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1. Introduction

The theory of homological projective duality (HPD) introduced in [13] is a pow-
erful tool for understanding the structure of derived categories of algebraic varieties.
Given a smooth projective variety X with a morphism to a projective space P(V )
and a special semiorthogonal decomposition of its derived category, HPD associates
a (noncommutative) smooth projective variety X� — called the HPD of X — with
a morphism to the dual projective space P(V ∨). This operation provides a cate-
gorification of classical projective duality. The main theorem of HPD describes the
derived categories of linear sections of X in terms of those of X�.

Since many interesting varieties can be expressed as linear sections of “simple”
varieties, e.g. many Fano threefolds are linear sections of homogeneous varieties,
this gives a potent strategy for studying derived categories:

(1) Obtain an explicit geometric description of the HPD of a simple variety.

(2) Pass to information about linear sections using the main theorem of HPD.

This strategy has been fruitfully carried out in a number of cases, see [19, 33] for
surveys. However, step (1) is typically very difficult. This raises the question of
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coming up with operations that allow us to construct new solutions to (1) from
known ones.

The main goal of this paper is to give an answer to this question. Namely, we
define an operation called the categorical join, which is modeled on (and can be
thought of as a noncommutative resolution of) its classical geometric counterpart.
Our main theorem says the formation of categorical joins commutes with HPD,
parallel to the classical situation. In particular, if a description of the HPD of two
varieties is known, this gives a description of the HPD of their categorical join. As
a consequence of our main theorem, we prove a nonlinear generalization of the main
theorem of HPD which greatly extends the scope of step (2) above. These results
have many concrete applications detailed in §1.4.
1.1. Background on HPD. The input for HPD is a Lefschetz variety over P(V ).
This consists of a smooth projective variety X equipped with a morphism to a pro-
jective space f : X → P(V ) and a Lefschetz decomposition of the category Perf(X)
of perfect complexes, namely a semiorthogonal decomposition of the form

Perf(X) =
〈
A0,A1 ⊗ f∗OP(V )(1), . . . ,Am−1 ⊗ f∗OP(V )(m− 1)

〉
,

where 0 ⊂ Am−1 ⊂ · · · ⊂ A1 ⊂ A0 ⊂ Perf(X) is a chain of triangulated sub-
categories. A Lefschetz decomposition is in fact determined by the subcategory
A0 ⊂ Perf(X) [16, Lemma 2.18], which we call the Lefschetz center.

A Lefschetz variety f : X → P(V ) is moderate if m < dim(V ); this condition
is essentially always satisfied in practice (see Remark 2.12), and is important for
running HPD.

Example 1.1. If W ⊂ V is a subspace of dimension m, then P(W ) is a Lefschetz
variety over P(V ) with Lefschetz decomposition

(1.1) Perf(P(W )) =
〈
OP(W ),OP(W )(1), . . . ,OP(W )(m− 1)

〉
.

Here the Lefschetz center is the subcategory 〈OP(W )〉 generated by the structure
sheaf OP(W ). We call this the standard Lefschetz structure on P(W ) ⊂ P(V ).

The output of HPD applied to a moderate Lefschetz variety f : X → P(V ) is a
new moderate Lefschetz variety f � : X� → P(V ∨), called the HPD of X. The main
theorem of HPD then describes the derived categories of linear sections of X in
terms of those of orthogonal linear sections of X�. More precisely, it says if L ⊂ V
is a subspace, the derived categories of X×P(V )P(L) and X�×P(V ∨)P(L⊥) have a
distinguished semiorthogonal component in common, while the other components
come from the Lefschetz decompositions of X and X�; see Theorem 2.24 for a
precise statement.

Example 1.2. The HPD variety of P(W ) ⊂ P(V ) with the standard Lefschetz
structure is P(W⊥) ⊂ P(V ∨), where W⊥ = ker(V ∨ → W∨) is the orthogonal
of W , again with the standard Lefschetz structure.

In contrast with classical projective duality, HPD can be applied to morphisms
f : X → P(V ) that are not necessarily embeddings and preserves smoothness of X.
However, in general, the associated HPD variety f � : X� → P(V ∨) is noncommu-
tative. This means that X� consists only of the data of a (suitably enhanced)
triangulated category Perf(X�) equipped with a P(V ∨)-linear structure, i.e. an
action of the monoidal category Perf(P(V ∨)). In some cases, Perf(X�) can be
identified with the derived category of a variety (as in Example 1.2), or with some
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other category of geometric origin, like the derived category of sheaves of modules
over a finite sheaf of algebras on a variety. In these cases, X� is called “commuta-
tive” or “almost commutative”, but in general there is no underlying variety, and
the symbol X� just serves as a notational device.

In [13] HPD is developed under the assumption that X� is commutative. This
was generalized in [32] where both the input X and output X� are allowed to
be noncommutative (and not necessarily smooth or proper), making the theory
completely symmetric; in this setting, Lefschetz varieties over P(V ) are replaced
with Lefschetz categories over P(V ), which are P(V )-linear categories equipped
with a Lefschetz decomposition.

In §2 we briefly review this framework. In this section, for simplicity we stick
as much as possible to the language of Lefschetz varieties, but in the body of the
paper we work in the general setting of Lefschetz categories.

1.2. Categorical joins. Now let us outline the construction of a categorical join.
Given two smooth projective varieties X1 ⊂ P(V1) and X2 ⊂ P(V2), their clas-

sical join

J(X1, X2) ⊂ P(V1 ⊕ V2)

is the union of all the lines between points of X1 and X2 regarded as subvarieties
of P(V1 ⊕ V2). The join is usually very singular (along the union X1 �X2), unless
both X1 and X2 are linear subspaces in P(V1) and P(V2), i.e. unless

(1.2) X1 = P(W1) ⊂ P(V1) and X2 = P(W2) ⊂ P(V2),

in which case J(X1, X2) = P(W1 ⊕W2) ⊂ P(V1 ⊕ V2).
The main problem with running HPD on the classical join is that in general

J(X1, X2) does not have a natural Lefschetz structure. We would like to construct
one from Lefschetz structures on X1 and X2. For this purpose, we pass to the
resolved join, defined by

(1.3) J̃(X1, X2) = PX1×X2
(O(−H1)⊕ O(−H2))

where Hk is the pullback to X1×X2 of the hyperplane class of P(Vk). The resolved
join is smooth since it is a P1-bundle over X1 ×X2, and the canonical embedding

O(−H1)⊕ O(−H2) ↪→ (V1 ⊗ O)⊕ (V2 ⊗ O) = (V1 ⊕ V2)⊗ O

induces a morphism J̃(X1, X2) → P(V1⊕V2) which factors birationally through the

classical join. The morphism J̃(X1, X2) → J(X1, X2) blows down the two disjoint
divisors

(1.4) εk : Ek(X1, X2) = PX1×X2
(O(−Hk)) ↪→ J̃(X1, X2), k = 1, 2,

to Xk ⊂ J(X1, X2). Note that both divisors Ek(X1, X2) are canonically isomorphic
to X1 ×X2.

There are several advantages of the resolved join over the classical join:

(1) Via the morphism J̃(X1, X2) → X1×X2 the resolved join is more simply related
to X1 and X2 than the classical join.

(2) The definition (1.3) of the resolved join extends verbatim to the more general
situation where the morphisms X1 → P(V1) and X2 → P(V2) are not neces-
sarily embeddings, and with some work even to the case where X1 and X2 are
replaced with P(V1)- and P(V2)-linear categories (see Definition 3.2).

(3) The resolved join J̃(X1, X2) is smooth.
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Points (2) and (3) should be thought of as parallel to the fact that HPD takes
as input varieties that are not necessarily embedded in projective space (or even
categories), and preserves smoothness.

However, there are still two issues with the resolved join J̃(X1, X2): it is “too
far” from the classical join, and is not equipped with a natural Lefschetz structure
over P(V1 ⊕ V2). To illustrate these problems, consider the simplest case (1.2)
where X1 and X2 are linear subspaces of P(V1) and P(V2). Then the classical
join J(X1, X2) = P(W1 ⊕ W2) is already smooth and comes with the standard

Lefschetz structure (1.1). However, the resolved join J̃(X1, X2), being a blowup
of J(X1, X2), contains in its derived category a copy of Perf(J(X1, X2)), but also
some extra components coming from the blowup centers. These extra components
are irrelevant for the geometry of the join, and prevent Perf(J̃(X1, X2)) from having
a natural Lefschetz structure. We thus need a general procedure for eliminating
these extra components. The solution is the categorical join.

Definition 1.3. Let X1 → P(V1) and X2 → P(V2) be Lefschetz varieties with
Lefschetz centers A1

0 ⊂ Perf(X1) and A2
0 ⊂ Perf(X2). The categorical join of X1

and X2 is the full subcategory of Perf(J̃(X1, X2)) defined by

J(X1, X2) =

{
C ∈ Perf(J̃(X1, X2))

∣∣∣∣∣ ε
∗
1(C) ∈ Perf(X1)⊗ A

2
0 ⊂ Perf(E1(X1, X2))

ε∗2(C) ∈ A
1
0 ⊗ Perf(X2) ⊂ Perf(E2(X1, X2))

}
,

where ε1 and ε2 are the morphisms (1.4) and

Perf(X1)⊗A2
0 ⊂ Perf(X1 ×X2) = Perf(E1(X1, X2)),

A1
0 ⊗ Perf(X2) ⊂ Perf(X1 ×X2) = Perf(E2(X1, X2)),

are the subcategories generated by objects of the form F1 �F2 with F1 ∈ Perf(X1),
F2 ∈ A2

0 in the first case, and with F1 ∈ A1
0, F2 ∈ Perf(X2) in the second case.

If X1 and X2 are linear subspaces (1.2) with their standard Lefschetz struc-
tures (1.1), then there is an equivalence

J(P(W1),P(W2)) 
 Perf(P(W1 ⊕W2)),

so the categorical join gives the desired category (see Example 3.15 for details).
In general, the categorical join J(X1, X2) is not equivalent to the derived cat-

egory of a variety, i.e. is not commutative. Rather, J(X1, X2) should be thought

of as a noncommutative birational modification of the resolved join J̃(X1, X2). In-
deed, away from the exceptional divisors (1.4), the categorical join coincides with
the resolved join, which in turn coincides with the classical join whenever both the
morphisms X1 → P(V1) and X2 → P(V2) are embeddings (see Lemma 3.12, Propo-
sition 3.17, and Remark 3.18 for precise statements). In particular, if X1 → P(V1)
and X2 → P(V2) are embeddings, then J(X1, X2) can be thought of as a noncom-
mutative resolution of singularities of the classical join J(X1, X2).

We prove in Lemma 3.12 that the categorical join is a P(V1 ⊕ V2)-linear subcat-

egory of Perf(J̃(X1, X2)). The following shows that it also has a Lefschetz decom-
position, i.e. the structure of a Lefschetz category over P(V1⊕V2), and hence gives
a suitable input for HPD.

Theorem 1.4 (Theorem 3.21). Let X1 → P(V1) and X2 → P(V2) be moder-
ate Lefschetz varieties with Lefschetz centers A1

0 ⊂ Perf(X1) and A2
0 ⊂ Perf(X2).
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Then the categorical join J(X1, X2) has the structure of a moderate Lefschetz cate-
gory over P(V1 ⊕ V2), with Lefschetz center equivalent to the subcategory A1

0 ⊗ A2
0

of Perf(X1 ×X2) generated by objects of the form F1 � F2 for F1 ∈ A1
0, F2 ∈ A2

0.

Our main result describes the HPD of a categorical join.

Theorem 1.5 (Theorem 4.1). Let X1 → P(V1) and X2 → P(V2) be moderate

Lefschetz varieties. Let X�
1 → P(V ∨

1 ) and X�
2 → P(V ∨

2 ) be the HPD varieties.
Then there is an equivalence

J(X1, X2)
� � J(X�

1, X
�
2)

of Lefschetz categories over P(V ∨
1 ⊕ V ∨

2 ), i.e. a P(V ∨
1 ⊕ V ∨

2 )-linear equivalence
identifying the Lefschetz centers on each side.

Theorem 1.5 can be thought of as a categorification of the classical result that
the operations of classical join and projective duality commute, i.e. for X1 ⊂ P(V1)
and X2 ⊂ P(V2) we have

J(X1, X2)
∨ = J(X∨

1 , X
∨
2 ),

where (−)∨ denotes the operation of classical projective duality.
In the paper we extend the construction of categorical joins to Lefschetz cate-

gories, and prove Theorem 1.5 in this context. This is needed even if X1 and X2 are

varieties, because in general the HPD varieties X�
1 and X�

2 will be noncommutative,
i.e. only exist as Lefschetz categories.

1.3. The nonlinear HPD theorem. Given closed subvarieties X1 ⊂ P(V ) and
X2 ⊂ P(V ) of the same projective space, the classical join J(X1, X2) (as defined
in §1.2) is a subvariety of P(V ⊕V ). LetW ⊂ V ⊕V be the graph of an isomorphism
ξ : V → V given by scalar multiplication; e.g. W ⊂ V ⊕V is the diagonal for ξ = id
and the antidiagonal for ξ = −id. Then we have

J(X1, X2) ∩P(W ) ∼= X1 ∩X2.

If, more generally, we have morphisms X1 → P(V ) and X2 → P(V ) instead of
embeddings, then

J̃(X1, X2)×P(V ⊕V ) P(W ) ∼= X1 ×P(V ) X2.

Categorifying this isomorphism, we show in Proposition 3.17 that if X1 → P(V )
and X2 → P(V ) are Lefschetz varieties, then

J(X1, X2)P(W ) � Perf
(
X1 ×P(V ) X2

)
,

where the left side is the base change of the category J(X1, X2) along the embedding
P(W ) → P(V ⊕V ). Here and below, all fiber products of schemes are taken in the
derived sense, but we note that in the Tor-independent case this agrees with the
usual fiber product of schemes (see §1.7).

The orthogonal subspace to the diagonal V ⊂ V ⊕ V is the antidiagonal
V ∨ ⊂ V ∨ ⊕ V ∨. Thus combining Theorem 1.5 with the main theorem of HPD, we
obtain the following result, that we formulate here loosely; see Theorem 5.5 for the
precise statement.

Theorem 1.6. Let X1 → P(V ) and X2 → P(V ) be moderate Lefschetz varieties,

with HPD varieties X�
1 → P(V ∨) and X�

2 → P(V ∨). Then there are induced
semiorthogonal decompositions of

(1.5) Perf(X1 ×P(V ) X2) and Perf(X�
1 ×P(V ∨) X

�
2),

which have a distinguished component in common.
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Using [4] or (if the fiber products in (1.5) are assumed Tor-independent) [18],
Theorem 1.6 also implies an analogous result at the level of bounded derived cate-
gories of coherent sheaves in place of perfect complexes; see Remark 5.7 for details.

If X2 = P(L) ⊂ P(V ) for a vector subspace 0 � L � V , then the HPD variety

is the orthogonal space X�
2 = P(L⊥) ⊂ P(V ∨) (see Example 1.2). Hence

X1 ×P(V ) X2 = X1 ×P(V ) P(L) and X�
1 ×P(V ∨) X

�
2 = X�

1 ×P(V ∨) P(L⊥)

are mutually orthogonal linear sections of X1 and X�
1. The result of Theorem 1.6

then reduces to the main theorem of HPD (Theorem 2.24). Accordingly, Theo-
rem 1.6 should be thought of as a nonlinear version of the main theorem of HPD.

Remark 1.7. Jiang, Leung, and Xie [11] established a version of Theorem 1.6 using
a different argument which does not involve joins. We note that our result is more

general in that Xk and X�
k are allowed to be noncommutative, and we do not

require any transversality hypotheses (at the expense of considering derived fiber
products in the non-transverse case). Moreover, our proof places Theorem 1.6 in
a larger conceptual framework, from which it follows as a corollary of the much
more general Theorem 1.5. This framework also leads to many results beyond
those in [11], including an iterated version of Theorem 1.6 for the fiber product
of any number of Lefschetz varieties (Theorem 5.12), a description of the derived
categories of Enriques surfaces (Theorem 6.16), a quadratic HPD theorem with
many applications (see the discussion in §1.4), and new derived equivalences of
Calabi–Yau threefolds (see [9]).

1.4. Applications. Theorems 1.5 and 1.6 have many applications. We provide a
few of them in §6 of the paper, to show how the theory works.

First, we consider the Grassmannians Gr(2, 5) ⊂ P9 and OGr+(5, 10) ⊂ P15,
which have the special property of being (homologically) projectively self-dual.
Given two copies of a Grassmannian of either type, we obtain a pair of varieties by
forming their intersection and the intersection of their projective duals. We show
in §6.1 that the Gr(2, 5) case gives a new pair of derived equivalent Calabi–Yau
threefolds, and the OGr+(5, 10) case gives a new pair of derived equivalent Calabi–
Yau fivefolds. These equivalences are a key ingredient in the recent papers [5,29,31],
which show these pairs of varieties lead to the first known counterexamples to the
birational Torelli problem for Calabi–Yau varieties.

As another example, we use Theorem 1.5 to understand the derived category
of a general Enriques surface Σ. Namely, we prove that the orthogonal subcate-
gory 〈OΣ〉⊥ ⊂ Perf(Σ) to the structure sheaf OΣ embeds into the twisted derived
category of a stacky projective plane as the orthogonal to an exceptional object
(Theorem 6.16). This result can be regarded as an algebraization of the logarith-
mic transform, which creates an Enriques surface from a rational elliptic surface
with two marked fibers.

For further applications, in a sequel [23] to this paper we show that our results
yield a very useful “quadratic” HPD theorem. Using our nonlinear HPD theorem
(Theorem 1.6), this boils down to describing HPD for a quadric Q → P(V ). For
smooth quadrics we do this in [24]. For singular quadrics we develop a theory
of categorical cones, which are categorical joins with a projective space and thus
provide categorical resolutions of classical cones. In particular, categorical cones
over smooth quadrics provide categorical resolutions of singular quadrics, and a
description of their HPD reduces to the smooth case.
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In [23] we use the resulting quadratic HPD theorem to prove the duality con-
jecture for Gushel–Mukai varieties as stated in [22]; as a special case, this gives a
new, conceptual proof of the main result of [22]. Besides providing a close con-
nection between the birational geometry, Hodge theory, and derived categories of
Gushel–Mukai varieties, this gives families of noncommutative deformations of the
derived categories of K3 surfaces, analogous to the family of noncommutative K3
surfaces associated to cubic fourfolds [17]. In [23], we also give other applications
of the quadratic HPD theorem, including examples of noncommutative Calabi–Yau
threefolds which are not equivalent to the derived category of a variety, but which
admit singular degenerations with crepant resolutions by the derived category of a
genuine Calabi–Yau threefold.

Recently, Inoue [9] applied our results to construct several new examples of
derived equivalent but non-birational Calabi–Yau threefolds. These examples are
smoothings of the classical join of suitable elliptic curves.

1.5. Homological projective geometry. Our results suggest the existence of
a robust theory of homological projective geometry, of which homological projec-
tive duality, categorical joins, and categorical cones are the first instances. In this
theory, Lefschetz categories over P(V ) should play the role of projective varieties
embedded in P(V ). An interesting feature of the operations of homological projec-
tive geometry known so far is that they preserve smoothness of the objects involved,
whereas in classical projective geometry this is far from true. In fact, this principle
of “homological smoothness” guided our constructions.

The vision of homological projective geometry is alluring because the known
results are so powerful, and yet they correspond to a small sector of the vast the-
ory of classical projective geometry. For instance, it would be very interesting to
categorify secant varieties, and prove an HPD statement for them. The ideas of
this paper should be useful for making progress in this area. As an illustration, in
Appendix B we discuss projected categorical joins — which in particular give an
approximation to the sought for theory of categorical secant varieties — and show
that under HPD they correspond to fiber products.

1.6. Noncommutative algebraic geometry framework. To finish this section,
we explain the framework of noncommutative algebraic geometry adopted in this
paper. Since the categorical join is defined only as a Lefschetz category and not a
variety, such a framework is absolutely necessary for us — without one we could not
even formulate our main results. On the other hand, our approach is sufficiently
flexible to work within any framework that has appropriate notions of T -linear
categories and T -linear functors over an arbitrary scheme T (not just T = P(V ))
that satisfy some natural properties.

Specifically, a T -linear category should carry an action of the monoidal cate-
gory Perf(T ), and include as examples derived categories of schemes over T , and
more generally admissible subcategories preserved under the action of Perf(T ).
Moreover, there should be a notion of tensor products of T -linear categories, which
in the case of derived categories of schemes is compatible with taking (derived)
fiber products. Let us briefly describe two alternatives to defining such a class of
T -linear categories:

(1) Down-to-earth approach: Define a T -linear category to be an admissible sub-
category A of Perf(X) or Db

coh(X) (the bounded derived category of coherent
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sheaves) which is preserved by the Perf(T )-action, where X is a proper scheme
over T , and define a T -linear functor between A ⊂ Db

coh(X) and B ⊂ Db
coh(Y )

to be a functor induced by a Fourier–Mukai functor between Db
coh(X) and

Db
coh(Y ) with kernel schematically supported on the fiber product X ×T Y . In

this setting, a base change operation (along morphisms satisfying a transver-
sality assumption) with the necessary compatibilities is developed in [18]. A
version of HPD in this context is described in [15].

(2) Higher approach: Define a T -linear category to be a small idempotent-complete
stable ∞-category equipped with a Perf(T )-module structure, and define a T -
linear functor to be an exact functor commuting with the Perf(T )-modules
structures. Relying on Lurie’s foundational work [27], this approach is devel-
oped in [32] and used to give a version of HPD in this context.

The advantage of (1) is that it avoids the use of higher category theory and
derived algebraic geometry. The advantages of (2) are that it includes (1) as a
special case, allows us to prove more general results (e.g. over general base schemes
and without transversality hypotheses), and there is a complete reference [32] for
the results we need in this setting. In particular, [32] proves a version of HPD which
allows linear categories as both inputs and outputs.

To fix ideas, in this paper we adopt approach (2). However, the reader who
prefers (1) (or any other appropriate framework) should have no trouble translat-
ing everything to that setting. In fact, we encourage the reader who is not already
familiar with noncommutative algebraic geometry to assume all noncommutative
schemes are “commutative”, i.e. of the form Perf(X); for intuition, we have ex-
plained throughout the paper what our constructions amount to in this situation.

To recapitulate, from now on we use the following definition.

Definition 1.8. Let T be a scheme. A T -linear category is a small idempotent-
complete stable ∞-category equipped with a Perf(T )-module structure, and a T -
linear functor between T -linear categories is an exact functor of Perf(T )-modules.

In Appendix A we summarize the key facts about T -linear categories used in
this paper.

1.7. Conventions. All schemes are assumed to be quasi-compact and separated.
Instead of working over a ground field, we work relative to a fixed base scheme S
throughout the paper. Namely, all schemes will be defined over S and all categories
will be linear over S. The only time we make extra assumptions on S is in our
discussion of applications in §6, where for simplicity we assume S is the spectrum
of a field.

A vector bundle V on a scheme S is a finite locally free OS-module of constant
rank. Given such a V , its projectivization is

P(V ) = Proj(Sym•(V ∨)) → S

with OP(V )(1) normalized so that its pushfoward to S is V ∨. Note that we sup-
press S by writing P(V ) instead of PS(V ). A subbundle W ⊂ V is an inclusion
of vector bundles whose cokernel is a vector bundle. Given such a W ⊂ V , the
orthogonal subbundle is defined by

(1.6) W⊥ = ker(V ∨ → W∨).
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We often commit the following convenient abuse of notation: given a line bun-
dle L or a divisor class D on a scheme T , we denote still by L or D its pullback to
any variety mapping to T . Similarly, if X → T is a morphism and V is a vector
bundle on T , we sometimes write V ⊗ OX for the pullback of V to X.

Given morphisms of schemes X → T and Y → T , the symbol X ×T Y denotes
their derived fiber product. We refer to [8,28,35] for treatments of derived algebraic
geometry or [34] for a survey. The existence of fiber products of derived schemes is
proved in [35, §1.3.3]; explicitly, if X = Spec(A), Y = Spec(B), T = Spec(C) are
affine, then the fiber product is computed by the spectrum of the derived tensor
product A⊗C B (viewed as a simplicial commutative ring), and in general X ×T Y
is glued from such local affine pictures. The derived fiber product agrees with the
usual fiber product of schemes whenever the morphisms X → T and Y → T are
Tor-independent over T . To lighten the notation, we write fiber products over our
fixed base S as absolute fiber products, i.e. we write

X × Y = X ×S Y.

If X is a scheme over T , we denote by Perf(X) its category of perfect complexes
and by Db

coh(X) its bounded derived category of coherent sheaves, which we consider
as T -linear categories in the sense of Definition 1.8. The Perf(T )-module structure
on these categories is given by the (derived) tensor product with the (derived)
pullback of objects from Perf(T ).

For a triangulated subcategory A ⊂ T we denote by ⊥A and A⊥ the left and
right orthogonals to A in T.

We always consider derived functors (pullbacks, pushforwards, tensor products,
etc.), but write them with underived notation. For example, for a morphism of
schemes f : X → Y we write f∗ : Perf(Y ) → Perf(X) for the derived pullback
functor, and similarly for the functors f∗ and ⊗. We always work with functors
defined between categories of perfect complexes. Note that in general, f∗ may not
preserve perfect complexes, but it does if f : X → Y is a perfect (i.e. pseudo-
coherent of finite Tor-dimension) proper morphism [26, Example 2.2(a)]. This
assumption will be satisfied in all of the cases where we use f∗ in the paper.

The functor f∗ is right adjoint to f∗. Sometimes, we need other adjoint functors
as well. Provided they exist, we denote by f ! the right adjoint of the functor
f∗ : Perf(X) → Perf(Y ) and by f! the left adjoint of f∗ : Perf(Y ) → Perf(X), so
that (f!, f

∗, f∗, f
!) is an adjoint sequence. For instance, if f : X → Y is a perfect

proper morphism and the relative dualizing complex ωf is a shift of a line bundle
on X (e.g. if f is Gorenstein), then f ! and f! exist and are given by

(1.7) f !(−) 
 f∗(−)⊗ ωf and f!(−) 
 f∗(−⊗ ωf ).

Indeed, (due to our standing quasi-compactness and separatedness assumptions)
for any morphism f the functor f∗ : Dqc(X) → Dqc(Y ) between unbounded derived
categories of quasi-coherent sheaves admits a right adjoint f ! : Dqc(Y ) → Dqc(X),
the relative dualizing complex of f is by definition ωf = f !(OY ), and if f is a perfect
proper morphism then the above formula for f ! holds by [26, Proposition 2.1]; if
further ωf is a shift of a line bundle, then the formula for f! follows from the one
for f !. Hence if f is a perfect proper morphism and ωf is a shift of a line bundle,
it follows that all of these functors and adjunctions restrict to categories of perfect
complexes. In all of the cases where we need f ! and f! in the paper, the following
stronger assumptions will be satisfied.
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Remark 1.9. Suppose f : X → Y is a morphism between schemes which are smooth,
projective, and of constant relative dimension over S. Then f is perfect, projective,
and has a relative dualizing complex, which is a shift of a line bundle:

(1.8) ωf = ωX/S ⊗ f∗(ωY/S)
∨.

In particular, for such an f , all of the functors f!, f
∗, f∗, f

! are defined and adjoint
between categories of perfect complexes and the isomorphisms (1.7) hold.

Given a T -linear category C and an object C ∈ C, we write C ⊗ F for the
action of any object F ∈ Perf(T ). Given T -linear categories C and D, we denote
by C ⊗Perf(T ) D their T -linear tensor product; see Appendix A. Parallel to our
convention for fiber products of schemes, if T = S is our fixed base scheme, we
simplify notation by writing

C⊗D = C⊗Perf(S) D.

If C is a T -linear category and T ′ → T is a morphism of schemes, we write

CT ′ = C⊗Perf(T ) Perf(T
′)

for the T ′-linear category obtained by base change. By abuse of notation, if C is a
T -linear category and ψ : D1 → D2 is a T -linear functor, then we frequently write ψ
for the induced functor

ψ : C⊗Perf(T ) D1 → C⊗Perf(T ) D2.

Finally, if φ : C → D is a T -linear functor, we write φ∗, φ! : D → C for its left and
right adjoints if they are defined, in which case they are automatically T -linear
[32, Lemma 2.11].

1.8. Organization of the paper. In §2 we gather preliminaries on HPD, includ-
ing a useful new characterization of the HPD category on which the proof of our
main theorem relies.

In §3 we define the categorical join of two Lefschetz categories, show that it is
equipped with a canonical Lefschetz structure (Theorem 1.4), and study its behavior
under base change.

In §4 we prove our main theorem, stated above as Theorem 1.5.
In §5 we prove the nonlinear HPD theorem, stated above as Theorem 1.6.
In §6 we discuss the applications of the previous two theorems mentioned in §1.4.
In Appendix A we collect some useful results on linear categories.
In Appendix B we show how our methods give a categorification of linear pro-

jections of joins.

2. Preliminaries on HPD

In this section, we discuss preliminary material on HPD that will be needed in
the rest of the paper. In §2.1 we review the notion of a Lefschetz category, and in
§2.2 we recall the definition of the HPD category and state the main theorem of
HPD. In §2.3 we prove a useful characterization of the HPD category in terms of
the projection functor from the universal hyperplane section.

Recall that we work relative to a general base scheme S. In particular, we
consider HPD over a projective bundle P(V ), where V is a vector bundle on S.
This is convenient because it includes various relative versions of HPD (cf. [13,
Theorem 6.27 and Remark 6.28]) into the general framework. We denote by N the
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rank of V and by H the relative hyperplane class on the projective bundle P(V )
such that O(H) = OP(V )(1).

2.1. Lefschetz categories. The fundamental objects of HPD are Lefschetz cat-
egories. We summarize the basic definitions following [32, §6], starting with the
notion of a Lefschetz center.

Definition 2.1. Let T be a scheme over S with a line bundle L. Let A be a
T -linear category. An admissible S-linear subcategory A0 ⊂ A is called a Lefschetz
center of A with respect to L if the subcategories Ai ⊂ A, i ∈ Z, determined by

Ai = Ai−1 ∩ ⊥(A0 ⊗ L−i) , i ≥ 1(2.1)

Ai = Ai+1 ∩ (A0 ⊗ L−i)⊥, i ≤ −1(2.2)

are right admissible in A for i ≥ 1, left admissible in A for i ≤ −1, vanish for
all i of sufficiently large absolute value, say for |i| ≥ m, and provide S-linear
semiorthogonal decompositions

A = 〈A0,A1 ⊗ L, . . . ,Am−1 ⊗ Lm−1〉,(2.3)

A = 〈A1−m ⊗ L1−m, . . . ,A−1 ⊗ L−1,A0〉.(2.4)

The categories Ai, i ∈ Z, are called the Lefschetz components of the Lefschetz center
A0 ⊂ A. The semiorthogonal decompositions (2.3) and (2.4) are called the right
Lefschetz decomposition and the left Lefschetz decomposition of A. The minimal m
above is called the length of the Lefschetz decompositions.

The Lefschetz components form two (different in general) chains of subcategories

(2.5) 0 ⊂ A1−m ⊂ · · · ⊂ A−1 ⊂ A0 ⊃ A1 ⊃ · · · ⊃ Am−1 ⊃ 0.

Note that the assumption of right or left admissibility of Ai in A is equivalent to
the assumption of right or left admissibility in A0.

Remark 2.2. By [32, Lemma 6.3], if the subcategories Ai ⊂ A are admissible for
all i ≥ 0 or all i ≤ 0, then the length m defined above satisfies

m = min { i ≥ 0 | Ai = 0 } = min { i ≥ 0 | A−i = 0 }.
This holds true, e.g., if A is smooth and proper over S [32, Lemma 4.15].

Remark 2.3. If A is a T -linear category equipped with a T -linear autoequivalence
α : A → A, there is a more general notion of a Lefschetz center of A with respect
to α; see [32, §6.1]. The case where α is the autoequivalence − ⊗ L for a line
bundle L recovers the above definitions. This notion is also useful for other choices
of α; see [25, §2].

The following shows that giving a Lefschetz center is equivalent to giving Lef-
schetz decompositions with suitably admissible components. This is useful in prac-
tice for constructing Lefschetz centers.

Lemma 2.4. Let T be a scheme over S with a line bundle L. Let A be a T -linear
category with S-linear semiorthogonal decompositions

(2.6) A = 〈A0,A1 ⊗ L, . . . ,Am−1 ⊗ Lm−1〉,
where A0 ⊃ A1 ⊃ · · · ⊃ Am−1,

(2.7) A = 〈A1−m ⊗ L1−m, . . . ,A−1 ⊗ L−1,A0〉,
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where A1−m ⊂ · · · ⊂ A−1 · · · ⊂ A0.
Then the categories Ai, |i| < m, satisfy (2.1) and (2.2), and the categories

defined by (2.1) and (2.2) for |i| ≥ m vanish. Hence if Ai ⊂ A is right admissible
for i ≥ 0 and left admissible for i ≤ 0, then A0 ⊂ A is a Lefschetz center.

Proof. Note that A0 is left admissible by the first semiorthogonal decomposition
and right admissible by the second. The rest follows from [32, Lemma 6.3]. �
Remark 2.5. If A as in Lemma 2.4 is smooth and proper over S, then in order for
a subcategory A0 ⊂ A to be a Lefschetz center, it is enough to give only one of the
semiorthogonal decompositions (2.6) or (2.7). This follows from [32, Lemmas 4.15
and 6.3].

Recall the chains (2.5) of Lefschetz components of A. For i ≥ 1 the i-th right
primitive component ai of a Lefschetz center is defined as the right orthogonal
to Ai+1 in Ai, i.e.

ai = A⊥
i+1 ∩Ai,

so that

(2.8) Ai = 〈ai,Ai+1〉 = 〈ai, ai+1, . . . , am−1〉.
Similarly, for i ≤ −1 the i-th left primitive component ai of a Lefschetz center is
the left orthogonal to Ai−1 in Ai, i.e.

ai =
⊥Ai−1 ∩Ai,

so that

(2.9) Ai = 〈Ai−1, ai〉 = 〈a1−m, . . . , ai−1, ai〉.
For i = 0, we have both right and left primitive components, defined by

a+0 = A⊥
1 ∩A0 and a−0 = ⊥A−1 ∩A0.

These are related by the formula a−0 = a+0 ⊗ L; see [32, Remark 6.4].
To simplify formulas, we sometimes abusively write a0 to mean either a−0 or a+0,

when it is clear from context which is intended. So for instance the formulas (2.8)
and (2.9) make sense for i = 0, and the right Lefschetz decomposition of A in terms
of primitive categories can be written as

(2.10)
A =

〈
a0, . . . , am−1, a1 ⊗ L, . . . , am−1 ⊗ L, . . . , am−1 ⊗ Lm−1

〉
=

〈
ai ⊗ Lt

〉
0≤t≤i≤m−1

,

while the left Lefschetz decomposition can be written as

(2.11)
A =

〈
a1−m ⊗ L1−m, . . . , a1−m ⊗ L−1, . . . , a−1 ⊗ L−1, am−1, . . . , a0

〉
=

〈
ai ⊗ Lt

〉
1−m≤i≤t≤0

.

Definition 2.6. A Lefschetz category A over P(V ) is a P(V )-linear category
equipped with a Lefschetz center A0 ⊂ A with respect to O(H). The length of A
is the length of its Lefschetz decompositions, and is denoted by length(A).

Given Lefschetz categories A and B over P(V ), an equivalence of Lefschetz cate-
gories or a Lefschetz equivalence is a P(V )-linear equivalence A 
 B which induces
an S-linear equivalence A0 
 B0 of centers.

In this paper, we will be concerned with proving equivalences of Lefschetz cate-
gories. For this, the following criterion will be useful.
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Lemma 2.7. Let φ : A → B be a P(V )-linear functor between Lefschetz categories
A and B over P(V ). Assume:

(1) φ induces an equivalence A0 
 B0.

(2) φ admits a left adjoint φ∗ : B → A.

(3) φ∗(B0) ⊂ A0.

Then φ is an equivalence of Lefschetz categories.

Remark 2.8. A similar criterion is true if we replace the left adjoint φ∗ with the
right adjoint φ!.

Proof. First we show φ is fully faithful. Consider the counit morphism

φ∗ ◦ φ → idA.

This is a morphism in the category of P(V )-linear functors FunPerf(P(V ))(A,A)
(note that φ∗ is a P(V )-linear functor [32, Lemma 2.11]). Let ψ : A → A be the
P(V )-linear functor given by the cone of this morphism. Then the claim that φ is
fully faithful is equivalent to ψ being the zero functor. Our assumptions imply ψ
vanishes on the subcategory A0 ⊂ A. By P(V )-linearity it follows that ψ vanishes
on A0(iH), and hence on Ai(iH) ⊂ A0(iH), for all i. But then the (right or left)
Lefschetz decomposition of A implies ψ is the zero functor.

Since φ is fully faithful, its image is a P(V )-linear triangulated subcategory
of B. By assumption this image contains B0, and hence by P(V )-linearity it con-
tainsBi(iH) ⊂ B0(iH) for all i. But then the (right or left) Lefschetz decomposition
of B implies φ is essentially surjective. �

For HPD we will need to consider Lefschetz categories that satisfy certain
“strongness” and “moderateness” conditions, defined below.

Definition 2.9. A Lefschetz category A is called right strong if all of its right
primitive components a+0, ai, i ≥ 1, are admissible in A, left strong if all of its left
primitive components a−0, ai, i ≤ −1, are admissible in A, and strong if all of its
primitive components are admissible.

Remark 2.10. If A is smooth and proper over S, then any Lefschetz structure on A

is automatically strong; see [32, Remark 6.7].

By [32, Corollary 6.19(1)], the length of a Lefschetz category A over P(V ) sat-
isfies

(2.12) length(A) ≤ rank(V ).

Definition 2.11. A Lefschetz category A over P(V ) is called moderate if its length
satisfies the strict inequality

length(A) < rank(V ).

Remark 2.12. Moderateness of a Lefschetz category A over P(V ) is a very mild
condition. Indeed, we can always embed V into a vector bundle V ′ of larger rank,
e.g. V ′ = V ⊕O, and thenA is a moderate Lefschetz category overP(V ′). Moreover,
essentially all Lefschetz categories that arise in practice are moderate; we do not
know any interesting immoderate examples.

There are many examples of interesting Lefschetz categories, some of which are
listed in §6; see also [19] for a survey. Here we recall one simple example, which is
just the relative version of Example 1.1.
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Example 2.13. Let W ⊂ V be a subbundle of rank m. The corresponding mor-
phism P(W ) → P(V ) induces a P(V )-linear structure on Perf(P(W )). Pullback
along the projection P(W ) → S gives an embedding Perf(S) ⊂ Perf(P(W )). The
category Perf(P(W )) is a strong Lefschetz category over P(V ) with center Perf(S);
the corresponding right and left Lefschetz decompositions are given by Orlov’s pro-
jective bundle formulas:

Perf(P(W )) = 〈Perf(S),Perf(S)(H), . . . ,Perf(S)((m− 1)H)〉,
Perf(P(W )) = 〈Perf(S)((1−m)H), . . . ,Perf(S)(−H),Perf(S)〉.

We call this the standard Lefschetz structure on P(W ). Note that the length
of Perf(P(W )) is m, so it is a moderate Lefschetz category as long as W �= V.

The key property of a Lefschetz category is that its Lefschetz decomposition
behaves well under passage to linear sections. Recall that

AP(L) = A⊗Perf(P(V )) Perf(P(L))

denotes the base change of a P(V )-linear category A along P(L) → P(V ).

Lemma 2.14. Let A be a Lefschetz category over P(V ) of length m. Let L ⊂ V
be a subbundle of corank s. Then the functor

A → AP(L)

induced by pullback along P(L) → P(V ) is fully faithful on the Lefschetz components
Ai ⊂ A for |i| ≥ s. Moreover, denoting their images by the same symbols, there are
semiorthogonal decompositions

AP(L) = 〈KL(A),As(H), . . . ,Am−1((m− s)H)〉,
AP(L) = 〈A1−m((s−m)H), . . . ,A−s(−H),K′

L(A)〉.

Proof. This is a special case of [32, Lemmas 6.20 and 6.22(3)]. �

Remark 2.15. The analogy between Lemma 2.14 and the Lefschetz hyperplane
theorem is the source of the terminology “Lefschetz category”. The main theorem
of HPD (Theorem 2.24) describes the categories KL(A) and K′

L(A) in terms of the
HPD category of A.

2.2. The HPD category. Let

δ : H(P(V )) → P(V )×P(V ∨)

be the natural incidence divisor. We think of H(P(V )) as the universal hyperplane
in P(V ).

If X is a scheme with a morphism X → P(V ), then the universal hyperplane
section of X is defined by

H(X) = X ×P(V ) H(P(V )).

This definition extends directly to linear categories as follows.

Definition 2.16. Let A be a P(V )-linear category. The universal hyperplane
section of A is defined by

H(A) = A⊗Perf(P(V )) Perf(H(P(V ))).
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The above definition is compatible with the geometric one in the following
sense: if X is a scheme over P(V ), then by Theorem A.2 there is an equivalence
H(Perf(X)) 
 Perf(H(X)). We sometimes use the more elaborate notation

H(X/P(V )) = H(X) and H(A/P(V )) = H(A)

to emphasize the universal hyperplane section is being taken with respect to P(V ).
The natural embedding δ includes into the following diagram of morphisms:

(2.13)

H(P(V ))

π

������
����

����
����

δ

��

h

�����
����

����
����

�

P(V ) P(V )×P(V ∨)
pr1

��
pr2

�� P(V ∨).

Here we deviate slightly from the notation of [32], where the morphisms π, δ,
and h are instead denoted p, ι, and f . All schemes in the diagram are smooth and
projective over S, hence Remark 1.9 applies to all morphisms. For a P(V )-linear
category A, it follows from Theorem A.2 that there are canonical identifications

A⊗Perf(P(V )) Perf(P(V )×P(V ∨)) 
 A⊗ Perf(P(V ∨)),

A⊗Perf(P(V )) Perf(P(V )) 
 A,

by which we will regard the functors induced by morphisms in (2.13) as functors

δ∗ : H(A) → A⊗ Perf(P(V ∨)), π∗ : H(A) → A,

and so on.
The next definition differs from the original in [13], but is equivalent to it, as

Lemma 2.22 shows. The advantage of this definition is that it is more symmetric
(with respect to the left and the right Lefschetz decompositions of A).

Definition 2.17. Let A be a Lefschetz category over P(V ). Then the HPD cate-
gory A� of A is the full P(V ∨)-linear subcategory of H(A) defined by

(2.14) A� = {C ∈ H(A) | δ∗(C) ∈ A0 ⊗ Perf(P(V ∨)) }.
We sometimes use the notation

(A/P(V ))� = A�

to emphasize the dependence on the P(V )-linear structure.

Remark 2.18. The HPD category A� depends on the choice of the Lefschetz center
A0 ⊂ A, although this is suppressed in the notation. For instance, for the “stupid”
Lefschetz center A0 = A we have A� = H(A).

A less trivial example of HPD is the following relative version of Example 1.2.

Example 2.19. Consider the Lefschetz category Perf(P(W )) of Example 2.13, and
assume 0 � W � V . Then by [13, Corollary 8.3] there is a Lefschetz equivalence

Perf(P(W ))� 
 Perf(P(W⊥)).

Remark 2.20. In fact, following [32, §7.1], the category A� should more precisely be
called the right HPD category of A. Indeed, there is also a left HPD category �A,
which is defined by replacing the right adjoint δ∗ to δ∗ with the left adjoint δ! in
(2.14). As shown in [32, Lemma 7.2], there is a P(V ∨)-linear equivalence A� 
 �A.
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Under mild hypotheses these categories are endowed with natural Lefschetz struc-
tures; see [32, §7.2]; for A� this is part of Theorem 2.24. Under stronger hypotheses
we can show that there is a Lefschetz equivalence A� 
 �A [32, Proposition 7.12],
but in general we do not know whether one exists. In this paper, we will deal almost
exclusively with A�, and therefore simply refer to it as the HPD category. All of
our results can be translated directly to the “left HPD” setting.

Remark 2.21. If A is a Lefschetz category over P(V ) which is smooth and proper
over S, then the HPD category A� is also smooth and proper over S [32, Lem-
ma 7.18]. This is an instance of the “homological smoothness principle” of homo-
logical projective geometry; see §1.5.

Sometimes it is convenient to describe the HPD category A� in terms of the right
or left Lefschetz decompositions of A as follows.

Lemma 2.22. Let A be a Lefschetz category over P(V ) of length m. Then there
are P(V ∨)-linear semiorthogonal decompositions

H(A) =
〈
A�, δ∗(A1(H)⊗ Perf(P(V ∨))), . . . ,(2.15)

δ∗(Am−1((m− 1)H)⊗ Perf(P(V ∨)))〉 ,
H(A) =

〈
δ!(A1−m((1−m)H)⊗ Perf(P(V ∨))), . . . ,(2.16)

δ!(A−1(−H)⊗ Perf(P(V ∨))),A�
〉
,

where the functors δ∗, δ! : A ⊗ Perf(P(V ∨)) → H(A) are fully faithful on the cat-
egories to which they are applied. In particular, A� is an admissible subcategory
in H(A) and its inclusion functor γ : A� → H(A) has both left and right adjoints
γ∗, γ! : H(A) → A�.

Proof. This holds by [32, Definition 7.1 and Lemma 7.2]. Note that admissibility
is by definition the existence of adjoint functors to the inclusion. �

By [32, Lemma 7.3], if A is a moderate Lefschetz category the composition

A
π∗
−−→ H(A)

γ∗

−−→ A�

is fully faithful on the center A0 ⊂ A; in this case, we define

(2.17) A
�
0 = γ∗π∗(A0).

For later use, we note the following.

Lemma 2.23. For a moderate Lefschetz category A over P(V ), the functors

π∗ ◦ γ : A� → A and γ∗ ◦ π∗ : A → A�

induce mutually inverse equivalences between A
�
0 ⊂ A� and A0 ⊂ A.

Proof. Since γ∗ ◦π∗ is fully faithful on A0 with image A�
0, this follows from the fact

that the image of the right adjoint π∗ ◦ γ is A0 by [32, Lemma 7.11]. �

The main theorem of HPD, recalled below, shows in particular that A�
0 ⊂ A� is

a Lefschetz center under certain hypotheses. This theorem was originally proved in
[13] in the “commutative” case. We need the following “noncommutative” version
from [32, Theorem 8.7].
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Let H ′ denote the relative hyperplane class on the projective bundle P(V ∨)
such that O(H ′) = OP(V ∨)(1). Recall the definition (1.6) of the orthogonal of a
subbundle.

Theorem 2.24. Let A be a right strong, moderate Lefschetz category over P(V ).
Then:

(1) A� is a left strong, moderate Lefschetz category over P(V ∨) with center A�
0 ⊂ A�

and length given by

length(A�) = rank(V )−#{ i ≥ 0 | Ai = A0 }.
(2) Let L ⊂ V be a subbundle and let L⊥ ⊂ V ∨ be its orthogonal. Set

r = rank(L), s = rank(L⊥), m = length(A), n = length(A�).

Then there are semiorthogonal decompositions

AP(L) = 〈KL(A),As(H), . . . ,Am−1((m− s)H)〉,

A
�
P(L⊥)

=
〈
A

�
1−n((r − n)H ′), . . . ,A�

−r(−H ′),K′
L⊥(A

�)
〉
,

and an S-linear equivalence KL(A) 
 K′
L⊥(A

�).

Remark 2.25. The Lefschetz components A
�
j ⊂ A� can be expressed explicitly in

terms of the right primitive components of A; see [32, §7.2].

Remark 2.26. In the setup of Theorem 2.24, there are equivalences �(A�) 
 A and
(�A)� 
 A of Lefschetz categories over P(V ), where �(−) denotes the left HPD
operation; see Remark 2.20 and [32, Theorem 8.9]. This property justifies HPD
being called a “duality”.

2.3. Characterization of the HPD category. Given A as in Theorem 2.24,
we will need later a characterization of the Lefschetz category A� in terms of the
functor

π∗ : H(A) → A.

For this, we must characterize A� and its Lefschetz center A�
0 ⊂ A� in terms of π∗.

We handle the first in Lemma 2.27, and the second in Proposition 2.30. Recall that
given a T -linear category C, we write C⊗F for the action of an object F ∈ Perf(T )
on an object C ∈ C.

Lemma 2.27. Let A be a Lefschetz category over P(V ). Then A� is the full
P(V ∨)-linear subcategory of H(A) given by

A� = {C ∈ H(A) | π∗(C ⊗ h∗F ) ∈ A0 for all F ∈ Perf(P(V ∨)) }.

Proof. Consider the diagram (2.13) and its base change from P(V ) to A. By [32,
Lemma 3.18] the defining property (2.14) of A� holds for C ∈ H(A) if and only if

pr1∗(δ∗(C)⊗ pr∗2(F )) ∈ A0 for all F ∈ Perf(P(V ∨)).

But pr1 ◦ δ = π and pr2 ◦ δ = h, hence the result follows from projection formula

pr1∗(δ∗(C)⊗ pr∗2(F )) 
 π∗(C ⊗ h∗(F )).

�

The following related result will also be needed later.
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Lemma 2.28. Let A be a P(V )-linear category with a P(V )-linear semiorthog-
onal decomposition A = 〈A′,A′′〉. Then there is a P(V ∨)-linear semiorthogonal
decomposition

H(A) = 〈H(A′),H(A′′)〉,
where H(A′) can be described as the full subcategory of H(A) given by

H(A′) = {C ∈ H(A) | π∗(C ⊗ h∗F ) ∈ A′ for all F ∈ Perf(P(V ∨)) },
and H(A′′) is given analogously.

Proof. The claimed semiorthogonal decomposition of H(A) holds by Lemma A.6.
By [32, Lemma 3.18], for C ∈ H(A) we have C ∈ H(A′) if and only if

(2.18) π∗(C ⊗G) ∈ A′ for all G ∈ Perf(H(P(V ))).

Since δ : H(P(V )) → P(V ) × P(V ∨) is a closed embedding, Perf(H(P(V ))) is
thickly generated by objects in the image of δ∗. Hence by Lemma A.1, the category
Perf(H(P(V ))) is thickly generated by the objects δ∗(E � F ) for E ∈ Perf(P(V )),
F ∈ Perf(P(V ∨)). It follows that (2.18) is equivalent to

π∗(C ⊗ δ∗(E � F )) ∈ A′ for all E ∈ Perf(P(V )), F ∈ Perf(P(V ∨)).

Note that δ∗(E � F ) 
 π∗(E)⊗ h∗(F ), hence

π∗(C ⊗ δ∗(E � F )) 
 π∗(C ⊗ h∗F )⊗ E.

Since A′ is P(V )-linear, the above condition is thus equivalent to

π∗(C ⊗ h∗F ) ∈ A′ for all F ∈ Perf(P(V ∨)).

�
To characterize A

�
0 ⊂ A� we need to introduce some notation. Consider the

tautological inclusion
OP(V )(−H) → V ⊗ OP(V )

on P(V ), and the tautological surjection

V ⊗ OP(V ∨) → OP(V ∨)(H
′)

on P(V ∨). By the definition of H(P(V )), the composition

OH(P(V ))(−H) → V ⊗ OH(P(V )) → OH(P(V ))(H
′)

of the pullbacks of these morphisms to H(P(V )) vanishes, and hence can be con-
sidered as a complex concentrated in degrees [−1, 1]. By construction, this complex
has cohomology concentrated in degree 0, i.e. it is a monad ; we define M as the
degree 0 cohomology sheaf,

M 

{
OH(P(V ))(−H) → V ⊗ OH(P(V )) → OH(P(V ))(H

′)
}
,

which is a vector bundle of rank N − 2 on H(P(V )), where recall that N is the
rank of V .

Lemma 2.29. Let A be a P(V )-linear category. Then there is a semiorthogonal
decomposition

H(A) = 〈π∗(A)(−(N − 2)H ′), . . . , π∗(A)(−H ′), π∗(A)〉.
Moreover, for 0 ≤ t ≤ N − 2 the projection functor onto the −tH ′ component
(regarded as a functor to A) is given by

ηt : H(A) → A, C �→ π∗(C ⊗ ∧tM[t]).
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Proof. Define

K = ker(V ∨ ⊗ OP(V ) → OP(V )(H)).

Then it is easy to see there is an isomorphism H(P(V )) ∼= PP(V )(K), under
which H ′ corresponds to the tautological O(1) line bundle and M corresponds to
ΩPP(V )(K)/P(V )(H

′). Hence we have the standard projective bundle semiorthogonal
decomposition

Perf(H(P(V ))) =

〈π∗(Perf(P(V )))(−(N − 2)H ′), . . . , π∗(Perf(P(V )))(−H ′), π∗(Perf(P(V )))〉,

whose projection functors for 0 ≤ t ≤ N − 2 are given by

ηt : Perf(H(P(V ))) → Perf(P(V )), F �→ π∗(F ⊗ ∧tM[t])

(this is a relative version of the Beilinson spectral sequence; see the proof of [30,
Theorem 2.6]). Now by Lemma A.6 the result follows by base change. �

Proposition 2.30. Let A be a moderate Lefschetz category over P(V ). Then A
�
0

is the full subcategory of A� given by

A
�
0 =

{
C ∈ A� | π∗(γ(C)⊗ ∧tM) ∈ ⊥A0 for all t ≥ 1

}
,

where ⊥A0 is the left orthogonal to the center A0 ⊂ A.

Proof. First note that since M is a vector bundle of rank N − 2, for C ∈ A� the
condition

π∗(γ(C)⊗ ∧tM) ∈ ⊥A0

holds for all t ≥ 1 if and only if it holds for 1 ≤ t ≤ N − 2. This condition is in
turn equivalent to

(2.19) Cone(π∗π∗γ(C) → γ(C)) ∈
〈
π∗(Ai(iH))⊗ O(−tH ′)

〉
1≤t≤N−2, 1≤i≤m−1

.

Indeed, this follows from the form of the projection functors for the semiorthogonal
decomposition of Lemma 2.29, together with the equality

⊥A0 = 〈A1(H), . . . ,Am−1((m− 1)H)〉,

where Ai are the components of the right Lefschetz decomposition (2.3) of A. It

remains to show that (2.19) is equivalent to C ∈ A
�
0.

Suppose (2.19) holds for C ∈ A�. Then γ∗ kills the left side of (2.19), since
by (2.15) all components in the right side are contained in ⊥(A�). Hence

γ∗π∗π∗γ(C) 
 γ∗γ(C) 
 C.

But π∗γ(C) ∈ A0 by Lemma 2.27, so we conclude C ∈ A
�
0 by the definition (2.17)

of A�
0.

Conversely, assume C ∈ A� lies in A
�
0, i.e. C = γ∗π∗(D) for some D ∈ A0. By

Lemma 2.23 we have π∗γγ
∗π∗(D) 
 D. Under this isomorphism, the morphism

π∗π∗γ(C) → γ(C) is identified with the canonical morphism

π∗(D) → γγ∗π∗(D),
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whose cone is nothing but RA�(π∗(D))[1], where RA� is the right mutation functor
through the subcategory A� ⊂ H(A). But by [32, Lemma 7.8] (or [13, Lemma 5.6]
in the commutative case) the object RA�(π∗(D)) lies in the subcategory〈

π∗(Ai(iH))⊗ O(−tH ′)
〉
1≤t≤m−1, 1≤i≤m−t

⊂ H(A).

Note that m− 1 ≤ N − 2 since A is a moderate Lefschetz category, so this subcate-
gory is contained in the right side of (2.19), and hence (2.19) holds. This completes
the proof. �

3. Categorical joins

In this section, we introduce the categorical join of two Lefschetz categories,
which in the commutative case was briefly described in §1.2. First in §3.1 we de-
fine the resolved join of two categories linear over projective bundles, by analogy
with the canonical resolution of singularities of the classical join of two projective
schemes. In §3.2 we define the categorical join of two Lefschetz categories as a
subcategory of the resolved join, and prove some basic properties of this construc-
tion. In §3.3 we study base changes of categorical joins, and in particular show
that categorical and resolved joins agree away from the “exceptional locus” of the
resolved join. Finally, in §3.4 we construct a canonical Lefschetz structure on the
categorical join of two Lefschetz categories.

We fix nonzero vector bundles V1 and V2 on S, and write H1, H2, and H for the
relative hyperplane classes on P(V1),P(V2), and P(V1 ⊕ V2).

3.1. Resolved joins. Let X1 → P(V1) and X2 → P(V2) be morphisms of schemes.
The resolved join of X1 and X2 is defined as the P1-bundle

J̃(X1, X2) = PX1×X2
(O(−H1)⊕ O(−H2)).

The canonical embedding of vector bundles

O(−H1)⊕ O(−H2) ↪→ (V1 ⊗ O)⊕ (V2 ⊗ O) = (V1 ⊕ V2)⊗ O

induces a morphism

J̃(X1, X2) → P(V1 ⊕ V2).

Recall from §1.2 that if X1 → P(V1) and X2 → P(V2) are embeddings, this mor-
phism factors birationally through the classical join J(X1, X2) ⊂ P(V1 ⊕ V2), and
provides a resolution of singularities if X1 and X2 are smooth.

Note that there is an isomorphism

(3.1) J̃(X1, X2) ∼= (X1 ×X2)×(P(V1)×P(V2)) J̃(P(V1),P(V2)).

Motivated by this, we call J̃(P(V1),P(V2)) the universal resolved join. Denote by

p : J̃(P(V1),P(V2)) → P(V1)×P(V2)

the canonical projection morphism, and by

f : J̃(P(V1),P(V2)) → P(V1 ⊕ V2)

the canonical morphism introduced above. Define

E1 = PP(V1)×P(V2)(O(−H1)) ∼= P(V1)×P(V2),

E2 = PP(V1)×P(V2)(O(−H2)) ∼= P(V1)×P(V2).
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These are disjoint divisors in J̃(P(V1),P(V2)), whose embeddings we denote by

ε1 : E1 → J̃(P(V1),P(V2)) and ε2 : E2 → J̃(P(V1),P(V2)).

We have a commutative diagram

(3.2)

E1
ε1 ��

����
���

���
���

�

∼

J̃(P(V1),P(V2))

p

��

E2

�����
���

���
���

∼

ε2��

P(V1)×P(V2).

The next result follows easily from the definitions.

Lemma 3.1. The following hold:

(1) The morphism f : J̃(P(V1),P(V2)) → P(V1 ⊕ V2) is the blowup of P(V1 ⊕ V2)
in the disjoint union P(V1) �P(V2), with exceptional divisor E1 �E2.

(2) The O(1) line bundle for the P1-bundle p : J̃(P(V1),P(V2)) → P(V1) × P(V2)
is O(H).

(3) We have the following equalities of divisors modulo linear equivalence:

E1 = H −H2, H|E1
= H1,

E2 = H −H1, H|E2
= H2.

(4) The relative dualizing complex of the morphism p is given by

ωp = O(H1 +H2 − 2H)[1].

Part (1) of the lemma can be summarized by the blowup diagram

(3.3)

E1
ε1 ��

��

J̃(P(V1),P(V2))

f

��

E2
ε2��

��

P(V1) �� P(V1 ⊕ V2) P(V2)��

All schemes in the diagram are smooth and projective over S, hence Remark 1.9
applies to all morphisms.

Following (3.1) we define the resolved join of categories linear over P(V1) and
P(V2) by base change from the universal resolved join.

Definition 3.2. Let A1 be a P(V1)-linear category and A2 a P(V2)-linear category.
The resolved join of A1 and A2 is the category

J̃(A1,A2) =
(
A1 ⊗A2

)
⊗Perf(P(V1)×P(V2)) Perf(J̃(P(V1),P(V2))).

Further, for k = 1, 2, we define

Ek(A
1,A2) =

(
A1 ⊗A2

)
⊗Perf(P(V1)×P(V2)) Perf(Ek).

Remark 3.3. The isomorphism Ek
∼= P(V1)×P(V2) induces a canonical equivalence

Ek(A
1,A2) 
 A1 ⊗A2.

We identify these categories via this equivalence; in particular, below we will regard
subcategories of the right side as subcategories of the left. Furthermore, using this
identification the morphisms εk from (3.2) or (3.3) induce functors between A1⊗A2

and J̃(A1,A2).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

526 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

Remark 3.4. If X1 → P(V1) and X2 → P(V2) are morphisms of schemes, then by
the isomorphism (3.1) and Theorem A.2 the resolved join satisfies

J̃(Perf(X1),Perf(X2)) 
 Perf(J̃(X1, X2)).

Below we gather some elementary lemmas about resolved joins.
Let γk : A

k → Bk be P(Vk)-linear functors. Then we have a P(V1)×P(V2)-linear
functor

γ1 ⊗ γ2 : A
1 ⊗A2 → B1 ⊗B2,

and by base change along the morphism p we obtain a J̃(P(V1),P(V2))-linear func-
tor

(3.4) J̃(γ1, γ2) : J̃(A
1,A2) → J̃(B1,B2).

Lemma 3.5. Let γk : A
k → Bk be P(Vk)-linear functors. There are commutative

diagrams:

J̃(A1,A2)
J̃(γ1,γ2)

��

p∗

��

J̃(B1,B2)

p∗

��

A1 ⊗A2 γ1⊗γ2 �� B1 ⊗B2

and

J̃(A1,A2)
J̃(γ1,γ2)

�� J̃(B1,B2)

A1 ⊗A2 γ1⊗γ2 ��

p∗

		

B1 ⊗B2

p∗

		

Moreover, if γ1 and γ2 both admit left or right adjoints, then so does J̃(γ1, γ2). If

further γ1 and γ2 are fully faithful or equivalences, then so is J̃(γ1, γ2).

Proof. The formalism of base change for linear categories gives the claimed com-
mutative diagram. The rest follows from Lemma A.4. �

Lemma 3.6. Let A1 be a P(V1)-linear category and A2 a P(V2)-linear category.
Then for any P(V1)-linear semiorthogonal decomposition A1 = 〈A′,A′′〉, there is a

J̃(P(V1),P(V2))-linear semiorthogonal decomposition

J̃(A1,A2) =
〈
J̃(A′,A2), J̃(A′′,A2)

〉
.

Similarly, a semiorthogonal decomposition of A2 induces an analogous decomposi-
tion of J̃(A1,A2).

Proof. Follows from the definition of the resolved join and Lemma A.6. �

Lemma 3.7. Let A1 be a P(V1)-linear category and A2 a P(V2)-linear category.
Then the functor

p∗ : A1 ⊗A2 → J̃(A1,A2)

is fully faithful, and there is a semiorthogonal decomposition with admissible com-
ponents

J̃(A1,A2) =
〈
p∗
(
A1 ⊗A2

)
, p∗

(
A1 ⊗A2

)
(H)

〉
.

Proof. By virtue of the P1-bundle structure p : J̃(P(V1),P(V2)) → P(V1)×P(V2),
we have a semiorthogonal decomposition

Perf(J̃(P(V1),P(V2))) = 〈p∗Perf(P(V1)×P(V2)), p
∗Perf(P(V1)×P(V2))(H)〉.

Now by Lemmas A.6, A.5, and A.4, the result follows by base change. �
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Lemma 3.8. Let A1 and A2 be categories linear over P(V1) and P(V2) which are

smooth and proper over S. Then the resolved join J̃(A1,A2) is smooth and proper
over S.

Proof. By [32, Lemma 4.8] combined with (the proof of) [8, Chapter I.1, Corol-

lary 9.5.4], the category A1⊗A2 is smooth and proper over S. Moreover, J̃(A1,A2)
is obtained from A1 ⊗ A2 by base change along the smooth and proper morphism
J̃(P(V1),P(V2)) → P(V1)×P(V2). Hence the result follows from [32, Lemma 4.11].

�

3.2. Categorical joins. We define the categorical join of Lefschetz categories
over P(V1) and P(V2) as a certain subcategory of the resolved join.

Definition 3.9. Let A1 and A2 be Lefschetz categories over P(V1) and P(V2) with
Lefschetz centers A1

0 and A2
0. The categorical join J(A1,A2) of A1 and A2 is defined

by

J(A1,A2) =

{
C ∈ J̃(A1,A2)

∣∣∣∣∣ ε
∗
1(C) ∈ A1 ⊗A2

0 ⊂ E1(A
1,A2),

ε∗2(C) ∈ A1
0 ⊗A2 ⊂ E2(A

1,A2)

}
,

where we have used the identifications of Remark 3.3.

Remark 3.10. The categorical join depends on the choice of Lefschetz centers for A1

and A2, although this is suppressed in the notation. For instance, for the “stupid”
Lefschetz centers A1

0 = A1 and A2
0 = A2, the condition in the definition is void, so

J(A1,A2) = J̃(A1,A2).

To show that J(A1,A2) is an admissible subcategory of J̃(A1,A2) and to de-
scribe its orthogonal category, we need the following noncommutative version of
[16, Proposition 4.1], whose proof translates directly to our setting. Recall that
for a morphism ε : E → Y we denote by ε! the left adjoint of the pullback functor
ε∗ : Perf(Y ) → Perf(E); see (1.7).

Proposition 3.11. Let Y be a scheme over a base scheme T . Let ε : E → Y be
the embedding of a Cartier divisor in Y with conormal bundle L = OE(−E). Let A
be a T -linear category and set

AY = A⊗Perf(T ) Perf(Y ) and AE = A⊗Perf(T ) Perf(E).

Assume AE is a Lefschetz category with respect to L with Lefschetz center AE,0

and Lefschetz components AE,i, i ∈ Z. Set m = length(AE). Then:

(1) The full subcategory of AY defined by

B = {C ∈ AY | ε∗(C) ∈ AE,0 }
is admissible.

(2) The functor ε! : AE → AY is fully faithful on the subcategories AE,i ⊗ Li

for i ≥ 1, and there is a semiorthogonal decomposition

AY = 〈B, ε!(AE,1 ⊗ L), ε!(AE,2 ⊗ L2), . . . , ε!(AE,m−1 ⊗ Lm−1)〉.
(3) The functor ε∗ : AE → AY is fully faithful on the subcategories AE,i ⊗ Li

for i ≤ −1, and there is a semiorthogonal decomposition

AY = 〈ε∗(AE,1−m ⊗ L1−m), . . . , ε∗(AE,−2 ⊗ L−2), ε∗(AE,−1 ⊗ L−1),B〉.

In the next lemma we apply the above proposition to the resolved join.
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Lemma 3.12. For k = 1, 2, let Ak be a Lefschetz category over P(Vk) of length mk.
Then the categorical join J(A1,A2) is an admissible P(V1 ⊕ V2)-linear subcategory

of J̃(A1,A2), and there are P(V1 ⊕ V2)-linear semiorthogonal decompositions

J̃(A1,A2) =
〈
J(A1,A2),

ε1!
(
A1 ⊗A2

1(H2)
)
, . . . , ε1!

(
A1 ⊗A2

m2−1((m2 − 1)H2)
)
,(3.5)

ε2!
(
A1

1(H1)⊗A2
)
, . . . , ε2!

(
A1

m1−1((m1 − 1)H1)⊗A2
)〉

,

J̃(A1,A2) =
〈
ε1∗

(
A1 ⊗A2

1−m2
((1−m2)H2)

)
, . . . , ε1∗

(
A1 ⊗A2

−1(−H2)
)
,

ε2∗
(
A1

1−m1
((1−m1)H1)⊗A2

)
, . . . , ε2∗

(
A1

−1(−H1)⊗A2
)
,(3.6)

J(A1,A2)
〉
.

Proof. We apply Proposition 3.11 in the following setup:

T = P(V1)×P(V2), Y = J̃(P(V1),P(V2)), E = E1 �E2, and A = A1 ⊗A2.

Then AY = J̃(A1,A2) and AE = E1(A
1,A2)⊕E2(A

1,A2). We claim that

AE,0 = (A1 ⊗A2
0)⊕ (A1

0 ⊗A2)

is a Lefschetz center of AE with respect to L = OE(−E), with Lefschetz components

AE,i = (A1 ⊗A2
i )⊕ (A1

i ⊗A2).

Indeed, by Lemma 3.1 we have

L|E1
= OE1

(−E1) = OE1
(H2 −H1) and L|E2

= OE2
(−E2) = OE2

(H1 −H2),

from which the claim follows easily.
In the above setup, the category B of Proposition 3.11 coincides with the defi-

nition of the categorical join J(A1,A2). Hence the proposition shows J(A1,A2) is

an admissible subcategory of J̃(A1,A2), and gives the semiorthogonal decomposi-
tions (3.5) and (3.6).

It remains to show the categorical join and the decompositions are P(V1 ⊕ V2)-
linear. Since the categorical join is the orthogonal of the other components in the
decompositions, it is enough to check that every other component is P(V1 ⊕ V2)-
linear. By diagram (3.3) the morphism E1 → P(V1 ⊕ V2) factors through the
projection

E1
∼= P(V1)×P(V2) → P(V1).

Thus, since the subcategory A1⊗A2
i (iH2) ⊂ E1(A

1,A2) isP(V1)-linear (because A
1

is), it is also P(V1 ⊕ V2)-linear. Since ε1 is a morphism over P(V1 ⊕ V2), it follows
that ε1!(A

1 ⊗A2
i (iH2)) is also P(V1⊕V2)-linear for any i ≥ 1. The same argument

works for the other components in (3.5) and (3.6), which finishes the proof. �
Remark 3.13. The last two rows in (3.5) and the first two rows in (3.6) are com-
pletely orthogonal since E1 and E2 are disjoint.

Categorical joins preserve smoothness and properness:

Lemma 3.14. Let A1 and A2 be Lefschetz categories over P(V1) and P(V2) which
are smooth and proper over S. Then the categorical join J(A1,A2) is smooth and
proper over S.

Proof. Follows from Lemma 3.8, Lemma 3.12, and [32, Lemma 4.15]. �
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Example 3.15. As an example, we consider the categorical join of two projective
bundles. Let W1 ⊂ V1 and W2 ⊂ V2 be subbundles, so that P(W1) ⊂ P(V1)
and P(W2) ⊂ P(V2). The classical join of these projective bundle is given by
J(P(W1),P(W2)) = P(W1⊕W2). Consider the Lefschetz structures of P(W1) and
P(W2) defined in Example 2.13. Then the pullback functor

f∗ : Perf(P(W1 ⊕W2)) → Perf(J̃(P(W1),P(W2)))

induces a P(W1 ⊕W2)-linear equivalence

Perf(P(W1 ⊕W2)) 
 J(P(W1),P(W2)).

Indeed, this follows easily from Lemma 3.1, Orlov’s blowup formula, and the defini-
tions. Moreover, Theorem 3.21 equips J(P(W1),P(W2)) with a canonical Lefschetz
structure. It is easy to check that the above equivalence is a Lefschetz equivalence.

3.3. Base change of categorical joins. Let T → P(V1 ⊕ V2) be a morphism of
schemes. The base change of diagram (3.3) along this morphism gives a diagram

(3.7)

E1T
��

��

J̃(P(V1),P(V2))T

��

E2T
��

��

P(V1)T �� T P(V2)T��

with cartesian squares. Note that the isomorphisms Ek
∼= P(V1)×P(V2), k = 1, 2,

induce isomorphisms

E1T
∼= P(V1)T ×P(V2), E2T

∼= P(V1)×P(V2)T .

If Ak is P(Vk)-linear for k = 1, 2, then by the definition of Ek(A
1,A2) we have

Ek(A
1,A2)T 


(
A1 ⊗A2

)
⊗Perf(P(V1)×P(V2)) Perf(EkT ).

Hence by the above isomorphisms and Lemma A.7, we have equivalences

E1(A
1,A2)T 
 A1

P(V1)T
⊗A2,(3.8)

E2(A
1,A2)T 
 A1 ⊗A2

P(V2)T
.(3.9)

We identify these categories via these equivalences.

Lemma 3.16. For k = 1, 2, let Ak be a Lefschetz category over P(Vk) of length mk.
Let T → P(V1⊕V2) be a morphism of schemes. Then there is a T -linear semiorthog-
onal decomposition

J̃(A1,A2)T =
〈
J(A1,A2)T ,

ε1!
(
A

1
P(V1)T

⊗ A
2
1(H2)

)
, . . . , ε1!

(
A

1
P(V1)T

⊗ A
2
m2−1((m2 − 1)H2)

)
,

ε2!
(
A

1
1(H1)⊗ A

2
P(V2)T

)
, . . . , ε2!

(
A

1
m1−1((m1 − 1)H1)⊗A

2
P(V2)T

)〉
.

Proof. This is the base change of (3.5) with the identifications (3.8) and (3.9) taken
into account. �

For our next result, we need the notion of a linear category being supported over
a closed subset. The “support” of a T -linear category C should be thought of as the
locus of points in T over which C is nonzero. Instead of fully developing this notion,
we make the following ad hoc definition which is sufficient for our purposes: given
a closed subset Z ⊂ T , we say C is supported over Z if CU 
 0, where U = T \ Z.
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In particular, note that if X → T is a morphism of schemes and Z ⊂ T is a closed
subset containing the image of X, then Perf(X) is supported over Z.

Proposition 3.17. For k = 1, 2, let Ak be a Lefschetz category over P(Vk). As-
sume Ak is supported over a closed subset Zk ⊂ P(Vk). Assume T → P(V1⊕V2) is
a morphism which factors through the complement of Z1 �Z2 in P(V1 ⊕ V2). Then
there is a T -linear equivalence

(3.10) J(A1,A2)T 
 J̃(A1,A2)T .

If further T → P(V1 ⊕ V2) factors through the complement of P(V1) � P(V2)
in P(V1 ⊕ V2), then there is an equivalence

(3.11) J̃(A1,A2)T 
 A1
T ⊗Perf(T ) A

2
T ,

where the factors in the tensor product are the base changes of A1 and A2 along
the morphisms T → P(V1) and T → P(V2) obtained by composing T → P(V1⊕V2)
with the linear projections of P(V1 ⊕ V2) from P(V2) and P(V1), respectively.

Proof. The assumption on T → P(V1 ⊕ V2) implies that P(Vk)T → P(Vk) factors
through the open subset P(Vk)\Zk. Thus we have A

k
P(Vk)T


 0 and the equivalence

(3.10) follows from Lemma 3.16.

By the definition of J̃(A1,A2) we have an equivalence

J̃(A1,A2)T 

(
A1 ⊗A2

)
⊗Perf(P(V1)×P(V2)) Perf(J̃(P(V1),P(V2))T ).

By Lemma 3.1(1) the morphism f : J̃(P(V1),P(V2)) → P(V1 ⊕ V2) is an isomor-
phism over the complement of P(V1) � P(V2). Hence if T → P(V1 ⊕ V2) factors

through this complement, we have an isomorphism J̃(P(V1),P(V2))T ∼= T . Com-
bining this isomorphism and the above equivalence we obtain

J̃(A1,A2)T 
 (A1 ⊗A2)⊗Perf(P(V1)×P(V2)) Perf(T ),

and applying Corollary A.8 we deduce (3.11). �

Remark 3.18. Let X1 ⊂ P(V1) and X2 ⊂ P(V2) be closed subschemes. Then

the morphism J̃(X1, X2) → J(X1, X2) to the classical join is an isomorphism over
open subscheme U = P(V1 ⊕ V2) \ (X1 �X2), so the corresponding pullback func-

tor Perf(J(X1, X2)) → Perf(J̃(X1, X2)) becomes an equivalence after base change
to U . Hence if Perf(X1) and Perf(X2) are equipped with Lefschetz structures, by
Proposition 3.17 we have an equivalence J(X1, X2)U 
 Perf(J(X1, X2)U ). Heuris-
tically, this says that J(X1, X2) is birational to the classical join J(X1, X2) over
P(V1 ⊕ V2). On the other hand, if X1 and X2 are smooth then so is J(X1, X2)
by Lemma 3.14, so in this case J(X1, X2) can be thought of as a resolution of
singularities of the classical join J(X1, X2).

There are other notions of noncommutative resolutions of singularities in the
literature, in particular categorical resolutions in the sense of [16, 21] and non-
commutative resolutions in the sense of Van den Bergh [36, 37]. Using the results
of [16] it can be shown that under certain hypotheses, J(X1, X2) is also a resolution
of J(X1, X2) in these senses. For instance, working over an algebraically closed
field, J(X1, X2) is a categorical resolution if X1 and X2 are smooth and J(X1, X2)
has rational singularities.
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3.4. The Lefschetz structure of a categorical join. Our next goal is to show
that given Lefschetz categories over P(V1) and P(V2), their categorical join has a

canonical Lefschetz structure. Recall that p : J̃(P(V1),P(V2)) → P(V1) × P(V2)
denotes the projection.

Lemma 3.19. Let A1 and A2 be Lefschetz categories over P(V1) and P(V2) with
Lefschetz centers A1

0 and A2
0. Then the image of the subcategory

A1
0 ⊗A2

0 ⊂ A1 ⊗A2

under the functor p∗ : A1 ⊗ A2 → J̃(A1,A2) is contained in the categorical join
J(A1,A2) as an admissible subcategory.

Proof. By Lemma 3.7 the functor p∗ : A1 ⊗ A2 → J̃(A1,A2) is fully faithful with
admissible image. By Lemma A.5 the subcategory A1

0⊗A2
0 ⊂ A1⊗A2 is admissible,

so its image under p∗ is admissible. Finally, since p◦εk is the identity, it follows from
Definition 3.9 that this image is contained in the categorical join J(A1,A2). �

Definition 3.20. For Lefschetz categories A1 and A2 over P(V1) and P(V2), we
define

(3.12) J(A1,A2)0 = p∗
(
A1

0 ⊗A2
0

)
⊂ J(A1,A2).

Note that the containment J(A1,A2)0 ⊂ J(A1,A2) holds by Lemma 3.19.

Theorem 3.21. Let A1 and A2 be Lefschetz categories over P(V1) and P(V2) with
Lefschetz centers A1

0 and A2
0. Then the categorical join J(A1,A2) has the structure

of a Lefschetz category over P(V1⊕V2) with center J(A1,A2)0 given by (3.12), and
Lefschetz components given by (3.15) and (3.16).

If A1 and A2 are both either right or left strong, then so is J(A1,A2). Moreover,
we have

length(J(A1,A2)) = length(A1) + length(A2),

and J(A1,A2) is moderate if and only if one of A1 or A2 is moderate.

The proof of Theorem 3.21 takes the rest of this section. We let A1 and A2 be
as in the theorem. Further, we let

m1 = length(A1), m2 = length(A2), m = m1 +m2,

and set

J0 = J(A1,A2)0.

Note that by Lemma 3.12, the categorical join J(A1,A2) is naturally P(V1 ⊕ V2)-
linear. To prove the theorem, we will explicitly construct the required Lefschetz
decompositions of J(A1,A2) and apply Lemma 2.4.

For k = 1, 2, let aki , 0 �= i ∈ Z, and ak+0, a
k
−0, be the primitive components of the

Lefschetz category Ak as defined in §2.1. We define

(3.13) ji =
⊕

i1+i2=i−1
i1,i2≥0

p∗
(
a1i1 ⊗ a2i2

)
, i ≥ 0,

where in the formula ak0 denotes ak+0 for k = 1, 2. Note that we have j0 = 0 while
j1 = p∗(a1+0 ⊗ a2+0).
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Similarly, we define

(3.14) ji =
⊕

i1+i2=i+1
i1,i2≤0

p∗
(
a
1
i1 ⊗ a

2
i2

)
, i ≤ 0,

where in the formula ak0 denotes ak−0 for k = 1, 2. Note that j0 = 0 with this
definition, which is consistent with (3.13) for i = 0.

Lemma 3.22. We have semiorthogonal decompositions

J0 = 〈j0, j1, . . . , jm−1〉 and J0 = 〈j1−m, . . . , j−1, j0〉.

Proof. Applying Lemma A.6 to A1
0=〈a10, a11, . . . , a1m1−1〉 and A2

0=〈a20, a21, . . . , a2m2−1〉,
we obtain a semiorthogonal decomposition

A1
0 ⊗A2

0 =
〈
a
1
i1 ⊗ a

2
i2

〉
0≤i1≤m1−1, 0≤i2≤m2−1

with components a1i1 ⊗ a2i2 and a1j1 ⊗ a2j2 semiorthogonal if i1 < j1 or i2 < j2.

Since p∗ defines an equivalence between A1
0⊗A2

0 and J0, we obtain a semiorthogonal
decomposition

J0 =
〈
p∗(a1i1 ⊗ a

2
i2)

〉
0≤i1≤m1−1, 0≤i2≤m2−1

with the same semiorthogonalities between the components. It follows that the
summands in the right hand side of (3.13) are completely orthogonal as subcate-
gories of J0, so that we indeed have inclusions ji ⊂ J0 for i ≥ 0, which give the first
claimed semiorthogonal decomposition of J0. This is illustrated in Figure 1.

a10 ⊗ a20 a10 ⊗ a21 a10 ⊗ a22 a10 ⊗ a23 a10 ⊗ a24 a10 ⊗ a25

a11 ⊗ a20 a11 ⊗ a21 a11 ⊗ a22 a11 ⊗ a23 a11 ⊗ a24 a11 ⊗ a25

a12 ⊗ a20 a12 ⊗ a21 a12 ⊗ a22 a12 ⊗ a23 a12 ⊗ a24 a12 ⊗ a25

j0 = 0 j1 j2 j3 j4 j5 j6

j7

j8

Figure 1. The semiorthogonal decomposition of J0 into the com-
ponents ji for m1 = 3 and m2 = 6. For simplicity, p∗ is omitted
from p∗(a1i1 ⊗ a2i2).

The second claimed semiorthogonal decomposition of J0 is constructed analo-
gously. �

We define two descending chains of subcategories of J0 by

Ji = 〈ji, ji+1, . . . , jm−1〉, 0 ≤ i ≤ m− 1,(3.15)

Ji = 〈j1−m, . . . , ji−1, ji〉 , 1−m ≤ i ≤ 0.(3.16)

Note that j0 = 0 implies J−1 = J0 = J1.

Lemma 3.23. The subcategories Ji ⊂ J(A1,A2) are right admissible for i ≥ 0
and left admissible for i ≤ 0. Further, if A1 and A2 are both right strong (or left
strong), then the subcategory ji ⊂ J(A1,A2) is admissible for i ≥ 0 (or i ≤ 0).
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Proof. For i = 0 we know J0 ⊂ J(A1,A2) is admissible by Lemma 3.19. If i > 0,
then by definition we have a semiorthogonal decomposition

J0 = 〈j0, . . . , ji−1, Ji〉 .
It follows that Ji is right admissible in J0, and hence also in J(A1,A2) as J0 is.
Similarly, Ji is left admissible in J(A1,A2) for i < 0.

Finally, assume A1 and A2 are both right strong. Then Lemma A.5 implies
the subcategory a1i1 ⊗ a2i2 ⊂ A1

0 ⊗ A2
0 is admissible for i1, i2 ≥ 0, and hence by

Lemma 3.19 the summands defining ji, i ≥ 0, in (3.13) are admissible in J(A1,A2).
So by [32, Lemma 3.10] we conclude that ji, i ≥ 0, is admissible in J(A1,A2). A
similar argument applies if A1 and A2 are left strong. �

The following alternative expressions for the categories Ji are sometimes useful,
and can be proved by unwinding the definitions.

Lemma 3.24. For i �= 0 we have Ji = p∗(J̄i), where J̄i ⊂ A1⊗A2 is the subcategory
defined by

J̄i =

{〈
A1

i−1 ⊗ a20,A
1
i−2 ⊗ a21, . . . ,A

1
1 ⊗ a2i−2,A

1
0 ⊗A2

i−1

〉
if 1 ≤ i ≤ m2,〈

A1
i−1 ⊗ a20,A

1
i−2 ⊗ a21, . . . ,A

1
i−m2

⊗ a2m2−1

〉
if m2 < i ≤ m− 1,

=

{〈
a10 ⊗A2

i−1, a
1
1 ⊗A2

i−2, . . . , a
1
i−2 ⊗A2

1,A
1
i−1 ⊗A2

0

〉
if 1 ≤ i ≤ m1,〈

a10 ⊗A2
i−1, a

1
1 ⊗A2

i−2, . . . , a
1
m1−1 ⊗A2

i−m1

〉
if m1 < i ≤ m− 1,

=

{〈
A1

0 ⊗A2
i+1,A

1
−1 ⊗ a2i+2, . . . ,A

1
i+2 ⊗ a2−1,A

1
i+1 ⊗ a20

〉
if −m2 ≤ i ≤ −1,〈

A1
i+m2

⊗ a21−m2
, . . . ,A1

i+2 ⊗ a2−1,A
1
i+1 ⊗ a20

〉
if 1−m ≤ i < −m2,

=

{〈
A1

i+1 ⊗A2
0, a

1
i+2 ⊗A2

−1, . . . , a
1
−1 ⊗A2

i+2, a
1
0 ⊗A2

i+1

〉
if −m1 ≤ i ≤ −1,〈

a11−m1
⊗A2

i+m1
, . . . , a1−1 ⊗A2

i+2, a
1
0 ⊗A2

i+1

〉
if 1−m ≤ i < −m1,

where for k = 1, 2, the symbol ak0 denotes ak+0 in the first two equalities and ak−0 in
the last two equalities.

Lemma 3.24 is illustrated in Figure 2.

a10 ⊗ a20 a10 ⊗ a21 a10 ⊗ a22 a10 ⊗ a23 a10 ⊗ a24 a10 ⊗ a25

a11 ⊗ a20 a11 ⊗ a21 a11 ⊗ a22 a11 ⊗ a23 a11 ⊗ a24 a11 ⊗ a25

a12 ⊗ a20 a12 ⊗ a21 a12 ⊗ a22 a12 ⊗ a23 a12 ⊗ a24 a12 ⊗ a25

A1
2 ⊗ a20 A1

1 ⊗ a21 A1
0 ⊗A2

2

Figure 2. The first semiorthogonal decomposition of J̄i from
Lemma 3.24 for i = 3, m1 = 3, and m2 = 6

To prove Theorem 3.21, we will show that we have semiorthogonal decomposi-
tions

J(A1,A2) = 〈J0, J1(H), . . . , Jm−1((m− 1)H)〉,(3.17)

J(A1,A2) = 〈J1−m((1−m)H), . . . , J−1(−H), J0〉,(3.18)
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and then apply Lemma 2.4. We focus on proving (3.17) below; an analogous argu-
ment proves (3.18).

Lemma 3.25. The sequence of subcategories

(3.19) J0, J1(H), . . . , Jm−1((m− 1)H)

in (3.17) is semiorthogonal.

Proof. By the definitions (3.15) and (3.13), it is enough to check that for any
integer t such that 1 ≤ t ≤ j1 + j2 + 1, the subcategories

p∗
(
a
1
i1 ⊗ a

2
i2

)
, p∗

(
a
1
j1 ⊗ a

2
j2

)
(tH)

of J(A1,A2) are semiorthogonal. Let C1 ∈ a1i1 , C2 ∈ a2i2 and D1 ∈ a1j1 , D2 ∈ a2j2 .

Since a1i1 ⊗ a2i2 and a1j1 ⊗ a2j2 are thickly generated by objects of the form C1 � C2

and D1 � D2 respectively, we must show that

p∗(D1 � D2)(tH) ∈ ⊥ (p∗(C1 � C2)).

Recall that p! denotes the left adjoint functor of p∗; see (1.7). By adjunction and
the projection formula, this is equivalent to

(D1 � D2)⊗ p!(OJ̃(P(V1),P(V2))
(tH)) ∈ ⊥ (C1 � C2).

Using the formula of Lemma 3.1(4) for the dualizing complex of p, for t ≥ 1 we
obtain

(3.20) p!(OJ̃(P(V1),P(V2))
(tH)) 


⊕
t1+t2=t
t1,t2≥1

OP(V1)×P(V2)(t1H1 + t2H2)[1].

So, it is enough to show that

D1(t1H1) � D2(t2H2) ∈ ⊥ (C1 � C2)

for all t1, t2 ≥ 1 such that t1+t2 = t. Now we observe that the left side is contained
in a1j1(t1H1)⊗ a2j2(t2H2), while C1 � C2 ∈ a1i1 ⊗ a2i2 , so it suffices to show the pair

(a1j1(t1H1) ⊗ a2j2(t2H2), a
1
i1

⊗ a2i2) is semiorthogonal. By Lemma A.6 and (2.10),
this holds for 1 ≤ t1 ≤ j1 because of the semiorthogonality of the first factors, and
for 1 ≤ t2 ≤ j2 because of the semiorthogonality of the second factors. Since the
assumption t1 + t2 = t ≤ j1 + j2 + 1 implies either t1 ≤ j1 or t2 ≤ j2, this finishes
the proof. �

To show that the categories in (3.19) generate J(A1,A2), we consider the

idempotent-complete triangulated subcategory P of the resolved join J̃(A1,A2) gen-
erated by the following subcategories:

p∗(a1i1 ⊗ a
2
i2)(tH), 0 ≤ i1 ≤ m1 − 1, 0 ≤ i2 ≤ m2 − 1, 0 ≤ t ≤ i1 + i2 + 1,(3.21)

ε1∗(A
1 ⊗ a

2
i2(s2H2)), 0 ≤ i2 ≤ m2 − 1, 0 ≤ s2 ≤ i2 − 1,(3.22)

ε2∗(a
1
i1(s1H1)⊗ A

2), 0 ≤ i1 ≤ m1 − 1, 0 ≤ s1 ≤ i1 − 1.(3.23)

It follows from the definitions (3.13) and (3.15) that (3.19) and (3.21) generate
the same subcategory of the categorical join J(A1,A2). Further, by (1.7) and
Lemma 3.1(3) we have

ε1!(C) 
 ε1∗(C(H1 −H2)[−1]),

so it follows from P(V1)-linearity of A1 and the definitions that (3.22) generates

the second line of the semiorthogonal decomposition (3.5) of J̃(A1,A2). Similarly,
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(3.23) generates the third line of (3.5). Hence to establish (3.17), it suffices to show

P = J̃(A1,A2). For this, we will need the following lemma.

Lemma 3.26. For all integers i1, i2, s1, s2, t, such that

0 ≤ s1 ≤ i1 ≤ m1 − 1, 0 ≤ s2 ≤ i2 ≤ m2 − 1, 0 ≤ t ≤ i1 + i2 − (s1 + s2) + 1,

the subcategory

p∗
(
a
1
i1 ⊗ a

2
i2

)
(s1H1 + s2H2 + tH) ⊂ J̃(A1,A2)

is contained in P.

Proof. We argue by induction on s = s1 + s2. The base case s1 = s2 = 0 holds
by (3.21) in the definition of P. Now assume s > 0 and the result holds for s − 1.
Either s1 > 0 or s2 > 0. Assume s1 > 0. Consider the exact sequence

(3.24) 0 → O(−E2) → O → ε2∗OE2
→ 0

on J̃(P(V1),P(V2)). By Lemma 3.1(3) we have −E2 = H1 −H and H|E2
= H2, so

twisting this sequence by O((s1 − 1)H1 + s2H2 + (t+ 1)H) gives

0 → O(s1H1 + s2H2 + tH) → O((s1 − 1)H1 + s2H2 + (t+ 1)H)

→ ε2∗OE2
((s1 − 1)H1 + (s2 + t+ 1)H2) → 0.

For C1 ∈ a1i1 , C2 ∈ a2i2 , tensoring this sequence with p∗(C1 � C2) gives an exact
triangle

p∗(C1 � C2)(s1H1 + s2H2 + tH) → p∗(C1 � C2)((s1 − 1)H1 + s2H2 + (t+ 1)H)

→ ε2∗(C1((s1 − 1)H1) � C2((s2 + t+ 1)H2)),

where we have used the projection formula and diagram (3.2) to rewrite the third
term. The second term of this triangle is in P by the induction hypothesis, and
the third term is in P by (3.23) since s1 − 1 ≤ i1 − 1 by the assumption of the
lemma. Hence the first term is also in P. By Lemma A.1 the objects p∗(C1 � C2)
for C1 ∈ a1i1 , C2 ∈ a2i2 , thickly generate p∗

(
a1i1 ⊗ a2i2

)
, so we deduce the required

containment
p∗
(
a
1
i1 ⊗ a

2
i2

)
(s1H1 + s2H2 + tH) ⊂ P.

The case s2 > 0 follows by the same argument (with E2 replaced by E1 and (3.22)
used instead of (3.23)). This completes the induction. �

Proof of Theorem 3.21. Let us show P = J̃(A1,A2), which as observed above will
complete the proof of the semiorthogonal decomposition (3.17). By Lemma 3.7 we
have a semiorthogonal decomposition

(3.25) J̃(A1,A2) =
〈
p∗
(
A1 ⊗A2

)
, p∗

(
A1 ⊗A2

)
(H)

〉
,

so it suffices to show P contains both components of this decomposition. But
tensoring the decompositions (2.10) for A1 and A2 and using Lemma A.6, we see
that A1 ⊗A2 is generated by the categories

(a1i1 ⊗ a
2
i2)(s1H1 + s2H2), 0 ≤ s1 ≤ i1 ≤ m1 − 1, 0 ≤ s2 ≤ i2 ≤ m2 − 1.

Hence taking t = 0 in Lemma 3.26 shows P contains p∗
(
A1 ⊗A2

)
, and taking t = 1

shows P contains p∗
(
A1 ⊗A2

)
(H), as required.

The semiorthogonal decomposition (3.18) holds by a similar argument. Thus by
Lemma 2.4 and Lemma 3.23 we deduce that J0 ⊂ J(A1,A2) is a Lefschetz center
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with Ji, i ∈ Z, the corresponding Lefschetz components. The strongness claims
follow from the definitions and Lemma 3.23, and the claims about the length and
moderateness of J(A1,A2) follow from the definitions and (2.12). �

4. HPD for categorical joins

In this section we prove our main theorem, the general form of Theorem 1.5 for
Lefschetz categories, which says that (under suitable hypotheses) the formation of
categorical joins commutes with HPD.

Theorem 4.1. Let A1 and A2 be right strong, moderate Lefschetz categories
over P(V1) and P(V2). Then there is an equivalence

J(A1,A2)� 
 J((A1)�, (A2)�)

of Lefschetz categories over P(V ∨
1 ⊕ V ∨

2 ).

Remark 4.2. The Lefschetz structures on the HPD category J(A1,A2)� and the
categorical join J((A1)�, (A2)�) in Theorem 4.1 are the ones obtained by combining
Theorem 2.24(1) and Theorem 3.21.

The key object in the proof of Theorem 4.1 is a certain fiber product of resolved
joins, which we call a double resolved join. We discuss this construction in §4.1,
and then use it in §4.2 to define a functor γJ̃ : J̃((A

1)�, (A2)�) → H(J̃(A1,A2)).
In §4.3 we prove various properties of γJ̃, which we use in §4.4 to show γJ̃ induces
the equivalence of Theorem 4.1.

4.1. Double resolved joins. For k = 1, 2, let Vk be a vector bundle on S and
denote by Hk and H ′

k the relative hyperplane classes on P(Vk) and P(V ∨
k ).

In this section sometimes we will consider pairs of P(Vk)-linear categories, so we
can form their resolved join over P(V1 ⊕ V2), and sometimes we will consider pairs
of P(V ∨

k )-linear categories, so we can form their resolved join over P(V ∨
1 ⊕ V ∨

2 ).
Moreover, sometimes we will consider pairs of P(Vk)×P(V ∨

k )-linear categories, so
that we can form both types of joins for them. To distinguish notationally between
the two types of joins we will write

J̃(Y1, Y2) = PY1×Y2
(O(−H1)⊕ O(−H2)),

J̃(B1,B2) = (B1 ⊗B2)⊗Perf(P(V1)×P(V2)) Perf(J̃(P(V1),P(V2)))

if Yk are schemes over P(Vk) and Bk are P(Vk)-linear categories, and

J̃∨(Y1, Y2) = PY1×Y2
(O(−H ′

1)⊕ O(−H ′
2)),

J̃∨(B1,B2) = (B1 ⊗B2)⊗Perf(P(V ∨
1 )×P(V ∨

2 )) Perf(J̃
∨(P(V ∨

1 ),P(V ∨
2 )))

if Yk are schemes over P(V ∨
k ) and Bk are P(V ∨

k )-linear categories. We will also
use this convention for schemes over P(Vk)×P(V ∨

k ) and for P(Vk)×P(V ∨
k )-linear

categories. Note, however, that we do not extend this convention to categorical
joins, or to resolved joins of functors.

Let Y1 and Y2 be S-schemes equipped with morphisms

Y1 → P(V1)×P(V ∨
1 ), Y2 → P(V2)×P(V ∨

2 ).

We define the double resolved join of Y1 and Y2 as the fiber product

J̃J(Y1, Y2) = J̃(Y1, Y2)×(Y1×Y2) J̃
∨(Y1, Y2).
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In particular, we can consider the universal double resolved join with its natural
projection

(4.1) J̃J(P(V1)×P(V ∨
1 ),P(V2)×P(V ∨

2 )) → (P(V1)×P(V ∨
1 ))×(P(V2)×P(V ∨

2 )).

This projection is a (P1×P1)-bundle. Now, given for k = 1, 2, a category Bk which

has a P(Vk) × P(V ∨
k )-linear structure, the double resolved join J̃J(B1,B2) of B1

and B2 is defined as

(B1 ⊗ B
2)⊗Perf((P(V1)×P(V ∨

1 ))×(P(V2)×P(V ∨
2 ))) Perf(J̃J(P(V1)×P(V ∨

1 ),P(V2)×P(V ∨
2 ))),

that is the base change of B1 ⊗B2 along (4.1).
For us, the key case of a double resolved join is when Y1 and Y2 are the universal

spaces of hyperplanes in P(V1) and P(V2), which we denote by

H1 = H(P(V1)) and H2 = H(P(V2)).

Note that for k = 1, 2, the space Hk indeed has a natural map to P(Vk)×P(V ∨
k ),

hence we can form the double resolved join of H1 and H2. The following commu-
tative diagram summarizes the spaces involved and names the relevant morphisms:

(4.2)

˜JJ(H1,H2)

p̃



��
��
��
��
�

q̃

���
��

��
��

��

J̃∨(H1,H2)

˜h1×h2

�����
���

���
��

qH



	
		

			
			

	 J̃(H1,H2)

pH

��















˜π1×π2



��
���

���
��

J̃∨(P(V ∨
1 ),P(V ∨

2 ))

q

����
���

���
���

g

��

H1 ×H2

h1×h2



���
���

���
�

π1×π2

���
���

���
���

J̃(P(V1),P(V2))

p



















f

��
P(V ∨

1 ⊕ V ∨
2 ) P(V ∨

1 )×P(V ∨
2 ) P(V1)×P(V2) P(V1 ⊕ V2)

All of the squares in this diagram are cartesian.
Since J̃(P(V1),P(V2)) maps to P(V1 ⊕ V2), we can form the corresponding uni-

versal hyperplane section, which sits as a divisor in the product

(4.3) H(J̃(P(V1),P(V2))) ⊂ J̃(P(V1),P(V2))×P(V ∨
1 ⊕ V ∨

2 ).

Lemma 4.3. We have a diagram

(4.4)

J̃J(H1,H2)

p̃

�����
���

���
��

α

����
���

���
���

��

J̃∨(H1,H2) H(J̃(P(V1),P(V2)))

of schemes over P(V ∨
1 ⊕V ∨

2 ), where all schemes appearing are smooth and projective
over S.

Proof. The morphism p̃ is constructed in diagram (4.2). Furthermore, the same
diagram gives morphisms

J̃J(H1,H2)
˜π1×π2◦q̃−−−−−−−−−→ J̃(P(V1),P(V2)),

J̃J(H1,H2)
g◦ ˜h1×h2◦p̃−−−−−−−−−−−→ P(V ∨

1 ⊕ V ∨
2 ).
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It is easy to see that their product factors through the embedding (4.3) via a mor-

phism which we denote α : J̃J(H1,H2) → H(J̃(P(V1),P(V2))). This gives (4.4).
The second claim of the lemma is evident. �

4.2. The HPD functor for categorical joins. Let A1 and A2 be Lefschetz
categories over P(V1) and P(V2). For k = 1, 2, we denote by

γk : (A
k)� → H(Ak)

the canonical P(V ∨
k )-linear inclusion functor. Then (3.4) defines a P(V ∨

1 ⊕ V ∨
2 )-

linear functor

J̃(γ1, γ2) : J̃
∨((A1)�, (A2)�) → J̃∨(H(A1),H(A2)).

By base changing the P(V1)×P(V2)-linear category A1 ⊗A2 along diagram (4.4),
we obtain a diagram of functors

J̃J(H(A1),H(A2))

α∗

����
���

���
���

�

J̃∨((A1)�, (A2)�)
J̃(γ1,γ2) �� J̃∨(H(A1),H(A2))

p̃∗
���������������

H(J̃(A1,A2)).

Since the diagram of schemes (4.4) is over P(V ∨
1 ⊕ V ∨

2 ), all of the above functors
are P(V ∨

1 ⊕ V ∨
2 )-linear.

By composing the functors in the diagram, we obtain aP(V ∨
1 ⊕V ∨

2 )-linear functor

(4.5) γJ̃ = α∗ ◦ p̃∗ ◦ J̃(γ1, γ2) : J̃∨((A1)�, (A2)�) → H(J̃(A1,A2)).

Our goal is to show that γJ̃ induces the desired equivalence

J((A1)�, (A2)�) 
 J(A1,A2)�

when A1 and A2 satisfy the assumptions of Theorem 4.1.
The following observation will be needed later.

Lemma 4.4. The functor γJ̃ has both left and right adjoints.

Proof. The functors γk have both left and right adjoints by Lemma 2.22. Therefore,
J̃(γ1, γ2) has both left and right adjoints by Lemma 3.5. On the other hand, the
functors α∗ and p̃∗ have both left and right adjoints by Lemma 4.3 and Remark 1.9.

�

Remark 4.5. The functor γJ̃ can be described in terms of Fourier–Mukai kernels.
For simplicity, in this remark we restrict ourselves to the commutative case as
in [13], but the same description works in general using the formalism of Fourier–
Mukai kernels from [32, §5]. Namely, assume we are given for k = 1, 2 a smooth
and proper P(Vk)-scheme Xk with an admissible P(Vk)-linear subcategory Ak ⊂
Perf(Xk), a smooth and proper P(V ∨

k )-scheme Yk with an admissible P(V ∨
k )-linear

subcategory Bk ⊂ Perf(Yk), and a P(V ∨
k )-linear Fourier–Mukai functor

ΦEk
: Perf(Yk) → Perf(H(Xk)), Ek ∈ Perf

(
H(Xk)×P(V ∨

k ) Yk

)
,

such that ΦEk
is a left splitting functor in the sense of [13, Definition 3.1], (Ak)� is

the image of ΦEk
, and Bk is the image of Φ∗

Ek
. Note that by [13, Theorem 3.3] the

functors ΦEk
and Φ∗

Ek
then induce mutually inverse equivalences Bk 
 (Ak)�.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CATEGORICAL JOINS 539

In this situation, we claim there is a P(V ∨
1 ⊕ V ∨

2 )-linear Fourier–Mukai functor

ΦE : Perf(J̃
∨(Y1, Y2)) → Perf(H(J̃(X1, X2))),

E ∈ Perf
(
H(J̃(X1, X2))×P(V ∨

1 ⊕V ∨
2 ) J̃

∨(Y1, Y2)
)
,

which restricts to the functor

J̃∨(B1,B2) 
 J̃∨((A1)�, (A2)�)
γJ̃−−→ H(J̃(A1,A2)).

For this, consider the commutative diagram

J̃J(H1,H2)
u ��

v

��

H1 ×H2

��

H(J̃(P(V1),P(V2)))×P(V ∨
1 ⊕V ∨

2 ) J̃
∨(P(V ∨

1 ),P(V ∨
2 )) �� P(V1)×P(V2)×P(V ∨

1 )×P(V ∨
2 )

where u = qH ◦ p̃ = pH ◦ q̃ and v is induced by the morphisms h̃1 × h2 ◦ p̃ in (4.2)
and α in (4.4). Base changing from P(V1),P(V2),P(V ∨

1 ),P(V ∨
2 ), to X1, X2, Y1, Y2,

gives a commutative diagram

J̃J(H(X1),H(X2))
u ��

v

��

(
H(X1)×P(V ∨

1 ) Y1

)
×

(
H(X2)×P(V ∨

2 ) Y2

)

��

H(J̃(X1, X2))×P(V ∨
1 ⊕V ∨

2 ) J̃
∨(Y1, Y2) �� X1 ×X2 × Y1 × Y2

where we abusively still denote the top and left maps by u and v. It is straightfor-
ward to verify that the object

(4.6) E = v∗u
∗(E1 � E2) ∈ Perf

(
H(J̃(X1, X2))×P(V ∨

1 ⊕V ∨
2 ) J̃

∨(Y1, Y2)
)

is the desired Fourier–Mukai kernel.

4.3. Relations between the HPD functors. Let H and H ′ denote the relative
hyperplane classes on P(V1 ⊕ V2) and P(V ∨

1 ⊕ V ∨
2 ). As in §2.3, let M be the

cohomology sheaf of the monad

(4.7) M 
 {O(−H) → (V1 ⊕ V2)⊗ O → O(H ′)}
on H(P(V1 ⊕ V2)). Similarly, for k = 1, 2, we let Mk be the cohomology sheaf of
the monad

(4.8) Mk 
 {O(−Hk) → Vk ⊗ O → O(H ′
k)}

on Hk. Pushforward along the morphisms

πJ̃ : H(J̃(P(V1),P(V2))) → J̃(P(V1),P(V2))

πk : Hk → P(Vk), k = 1, 2,

induces functors

πJ̃∗ : H(J̃(A1,A2)) → J̃(A1,A2),

πk∗ : H(Ak) → Ak, k = 1, 2.

For t ≥ 0, we aim to relate the composition

(4.9) πJ̃∗ ◦ (−⊗ ∧tM) ◦ γJ̃ : J̃∨((A1)�, (A2)�)) → J̃(A1,A2)
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to the analogous compositions

(4.10) πk∗ ◦ (−⊗ ∧tMk) ◦ γk : (Ak)� → Ak, k = 1, 2.

Combined with the results of §2.3, this will be the key ingredient in our proof
that γJ̃ induces the equivalence of Theorem 4.1. The following result handles the
case t = 0. We use the notation from diagram (4.2).

Proposition 4.6. There is an isomorphism

πJ̃∗ ◦ γJ̃ 
 p∗ ◦ ((π1∗ ◦ γ1)⊗ (π2∗ ◦ γ2)) ◦ q∗
of functors J̃∨((A1)�, (A2)�) → J̃(A1,A2).

Proof. Consider the commutative diagram

(4.11)

J̃J(H1,H2)

p̃

�����
���

���
���

α

����
����

����
���

�

q̃

��

J̃∨(H1,H2)

qH

��

� J̃(H1,H2)

pH

�����
���

���
���

�
˜π1×π2

����
����

����
����

�

H(J̃(P(V1),P(V2)))

πJ̃

��

H1 ×H2

π1×π2

����
���

���
���

��
J̃(P(V1),P(V2))

p

�����
���

���
���

��

P(V1)×P(V2)

where the squares marked by � are cartesian and Tor-independent since p, being a
P1-bundle, is flat. Therefore, we have a chain of isomorphisms

πJ̃∗ ◦ α∗ ◦ p̃∗ 
 (π̃1 × π2)∗ ◦ q̃∗ ◦ p̃∗


 (π̃1 × π2)∗ ◦ p∗H ◦ qH∗


 p∗ ◦ (π1 × π2)∗ ◦ qH∗

of functors Perf(J̃∨(H1,H2)) → Perf(J̃(P(V1),P(V2))). After base change

from P(V1) to A1 and from P(V2) to A2 and composition with the functor J̃(γ1, γ2),
we obtain an isomorphism

πJ̃∗ ◦ α∗ ◦ p̃∗ ◦ J̃(γ1, γ2) 
 p∗ ◦ (π1 × π2)∗ ◦ qH∗ ◦ J̃(γ1, γ2)
of functors J̃∨((A1)�, (A2)�) → J̃(A1,A2). The left hand side is πJ̃∗ ◦ γJ̃. On the
other hand, from the commutative diagram of Lemma 3.5 we obtain an isomorphism

qH∗ ◦ J̃(γ1, γ2) 
 (γ1 ⊗ γ2) ◦ q∗
that allows us to rewrite the right hand side as

p∗ ◦ (π1 × π2)∗ ◦ (γ1 ⊗ γ2) ◦ q∗,
which is equivalent to the right hand side in the statement of the proposition. �

To relate the functor (4.9) to the functors (4.10) for arbitrary t ≥ 0, we will need

the following lemma. By definition J̃J(H1,H2) admits projections to H1 and H2,
and also maps to H(P(V1 ⊕ V2)) via the composition

J̃J(H1,H2)
α−−→ H(J(P(V1),P(V2)))

H(f)−−−−→ H(P(V1 ⊕ V2)).
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We denote by M̃, M̃1, M̃2 the pullbacks to J̃J(H1,H2) of the sheaves M,M1,M2,
defined by (4.7) and (4.8). Note that by Lemma 3.1(4) we have the formula

(4.12) ωp̃ = O(H1 +H2 − 2H)[1]

for the relative dualizing complex of the morphism p̃ : J̃J(H1,H2) → J̃∨(H1,H2).
As in Remark 4.5 we write

u = qH ◦ p̃ = pH ◦ q̃ : J̃J(H1,H2) → H1 ×H2

for the canonical P1 ×P1-bundle; see (4.11). For k = 1, 2, we write

prk : H1 ×H2 → Hk

for the projection.

Lemma 4.7. There is an isomorphism of sheaves on H1 ×H2

u∗(ωp̃ ⊗ ∧tM̃) 
 ∧t(pr∗1M1 ⊕ pr∗2M2).

Proof. The pullback to J̃J(H1,H2) of the monad (4.7) and the direct sum of

the pullbacks to J̃J(H1,H2) of the monads (4.8) fit into the following bicomplex

on J̃J(H1,H2):

O(H ′
1)⊕ O(H ′

2) �� O(H ′)

O(−H) �� (V1 ⊕ V2)⊗ O ��

		

O(H ′)

O(−H) �� O(−H1)⊕ O(−H2)

		

The nontrivial cohomology sheaves of its rows with respect to the horizontal differ-

ential are given by O(H −H1 −H2), M̃, O(H ′
1 +H ′

2 −H ′) in degrees (0,−1), (0, 0),
(0, 1). The only nontrivial cohomology sheaf with respect to the vertical differen-

tial is M̃1 ⊕ M̃2 in degree (0, 0). It follows that there is a filtration of M̃ whose
associated graded is

O(H −H1 −H2)⊕ (M̃1 ⊕ M̃2)⊕ O(H ′
1 +H ′

2 −H ′).

Hence ∧tM̃ has a filtration whose associated graded is(
∧t−1(M̃1 ⊕ M̃2)⊗ O(H −H1 −H2)

)
⊕
(
∧t(M̃1 ⊕ M̃2)

)
⊕
(
∧t−2(M̃1 ⊕ M̃2)⊗ O(H −H1 −H2 +H ′

1 +H ′
2 −H ′)

)
⊕
(
∧t−1(M̃1 ⊕ M̃2)⊗ O(H ′

1 +H ′
2 −H ′)

)
.

Since u : J̃J(H1,H2) → H1 ×H2 is a P1 × P1-bundle (whose relative hyperplane
classes are H and H ′), we have

u∗(O(aH + a′H ′)) = 0 if either a = −1 or a′ = −1.

Moreover, since u = qH ◦ p̃ where qH and p̃ are P1-bundles, we have

u∗(ωp̃) 
 O.
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Hence by the formula (4.12) for ωp̃ and the above description of the associated

graded of the filtration of ∧tM̃, we find

u∗(ωp̃ ⊗ ∧tM̃) 
 ∧t(pr∗1M1 ⊕ pr∗2M2)

as desired. �

Recall that p! denotes the left adjoint of

p∗ : Perf(P(V1)×P(V2))→Perf(J̃(P(V1),P(V2))).

Below M is considered as a vector bundle on H(J(P(V1),P(V2))) (pulled back
along H(f) from H(P(V1 ⊕ V2))).

Proposition 4.8. There is an isomorphism

p!◦πJ̃∗◦(−⊗∧tM)◦γJ̃◦q∗ 

⊕

t1+t2=t

(π1∗◦(−⊗∧t1M1)◦γ1)⊗(π2∗◦(−⊗∧t2M2)◦γ2)

of functors (A1)� ⊗ (A2)� → A1 ⊗A2.

Proof. The proof is similar to that of Proposition 4.6. First, using the commutative
diagram in Lemma 3.5, we obtain an isomorphism

J̃(γ1, γ2) ◦ q∗ 
 q∗H ◦ (γ1 ⊗ γ2).

Using the definition of γJ̃, this allows us to rewrite the left hand side in the state-
ment of the proposition as

p! ◦ πJ̃∗ ◦ (−⊗ ∧tM) ◦ α∗ ◦ p̃∗ ◦ q∗H ◦ (γ1 ⊗ γ2).

By the projection formula, we can rewrite this as

p! ◦ πJ̃∗ ◦ α∗ ◦ (−⊗ ∧tM̃) ◦ p̃∗ ◦ q∗H ◦ (γ1 ⊗ γ2).

Note that p! = p∗ ◦ (− ⊗ ωp) by (1.7). Further, the pullback of ωp to J̃J(H1,H2)
is ωp̃, since p̃ is a base change of p. Hence again by the projection formula, we can
rewrite the above composition as

p∗ ◦ πJ̃∗ ◦ α∗ ◦ (−⊗ ωp̃ ⊗ ∧tM̃) ◦ p̃∗ ◦ q∗H ◦ (γ1 ⊗ γ2).

By commutativity of the diagrams (4.11) and (4.2) we have p◦πJ̃◦α = (π1×π2)◦u,
where recall u = qH ◦ p̃. Hence we can rewrite the above composition as

(π1 × π2)∗ ◦ u∗ ◦ (−⊗ ωp̃ ⊗ ∧tM̃) ◦ u∗ ◦ (γ1 ⊗ γ2).

By the projection formula, the composition u∗ ◦ (−⊗ ωp̃ ⊗ ∧tM̃) ◦ u∗ is equivalent

to the functor given by tensoring with the object u∗(ωp̃⊗∧tM̃). But by Lemma 4.7
this object is isomorphic to ∧t(pr∗1M1 ⊕ pr∗2M2). Therefore, the functor we are
interested in is equivalent to the direct sum of the functors

(π1 × π2)∗ ◦ (−⊗ (∧t1pr∗1M1 ⊗ ∧t2pr∗2M2)) ◦ (γ1 ⊗ γ2),

over all t1 + t2 = t. It remains to note that each summand is isomorphic to the
corresponding summand in the right hand side of the statement of the proposition.

�
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4.4. Proof of the main theorem. The categorical join J(A1,A2) fits into a
P(V1 ⊕ V2)-linear semiorthogonal decomposition (3.5), which we can write in a
simplified form as

J̃(A1,A2) =
〈
J(A1,A2),⊥J(A1,A2)

〉
.

By Lemma 2.28 we have a semiorthogonal decomposition

H(J̃(A1,A2)) =
〈
H(J(A1,A2)),H(⊥J(A1,A2))

〉
.

The HPD category J(A1,A2)� is a P(V ∨
1 ⊕V ∨

2 )-linear subcategory of H(J(A1,A2)),

and hence also of H(J̃(A1,A2)).
We will prove the following more precise version of Theorem 4.1.

Theorem 4.9. Let A1 and A2 be right strong, moderate Lefschetz categories
over P(V1) and P(V2). The functor

γJ̃ : J̃
∨((A1)�, (A2)�) → H(J̃(A1,A2))

defined by (4.5) induces a Lefschetz equivalence between the subcategories

J((A1)�, (A2)�) ⊂ J̃∨((A1)�, (A2)�) and J(A1,A2)� ⊂ H(J̃(A1,A2)).

The following lemma guarantees that γJ̃ does indeed induce a functor between
the categories of interest.

Lemma 4.10. The image of the functor γJ̃ : J̃
∨((A1)�, (A2)�) → H(J̃(A1,A2)) is

contained in the HPD category J(A1,A2)� ⊂ H(J̃(A1,A2)).

Proof. By Lemmas 2.27 and 2.28 together with P(V ∨
1 ⊕ V ∨

2 )-linearity of the func-
tor γJ̃, it suffices to show that the image of πJ̃∗ ◦ γJ̃ is contained in the Lefschetz
center

J(A1,A2)0 ⊂ J(A1,A2) ⊂ J̃(A1,A2).

By Proposition 4.6, we have

πJ̃∗ ◦ γJ̃ 
 p∗ ◦ ((π1∗ ◦ γ1)⊗ (π2∗ ◦ γ2)) ◦ q∗.
By Lemma 2.27 the image of πk∗ ◦ γk is Ak

0 ⊂ Ak, hence the image of πJ̃∗ ◦ γJ̃ is
contained in p∗(A1

0⊗A2
0), which is nothing but J(A1,A2)0 by definition (3.12). �

By Lemma 4.10, the restriction of the functor γJ̃ to the P(V ∨
1 ⊕V ∨

2 )-linear sub-

category J((A1)�, (A2)�) ⊂ J̃∨((A1)�, (A2)�) induces a P(V ∨
1 ⊕ V ∨

2 )-linear functor

φ : J((A1)�, (A2)�) → J(A1,A2)�

which fits into a commutative diagram

(4.13)

J((A1)�, (A2)�)

j

��

φ
�� J(A1,A2)�

γ

��

J̃∨((A1)�, (A2)�)
γJ̃ �� H(J̃(A1,A2))

where j and γ are the inclusions. Our goal is to show φ is an equivalence of Lefschetz
categories. We will prove this by verifying the criteria of Lemma 2.7.

Lemma 4.11. The functor φ takes the center J((A1)�, (A2)�)0 ⊂ J((A1)�, (A2)�)

to the center J(A1,A2)�0 ⊂ J(A1,A2)�.
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Proof. By Proposition 2.30 we must show that for any C ∈ J((A1)�, (A2)�)0 and
t ≥ 1, we have

πJ̃∗(γJ̃(C)⊗ ∧tM) ∈ ⊥J(A1,A2)0.

Since J(A1,A2)0 = p∗(A1
0 ⊗A2

0), by adjunction the desired conclusion is equivalent
to

p!πJ̃∗(γJ̃(C)⊗ ∧tM) ∈ ⊥(A1
0 ⊗A2

0).

Since J((A1)�, (A2)�)0 = q∗((A1)�0 ⊗ (A2)�0), by Lemma A.1 we may assume that C

is of the form C = q∗(C1 � C2) for Ck ∈ (Ak)�0. Then by Proposition 4.8, we have

p!πJ̃∗(γJ̃(q
∗(C1�C2))⊗∧tM)


⊕
t1+t2=t

(π1∗(γ1(C1)⊗∧t1M1))⊗(π2∗(γ2(C2)⊗∧t2M2)).

By Proposition 2.30 again, we have

π1∗(γ1(C1)⊗ ∧t1M1) ∈ ⊥A1
0 if t1 ≥ 1,

π2∗(γ2(C2)⊗ ∧t2M2) ∈ ⊥A2
0 if t2 ≥ 1.

Since t ≥ 1, if t1 + t2 = t then either t1 ≥ 1 or t2 ≥ 1. It follows that if t1 ≥ 1
then the (t1, t2) summand in the above expression lies in (⊥A1

0)⊗A2, and if t2 ≥ 1
then it lies in A1⊗ (⊥A2

0). We conclude by Lemma A.6 that every summand in the
above expression lies in the subcategory ⊥(A1

0 ⊗A2
0), and hence so does their sum

p!πJ̃∗(γJ̃(q
∗(C1 � C2))⊗ ∧tM). �

Lemma 4.12. The functor φ induces an equivalence J((A1)�, (A2)�)0 
 J(A1,A2)�0.

Proof. Consider the diagram

J((A1)�, (A2)�)

j

��

φ
�� J(A1,A2)�

γ

��

J̃∨((A1)�, (A2)�)
γ
J̃ ��

q∗

�����
����

����
���

H(J̃(A1,A2))

π
J̃∗

����
���

���
���

�

(A1)� ⊗ (A2)�
γ1⊗γ2 �� H(A1)⊗H(A2)

π1∗⊗π2∗ �� A1 ⊗ A2
p∗

�� J̃(A1,A2),

where the top square is the commutative diagram (4.13), and the bottom part
commutes by Proposition 4.6. By Lemma 4.11, φ induces a functor

J((A1)�, (A2)�)0 → J(A1,A2)�0,

and by Lemma 2.23 the functor πJ̃∗ ◦ γ induces an equivalence

J(A1,A2)�0 
 J(A1,A2)0.

Hence it suffices to show the composition

πJ̃∗ ◦ γ ◦ φ 
 πJ̃∗ ◦ γJ̃ ◦ j 
 p∗ ◦ ((π1∗ ◦ γ1)⊗ (π2∗ ◦ γ2)) ◦ q∗ ◦ j
induces an equivalence J((A1)�, (A2)�)0 
 J(A1,A2)0. By the definitions of the
Lefschetz centers J((A1)�, (A2)�)0 and J(A1,A2)0, the functor q∗ ◦ j induces an

equivalence J((A1)�, (A2)�)0 
 (A1)�0 ⊗ (A2)�0 (note that q∗ ◦ q∗ 
 id as q is a P1-
bundle) and p∗ induces an equivalence A1

0 ⊗ A2
0 
 J(A1,A2)0. Hence it remains

to observe πk∗ ◦ γk induces an equivalence (Ak)�0 
 Ak
0 for k = 1, 2, again by

Lemma 2.23. �
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Lemma 4.13. The functor φ admits a left adjoint φ∗ : J(A1,A2)�→J((A1)�, (A2)�).

Proof. Consider the diagram (4.13). The functor γJ̃ has a left adjoint γ∗
J̃

by
Lemma 4.4, and the functor j has a left adjoint j∗ by Lemma 3.12. Since the
functor γ is fully faithful, it follows that j∗ ◦ γ∗

J̃
◦ γ is left adjoint to φ. �

Lemma 4.14. The functor φ∗ induces an equivalence J(A1,A2)�0
J((A1)�, (A2)�)0.

Proof. By Lemma 2.23 the functor γ∗ ◦ π∗
J̃
: J̃(A1,A2) → J(A1,A2)� induces an

equivalence J(A1,A2)0 
 J(A1,A2)�0. So, it suffices to show that the composition
φ∗ ◦ γ∗ ◦ π∗

J̃
induces an equivalence J(A1,A2)0 
 J((A1)�, (A2)�)0.

On the one hand, by taking left adjoints in the diagram (4.13) and composing
with π∗

J̃
we obtain

φ∗ ◦ γ∗ ◦ π∗
J̃

 j∗ ◦ γ∗

J̃
◦ π∗

J̃
.

On the other hand, taking left adjoints in Proposition 4.6 and composing with j∗

gives
j∗ ◦ γ∗

J̃
◦ π∗

J̃

 j∗ ◦ q∗ ◦ ((γ∗

1 ◦ π∗
1)⊗ (γ∗

2 ◦ π∗
2)) ◦ p!.

So it suffices to show the right side induces an equivalence

J(A1,A2)0 
 J((A1)�, (A2)�)0.

By the definitions of J(A1,A2)0 and J((A1)�, (A2)�))0, the functor p! induces an
equivalence J(A1,A2)0 
 A1

0 ⊗ A2
0 (note that p! ◦ p∗ 
 id as p is a P1-bundle)

and j∗ ◦ q∗ induces an equivalence (A1)�0 ⊗ (A2)�0 
 J((A1)�, (A2)�)0. Hence it

remains to observe γ∗
k ◦ π∗

k induces an equivalence Ak
0 
 (Ak)�0 for k = 1, 2, again

by Lemma 2.23. �
Proof of Theorems 4.9 and 4.1. Lemmas 4.12, 4.13, and 4.14 verify the criteria of
Lemma 2.7 for the functor

φ : J((A1)�, (A2)�) → J(A1,A2)�

to be an equivalence of Lefschetz categories. This completes the proof of Theo-
rem 4.9, and hence also of Theorem 4.1. �

5. Nonlinear HPD theorems

In §5.1 we prove a nonlinear version of the main theorem of HPD (Theorem 2.24).
We give an extension of this result in §5.2, which describes the tensor product of
an arbitrary number of Lefschetz categories over a projective bundle in terms of a
linear section of the categorical join of their HPD categories.

5.1. The nonlinear HPD theorem. Recall that if A1 and A2 are Lefschetz cat-
egories over P(V1) and P(V2), then Theorem 3.21 provides their categorical join
J(A1,A2) with the structure of a Lefschetz category over P(V1 ⊕ V2). We denote
by Ji, i ∈ Z, the Lefschetz components of the categorical join J(A1,A2), defined
by (3.15) and (3.16).

Lemma 5.1. Let A1 and A2 be Lefschetz categories over P(V1) and P(V2). For
i ∈ Z let Ji be the Lefschetz components of the categorical join J(A1,A2). Set

m = length(J(A1,A2)) = length(A1) + length(A2).

Let W ⊂ V1⊕V2 be a subbundle of corank s, and denote by H the relative hyperplane
class on P(W ). Then the functor J(A1,A2) → J(A1,A2)P(W ) induced by pullback
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along the embedding P(W ) → P(V1 ⊕ V2) is fully faithful on Ji for |i| ≥ s, and
there are semiorthogonal decompositions

J(A1,A2)P(W ) =
〈
KW (J(A1,A2)), Js(H), . . . , Jm−1((m− s)H)

〉
,

=
〈
J1−m((s−m)H), . . . , J−s(−H),K′

W (J(A1,A2))
〉
.

Proof. Follows by combining Theorem 3.21 and Lemma 2.14. �

Now assume that the compositions W → V1 ⊕ V2 → V1 and W → V1 ⊕ V2 → V2

are both inclusions, that is P(W ) ⊂ P(V1 ⊕ V2) is contained in the complement of
P(V1) �P(V2). Then Proposition 3.17 gives an equivalence

(5.1) J(A1,A2)P(W ) 
 A1
P(W ) ⊗Perf(P(W )) A

2
P(W ).

If s denotes the corank of W ⊂ V1 ⊕ V2, then by this equivalence and Lemma 5.1
for |i| ≥ s we may consider the Lefschetz component Ji of the categorical join
J(A1,A2) as a subcategory of A1

P(W ) ⊗Perf(P(W )) A
2
P(W ).

Remark 5.2. In the above situation, we can directly describe Ji, |i| ≥s, as a sub-
category of A1

P(W )⊗Perf(P(W ))A
2
P(W ), without reference to categorical joins. First

note that Ji as a subcategory of J(A1,A2) is the image under the functor p∗ of the
subcategory J̄i ⊂ A1 ⊗ A2 described explicitly in Lemma 3.24. Hence for |i| ≥ s,
the subcategory

Ji ⊂ A1
P(W ) ⊗Perf(P(W )) A

2
P(W )

is the fully faithful image of J̄i under the composition

(5.2) A1 ⊗A2 p∗

−−−→ J(A1,A2) → J(A1,A2)P(W )
∼−−→ A1

P(W ) ⊗Perf(P(W )) A
2
P(W ),

where the second functor is given by base change along P(W ) → P(V1 ⊕ V2). It
remains to describe this composition without reference to categorical joins. The
inclusions W → V1 and W → V2 induce a morphism P(W ) → P(V1)×P(V2). Base
changing the P(V1) × P(V2)-linear category A1 ⊗ A2 along this morphism gives a
functor

A1 ⊗A2 → (A1 ⊗A2)⊗Perf(P(V1)×P(V2)) Perf(P(W ))(5.3)


 A1
P(W ) ⊗Perf(P(W )) A

2
P(W ),

where the equivalence is given by Corollary A.8. Alternatively, (5.3) is given by
the tensor product of the restriction functors A1 → A1

P(W ) and A2 → A2
P(W ).

Unwinding the definitions shows the functors (5.2) and (5.3) are isomorphic.

Combining Lemma 5.1 with the equivalence (5.1) we arrive at the following
nonlinear analogue of Lemma 2.14, which describes linear sections of Lefschetz
categories. Note that although by Remark 5.2 this result can be stated without
categorical joins, the proof uses them.

Corollary 5.3. In the setup of Lemma 5.1, assume that the subbundle W ⊂ V1⊕V2

is such that the compositions W → V1 ⊕ V2 → V1 and W → V1 ⊕ V2 → V2 are both
inclusions. Then there are semiorthogonal decompositions

A1
P(W ) ⊗Perf(P(W )) A

2
P(W ) =

〈
KW (A1,A2), Js(H), . . . , Jm−1((m− s)H)

〉
,

=
〈
J1−m((s−m)H), . . . , J−s(−H),K′

W (A1,A2)
〉
.
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Remark 5.4. If the maps W → V1 ⊕ V2 → V1 and W → V1 ⊕ V2 → V2 are
isomorphisms and A2 = Perf(P(L)) for a subbundle L ⊂ V2, then Corollary 5.3
reduces to Lemma 2.14.

Now we arrive at the nonlinear HPD theorem. Like Corollary 5.3, the statement
can be explained without appealing to categorical joins, but the proof uses them.

Theorem 5.5. Let A1 and A2 be right strong, moderate Lefschetz categories over

projective bundles P(V1) and P(V2). For i, j ∈ Z let Ji and J
�
j be the Lefschetz

components of the categorical joins J(A1,A2) and J((A1)�, (A2)�) respectively. As-
sume V1 and V2 have the same rank, and set

N = rank(V1) = rank(V2).

Let W be a vector bundle on S equipped with isomorphisms

ξk : W
∼−→ Vk, k = 1, 2,

and let

(ξ∨k )
−1 : W∨ ∼−→ V ∨

k , k = 1, 2,

be the inverse dual isomorphisms. Set

m = length(A1) + length(A2) and n = length((A1)�) + length((A2)�).

Denote by H and H ′ the relative hyperplane classes on P(W ) and P(W∨). Then
there are semiorthogonal decompositions

A1
P(W ) ⊗Perf(P(W )) A

2
P(W )

=
〈
KW (A1,A2), JN (H), . . . , Jm−1((m−N)H)

〉
,

(A1)�P(W∨)⊗Perf(P(W∨))(A
2)�P(W∨)

=
〈
J
�
1−n((N − n)H ′), . . . , J�−N (−H ′),K′

W∨((A1)�, (A2)�)
〉
,

where we consider Ji and J
�
j as subcategories in the left sides as explained in Re-

mark 5.2. Furthermore, we have an S-linear equivalence

KW (A1,A2) 
 K′
W∨((A1)�, (A2)�).

Proof. Consider the inclusion of vector bundles

(ξ1, ξ2) : W → V1 ⊕ V2 = V.

The orthogonal subbundle is given by the inclusion of vector bundles

((ξ∨1 )
−1,−(ξ∨2 )

−1) : W∨ → V ∨
1 ⊕ V ∨

2 = V ∨.

Now the semiorthogonal decompositions follow from Corollary 5.3, and the equiv-
alence of categories follows from a combination of (5.1) with Theorem 4.1 and
Theorem 2.24(2), noting that −(ξ∨2 )

−1 and (ξ∨2 )
−1 induce the same morphism

P(W∨) → P(V ∨
2 ). �

Remark 5.6. As we already mentioned, Theorem 5.5 can be regarded as a nonlinear
version of the main theorem of HPD, i.e. Theorem 2.24(2). Indeed, consider the
linear duality of Example 2.19, where A2 = Perf(P(L)) for a subbundle 0 � L � V2

and (A2)� 
 Perf(P(L⊥)). Now ifW = V1 = V2 and ξ1 = ξ2 = id, then Theorem 5.5
reduces to Theorem 2.24(2).
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In the following remark, we explain how to deduce results for bounded derived
categories of coherent sheaves in place of perfect complexes.

Remark 5.7. Given a proper T -linear category A, where T is noetherian over a
field of characteristic 0, in [32, Definition 4.27] a bounded coherent category Acoh is
defined. In case X → T is a proper morphism of finite presentation, where X is
possibly a derived scheme, then Perf(X)coh recovers Db

coh(X).
By [32, Proposition 4.28], a semiorthogonal decomposition of A (with all com-

ponents except possibly the first or last admissible) induces a semiorthogonal de-
composition of Acoh. This gives rise to a bounded coherent version of Theorem 5.5.

Namely, assume the categories Ji and J
�
j appearing in the semiorthogonal decom-

positions of

C = A1
P(W ) ⊗Perf(P(W )) A

2
P(W ) and D = (A1)�P(W∨)⊗Perf(P(W∨))(A

2)�P(W∨)

are admissible. For instance, this is automatic if A1 and A2 are smooth and proper
over S, by Lemma 3.14 combined with [32, Lemmas 4.15 and 4.13]. Then there are
semiorthogonal decompositions

Ccoh =
〈
(KW (A1,A2))coh, (JN )coh(H), . . . , (Jm−1)

coh((m−N)H)
〉
,

(5.4)

Dcoh =
〈
(J�1−n)

coh((N − n)H ′), . . . , (J�−N )coh(−H ′), (K′
W∨((A1)�, (A2)�))coh

〉
,

(5.5)

and an S-linear equivalence

(KW (A1,A2))coh 
 (K′
W∨((A1)�, (A2)�))coh.

Note that if Ak = Perf(Xk) for a P(Vk)-scheme Xk, then there is an equivalence

C 
 Perf
(
(X1)P(W ) ×P(W ) (X2)P(W )

)
.

Hence if our base S is noetherian over a field of characteristic 0 and Xk → P(Vk)
is a proper morphism, then there is an equivalence

Ccoh 
 Db
coh

(
(X1)P(W ) ×P(W ) (X2)P(W )

)
.

Note that in both formulas above the fiber product is derived (and hence agrees
with the usual fiber product of schemes when Tor-independence holds).

5.2. An iterated nonlinear HPD theorem. Theorem 5.5 describes the tensor
product of two Lefschetz categories over a projective bundle in terms of their HPD
categories. This generalizes to a description of the tensor product of an arbitrary
number of Lefschetz categories over a projective bundle. The key point is to consider
iterated categorical joins of a collection of Lefschetz categories.

Definition 5.8. For k = 1, 2, . . . , �, let Ak be a Lefschetz category over P(Vk).
The categorical join of A1, . . . ,A	 is the Lefschetz category over P(V1 ⊕ · · · ⊕ V	)
defined inductively by the formula

J(A1, . . . ,A	) = J(J(A1, . . . ,A	−1),A	).

Remark 5.9. As the notation suggests, the operation of taking a categorical join is
associative in the sense that there is a Lefschetz equivalence

J(J(A1,A2),A3) 
 J(A1, J(A2,A3)).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CATEGORICAL JOINS 549

To see this one can define the universal “triple resolved join” J̃(P(V1),P(V2),P(V3))
as

J̃(P(V1),P(V2),P(V3)) = PP(V1)×P(V2)×P(V3)(O(−H1)⊕ O(−H2)⊕ O(−H3)),

where Hk are the hyperplane classes of P(Vk). There are three sections

σk : P(V1)×P(V2)×P(V3) ↪→ J̃(P(V1),P(V2),P(V3)), k = 1, 2, 3,

corresponding to the embeddings O(−Hk) → O(−H1)⊕ O(−H2)⊕ O(−H3). Let

J̃(A1,A2,A3)=(A1⊗A2⊗A3)⊗Perf(P(V1)×P(V2)×P(V3))Perf(J̃(P(V1),P(V2),P(V3))),

and define the “triple categorical join” as

J(A1,A2,A3)=

⎧⎪⎨⎪⎩C∈ J̃(A1,A2,A3)

∣∣∣∣∣∣∣
σ∗
1(C) ∈ A1 ⊗A2

0 ⊗A3
0 ⊂ A1 ⊗A2 ⊗A3,

σ∗
2(C) ∈ A1

0 ⊗A2 ⊗A3
0 ⊂ A1 ⊗A2 ⊗A3,

σ∗
3(C) ∈ A1

0 ⊗A2
0 ⊗A3 ⊂ A1 ⊗A2 ⊗A3

⎫⎪⎬⎪⎭ .

It is not a priori clear whether J(A1,A2,A3) is an admissible subcategory in

J̃(A1,A2,A3). Note, however, that J̃(A1,A2,A3) has a P(V1⊕V2⊕V3)-linear struc-

ture induced by the natural morphism J̃(P(V1),P(V2),P(V3)) → P(V1 ⊕ V2 ⊕ V3),

and that J(A1,A2,A3) ⊂ J̃(A1,A2,A3) is a P(V1 ⊕ V2 ⊕ V3)-linear subcategory.
Moreover, if

ρ : J̃(P(V1),P(V2),P(V3)) → P(V1)×P(V2)×P(V2)

is the projection, then the induced functor ρ∗ : A1⊗A2⊗A3 → J̃(A1,A2,A3) gives
a fully faithful embedding A1

0 ⊗A2
0 ⊗A3

0 ↪→ J(A1,A2,A3), whose image we denote
by J(A1,A2,A3)0.

There is a morphism

J̃(J̃(P(V1),P(V2)),P(V3))

3−−−→ J̃(P(V1),P(V2),P(V3)),

identifying the iterated resolved join J̃(J̃(P(V1),P(V2)),P(V3)) with the blowup of
the image of the section σ3. The key observation is that the morphism �∗

3 induces
a P(V1 ⊕ V2 ⊕ V3)-linear equivalence

J(A1,A2,A3) 
 J(J(A1,A2),A3),

which takes the subcategory J(A1,A2,A3)0 to the Lefschetz center J(J(A
1,A2),A3)0.

Indeed, it is straightforward to check that �∗
3 gives a P(V1 ⊕ V2 ⊕ V3)-linear

fully faithful functor J(A1,A2,A3) ↪→ J(J(A1,A2),A3) that takes J(A1,A2,A3)0
to J(J(A1,A2),A3)0, and then essential surjectivity of this functor follows from
P(V1 ⊕ V2 ⊕ V3)-linearity and the fact that the image contains J(J(A1,A2),A3)0.
Therefore, J(A1,A2,A3) has the structure of a Lefschetz category over the projec-
tive bundle P(V1 ⊕ V2 ⊕ V3) with center J(A1,A2,A3)0, and there is an equiva-
lence J(A1,A2,A3) 
 J(J(A1,A2),A3) of Lefschetz categories. It also follows that

J(A1,A2,A3) is admissible in J̃(A1,A2,A3), but we do not need this.
Replacing the image of σ3 by the image of σ1 and �3 by the analogous mor-

phism �1, we also obtain a Lefschetz equivalence J(A1,A2,A3) 
 J(A1, J(A2,A3)).
A combination of these two equivalences proves associativity of the categorical join.

Finally, we note that the associativity of categorical joins is also addressed in
[10], and that our definition of the triple categorical join answers the question from
[10, Remark B.1].

As an immediate consequence of Theorem 4.1, we obtain the following.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

550 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

Theorem 5.10. For k = 1, 2, . . . , �, let Ak be a right strong, moderate Lefschetz
category over P(Vk). Then there is an equivalence

J(A1, . . . ,A	)� 
 J((A1)�, . . . , (A	)�)

of Lefschetz categories over P(V ∨
1 ⊕ · · · ⊕ V ∨

	 ).

For k = 1, 2, . . . , �, let Ak be a Lefschetz category over P(Vk). Let Ji, i ∈ Z, be
the Lefschetz components of the categorical join J(A1, . . . ,A	). If W ⊂ V1⊕· · ·⊕V	

is a subbundle of corank s, then by Lemma 2.14 the functor

Ji ↪→ J(A1, . . . ,A	) → J(A1, . . . ,A	)P(W )

is fully faithful for |i| ≥ s, so we can consider Ji as a subcategory of
J(A1, . . . ,A	)P(W ). If moreover the composition W → V1 ⊕ · · · ⊕ V	 → Vk is an
inclusion of vector bundles for each k, then Proposition 3.17 gives an equivalence

(5.6) J(A1, . . . ,A	)P(W ) 
 A1
P(W ) ⊗Perf(P(W )) · · · ⊗Perf(P(W )) A

	
P(W ),

so in this case we can consider Ji as a subcategory of the right side as soon as |i| ≥ s.
Finally, this subcategory can be described as in Remark 5.2 without appealing to
categorical joins, as the image of an explicit subcategory of A1 ⊗ · · · ⊗A	 (defined
along the lines of Lemma 3.24) under the functor given by base change along the
induced morphism P(W ) → P(V1)×· · ·×P(V	). Combining Lemma 2.14 with the
equivalence (5.6), we obtain the following iterated version of Corollary 5.3.

Proposition 5.11. For k = 1, 2, . . . , �, let Ak be a Lefschetz category over P(Vk).
For i ∈ Z let Ji be the Lefschetz components of the categorical join J(A1, . . . ,A	).
Let W be a vector bundle on S equipped with inclusions of vector bundles W → Vk

for all k. Set

m =
∑
k

length(Ak) and s =
∑
k

rank(Vk)− rank(W ).

Denote by H the relative hyperplane class on P(W ). Then there are semiorthogonal
decompositions

A1
P(W )⊗Perf(P(W )) · · · ⊗Perf(P(W ))A

	
P(W )

=
〈
KW (A1, . . . ,A	), Js(H), . . . , Jm−1((m− s)H)

〉
,

=
〈
J1−m((s−m)H), . . . , J−s(−H),K′

W (A1, . . . ,A	)
〉
.

Now we state the iterated nonlinear HPD theorem, which describes the categories
KW (A1, . . . ,A	) in terms of the HPD categories (Ak)� and reduces to Theorem 5.5
when � = 2. When � > 2, the description is in terms of the categorical join of the
categories (Ak)�, and cannot be expressed in terms of a tensor product of the (Ak)�

over a projective bundle.

Theorem 5.12. For k = 1, 2, . . . , �, let Ak be a right strong, moderate Lefschetz

category over P(Vk). For i, j ∈ Z let Ji and J
�
j be the Lefschetz components of the

categorical joins J(A1, . . . ,A	) and J((A1)�, . . . , (A	)�). Let W be a vector bundle
on S equipped with inclusions of vector bundles

ξk : W → Vk, k = 1, . . . , �,
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and let

W⊥ =

{
(θ1, . . . , θ	) ∈ V ∨

1 ⊕ · · · ⊕ V ∨
	 |

∑
k

θk ◦ ξk = 0 ∈ W∨

}
⊂ V ∨

1 ⊕ · · · ⊕ V ∨
	

be the orthogonal to the induced inclusion W → V1⊕· · ·⊕V	. Let H and H ′ denote
the relative hyperplane classes on P(W ) and P(W⊥), and set

r = rank(W ), s = rank(W⊥), m =
∑
k

length(Ak), n =
∑
k

length((Ak)�).

Then there are semiorthogonal decompositions

A1
P(W ) ⊗Perf(P(W )) · · · ⊗Perf(P(W )) A

	
P(W )

=
〈
KW (A1, . . . ,A	), Js(H), . . . , Jm−1((m− s)H)

〉
,

J((A1)�, . . . , (A	)�)P(W⊥)

=
〈
J
�
1−n((r − n)H ′), . . . , J�−r(−H ′),K′

W⊥(J((A
1)�, . . . , (A	)�))

〉
,

and an S-linear equivalence

KW (A1, . . . ,A	) 
 K′
W⊥(J((A

1)�, . . . , (A	)�)).

Proof. The argument of Theorem 5.5 works, using Proposition 5.11, the equiva-
lence (5.6), and Theorem 5.10 in place of the corresponding results for � = 2. �

Remark 5.13. In Theorem 5.12 we do not require ξk : W → Vk to be an isomor-
phism, as in Theorem 5.5. The reason is that this assumption does not lead to a
simplification in the statement of the conclusion when � > 2.

6. Applications

In this section, we discuss some applications of HPD for categorical joins (Theo-
rem 4.1) and the nonlinear HPD theorem (Theorem 5.5). For simplicity, we assume
the base scheme S is the spectrum of an algebraically closed field k of characteris-
tic 0.

6.1. Intersections of two Grassmannians. Let V5 be a 5-dimensional vector
space and let Gr(2, V5) be the Grassmannian of 2-dimensional vector subspaces
of V5. Note that we have Gr(2, V5) ⊂ P(∧2V5) ∼= P9 via the Plücker embedding.

Theorem 6.1. Let V5 be a 5-dimensional vector space. Let W be a vector space
equipped with two isomorphisms

ξ1 : W
∼−→ ∧2V5, ξ2 : W

∼−→ ∧2V5,

and let

ξ∨1 : ∧2 V ∨
5

∼−→ W∨, ξ∨2 : ∧2 V ∨
5

∼−→ W∨

be the dual isomorphisms. Consider the derived fiber products

X = ξ−1
1 (Gr(2, V5))×P(W ) ξ

−1
2 (Gr(2, V5)),

Y = ξ∨1 (Gr(2, V ∨
5 ))×P(W∨) ξ

∨
2 (Gr(2, V ∨

5 )).

Then there are equivalences of categories

Perf(X) 
 Perf(Y ) and Db
coh(X) 
 Db

coh(Y ).
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Proof. By [12, Section 6.1 and Theorem 1.2], the Grassmannian Gr(2, V5) is ho-
mologically projectively self-dual. More precisely, let U and U′ be the tautolog-
ical rank 2 subbundles on Gr(2, V5) and Gr(2, V ∨

5 ). Then Perf(Gr(2, V5)) and
Perf(Gr(2, V ∨

5 )) have the structure of strong, moderate Lefschetz categories over
P(∧2V5) and P(∧2V ∨

5 ) of length 5, with Lefschetz components given by

Ai = 〈O,U∨〉 and A′
i = 〈U′,O〉

for |i| ≤ 4, and there is an equivalence

Perf(Gr(2, V5))
� 
 Perf(Gr(2, V ∨

5 ))

of Lefschetz categories over P(∧2V ∨
5 ). Now the first equivalence of the theorem

follows by applying Theorem 5.5, and the second follows by Remark 5.7. �

Remark 6.2. When smooth of the expected dimension 3, the varieties X and Y in
Theorem 6.1 are Calabi–Yau threefolds (and the fiber products are underived). For
a generic choice of the isomorphisms ξ1 and ξ2, this pair of varieties was recently
shown to give the first example of deformation equivalent, derived equivalent, but
non-birational Calabi–Yau threefolds, and as a consequence the first counterexam-
ple to the birational Torelli problem for Calabi–Yau threefolds [5, 31].

There is a similar construction with Gr(2, V5) replaced by an orthogonal Grass-
mannian. For a vector space V of even dimension 2n with a nondegenerate qua-
dratic form q ∈ Sym2 V ∨, the Grassmannian of n-dimensional isotropic subspaces
of V has two connected components, which are abstractly isomorphic. We de-
note by OGr+(n, V ) one of these components and by OGr−(n, V ) the other. The
Plücker embedding OGr+(n, V ) → P(∧nV ) is given by the square of the generator
of Pic(OGr+(n, V )); the generator itself gives an embedding

OGr+(n, V ) → P(S2n−1),

where S2n−1 is a 2n−1-dimensional half-spinor representation of Spin(V ).
In the case of a 10-dimensional vector space V10, the orthogonal Grassmannian in

its spinor embedding OGr+(5, V10) ⊂ P(S16) shares a very special property with the
Grassmannian Gr(2, V5) ⊂ P(∧2V5): both are projectively self-dual, and even ho-
mologically projectively self-dual. To be more precise, the classical projective dual
of OGr+(5, V10) ⊂ P(S16) is given by the spinor embedding OGr−(5, V10) ⊂ P(S∨16).
Like the case of Gr(2, V5), this persists at the level of HPD by [12, Section 6.2 and
Theorem 1.2]. The same argument as in Theorem 6.1 then proves the following
spin analogue.

Theorem 6.3. Let V10 be a 10-dimensional vector space, and let S16 be a half-
spinor representation of Spin(V10). Let W be a vector space equipped with two
isomorphisms

ξ1 : W
∼−→ S16, ξ2 : W

∼−→ S16,

and let

ξ∨1 : S∨16
∼−→ W∨, ξ∨2 : S∨16

∼−→ W∨

be the dual isomorphisms. Consider the derived fiber products

X = ξ−1
1 (OGr+(5, V10))×P(W ) ξ

−1
2 (OGr+(5, V10)),

Y = ξ∨1 (OGr−(5, V10))×P(W∨) ξ
∨
2 (OGr−(5, V10)).
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Then there are equivalences of categories

Perf(X) 
 Perf(Y ) and Db
coh(X) 
 Db

coh(Y ).

Remark 6.4. When smooth of the expected dimension 5, the varieties X and Y in
Theorem 6.3 are Calabi–Yau fivefolds (and the fiber products are underived), which
were recently studied in [29]. There, following [5,31] it is shown that for generic ξ1
and ξ2, these varieties are non-birational.

6.2. Enriques surfaces. The goal of this subsection is to prove that for a general
Enriques surface Σ, there is a stacky projective plane P (with stack structure along
the union of two cubic curves), such that the subcategory 〈OΣ〉⊥ ⊂ Perf(Σ) is
equivalent to the orthogonal of an exceptional object in the twisted derived category
of P. The precise statement is Theorem 6.16. As we will see, the result falls out
naturally by considering the categorical join of two Veronese surfaces.

Let W be a 3-dimensional vector space, and let V = Sym2 W . The double
Veronese embedding P(W ) → P(V ), given by the linear system |OP(W )(2)|, endows
Perf(P(W )) with a P(V )-linear structure. Below we will consider Perf(P(W )) as
a Lefschetz category over P(V ) of length 2, with right Lefschetz components given
by

Ai =

{
〈OP(W ),OP(W )(1)〉 for i = 0,

〈OP(W )〉 for i = 1.

We call this the double Veronese Lefschetz structure on P(W ), to distinguish it
from the standard Lefschetz structure on a projective space from Example 2.13.

We need the description of the HPD of Perf(P(W )) from [14]. The universal
family of conics inP(W ) is a conic fibration overP(V ∨). Associated to this fibration
are the sheaves Cliff0 and Cliff1 of even and odd parts of the corresponding Clifford
algebra on P(V ∨), which as sheaves of OP(V ∨)-modules are given by

Cliff0 = OP(V ∨) ⊕
(
∧2W ⊗ OP(V ∨)(−1)

)
,(6.1)

Cliff1 =
(
W ⊗ OP(V ∨)

)
⊕

(
∧3W ⊗ OP(V ∨)(−1)

)
.(6.2)

Note that Cliff0 is a sheaf of OP(V ∨)-algebras via Clifford multiplication, and Cliff1

is a (locally projective) module over Cliff0. Before continuing, we need a brief
digression on the noncommutative scheme associated to a sheaf of algebras.

Notation 6.5. Suppose X is a scheme (or stack) equipped with a sheaf R of OX -
algebras, such that R is finite locally free over OX . We denote by Dqc(X,R)
the unbounded derived category of quasi-coherent sheaves of R-modules, and by
Perf(X,R) ⊂ Dqc(X,R) the full subcategory of objects which are perfect as com-
plexes of R-modules.

Remark 6.6. In the above situation, Perf(X,R) naturally has the structure of an
X-linear category. Moreover, there is a geometric description of tensor products of
categories of this form. Namely, let (X1,R1) and (X2,R2) be two pairs as in Nota-
tion 6.5, and assume X1 and X2 are defined over a common scheme T , so that both
Perf(X1,R1) and Perf(X2,R2) can be considered as T -linear categories. Assume X1

and X2 are perfect stacks in the sense of [3]. Then there is an equivalence

Perf(X1,R1)⊗Perf(T ) Perf(X2,R2) 
 Perf(X1 ×T X2,R1 � R2),
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where the fiber product on the right side is derived. This is a mild generalization
of the case where R1 = OX1

and R2 = OX2
proved in [3], and follows by the same

argument. See also [12] for the case where R1 and R2 are Azumaya algebras.

We consider the P(V ∨)-linear category Perf(P(V ∨),Cliff0). From Cliff0 and
Cliff1 we obtain exceptional objects Cliffi ∈ Perf(P(V ∨),Cliff0) for all i ∈ Z by the
prescription

Cliffi+2 = Cliffi ⊗OP(V ∨)(1).

Theorem 6.7 ([14, Theorem 5.4]). The category Perf(P(V ∨),Cliff0) has a Lef-
schetz structure over P(V ∨) of length 5, with left Lefschetz components given by

Bi =

{
〈Cliff0〉 for i = −4,

〈Cliff−1,Cliff0〉 for −3 ≤ i ≤ 0.

Moreover, there is an equivalence

Perf(P(W ))� 
 Perf(P(V ∨),Cliff0)

of Lefschetz categories over P(V ∨), where P(W ) is considered with its double
Veronese Lefschetz structure.

Remark 6.8. In [14], an HPD theorem is proved more generally for the double
Veronese embedding of P(W ) where W is of arbitrary dimension.

Now we consider the categorical join of two copies of the above data. Namely,
for k = 1, 2, let Wk be a 3-dimensional vector space, let Vk = Sym2 Wk, and let
Cliffk

i , i ∈ Z, denote the Clifford sheaves on P(V ∨
k ) from above. We set

Ak = Perf(P(Wk))

with the double Veronese Lefschetz structure over P(Vk), and

Bk = Perf(P(V ∨
k ),Cliffk

0)

with the Lefschetz structure over P(V ∨
k ) from above.

By Theorem 3.21, the categorical join J(A1,A2) is a Lefschetz category over
P(V1 ⊕ V2) of length 4, and J(B1,B2) is a Lefschetz category over P(V ∨

1 ⊕ V ∨
2 ) of

length 10. Moreover, it follows from Lemma 3.24 that the right Lefschetz compo-
nents of J(A1,A2) are given by

J(A1,A2)i =

⎧⎪⎨⎪⎩
〈O,O(1, 0),O(0, 1),O(1, 1)〉 if i = 0, 1,

〈O,O(1, 0),O(0, 1)〉 if i = 2,

〈O〉 if i = 3,

and the left Lefschetz components of J(B1,B2) are given by

J(B1,B2)i =

⎧⎪⎨⎪⎩
〈Cliff0,0〉 if i = −9,

〈Cliff−1,0,Cliff0,−1,Cliff0,0〉 if i = −8,

〈Cliff−1,−1,Cliff−1,0,Cliff0,−1,Cliff0,0〉 if −7 ≤ i ≤ 0,

where we write Cliffi1,i2 = Cliff1
i1 �Cliff2

i2 , and when we write O(i1, i2) or Cliffi1,i2

in the right-hand sides of the above equalities we mean the pullbacks of the corre-
sponding objects of Perf(P(W1)×P(W2)) and Perf(P(V ∨

1 )×P(V ∨
2 ),Cliff1

0 �Cliff2
0).

By Theorem 4.1 combined with Theorem 6.7, there is an equivalence

J(A1,A2)� 
 J(B1,B2)
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of Lefschetz categories over P(V ∨
1 ⊕ V ∨

2 ).
Now let L ⊂ V1⊕V2 be a vector subspace of codimension 3. Then combining the

above with Theorem 2.24(2) (and twisting appropriately), we obtain the following.

Corollary 6.9. There are semiorthogonal decompositions

J(A1,A2)P(L) = 〈KL,O〉,
J(B1,B2)P(L⊥) = 〈Cliff1

0 �Cliff2
0,K

′
L〉,

and an equivalence KL 
 K′
L.

Our goal below is to describe geometrically the linear section categories appearing
in Corollary 6.9 for generic L.

First we consider the category J(A1,A2)P(L) = J(P(W1),P(W2))P(L). The re-

solved join J̃(P(W1),P(W2)) of P(W1) and P(W2) with respect to their double
Veronese embeddings is a P(V1 ⊕ V2)-scheme. We define ΣL as its base change
along P(L) ⊂ P(V1 ⊕ V2), i.e.

ΣL = J̃(P(W1),P(W2))P(L).

Lemma 6.10. Assume P(L) does not intersect P(W1) � P(W2) in P(V1 ⊕ V2).
Then there is an equivalence

J(A1,A2)P(L) 
 Perf(ΣL).

Proof. Follows from Proposition 3.17. �

The assumption of Lemma 6.10 holds generically. In this case, ΣL is a familiar
variety:

Lemma 6.11 ([20, Lemma 3]). For generic L ⊂ V1 ⊕ V2 of codimension 3, the
scheme ΣL is an Enriques surface. Moreover, a general Enriques surface is obtained
in this way.

Now we turn to J(B1,B2)P(L⊥). Note that dim(L⊥) = 3, so P(L⊥) ∼= P2.

Lemma 6.12. For k = 1, 2, assume the composition L⊥ → V ∨
1 ⊕ V ∨

2 → V ∨
k is an

inclusion. Let Cliffk
0 |P(L⊥) denote the pullback of Cliffk

0 along the induced embedding

P(L⊥) → P(V ∨
k ). Then there are equivalences

J(B1,B2)P(L⊥)(6.3)


 Perf
(
P(L⊥),Cliff1

0 |P(L⊥)

)
⊗Perf(P(L⊥)) Perf

(
P(L⊥),Cliff2

0 |P(L⊥)

)

 Perf

(
P(L⊥), (Cliff1

0 �Cliff2
0)|P(L⊥)

)
.

Proof. The first equivalence follows from Proposition 3.17 combined with
Remark 6.6, and the second follows by applying Remark 6.6 again. �

The assumption of Lemma 6.12 is equivalent to P(L⊥) not meeting P(V ∨
1 ) or

P(V ∨
2 ) in P(V ∨

1 ⊕V ∨
2 ), and holds generically for dimension reasons. In this case, we

will give a more geometric description of J(B1,B2)P(L⊥) by rewriting the factors
in the tensor product in (6.3). Being the base of the universal family of conics
Xk → P(V ∨

k ) in P(Wk), the space P(V ∨
k ) has a stratification

P(W∨
k ) ⊂ Dk ⊂ P(V ∨

k ),
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where Dk ⊂ P(V ∨
k ) is the discriminant locus parameterizing degenerate conics and

P(W∨
k ) ⊂ P(V ∨

k ) is the double Veronese embedding, which parameterizes non-
reduced conics (double lines). Note that Dk ⊂ P(V ∨

k ) is a cubic hypersurface, with
singular locus P(W∨

k ).
Under the assumption of Lemma 6.12, for k = 1, 2, we have an embedding

ξk : P(L⊥) → P(V ∨
k ).

The stratification of the projective plane P(L⊥) associated to the pullback family
of conics (Xk)P(L⊥) → P(L⊥) is the preimage of the stratification of P(V ∨

k ), i.e.

ξ−1
k (P(W∨

k )) ⊂ ξ−1
k (Dk) ⊂ P(L⊥).

We write Ck = ξ−1
k (Dk) for the discriminant locus. Note that for L ⊂ V1 ⊕ V2

generic, the locus ξ−1
k (P(W∨

k )) is empty, Ck is a smooth cubic curve in the projective

plane P(L⊥), and the curves C1 and C2 intersect transversally. We define

Pk = P(L⊥)(
√
Ck)

as the square root stack (see [6, §2.2] or [1, Appendix B]) of the divisor Ck ⊂ P(L⊥).
Note that Pk is a Deligne–Mumford stack with coarse moduli space

ρk : Pk → P(L⊥),

where ρk is an isomorphism over P(L⊥) \ Ck and a Z/2-gerbe over Ck.

Lemma 6.13. For k = 1, 2, assume the composition L⊥ → V ∨
1 ⊕ V ∨

2 → V ∨
k is an

inclusion and Ck �= P(L⊥). Then there is a finite locally free sheaf of algebras Rk

on Pk such that ρk∗Rk 
 Cliffk
0 |P(L⊥) and the induced functor

ρk∗ : Perf(Pk,Rk)
∼−−→ Perf

(
P(L⊥),Cliffk

0 |P(L⊥)

)
is an equivalence. Moreover, Rk is Azumaya over the complement of ξ−1

k (P(W∨
k ))

in P(L⊥).

Proof. Follows from [14, §3.6], cf. [2, Proposition 1.20]. �

In the situation of the lemma, we define

P = P1 ×P(L⊥) P2.

This space carries a finite locally free sheaf of algebras given by

R = R1 � R2.

Lemma 6.14. Under the assumption of Lemma 6.13, there is an equivalence

J(B1,B2)P(L⊥) 
 Perf(P,R),

where R is Azumaya over the complement of ξ−1
1 (P(W∨

1 ))∪ξ−1
2 (P(W∨

2 )) in P(L⊥).

Proof. Follows from Lemma 6.12, Lemma 6.13, and Remark 6.6. �

Remark 6.15. The space P is a stacky projective plane. More precisely, consider
the stratification

C1 ∩ C2 ⊂ C1 ∪ C2 ⊂ P(L⊥).

Then the canonical morphism ρ : P → P(L⊥) can be described over the open strata
as follows:

• ρ is an isomorphism over P(L⊥) \ (C1 ∪ C2).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CATEGORICAL JOINS 557

• ρ is a Z/2-gerbe over (C1 ∪ C2) \ (C1 ∩ C2).

• ρ is a Z/2× Z/2-gerbe over C1 ∩ C2.

When ξ−1
1 (P(W∨

1 )) and ξ−1
2 (P(W∨

2 )) are empty — which holds for a generic sub-
space L ⊂ V1⊕V2 — Lemma 6.14 thus gives a satisfactory geometric interpretation
of J(B1,B2)P(L⊥). Indeed, then Perf(P,R) is an étale form of the geometric cat-
egory Perf(P). More precisely, both of these categories are P-linear, and there is

an étale cover P̃ → P such that after base change to P̃ the two categories are
equivalent as P̃-linear categories. Namely, R is Azumaya by Lemma 6.14, and an
étale cover over which it becomes a matrix algebra will do.

The following result summarizes our work above. Note that the structure sheaf
of an Enriques surface is an exceptional object of its derived category.

Theorem 6.16. Let Σ be a general Enriques surface. Then there exist (non-
canonical) smooth, transverse cubic plane curves C1 and C2 in P2 and Azumaya
algebras R1 and R2 on the square root stacks P2(

√
C1) and P2(

√
C2), such that if

P = P2(
√
C1)×P2 P2(

√
C2),

then R = R1 �R2 ∈ Perf(P,R) is an exceptional object and there is an equivalence
between the subcategories

〈OΣ〉⊥ ⊂ Perf(Σ) and ⊥〈R〉 ⊂ Perf(P,R).

Remark 6.17. Theorem 6.16 can be thought of as an algebraization of the logarith-
mic transform that creates an Enriques surface from a rational elliptic surface with
two marked fibers.

Appendix A. Linear categories

In this appendix, we collect some results on linear categories that are needed
in the body of the text. As in [32, Part I], in this section we will be considering
general linear categories, as opposed to Lefschetz categories or categories linear
over a projective bundle. To emphasize this we tend to denote categories with the
letters C or D as opposed to A or B.

First recall that if T is a scheme, then by Definition 1.8 a T -linear category is
a small idempotent-complete stable ∞-category equipped with a Perf(T )-module
structure. The basic example of such a category is C = Perf(X) where X is a
scheme over T ; in this case, the action functor C × Perf(T ) → C is given by the
formula (C,F ) �→ C ⊗ π∗(F ), where π : X → T is the structure morphism.

Given T -linear categories C and D, we can form their tensor product

C⊗Perf(T ) D,

which is a T -linear category characterized by the property that for any T -linear
category E, the T -linear functors C ⊗Perf(T ) D → E classify “bilinear functors”
C×D → E (see [27, §4.8]). In particular, there is a canonical functor

C×D → C⊗Perf(T ) D,

whose action on objects we denote by (C,D) �→ C � D.

Lemma A.1 ([32, Lemma 2.7]). The category C⊗Perf(T ) D is thickly generated by
objects of the form C �D for C ∈ C, D ∈ D, i.e. the smallest idempotent-complete
triangulated subcategory containing all of these objects is C⊗Perf(T ) D itself.
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A fundamental result is that in the geometric case, tensor products of linear
categories correspond to fiber products of schemes (see §1.7 for a discussion of
derived fiber products).

Theorem A.2 ([3, Theorem 1.2]). Let X → T and Y → T be morphisms of
schemes. Then there is a canonical equivalence

Perf(X ×T Y ) 
 Perf(X)⊗Perf(T ) Perf(Y ),

where X ×T Y is the derived fiber product.

Remark A.3. In [3], the theorem is formulated for X1, X2, and T being so-called
perfect stacks. Any quasi-compact, separated derived scheme is a perfect stack
[3, Proposition 3.19], so with our conventions from §1.7 any derived scheme is
perfect.

Let φ1 : C1 → D1 and φ2 : C2 → D2 be T -linear functors. They induce a T -linear
functor between the tensor product categories C1 ⊗Perf(T ) C2 → D1 ⊗Perf(T ) D2,
which we denote by φ1 ⊗ φ2. This operation is compatible with adjunctions.

Lemma A.4 ([32, Lemmas 2.12]). Let φ1 : C1 → D1 and φ2 : C2 → D2 be T -linear
functors.

(1) If φ1 and φ2 both admit left adjoints φ∗
1 and φ∗

2 (or right adjoints φ!
1 and φ!

2),
then the functor φ1 ⊗ φ2 : C1 ⊗Perf(T ) C2 → D1 ⊗Perf(T ) D2 has a left adjoint

given by φ∗
1 ⊗ φ∗

2 (or right adjoint given by φ!
1 ⊗ φ!

2).

(2) If φ1 and φ2 both admit left or right adjoints and are fully faithful, then so
is φ1 ⊗ φ2.

(3) If φ1 and φ2 are both equivalences, then so is φ1 ⊗ φ2.

Semiorthogonal decompositions and admissible subcategories of linear categories
are defined as in the usual triangulated case [32, Definitions 3.1 and 3.5]. We will
frequently need to use that they behave well under tensor products.

Lemma A.5 ([32, Lemma 3.17]). Let C and D be T -linear categories. If A ⊂ C is
a left (or right) admissible T -linear subcategory, then so is

A⊗Perf(T ) D ⊂ C⊗Perf(T ) D.

Lemma A.6 ([32, Lemma 3.15]). Let C = 〈A1, . . . ,Am〉 and D = 〈B1, . . . ,Bn〉 be
T -linear semiorthogonal decompositions. Then the tensor product of the embedding
functors

Ai ⊗Perf(T ) Bj → C⊗Perf(T ) D

is fully faithful for all i, j. Moreover, there is a semiorthogonal decomposition

C⊗Perf(T ) D =
〈
Ai ⊗Perf(T ) Bj

〉
1≤i≤m, 1≤j≤n

,

where the ordering on the set { (i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n } is any one which ex-
tends the coordinate-wise partial order. The projection functor onto the (i, j)-
component of this decomposition is given by

prAi
⊗ prBj

: C⊗Perf(T ) D → Ai ⊗Perf(T ) Bj ,

where prAi
: C → Ai and prBj

: D → Bj are the projection functors for the given
decompositions.
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Finally, in the paper we need a couple formal tensor product identities. Be-
fore stating them, we note the following. Let T1, T2, and X be schemes, and
for k = 1, 2, let Ck be a Tk × X-linear category. Then the tensor
product C1 ⊗Perf(X) C2 is naturally a T1 × T2-linear category via the
equivalence Perf(T1 × T2) 
 Perf(T1)⊗ Perf(T2).

Lemma A.7. Let T1, T2, X, and Y be schemes, and for k = 1, 2, let Ck be a
Tk × X-linear category and let Dk be a Tk × Y -linear category. Then there is an
equivalence(

C1 ⊗Perf(X) C2

)
⊗Perf(T1×T2)

(
D1 ⊗Perf(Y ) D2

)



(
C1 ⊗Perf(T1) D1

)
⊗Perf(X×Y )

(
C2 ⊗Perf(T2) D2

)
.

Proof. The equivalence is induced by the transposition of the middle two factors.
�

Recall that if C is a T -linear category and T ′ → T is a morphism, then we denote
by CT ′ = C⊗Perf(T ) Perf(T

′) the T ′-linear base change category.

Corollary A.8. For k = 1, 2, let Tk be a scheme and let Ck be a Tk-linear category.
Let Y be a scheme with a morphism Y → T1 × T2 corresponding to morphisms
Y → T1 and Y → T2. Then there is an equivalence

(C1 ⊗ C2)⊗Perf(T1×T2) Perf(Y ) 
 (C1)Y ⊗Perf(Y ) (C2)Y .

Proof. There is a canonical equivalence Perf(Y ) 
 Perf(Y )⊗Perf(Y ) Perf(Y ). Now
the result follows from Lemma A.7 by taking X = S to be our base scheme and
D1 = D2 = Perf(Y ). �

Appendix B. Projected categorical joins

Given closed subvarieties X1 ⊂ P(V ) and X2 ⊂ P(V ) of the same projective
space, the classical join J(X1, X2) as we have defined it is a subvariety of P(V ⊕V ).
In this situation, it is more common to consider the join

JV (X1, X2) ⊂ P(V )

inside P(V ), defined as the Zariski closure of the union of all the lines between
points of X1 and X2 in P(V ). It is easy to see that JV (X1, X2) is isomorphic to
the image of the classical join J(X1, X2) under the linear projection along the sum
map V ⊕V → V . Accordingly, we call JV (X1, X2) the projected join of X1 and X2.
Note also that we allow the possibility that X = X1 = X2 coincide, in which case

Sec(X) = JV (X,X)

is known as the secant variety of X.
Let V1 and V2 be the linear spans of X1 and X2 in P(V ) and consider X1 and X2

as subvarieties ofP(V1) andP(V2). IfP(V1) andP(V2) do not intersect inP(V ), the
natural embedding V1⊕V2 → V identifies the join J(X1, X2) ⊂ P(V1⊕V2) with the
projected join JV (X1, X2). Otherwise, if K = V1∩V2 and we consider the diagonal
embedding K → K ⊕K → V1 ⊕ V2, then we have J(X1, X2) ∩ P(K) = X1 ∩X2,
and the projection induces a regular surjective map

(B.1) BlX1∩X2
(J(X1, X2)) → JV (X1, X2).
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Note that this morphism is often generically finite. Thus, BlX1∩X2
J(X1, X2) can

be regarded as an approximation to JV (X1, X2). In this appendix, we use this ob-
servation to categorify the projected join, and show that under HPD it corresponds
to the operation of taking fiber products.

B.1. Linear projections and HPD. Let Ṽ → V be a surjection of vector bundles
over S, with kernel K. Linear projection from K gives a blowup diagram

(B.2)

Ẽ
ε̃ ��

bẼ

��

BlP(K)(P(Ṽ ))

b

��

q
�� P(V )

P(K) �� P(Ṽ )

with exceptional divisor Ẽ. If A is a P(Ṽ )-linear category, we define the linear
projection of A along P(K) by

BlP(K)(A) = A⊗Perf(P(Ṽ )) Perf(BlP(K)P(Ṽ )),

which we regard as a P(V )-linear category via the map q : BlP(K)(P(Ṽ )) → P(V ).

Proposition B.1. Let A be a Lefschetz category over P(Ṽ ) with center A0. As-

sume Ṽ → V is a surjection with kernel K, and length(A) < rank(V ). Then the
category BlP(K)(A) has the structure of a moderate Lefschetz category over P(V )
of length rank(V )− 1 with center

BlP(K)(A)0 =
〈
b∗A0, ε̃∗b

∗
Ẽ
(AP(K))

〉
,

which is right (or left) strong if A is. Moreover, there is a P(V ∨)-linear equivalence

(BlP(K)(A)/P(V ))� 
 (A/P(Ṽ ))� ⊗Perf(P(Ṽ ∨)) Perf(P(V ∨)).

Proof. In the case where A is given by the derived category of a variety, this is
the main result of [7]. The proof carries over directly to our setting. We note that
out of preference, the Lefschetz center we have used for BlP(K)(A) is a twist by

O(−(rank(V ) − 1)Ẽ) of the one from [7]. We also note that there is an explicit
formula

BlP(K)(A)i =

{〈
b∗Ai, ε̃∗b

∗
Ẽ
(AP(K))

〉
for 0 ≤ i ≤ length(A)− 1,

ε̃∗b
∗
Ẽ
(AP(K)) for length(A) ≤ i ≤ rank(V )− 2,

for the right Lefschetz components of BlP(K)(A). �

B.2. Projected categorical joins and HPD. Now let V1 and V2 be nonzero
vector bundles on S, equipped with morphisms V1 → V and V2 → V such that
Ṽ = V1 ⊕ V2 → V is surjective. Let K ⊂ Ṽ be the kernel of this surjection.

Definition B.2. Let A1 and A2 be Lefschetz categories over the projective bun-
dles P(V1) and P(V2) such that length(A1)+length(A2) < rank(V ). Then the pro-
jected categorical join of A1 and A2 over P(V ) is the Lefschetz category over P(V )
defined by

JV (A
1,A2) = BlP(K)(J(A

1,A2)).
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Note that by Theorem 3.21 we have length(J(A1,A2)) = length(A1)+length(A2),
so by Proposition B.1 the category JV (A

1,A2) does indeed have a natural Lefschetz
structure over P(V ). If V = V1 ⊕ V2, then JV (A

1,A2) = J(A1,A2) agrees with the
usual categorical join.

Remark B.3. If V1 → V and V2 → V are embeddings, the Lefschetz center of
JV (A

1,A2) can be described explicitly as follows. In this case K ∼= V1 ∩ V2 ⊂ V
and P(K) ⊂ P(V1⊕V2) does not intersect P(V1)�P(V2), hence by Proposition 3.17
we have an equivalence

J(A1,A2)P(K) 
 A1
P(K) ⊗Perf(P(K)) A

2
P(K).

Thus, by Proposition B.1 and the definition (Definition 3.20) of the center of
J(A1,A2), the center of JV (A

1,A2) is given by

JV (A
1,A2)0 =

〈
A1

0 ⊗A2
0,A

1
P(K) ⊗Perf(P(K)) A

2
P(K)

〉
,

where we have suppressed the embedding functors of the components. If we have
equalities V1 = V2 = V , this formula simply reads

JV (A
1,A2)0 =

〈
A1

0 ⊗A2
0,A

1 ⊗Perf(P(V )) A
2
〉
.

If A1 and A2 are Lefschetz categories over P(V ), then we write JV (A
1,A2) for

the projected categorical join over P(V ) where we take V1 = V2 = V . In this case
the assumptions of Remark B.3 are satisfied and K = V . Our results imply an
appealing formula for the HPD category in this setting.

Corollary B.4. Let A1 and A2 be right strong, moderate Lefschetz categories
over P(V ) such that length(A1) + length(A2) < rank(V ). Then there is a P(V ∨)-
linear equivalence

JV (A
1,A2)� 
 (A1)� ⊗Perf(P(V ∨)) (A

2)�.

Proof. Combine Theorem 4.1, Proposition B.1, and Proposition 3.17. �

Remark B.5. Jiang and Leung [10] also recently proved a version of Corollary B.4.
While we deduce this as a direct consequence of our main result, Theorem 4.1,
they give an argument that does not rely on (but is closely related to the proof of)
Theorem 4.1.

Remark B.6. Recall that two key properties of categorical joins are that they pre-
serve smoothness, and in the geometric case give a categorical resolution of the
classical join. In contrast, if A1 and A2 in Corollary B.4 are smooth and proper
over S, their projected categorical join JV (A

1,A2) will not be smooth over S un-
less they are transverse over P(V ), i.e. unless the category A1 ⊗Perf(P(V )) A

2 is

smooth. Further, if Ak = Perf(Xk) for closed subvarieties Xk ⊂ P(V ), the cate-
gory JV (A

1,A2) will often not be birational to JV (X1, X2) over P(V ) in the sense
of Remark 3.18, corresponding to the fact that the map

BlX1∩X2
J(X1, X2) → JV (X1, X2)

is often only generically finite. It would be interesting to find a modification
of JV (A

1,A2) that fixes the above two issues. On the other hand, an advantage of
JV (A

1,A2) as defined above is that by Corollary B.4 its HPD has a nice description.
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Remark B.7. If S is the spectrum of a field, for a closed subvariety X ⊂ P(V ) the
classical secant variety Sec(X) = JV (X,X) ⊂ P(V ) is given by the join of X with
itself inside P(V ). Note that the map BlXJ(X,X) → Sec(X) (take X1 = X2 = X
in (B.1)) is equivariant for the Z/2-action on the source induced by the Z/2-action
on V ⊕V swapping the summands. The quotient of BlXJ(X,X) by this action can
thus be considered as a closer approximation to Sec(X). Similarly, in the situation
of Definition B.2, if A = A1 = A2 and V = V1 = V2, then there is a Z/2-action
on JV (A,A) induced by the one on A⊗A given by swapping the two factors. The
equivariant category JV (A,A)Z/2 is a natural candidate for a categorical secant
variety, whose HPD can be described using Corollary B.4.
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