduli spaces MGM
n,ord and MGM

2,ord,ss of
the stacks MGM

n,ord and MGM
2,ord,ss of ordinary GM varieties are isomorphic to the

GIT quotients

MGM
n,ord 
 Sn//PGL(V6), MGM

2,ord,ss 
 S2//PGL(V6).

(c) For n ∈ {3, 4, 5, 6}, the coarse moduli space MGM
n,spe of the stack MGM

n,spe of special
GM varieties is isomorphic to the GIT quotient

MGM
n,spe 
 Sn−1//PGL(V6).

Proof. We first prove part (a) for n ∈ {3, 4, 5}. Since, by Corollary 5.14, the
scheme ̂̂Sn consists of stable points for the Gn-linearization of the bundle O(2m, 6),
the morphism ̂̂Sn/Gn → ̂̂Sn//Gn

to the corresponding GIT quotient is a tame moduli space [4, Theorem 13.6], hence
is a coarse moduli space [4, Remark 7.3]. It remains to recall that MGM

n 
 ̂̂Sn/Gn

by Theorem 5.11. Similarly, the GIT quotient Sn//PGL(V6) is the coarse moduli
space for the stack Sn/PGL(V6), which by Proposition 5.7 is isomorphic to MLag

n+5.

So, it remains to identify the GIT quotients ̂̂Sn//Gn and Sn//PGL(V6).
For this note that, since the group Gm/µ3(5−n) acts on the algebra OSn

[L ±1
n ,Rn]

via its grading, we havê̂Sn//(Gm/µ3(5−n)) = SpecSn
(OSn

[L ±1
n ,Rn])//(Gm/µ3(5−n)) 
 SpecSn

(OSn
) 
 Sn.
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Moreover, we have PGL(V6) 
 Gn/(Gm/µ3(5−n)). Therefore,

̂̂Sn//Gn 
 ( ̂̂Sn//(Gm/µ3(5−n))
)
//
(
Gn/(Gm/µ3(5−n))

) 
 Sn//PGL(V6).

This proves part (a) for n ∈ {3, 4, 5}.
The proof of part (b) is completely analogous, using Corollary 5.12 instead of

Theorem 5.11.
Let us prove part (c). By Lemma 3.13 and Remark 3.14, the automor-

phism group scheme of each object of the stack MGM
n,spe contains the constant

group scheme µ2 and the morphisms of stacks MGM
n,spe → MGM

n−1,ord for n ≥ 4,
and MGM

3,spe → MGM
2,ord,ss for n = 3, are the µ2-rigidifications. Therefore, by [2, The-

orem C.1.1(4)], they have the same coarse moduli space and we conclude by part (b).
Finally, part (a) for n = 6 follows from Corollary 5.13 and part (c).

The coarse moduli space for smooth GM sixfolds (and for smooth ordinary GM
fivefolds), which according to the above results is the GIT quotient S5/PGL(V6),
can also be constructed directly by following Mumford’s proof for hypersurfaces in
the projective space. Moreover, this approach gives the additional information that
this moduli space is affine.

Proposition 5.16. The coarse moduli space for smooth ordinary GM fivefolds and
for smooth special GM sixfolds is affine.

Proof. The argument is classical [14, Proposition 4.2]. A smooth ordinary GM five-
fold is by definition a smooth hypersurface of degree 2 in G := Gr(2, V5). Inside the
projective space P(H0(G,OG(2))), the subset of points corresponding to sections
whose zero locus inG is singular is a hypersurface. This hypersurface is ample, hence
its complement P(H0(G,OG(2)))0 is affine and SL(V5)-invariant. The action of the
reductive group SL(V5) on this affine set is linearizable and since the automorphism
group of any smooth ordinary GM fivefold is finite [6, Proposition 3.21(c)], the sta-
bilizers are finite at points of P(H0(G,OG(2)))0, which is therefore contained in
the stable locus.

The coarse moduli space for smooth ordinary GM fivefolds is therefore a dense
affine open subset of the projective irreducible 25-dimensional GIT quotient

P(H0(G,OG(2)))//SL(V5).

This proves the proposition.

The affineness properties can be also deduced from Theorem 5.15. Indeed, we
have

MGM
5,ord 
 MGM

6,spe 
 S5//PGL(V6)

and the scheme S5 = (LGr(
∧

3V6) × P(V ∨
6 ))\(Σ ∪ {det(ϕ) = 0}) is affine since the

divisor Σ ∪ {det(ϕ) = 0} in LGr(
∧

3V6) × P(V ∨
6 ) is ample.
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6. Applications

In this section, we work over k = C.

6.1. The period map

The coarse moduli space MEPW for double EPW sextics was constructed in (44).
It is an affine integral scheme of dimension 20. The composition

πn : MGM
n → MGM

n
∼−→ Sn//PGL(V6) → LGradv(

∧
3V6)//PGL(V6) = MEPW

defines a morphism from the stack MGM
n of smooth GM varieties, or from its coarse

moduli space MGM
n , to the coarse moduli space MEPW.

The period map

℘EPW : MEPW ↪→ D

for double EPW sextics was constructed by O’Grady, with values in the appropriate
period domain D ; it is an open embedding by Verbitsky’s Torelli Theorem [19,
Theorem 1.3].

Proposition 6.1. Let n ∈ {4, 6}. The map

℘GM
n := ℘EPW ◦ πn : MGM

n → D (50)

is the period map for the middle cohomology of GM varieties of dimension n.

Proof. This follows from [7, Proposition 5.27].

Remark 6.2. Let n ∈ {3, 5}. By [7, Proposition 3.1], GM varieties of dimen-
sion n have intermediate Jacobians that are 10-dimensional principally polarized
abelian varieties. This defines a period map ℘GM

n : MGM
n → A10, where A10 is the

coarse moduli space for 10-dimensional principally polarized abelian varieties. In
the forthcoming paper [9], we will prove that this map factors as

MGM
n

πn−−→ MEPW ↪
℘EPW

−−−−→ D −→ D/rD ��� A10,

where rD is the involution of the domain D defined by O’Grady in [16] (geometri-
cally, it corresponds to passing from an EPW sextic to its dual EPW sextic). The
dashed arrow is expected to be generically injective.

We can use Proposition 6.1 to describe the fibers of ℘GM
n for n ∈ {4, 6}: they are

the same as the fibers of πn. The stacks Ŷ ≥�
A⊥ were defined in (43) and the maps ρ�

A⊥

right after.

Corollary 6.3. If A ⊂ ∧
3V6 is a Lagrangian subspace with no decomposable

vectors, there is an isomorphism of stacks

π−1
4 ([A]) 
 (ρ1

A⊥)
−1

(YA⊥\Y 3
A⊥)/PGL(V6)A ⊂ Ŷ ≥1

A⊥ /PGL(V6)A, (51)

where PGL(V6)A is the stabilizer of A in PGL(V6). Furthermore, the stack π−1
6 ([A])

is a µ2-gerbe over Y 0
A⊥/PGL(V6)A. In particular, there are isomorphisms of coarse
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moduli spaces

π−1
4 ([A])coarse 
 (YA⊥\Y 3

A⊥)//PGL(V6)A and π−1
6 ([A])coarse 
 Y 0

A⊥//PGL(V6)A.

Proof. By definition of the scheme S4, the fiber of the map S4 → LGradv(
∧

3V6)
over the point [A] is the union YA⊥\Y 3

A⊥ = Y 1
A⊥ � Y 2

A⊥ of two EPW strata,
hence the fiber of the composition Ŝ4 → S4 → LGradv(

∧
3V6) is isomorphic

to (ρ1
A⊥)−1(YA⊥\Y 3

A⊥) ⊂ Ŷ ≥1
A⊥ . Thus, the stack π−1

4 ([A]) is isomorphic to the
quotient stack (ρ1

A⊥)−1(YA⊥\Y 3
A⊥)/PGL(V6)A and its coarse moduli space is

(YA⊥\Y 3
A⊥)//PGL(V6)A.

Similarly, Corollary 5.13 identifies the fiber π−1
6 ([A]) with a µ2-gerbe over

Y 0
A⊥/PGL(V6)A and its coarse moduli space with Y 0

A⊥//PGL(V6)A.

6.2. Complete families of smooth GM varieties

Complete nonisotrivial families of smooth projective varieties are hard to find (espe-
cially those parameterized by rational curves) and are interesting for this reason.
Using our results, one can construct such families of GM varieties, some parame-
terized by the projective line.

We start with a simple observation.

Lemma 6.4. Let (X → S,H ) be a family of smooth GM varieties of dimension n
over a proper reduced connected scheme S. The map πn : S → MEPW is constant.

Proof. This follows from the fact that MEPW is affine.

By Lemma 6.4, any family of smooth GM varieties of dimension n parameterized
by a proper reduced connected scheme S corresponds to a fixed Lagrangian subspace
A ⊂ ∧3V6 and varying Plücker hyperplanes V5 ⊂ V6. In other words, repeating the
argument of Corollary 6.3, we see that such a family corresponds to a morphism

S → π−1
n ([A]) = (ρ5−n

A⊥ )
−1

(Y ≥5−n
A⊥ \Y ≥5−n

A⊥ )/PGL(V6)A ⊂ Ŷ ≥5−n
A⊥ /PGL(V6)A.

The following result can be used to construct such a map.

Proposition 6.5. Let n ∈ {3, 4, 5, 6} and let S be a connected reduced scheme.
Assume that f : S → Y ≥5−n

A⊥ is a nonconstant morphism such that f−1(Y ≥7−n
A⊥ ) = ∅

and that

f−1
(
Y ≥6−n

A⊥
)

is equal to 2E for some Cartier divisor E on S. (52)

Then there is a nonisotrivial family of smooth GM varieties X → S of dimension n.

Proof. The family X → S exists by Corollary 4.9: indeed, consider the family of
Lagrangian data on S given by the trivial bundles V6 =

∧
3V6 ⊗OS and A =A⊗OS ,

and take for V5 the pullback of the tautological rank-5 bundle on P(V ∨
6 ) via the

map S
f−→ Y ≥5−n

A⊥ ↪→ P(V ∨
6 ).
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This family is not isotrivial, because the corresponding map from S to the
coarse moduli space MGM

n is nonconstant: this map is the composition of f with
the quotient morphism Y ≥5−n

A⊥ → Y ≥5−n
A⊥ //PGL(V6)A; since the group PGL(V6)A is

finite and dim(f(S)) > 0, this is clear.

It is not easy to find a map satisfying the condition (52). Sometimes, a double
covering trick helps.

Example 6.6. Let L ⊂ P(V ∨
6 ) be a line such that L 
⊂ Y ≥1

A⊥ and L ∩ Y ≥2
A⊥ = ∅.

Then L ∩ Y ≥1
A⊥ is a divisor of degree 6 (because Y ≥1

A⊥ is a sextic hypersurface).
Let L̃ → L be the normalization of the double cover of L branched over L ∩ Y ≥1

A⊥ .
Then,

• if the intersection L ∩ Y ≥1
A⊥ is transverse, L̃ is an integral curve of genus 2;

• if the intersection L∩Y ≥1
A⊥ has exactly one nonreduced point, and its multiplicity

is 2 or 3, L̃ is an integral curve of genus 1;
• in all other cases, each component of L̃ is isomorphic to P1.

A general line falls into the first case. A general line tangent to Y ≥1
A⊥ at a gen-

eral point falls into the second case. Bitangent lines to Y ≥1
A⊥ (of which there is a

6-dimensional family) fall into the third case.
Applying Proposition 6.5 to any of these families, we obtain a family of smooth

GM varieties of dimension 5 over L̃. It is not isotrivial by Proposition 6.5.

To construct families of GM varieties, one can also apply directly Corollary 6.3.

Example 6.7. Assume Y ≥3
A⊥ = ∅. There is a family of smooth GM fourfolds of

maximal variation parameterized by the double EPW sextic ỸA⊥ . Indeed, by Corol-
lary 6.3, there is a map

ỸA⊥ −→ ỸA⊥/µ2 = ŶA⊥ −→ ŶA⊥/PGL(V6)A = π−1
4 ([A]) ↪−→ MGM

4

and we obtain a family of GM fourfolds over ỸA⊥ by pulling back the universal
family over MGM

4 .
Since any smooth double EPW sextic contains a uniruled divisor (the Gromov–

Witten invariants computed in [21] include the degree of the divisor spanned by
deformations of a rational curve of minimal degree on any smooth double EPW
sextic, and this degree is nonzero), hence many rational curves, one obtains smooth
nonisotrivial families of GM fourfolds parameterized by P1.

Example 6.8. Assume Y ≥3
A⊥ = ∅. As in the previous example, we can pull back

the universal family of GM threefolds by the composition (see (51) for the notation)

Y ≥2
A⊥

∼−→ Ŷ ≥2
A⊥ −→ Ŷ ≥2

A⊥ /PGL(V6)A ↪−→ Ŝ3/PGL(V6) 
 MGM
3
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and obtain a family of smooth ordinary GM threefolds with maximal variation
parameterized by the projective surface Y ≥2

A⊥ .
When A is general, the cotangent bundle of Y ≥2

A⊥ is globally generated [5, Corol-
lary 7.3] hence this surface contains no rational curves. Any Lagrangian A with no
decomposable vectors such that Y ≥2

A⊥ contains a rational curve and Y ≥3
A⊥ = ∅ would

give rise to a smooth nonisotrivial families of GM threefolds parameterized by P1,
but we do not know any such Lagrangian.
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Appendix A. The Generalized Root Construction

We discuss a generalization of the root stack construction of [2] which is also a
particular case of the canonical stack construction, as defined (under another name)
in [24, Note 2.9, Proof of Proposition 2.8] and developed in [12].

Let S be a normal irreducible scheme. Let R be a reflexive sheaf of rank 1 on S
such that the reflexive hull

L := (R ⊗ R)∨∨

is a line bundle. If L 
 M⊗2 for some line bundle M on S, there is a scheme

S̃ := Spec(OS ⊕ (M−1 ⊗ R)) (A.1)

equipped with a map ρ̃ : S̃ → S which is finite of degree 2 and étale over the locally
free locus of R [8, Proposition 2.5], and an involution τ of S̃ over S. Let

Ŝ := S̃/µ2(τ)

be the quotient stack with respect to the µ2-action on S̃ generated by τ . There is
a natural map ρ̂ : Ŝ → S which is an isomorphism over the locally free locus of R;
over Sing(R), it is a nilpotent thickening of a µ2-gerbe over Sing(R).

We want to show that the construction that produces the stack Ŝ from S is
more natural in a sense than the construction of the double covering. In particular,
it does not require the existence (hence nor the choice) of a square root M of L .

The construction is very simple. Slightly generalizing the above set-up, we
assume that R is a reflexive sheaf of rank 1 on S such that the sheaf (R ⊗R)∨∨ is
locally free and let

m : R ⊗ R −→ L
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be a nonzero morphism to a line bundle L . Consider the quasicoherent sheaf

OS [L ±1,R] :=
⊕
i∈Z

(L i ⊕ (L i ⊗ R))


 · · · ⊕ L −1 ⊕ (L −1 ⊗ R) ⊕ OS ⊕ R ⊕ L ⊕ (L ⊗ R) ⊕ · · ·
(A.2)

with the Z-grading defined by

deg(L i) = 2i and deg(L i ⊗ R) = 2i+ 1.

Lemma A.1. The morphism m induces on OS [L ±1,R] a commutative associative
OS-algebra structure.

Proof. There is a natural associative algebra structure on the sheaf

OS [R] := OS ⊕ R ⊕ (R ⊗ R)∨∨ ⊕ (R ⊗ R ⊗ R)∨∨ ⊕ (R ⊗ R ⊗ R ⊗ R)∨∨ ⊕ · · ·
(the associativity follows from the functoriality of the reflexive hull). It is also
commutative since the automorphism of (R ⊗ R)∨∨ induced by the transposition
of R ⊗ R is an automorphism of a reflexive sheaf which is the identity on the
locally free locus of R, hence is itself the identity. Finally, the morphism m induces
a morphism OS [(R ⊗ R)∨∨] → OS [L ] ↪→ OS [L ±1] of commutative associative
algebras and we have

OS [L ±1,R] = OS [R] ⊗OS[(R⊗R)∨∨] OS [L ±1],

because (R⊗2m)∨∨ 
 ((R ⊗ R)∨∨)⊗m and (R⊗(2m+1))∨∨ 
 ((R ⊗R)∨∨)⊗m ⊗ R.

Consider the quotient stack

Ŝ := (SpecS(OS [L ±1,R]))/Gm (A.3)

for the Gm-action corresponding to the grading defined above. We will call this
stack the root stack of (R,m).

Proposition A.2. Let M be a line bundle on S with an isomorphism L 
 M⊗2.
Consider the morphism

(M−1 ⊗ R) ⊗ (M−1 ⊗ R) 
 M−2 ⊗ (R ⊗ R) m−→ M−2 ⊗ L 
 OS

and the associated double covering S̃ → S defined by (A.1). There is a natural
isomorphism of stacks S̃/µ2 
 Ŝ.

Proof. Consider the sheaf of commutative algebras

OS [M±1,R] := OS [L ±1,R] ⊕ (M ⊗ OS [L ±1,R]) (A.4)

with multiplication induced by the multiplication in the algebra OS [L ±1,R] and
the isomorphism M ⊗ M ∼−→L ↪→ OS [L ±1,R]. This algebra carries a natural
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((Z/2) ⊕ Z)-grading induced by the Z-grading of OS [L ±1,R] and

deg(M ) = (1, 1).

This grading corresponds to a (µ2 × Gm)-action on SpecS(OS [M±1,R]).
By the definition (A.4) of the algebra OS [M±1,R], the µ2-action on

SpecS(OS [M±1,R]) is free and the invariant part is equal to OS [L ±1,R]. We
get an étale double covering

SpecS(OS [M±1,R]) −→ SpecS(OS [L ±1,R]).

On the other hand, forgetting the (Z/2)-grading and keeping the Z-grading, we see
that the ith component of the algebra is isomorphic to M i ⊗ (OS ⊕ (M−1 ⊗ R)).
Therefore, the corresponding Gm-action on SpecS(OS [M±1,R]) is also free and the
invariant part is equal to OS ⊕ (M−1 ⊗ R). We get a Gm-torsor

SpecS(OS [M±1,R]) −→ SpecS(O ⊕ (M−1 ⊗ R)) = S̃.

Combining these maps, we obtain a diagram

SpecS(OS [M±1,R]) µ2

��

Gm

��

SpecS(OS [L ±1,R])

S̃,

where the horizontal arrow is a µ2-torsor and the vertical arrow is a Gm-torsor. It
induces a µ2-torsor

S̃ → SpecS(OS [L ±1,R])/Gm = Ŝ.

It follows that Ŝ 
 S̃/µ2 and since deg(M−1 ⊗R) = (1, 0) ∈ (Z/2)⊕Z, the action
of µ2 on S̃ is induced by the involution of the double covering S̃ → S.

Remark A.3. In the case where R = OS and the morphism m : R ⊗ R → L is
given by a global section s of the line bundle L , the stack Ŝ coincides with the usual
root stack

√
(L , s)/S defined in [2, Sec. B.2]: this follows from Proposition A.2

applied (étale locally) to the double covering S̃ of S branched over the zero locus
of s.

We now discuss some properties of the root stack Ŝ.

Corollary A.4. The natural morphism ρ̂ : Ŝ → S is proper.

Proof. The question is local over S, so we may assume we are in the set-up of
Proposition A.2 and Ŝ = S̃/µ2. Then S̃ is proper over S by (A.1), hence so is Ŝ by
[23, Lemma 0CQK].

Consider the subscheme B(m) ⊂ S defined by the ideal image of the map

L −1 ⊗ R ⊗ R
m−→ L −1 ⊗ L = OS . (A.5)

Proposition A.2 implies the main properties of the root stack Ŝ.
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Corollary A.5. The natural morphism ρ̂ : Ŝ → S is an isomorphism over the
complement of B(m) ⊂ S and is a nilpotent thickening of a µ2-gerbe over B(m).

Proof. Set Z := B(m). Over S\Z, we have an isomorphism R⊗R 
 L , hence R

is invertible. The double covering S̃ → S (which exists locally over S) is therefore
étale over S\Z, hence its quotient stack Ŝ → S is an isomorphism over S\Z.

On the other hand, over Z, the multiplication in the algebra defining S̃ is zero,
hence there is a natural embedding Z → S̃ over Z ⊂ S, and the schematic preimage
of Z ⊂ S in S̃ is a nilpotent thickening of Z ⊂ S̃. The µ2-action on Z ⊂ S̃ is trivial,
hence gives a µ2-gerbe Z/µ2 ↪→ S̃/µ2 over Z and the preimage of Z in Ŝ is its
nilpotent thickening.

The following property of the stack Ŝ is quite useful. It is similar to the universal
property of canonical smooth Deligne–Mumford stacks proved in [11, Theorem 4.6]
(see also [3, Lemma 2.4.1]).

Proposition A.6. Let Ŝ
ρ̂−→ S be the root stack defined by (A.3) and let B(m) ⊂ S

be the subscheme defined by (A.5). Let T be a smooth scheme and let f : T → S be
a morphism such that codimT (f−1(B(m))) ≥ 2. There is a unique factorization

f : T → Ŝ
ρ̂−→ S.

Proof. Consider the scheme

T ×S SpecS(OS [L ±1,R]) 
 SpecT (OT [f∗L ±1, f∗R]).

The sheaf M := (f∗R)∨∨ is a rank-1 reflexive sheaf on a smooth scheme T , hence
is a line bundle. Therefore, there is a natural epimorphism

f∗R � M ⊗ I ,

where I is an ideal sheaf such that the support of the quotient sheaf O/I has
codimension at least 2. Furthermore, the morphism m : R ⊗ R → L induces the
morphism f∗m : f∗R ⊗ f∗R → f∗L which factors through the tensor product of
the reflexive hulls

f∗R ⊗ f∗R → M ⊗ M → f∗L ,

and is an isomorphism away from f−1(B(m)) and the support of O/I , that is, in
codimension 1. Since T is smooth, it follows that

f∗L 
 M⊗2.

Therefore, we have a natural morphism of graded OT -algebras

OT [f∗L ±1, f∗R] � OT [M±2,M ⊗ I ] ↪→ OT [M±2,M ] = OT [M±1].
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It induces a morphism

SpecT (OT [M±1]) → SpecT (OT [f∗L ±1, f∗R])

= T ×S SpecS(OS [L ±1,R]) → SpecS(OS [L ±1,R])

compatible with the Gm-actions corresponding to the gradings of the algebras.
Since the source is a Gm-torsor over T , passing to the quotients by Gm, we obtain
a morphism T → Ŝ. By construction, the composition T → Ŝ → S is equal to f
and the constructed morphism is unique with this property.
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