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Abstract We prove rationality criteria over nonclosed fields of characteristic 0 for five out of six types of
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1. Introduction

1.1. The results

The goal of this paper is to discuss rationality of smooth Fano threefolds over algebraically
nonclosed fields of characteristic 0. In [10], we considered the case of geometrically rational

Fano threefolds with geometric Picard number ρ(Xk̄) = 1, and here, we switch the focus

to the case of geometrically rational Fano threefolds X with Picard numbers

ρ(X) = 1 and ρ(Xk̄)> 1. (1.1.1)

In fact, Fano threefolds satisfying (1.1.1) have been classified in [21], and [1] explains which

of these are geometrically rational. A combination of these results gives the following:

Theorem 1.1 ([21, Theorem 1.2], [1]). There are exactly six families of geometrically

rational Fano threefolds satisfying (1.1.1) as listed in Table 1.
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2 A. Kuznetsov and Y. Prokhorov

Table 1. Geometrically rational Fano threefolds X satisfying (1.1.1)

ι(Xk̄) ρ(Xk̄) −K3
X g(X) h1,2(Xk̄) Xk̄

X(3,3) 1 2 20 11 3 an intersection of three divisors of
bidegree (1,1) in P3

k̄
×P3

k̄
;

X(1,1,1,1) 1 4 24 13 1 a divisor of multidegree (1,1,1,1)
in (P1

k̄
)4;

X(4,4) 1 2 28 15 0 the blowup of a smooth quadric Qk̄ ⊂ P4
k̄

along a linearly normal smooth
rational quartic curve;

X(2,2,2) 1 3 30 16 0 an intersection of three divisors of
multidegrees (0,1,1), (1,0,1), (1,1,0)
in P2

k̄
×P2

k̄
×P2

k̄
;

X(2,2) 2 2 48 25 0 a divisor of bidegree (1,1) in P2
k̄
×P2

k̄
;

X(1,1,1) 2 3 48 25 0 P1
k̄
×P1

k̄
×P1

k̄
.

The first column of Table 1 contains the name for the family we use in this paper, the

next columns contain the index ι(Xk̄), defined as

ι(Xk̄) = max
{
i
∣∣ 1

iKXk̄
∈ Pic(Xk̄)

}
,

the geometric Picard number ρ(Xk̄), the anticanonical degree (−KX)3, the genus g(X),
defined by

(−KX)3 = 2g(X)−2

and the Hodge number h1,2(Xk̄) of the threefold, while the last column provides a

geometric description of these varieties over an algebraic closure k̄ of the base field.
We discuss some geometric properties of threefolds from Table 1 in §2. In particular, we

describe their extremal contractions over k̄ and identify their Hilbert schemes of lines and

conics, as well as the subschemes of the Hilbert schemes of twisted cubic curves passing

through a general point.
However, our main interest is in rationality criteria, and the next theorem is our main

result.

Theorem 1.2. Let X be a Fano threefold from Table 1; in particular, we assume ρ(X)=1.

(i) X is unirational if and only if X(k) �=∅.

(ii) If X has type X(4,4), X(2,2,2), X(2,2) or X(1,1,1), then X is k-rational if and only

if X(k) �=∅.

(iii) If X has type X(3,3), then X is never k-rational.

Note that over an algebraically closed field, threefolds of types X(4,4), X(2,2,2), X(2,2)

and X(1,1,1) have h1,2 = 0, hence, trivial intermediate Jacobians, while the intermediate
Jacobians of threefolds of types X(3,3) and X(1,1,1,1) over k̄ are Jacobians of curves of

genus 3 and 1, respectively (and k-forms of these over k); this explains the difference in

the behavior.
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Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank 3

It is a classical fact that the existence of a k-point is necessary for rationality or
unirationality, so the major part of the proof of the theorem consists of proving rationality

or unirationality under this assumption. We use for this a case-by-case analysis (see §1.2
for a description of our approach). The theorem is, thus, a combination of the following
results (we assume everywhere X(k) �=∅):

• rationality for threefolds of type X(1,1,1) is proved in Corollary 3.4;
• rationality for threefolds of type X(2,2) is proved in Proposition 4.1;
• rationality for threefolds of type X(2,2,2) is proved in Proposition 4.3;
• rationality for threefolds of type X(4,4) is proved in Proposition 5.5;
• unirationality for threefolds of type X(1,1,1,1) is proved in Proposition 4.5;
• unirationality for threefolds of type X(3,3) is proved in Proposition 6.9;
• nonrationality for threefolds of type X(3,3) is proved in Corollary 6.11.

Theorem 1.2 provides nice criteria for rationality of five out of the six types of Fano

threefolds listed in Table 1. For the remaining type X(1,1,1,1), we have a conjecture and a
partial result.

Conjecture 1.3. If X has type X(1,1,1,1) and ρ(X) = 1, then X is never k-rational.

To explain the partial result, we need to introduce some notation. Let X be a Fano

threefold of type X(1,1,1,1). As we show in Lemma 2.5, the action of the Galois group

G(k̄/k) on Pic(Xk̄) factors through the group S4 that acts by permutations of the
pullbacks of the point classes of the factors of the ambient (P1

k̄
)4, and the assumption

ρ(X) = 1 means that the subgroup

GX := Im(G(k̄/k)−→S4)⊂S4

is transitive, hence, belongs to the following list of (conjugacy classes) of transitive
subgroups of S4:

GX ∈ {S4,A4,D4,V4,C4},

where A4 is the alternating subgroup, D4 is the dihedral group of order 8 (a Sylow

2-subgroup in S4), V4 is the Klein group of order 4 and C4 is the cyclic group of order 4.

Note that all of these groups contain V4 except for C4.

Theorem 1.4. Let G ⊂ S4 be a subgroup containing the Klein group V4 ⊂ S4. Let k
be a field, such that there is an epimorphism G(k̄/k)�G. Then for the field of rational

functions K = k(t) there exists a variety X over K of type X(1,1,1,1), such that GX = G,

ρ(X) = 1 and X(K) �=∅, but X is not stably rational over K.

1.2. The proofs

For (uni)rationality constructions, it is natural to use k-Sarkisov links:

X̃

σ

����
��
��
��

ψ ���������

φ

���
��

��
��

� X̃+

σ+

���
��

��
��

��

����
��
��
��φ+

����
��
��
��

X X̄ X+,

(1.2.1)
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4 A. Kuznetsov and Y. Prokhorov

where σ is the blowup of a k-irreducible subvariety, φ and φ+ are small crepant birational
contractions, ψ is a flop and σ+ is a Mori extremal contraction. Note that such a link

is completely determined by the center of the blowup σ — the contractions and the flop

are obtained by the k-Minimal Model Program applied to X̃ (note that ρ(X̃) = 2, so the
output of the MMP is unambiguous); in particular, the link is defined over k. For our

purpose, it is enough to consider two types of Sarkisov links:

• Sarkisov links where σ is the blowup of a k-point;
• Sarkisov links where σ is the blowup of a reduced k-irreducible singular conic.

We construct the corresponding links accurately for threefolds of type X(4,4) in §5 (see

Theorem 5.1) by using standard MMP arguments. Of course, a similar construction could
be given for other types of Fano threefolds from Table 1, but to make the argument less

tedious, we use the fact that all others among these threefolds are k-forms of complete

intersections in products of projective spaces and deduce the required (uni)rationality
constructions from an appropriate birational transformation for a product of projective

spaces.

With this goal in mind, we construct in §3 a toric birational transformation between the

product (Pn)r of projective spaces and a Pr-bundle over the product (Pn−1)r of smaller
projective spaces, see Theorem 3.1 (in fact, we construct a birational transformation in

a slightly more general situation, but the setup described above is the only one that

we need for applications in the paper). This theorem has a consequence of independent
interest, Corollary 3.3, saying that a k-form of a product of projective spaces is k-rational
if and only if it has a k-point. This corollary immediately gives the required rationality

construction for Fano threefolds of type X(1,1,1) (Corollary 3.4) and with a bit of more
work provides rationality constructions for threefolds of types X(2,2) (Proposition 4.1)

and X(2,2,2) (Proposition 4.3), as well as a unirationality construction for threefolds of

type X(1,1,1,1) (Proposition 4.5).

In the case of a variety X of type X(3,3) with a k-point x, we again use the toric
transformation of Theorem 3.1 to construct a birational equivalence of X with a divisor

X+ of bidegree (2,2) in a k-form of P2×P2. If x lies on a k̄-line in X, we check that X+

contains a k-form of the quadric surface P1 ×P1 and use this to deduce unirationality
of X (Proposition 6.9). If x does not lie on a line, we check in Proposition 6.6 that X+

described above is, in fact, the midpoint of a Sarkisov link that ends with a conic bundle

over P2, which has a smooth quartic curve Γ ⊂ P2 as discriminant. We also check that
the discriminant double covering Γ̃→ Γ associated to this conic bundle is trivial over a

quadratic extension k′ of the base field k but nontrivial over k, and that the conic bundle

has a rational section over k′. We check in Theorem 6.10 that these geometric properties

characterise the nonrational conic bundles constructed by Benoist and Wittenberg in [3]
and deduce in Corollary 6.11 nonrationality of X from [3, Proposition 3.4].

In the last part of the paper, §7, we discuss Fano threefolds of type X(1,1,1,1). To prove

Theorem 1.4, we use a degeneration technique. Namely, we construct a family of Fano
threefolds of type X(1,1,1,1) over P

1
k with the special fibre a singular toric threefold (with

ordinary double points), which is well known not to be stably rational. Since stable

rationality is specialisation-closed by a result of Nicaise and Shinder [19], we conclude
that the general fibre of the constructed family is also not stably rational.
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Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank 5

2. Extremal contractions and Hilbert schemes of curves

In this section, we describe the geometry of Fano threefolds of index 1 from Table 1. In
particular, we describe their extremal contractions over k̄, as well as their Hilbert schemes

of lines and conics and of twisted cubic curves passing through a fixed point.

To start with, recall that for most Fano threefolds, the anticanonical linear system
is very ample and the anticanonical image is an intersection of quadrics; in fact, Fano

threefolds which do not enjoy these nice properties (hyperelliptic and trigonal ones) have

been classified and listed in [6]. It is easy to check that Fano threefolds from Table 1 are
not in this list; therefore, we obtain:

Theorem 2.1 ([6, Chapter 2, Theorems 2.2 and 3.4]). Let X be a Fano threefold from

Table 1. The anticanonical class −KX is very ample and the anticanonical image

X =X2g−2 ⊂ Pg+1

is an intersection of quadrics (as a scheme), where g = g(X).

2.1. Contractions over k̄

Assume X is a Fano threefold of index 1 from Table 1, that is, a threefold of either of
types X(2,2,2), X(4,4), X(3,3) or X(1,1,1,1). Then there is an embedding

Xk̄ ⊂ Y ∼= (Pn)r, (2.1.1)

(we will see in Lemma 2.5 that r = ρ(Xk̄), hence, the notation), where

(n,r) = (2,3), (4,2), (3,2) or (1,4).

Indeed, for types X(2,2,2), X(3,3), X(1,1,1,1), this holds by definition, and for type X(4,4),

this follows from the following:

Lemma 2.2. Let Γ1 ⊂ Q1 ⊂ P4 be a linearly normal smooth rational quartic curve in
a smooth quadric threefold. If H1 is the hyperplane class of Q1, then the linear system

|2H1−Γ1| of quadrics through Γ1 defines a birational morphism π2 : BlΓ1
Q1 →Q2 ⊂ P4

onto another smooth quadric threefold Q2, and this morphism is itself the blowup of a
linearly normal smooth rational quartic curve Γ2 ⊂Q2, so that

BlΓ1
(Q1)∼= BlΓ2

(Q2).

Moreover, if X is a Fano threefold of type X(4,4), there is a natural embedding

Xk̄ ↪−−→Q1×Q2 ⊂ P4×P4,

such that −KXk̄
is the sum of the pullbacks of the hyperplane classes of the factors.

Proof. The curve Γ1 is an intersection of six quadrics in P4; therefore, it is an intersection

of five quadrics in Q1. Hence, if E1 is the exceptional divisor of the blowup π1 : Xk̄ →Q1

and H1 is the pullback of the hyperplane class of Q1, the linear system |2H1−E1| on Xk̄

is four-dimensional and base-point free. Therefore, this linear system defines a morphism

π2 : BlΓ1
(Q1)→ P4; moreover, standard intersection theory gives (2H1−E1)

3 = 2. Hence,

https://doi.org/10.1017/S1474748022000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000378


6 A. Kuznetsov and Y. Prokhorov

the image of π2 (which is not contained in a hyperplane by definition) is a quadric Q2 ⊂P4

and π2 is birational. Since −KXk̄
is ample on the fibres of π2 and ρ(Xk̄) = 2, we see that

π2 is an extremal Mori contraction. By [16], the quadric Q2 is smooth and π2 is the

blowup of a curve, which must be a linearly normal smooth rational quartic curve. For

the last statement, just note that H1+(2H1−E1) = 3H1−E1 is the anticanonical class

of Xk̄.

We denote by Hi, 1≤ i≤ r, the pullbacks to Y = (Pn)r of the hyperplane classes of the
factors and, abusing the notation, also their restrictions to Xk̄ via the embedding (2.1.1).

Lemma 2.3. If X is a threefold of either of types X(2,2,2), X(4,4), X(3,3) or X(1,1,1,1), then

the Picard group Pic(Xk̄) is freely generated by the classes Hi

Pic(Xk̄) =
r⊕

i=1

ZHi.

Moreover,

−KXk̄
=H :=H1+ · · ·+Hr. (2.1.2)

Proof. For type X(4,4), this follows from Lemma 2.2, and for the other types, the first

statement follows from the Lefschetz hyperplane theorem and the second from adjunction

and the description of Table 1.

For each subset I ⊂ {1, . . . ,r} we consider the projection

πI : Xk̄ ↪−−→ Y −→
∏
i∈I

Pn ∼= (Pn)|I|. (2.1.3)

Especially useful are the morphisms πI for I of cardinality r− 1, so we introduce the

notation

ı̂ := {1, . . . ,r}\{i},

and write

πı̂ : Xk̄ −→ (Pn)r−1 (2.1.4)

for the corresponding morphisms. Note that in the case r=2, we have ı̂= {3− i}, so these

morphisms are the same as morphisms π3−i. The next lemma describes Xk̄ in terms of
the πı̂.

Lemma 2.4. The morphism πı̂ is birational onto its image, and the exceptional divisor

Eı̂ of πı̂ is irreducible. More precisely, the morphism πı̂ identifies Xk̄ as follows:

(i) if X has type X(2,2,2), the map πı̂ is the blowup of a smooth divisor Wı̂ ⊂ P2×P2

of bidegree (1,1) along a smooth rational curve Γı̂ ⊂ Wı̂ of bidegree (2,2), whose

projections to the factors P2 are closed embeddings; the divisor class Hi is equal

to
∑

j �=iHj −Eı̂;
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(ii) if X has type X(4,4), the map πi is the blowup of a three-dimensional quadric Qi

along a smooth linearly normal rational curve Γi ⊂Qi of degree 4; the divisor class

Hı̂ is equal to 2Hi−Ei;

(iii) if X has type X(3,3), the map πi is the blowup of P3 along a smooth curve Γi ⊂ P3

of genus 3 and degree 6; the divisor class Hı̂ is equal to 3Hi−Ei;

(iv) if X has type X(1,1,1,1), the map πı̂ is the blowup of P1×P1×P1 along a smooth

elliptic curve Γı̂ ⊂ (P1)3 of multidegree (2,2,2); the divisor class Hi is equal to∑
j �=iHj −Eı̂.

Proof. Part (ii) is proved in Lemma 2.2. So, assume X is a variety of either of types

X(2,2,2), X(3,3) or X(1,1,1,1). Birationality of the projection πı̂ is clear from the descriptions

of Table 1; and it also follows that all fibres of πı̂ are linear subspaces in Pn and −KXk̄

restricts to each of them as the hyperplane class by (2.1.2). Also, it is easy to see that the
image of πı̂ is smooth in all cases (for type X(2,2,2), if Wı̂ ⊂ P2×P2 is singular, then its

preimage in P2×P2×P2 is singular along a plane, hence, Xk̄, which is the intersection of

this preimage with two other divisors, must be singular; and for types X(3,3) and X(1,1,1,1),
the image is just P3 or P1×P1×P1, respectively).

By Lemma 2.3, the relative Picard number of πı̂ is 1 and −KXk̄
is ample, hence, πı̂ is an

extremal Mori contraction. Since both the source and target of πı̂ are smooth, it follows
from [16] that the morphism πı̂ is either the blowup of a smooth curve or the blowup of

a smooth point. In the latter case, the restriction of −KXk̄
to the nontrivial fibre P2 of πı̂

would be isomorphic to OP2(2), contradicting to the above observation, hence, πı̂ is the

blowup of a smooth curve.
The remaining assertions are easy and left to the reader (see also [15]).

Lemma 2.5. The classes Hi are semiample and generate the nef cone of Xk̄. The Galois

group G(k̄/k) permutes these classes in a transitive way. In other words, the natural group

homomorphism �X : G(k̄/k) → Aut(Pic(Xk̄)) factors through the permutation subgroup
Sr ⊂Aut(Pic(Xk̄)), and its image

GX := Im(G(k̄/k)
�X−−−→Sr) (2.1.5)

is a transitive subgroup of Sr.

Proof. The classes Hi are pullbacks of ample classes on Pn, hence, semiample, and they

generate Pic(Xk̄) by Lemma 2.3. If Λi is the class of a nontrivial fibre of πı̂, we have

Hj ·Λi = δij,

therefore, Hj generate the rays of the nef cone. It follows that the Galois group permutes
the Hi, hence, its action on Pic(Xk̄) factors through the permutation group. Transitivity

of the subgroup GX ⊂Sr follows from the equality ρ(X) = 1.

We say that a surface Π⊂Xk̄ is an H -plane if Π∼= P2
k̄
and H|Π is the line class.

Corollary 2.6. Fano threefolds of index 1 from Table 1 contain no H-planes over k̄.
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Proof. If Π⊂Xk̄ is an H -plane, the restriction (H1+ · · ·+Hr)|Π is the line class. Since

all the Hi are nef, it follows that Hj |Π ∼ 0 for all j �= i and some i, hence, Π is contracted

to a point by the projection πı̂. It remains to note that the fibres of πı̂ are at most
one-dimensional by Lemma 2.4.

2.2. Lines

By a line on X, we understand a curve (defined over k̄) of anticanonical degree 1. We
denote by F1(X), the Hilbert scheme of lines on X. Note that F1(X)k̄

∼= F1(Xk̄).

Lemma 2.7. Let X be a Fano threefold of types X(2,2,2), X(4,4), X(3,3), or X(1,1,1,1). A line
on X is a fibre of the exceptional divisor of one of the projections (2.1.4). In particular,

F1(Xk̄)
∼=

r⊔
i=1

Γı̂,

where the smooth curves Γı̂ have been described in Lemma 2.4. The normal bundle of

each line is

NL/Xk̄
∼= OL⊕OL(−1). (2.2.1)

Finally, the action of the Galois group G(k̄/k) on the set of connected components of the

Hilbert scheme of lines factors through the group GX and is transitive.

Proof. Since the classes Hi are semiample, it follows from (2.1.2) that for each k̄-line L

on X, there is a unique i, such that L ·Hi = 1 and L ·Hj = 0 for j �= i (i.e. [L] = Λi in the
notation of Lemma 2.5). Thus, L is contracted by the projection πı̂, hence, it is equal to

a fibre of the exceptional divisor of this projection. Taking into account the description

of the projections πı̂ from Lemma 2.4, we obtain the description of F1(Xk̄).
Further, the description of the normal bundle of L follows from the exact sequence

0−→ NL/Eı̂
−→ NL/Xk̄

−→ NEı̂/Xk̄
|L −→ 0,

because the first term is trivial and the last is OL(−1). Finally, factorisation of the Galois

action on the set of connected components of F1(Xk̄) and its transitivity follow from

Lemma 2.5.

For a k̄-point x ∈X, we denote by F1(Xk̄,x) ⊂ F1(Xk̄) the subscheme parameterising

lines passing through x. We will need the following observation.

Lemma 2.8. Let X be a Fano threefold of types X(2,2,2), X(4,4), X(3,3) or X(1,1,1,1). If

x∈X(k̄), then the scheme F1(Xk̄,x) is a finite reduced scheme of length at most r= ρ(Xk̄).

If, moreover, x ∈ X(k), then either F1(Xk̄,x) = ∅ or F1(Xk̄,x) is a reduced scheme of
length r and the Galois group G(k̄/k) action on F1(Xk̄,x) factors through the group GX

and is transitive.

Proof. By Lemma 2.7 for each k̄-point x of X, there is at most one line from each of the

connected components of the Hilbert scheme F1(Xk̄) passing through x. This proves that

F1(Xk̄,x) is finite and reduced and gives the bound for its length.
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Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank 9

Now, assume x is a point of X defined over k, and let L be a k̄-line through x. Then
for any g ∈G(k̄/k), the line g(L) also passes through x. Transitivity of the Galois action

on the set of components of F1(Xk̄) then implies that there is a unique line of each type

through x, hence, the length of F1(Xk̄,x) is r and the G(k̄/k)-action on F1(Xk̄,x) factors
through GX and is transitive.

2.3. Conics

By a conic on X, we understand a connected curve (defined over k̄) of anticanonical

degree 2. We denote by F2(X), the Hilbert scheme of conics on X. As before note that

F2(X)k̄
∼= F2(Xk̄).

Lemma 2.9. Let X be a Fano threefold of types X(2,2,2), X(4,4), X(3,3) or X(1,1,1,1). We

have the following descriptions of the Hilbert schemes of conics F2(Xk̄):

F2((X(2,2,2))k̄)
∼= P2

k̄ 	P2
k̄ 	P2

k̄,

F2((X(4,4))k̄)
∼= Γ1×Γ2,

F2((X(3,3))k̄)
∼= Sym2Γ1

∼= Sym2Γ2,

F2((X(1,1,1,1))k̄)
∼=

⊔
6

(P1
k̄ ×P1

k̄),

where Γi are the curves described in Lemma 2.4.

Moreover, the morphism from each component of the universal conic to Xk̄ is dominant.

Proof. First, note that no conic on X is contracted by the projections πı̂, since by

Lemma 2.4 any reduced connected curve contracted by πı̂ is a line, and lines do not

support nonreduced conics by (2.2.1) and [12, Remark 2.1.7]. Therefore, we deduce
from (2.1.2), that for each k̄-conic C ⊂ Xk̄, there is a pair of indices 1 ≤ i1 < i2 ≤ r,

such that

Hi1 ·C =Hi2 ·C = 1 and Hj ·C = 0 for j �∈ {i1, i2}. (2.3.1)

If r ≥ 3, that is, if X is of type X(2,2,2) or X(1,1,1,1), such C is contracted by one of the
projections

πi : Xk̄ −→ P2
k̄ or πi1,i2 : Xk̄ −→ P1

k̄ ×P1
k̄, (2.3.2)

respectively. It is easy to see that the maps (2.3.2) are flat conic bundles, hence, C is

a fibre of one of them, and, therefore, F2(Xk̄) is the disjoint union of P2
k̄
or of P1

k̄
×P1

k̄
,

respectively.
Assume X is of type X(4,4). Applying Corollary A.2 twice, we obtain a morphism

ϕ= (ϕ1,ϕ2) : F2(Xk̄)−→ Γ1×Γ2

that takes a smooth conic C ⊂Xk̄ to the unique pair of lines (L2,L1) of different types,

such that C ∩Li �=∅. We will show that ϕ is an isomorphism.
First, note that by (2.3.1), if C ⊂X is a conic, then π1(C) ⊂ Q1 and π2(C) ⊂ Q2 are

lines, and by Lemma 2.4(ii), they intersect the curves Γ1 and Γ2, respectively. Thus,

by Corollary A.2, for x1 ∈ Γ1 if [C] ∈ ϕ−1
1 (x1), the line π1(C) ⊂ Q1 passes through x1.
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10 A. Kuznetsov and Y. Prokhorov

Since any line on Q1 through x1 lies in the embedded tangent space to Q1 at x1, and
the intersection of this tangent space with Q1 is a two-dimensional quadratic cone with

vertex at x1, it follows that

ϕ−1
1 (x1)∼= P1

for any x1 ∈ Γ1. Since Γ2
∼= P1 also, the morphism ϕ is a morphism of P1-bundles over Γ1

and, to show that it is an isomorphism, it is enough to check that it is birational.
So, consider a general pair (L2,L1) of lines on X of different types. It follows from (2.3.1)

and Lemma 2.4(ii) that L̄1 := π1(L1) is a line on Q1 bisecant to Γ1, x1 := π1(L2) is a

point on Γ1 and by Corollary A.2, the preimage ϕ−1(L2,L1) is the Hilbert scheme of lines
L ⊂ Q1 passing through x1 and intersecting L̄1. By genericity, we may assume x1 �∈ L̄1

(i.e. that the lines L1 and L2 do not intersect). Then any line L as above is contained in

the intersection of the plane spanned by L̄1 and x1 with Q1, which is equal to the union

of the line L̄1 with a residual line. Therefore, L must be equal to the residual line, hence,
the scheme ϕ−1(L2,L1) consists of a single point, so ϕ is birational, and, hence, it is an

isomorphism.

Since the embedded tangent space to Q1 at a general point x∈Q1 intersects the quartic
curve Γ1 at four points, there are four lines on Q1 through x intersecting Γ1, hence, the

universal conic is dominant of degree 4 over Xk̄.

Finally, assume X is of type X(3,3). By (2.3.1) and Lemma 2.4(iii), the image of C with
respect to the blowup πi : Xk̄ → P3 is a line intersecting the curve Γi ⊂ P3 at two points.

This defines a morphism

F2(Xk̄)−→ Sym2Γi,

and it is easy to see that it is an isomorphism. It is also easy to see that for a general

point x ∈ P3, there are seven lines passing through x and bisecant to Γ1; therefore, the
universal conic on Xk̄ is dominant of degree 7 over Xk̄.

Remark 2.10. Let X be a threefold of type X(4,4). Clearly, a general line on the
quadric Q1 passing through a point x ∈ Γ1 is not bisecant to Γ1, and its strict transform

in X intersects the line L2 = π−1
1 (x) transversally. This means that a general conic

intersecting L2 is smooth and intersects L2 transversally.

For a given curve Θ⊂X, we denote by F2(X,Θ) the subscheme of the Hilbert scheme

F2(X) that parameterises conics intersecting the curve Θ and by C2(X,Θ)⊂F2(X,Θ)×X

the restriction of the universal family of conics.

Lemma 2.11. If X is of type X(4,4) and Θ is a singular conic, then F2(Xk̄,Θ)∼= Γ1∪Γ2

is the union of the two rulings of the surface F2(Xk̄)
∼= Γ1 ×Γ2. Moreover, the natural

projection C2(X,Θ) → X is birational onto an anticanonical divisor RΘ ⊂ X passing

through each component of the curve Θ with multiplicity 3.

Proof. Let L1 and L2 be the irreducible components (over k̄) of the conic Θ. The

argument of Lemma 2.9 shows that Li are lines of two different types and

F2(Xk̄,Θ) = F2(Xk̄,L1)∪F2(Xk̄,L2).
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Recall that by Lemma 2.7, the curves Γ1 and Γ2 can be identified with the two connected
components of F1(Xk̄) and the isomorphism F2(Xk̄)

∼=Γ1×Γ2 of Lemma 2.9 is defined by

taking a conic C to the unique pair of lines of different types intersecting C. This means

that

F2(Xk̄,Θ)∼= (Γ1× [L1])∪ ([L2]×Γ2)⊂ Γ1×Γ2;

thus, F2(Xk̄,Θ) is the union of two rulings of the surface F2(X) and we have the equality
C2(Xk̄,Θ) = C2(Xk̄,L1)∪C2(Xk̄,L2).

Furthermore, it follows from the description of Lemma 2.9 that the natural morphism

C2(Xk̄,L2) → Xk̄ is birational onto the hyperplane section tangent to Q1 at the

point π1(L2); it contains the line π1(L1) with multiplicity 1 and has multiplicity 2 at
the point π1(L2). Similarly, the morphism C2(Xk̄,L1) → Xk̄ is birational onto

the hyperplane section containing the line π2(L2) with multiplicity 1 and having

multiplicity 2 at the point π2(L1). Thus, the morphism C2(X,Θ) → X is birational
onto a divisor of class (H1−L1−2L2)+(H2−L2−2L1) =H−3Θ.

2.4. Twisted cubic curves

Finally, we describe the Hilbert scheme F3(X,x) of subschemes of X with Hilbert

polynomial 3t+ 1 with respect to H that pass through a point x ; since X is an

intersection of quadrics (Theorem 2.1) and contains no planes (Corollary 2.6), every
such subscheme is a union of rational curves (see [10, Lemma 2.9]), so we will use the

name rational normal cubic curves for subschemes parameterised by F3(X,x). We denote

by C3(X,x) ⊂ F3(X,x)×X, the restriction of the universal family of curves. Recall the
curves Γı̂ described in Lemma 2.4.

Lemma 2.12. Let X be a Fano threefold of types X(2,2,2), X(4,4), X(3,3) or X(1,1,1,1). If x

is a k-point on X not lying on a k̄-line, one has the following descriptions of the schemes
F3(Xk̄,x)

F3((X(2,2,2))k̄,x)
∼= Γ1,2

∼= Γ1,3
∼= Γ2,3,

F3((X(4,4))k̄,x)
∼= P1

k̄ 	P1
k̄,

F3((X(3,3))k̄,x)
∼= Γ1	Γ2,

F3((X(1,1,1,1))k̄,x)
∼=

⊔
8

P1
k̄ .

Moreover, for threefolds of type X(4,4), the natural projection C3(X,x)→X is birational
onto an anticanonical divisor Rx ⊂X passing through the point x with multiplicity 4.

Proof. First, consider a threefold X of type X(2,2,2). If C is a rational normal cubic curve
and Hi ·C = 0 for some i, then C is contracted by one of the conic bundles (2.3.2), hence,

the curve C is supported on a fibre of (2.3.2). But the conormal bundle of any such fibre

is trivial, hence, it cannot support a nonreduced curve of arithmetic genus 0 and degree
more than 2. This means that we have Hi ·C = 1 for each i, and we conclude from this,

and Lemma 2.4, that the image of C under the map π1,2 : Xk̄ →W1,2 is a rational curve of

bidegree (1,1) intersecting the curve Γ1,2 and passing through x. The argument analogous
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12 A. Kuznetsov and Y. Prokhorov

to that of Corollary A.2 shows that there is a morphism

ϕ1,2 : F3(X,x)−→ Γ1,2

that takes a twisted cubic curve C ⊂ X to the unique point x1,2 ∈ Γ1,2, such that

C∩π−1
1,2(x1,2) �=∅. This morphism is an isomorphism, because on W1,2, there is a unique

curve of bidegree (1,1) through a given pair of points (unless they lie on a fibre of either

of the projections W1,2 → P2
k̄
, in which case, x lies on a line in X ). The same argument

proves isomorphisms of F3(X,x) with the curves Γ1,3 and Γ2,3.

Next, consider a threefold of type X(4,4). If Hi ·C = 0 for some i, then C is contracted

by πi, hence, is supported on a line. But the conormal bundle of a line is globally
generated by (2.2.1), hence, a line cannot support a nonreduced curve of arithmetic

genus 0 and degree more than 1. This means that C has bidegree (1,2) or (2,1). In the

first case, the image of C under π1 is a line on the quadric Q1 passing through x ; hence,
the corresponding component of F3(X,x)k̄ is isomorphic to P1

k̄
. It also follows that the

corresponding component of C3(X,x) is a Hirzebruch surface that maps birationally onto

the hyperplane section of Q1 tangent at x, that is, a divisor of class H1 passing through x

with multiplicity 2. The second component is described analogously. The total divisor
class of the image Rx of C3(X,x) → X is H1+H2− 4x, that is, it is the anticanonical

class passing through x with multiplicity 4.

Next, consider a threefold of type X(3,3). The same argument as above shows that C
has bidegree (1,2) or (2,1). In the first case, the image of C under π1 is a line on P3

k̄
passing through x and intersecting the curve Γ1. Since for any point of Γ1 there is a

unique line through it and x, the corresponding component of F3(Xk̄,x) is isomorphic
to Γ1. Analogously, the second component is isomorphic to Γ2.

Finally, consider a threefold of type X(1,1,1,1). Then, of course, Hi ·C =0 for some i. The

argument used for threefolds of type X(2,2,2) shows this cannot hold for two distinct i.

So, assume this holds for i= 1. By Lemma 2.4(iv), the image of C under the map π1,2,3

is a curve of multidegree (0,1,1) on P1
k̄
×P1

k̄
×P1

k̄
intersecting the curve Γ1,2,3 and passing

through x. In other words, it is a curve of bidegree (1,1) on the surface P1
k̄
×P1

k̄
passing

through x and either of the two points of intersection of Γ1,2,3 with this surface (note
that these points cannot collide because otherwise x would lie on a line in X ). Therefore,

there are two pencils of such curves. Using the same argument for other i, we see that

altogether there are eight pencils of twisted cubic curves on X passing through x.

Remark 2.13. Let X be a threefold of type X(4,4). Since a general line on Q1 passing

through a point x �∈ Γ1 does not intersect Γ1, it follows that a general twisted cubic curve

on X passing through x is smooth.

3. A birational transformation for a product of projective spaces

In this section, we construct a birational transformation for a product of projective spaces

and deduce a consequence for the rationality of its k-forms; in particular, we prove the

rationality criterion for threefolds X(1,1,1).
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3.1. Product of projective spaces

Consider the product

Y = Pn1 ×Pn2 ×·· ·×Pnr = P(V1)×P(V2)×·· ·×P(Vr)

of projective spaces. Assume that r = p+ q and

n1 ≥ n2 ≥ ·· · ≥ np ≥ 2, np+1 = · · ·= np+q = 1. (3.1.1)

Let y ∈ Y be a point, and let (v1,v2, . . . ,vr), 0 �= vi ∈ Vi, be the corresponding collection

of vectors. Consider the blowup

Ỹ = Bly(Y ),

and let E ⊂ Ỹ be its exceptional divisor. Let PGL(Vi)vi
⊂ PGL(Vi) be the stabiliser of

the point [vi] ∈ P(Vi) in the projective linear group PGL(Vi). The group

G=

r∏
i=1

PGL(Vi)vi

acts naturally on Ỹ and has finitely many orbits, which can be described as follows. First,

for each 1≤ i≤ r, let

Ỹi := Bly

(
P(V1)×·· ·×P(Vi−1)× [vi]×P(Vi+1)×·· ·×P(Vr)

)
⊂ Ỹ . (3.1.2)

Furthermore, for any subset I � {1, . . . ,r} denote

ỸI :=
⋂
i∈I

Ỹi and EI := E∩ ỸI . (3.1.3)

Finally, set

Ỹ ◦
I := ỸI \

⎛⎝EI ∪
⋃
I�J

ỸJ

⎞⎠ and E◦
I := EI \

⎛⎝⋃
I�J

EJ

⎞⎠ . (3.1.4)

Then Ỹ ◦
∅ is the open orbit, E◦

∅ and Ỹ ◦
i , p+1≤ i≤ q, are the orbits of codimension 1 and

all other orbits have higher codimension.
To describe the other side of the transformation, denote

V̄i := Vi/kvi

and choose splittings Vi = kvi⊕ V̄i. They induce a direct sum decomposition:

V1⊗·· ·⊗Vr =
⊕

I⊂{1,...,r}
V̄I, where V̄I :=

⊗
i∈I

V̄i.

Note that the point y corresponds to the summand V̄∅ = k and the tangent space to Y

at y corresponds to the sum of the summands V̄I with |I|= 1.
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14 A. Kuznetsov and Y. Prokhorov

Note also that for i≥ p+1, one has P(V̄i)∼= Spec(k). Let

Y + :=

r∏
i=1

P(V̄i) = P(V̄1)×P(V̄2)×·· ·×P(V̄p)∼= Pn1−1×Pn2−1×·· ·×Pnp−1.

Denote by hi the pullback to Y + of the hyperplane class of the i -th factor (note that hi =0

for i ≥ p+1 because, as we noticed above, P(V̄i) is just a point), and for I ⊂ {1, . . . ,r},
set

hI :=
∑
i∈I

hi.

Consider the vector bundle E of rank r+1 on Y + defined by

E :=
⊕

|I|≥r−1

O (−hI) . (3.1.5)

Denote by

si : Y
+ −→ PY +(E )

the section of (3.1.5) corresponding to the summand with I = {1, . . . ,i−1,i+1, . . . ,r}. Set

Ŷ + := PY +(E ), Ỹ + := Blsp+1(Y +)�···�sp+q(Y +)(Ŷ
+), (3.1.6)

and let Ei ⊂ Ỹ +, p+1≤ i≤ p+q be the exceptional divisors. The group G acts transitively

on Y +, the vector bundle E is G-equivariant and its summands O(−hI) with |I|= r−1
are G-invariant. Therefore, the action of G lifts naturally to Ŷ + and Ỹ +. Moreover, the

action of G on Ỹ + still has a finite number of orbits, which can be described as follows.

For a subset J � {1, . . . ,r} denote

ĒJ =
⊕

J⊂I, |I|=r−1

O (−hI) ; (3.1.7)

this is a subbundle in E of corank 1+ |J |. Let Ỹ +
J ⊂ Ỹ + denote the strict transform

of PY +(ĒJ ). Then the G-orbits are

(Ỹ +)◦ = Ỹ + \

⎛⎝Ỹ +
∅ ∪

q⋃
i=p+1

Ei

⎞⎠, (Ỹ +
J )◦ = Ỹ +

J \

⎛⎝ q⋃
i=p+1

Ei

⎞⎠,

E◦
i = Ei \ Ỹ +

∅ , E◦
i,J = (Ei∩ Ỹ +

J )\

⎛⎝ ⋃
J�K

Ei∩ Ỹ +
K

⎞⎠,

where in the last formula, we assume i �∈ J . Note that (Ỹ +)◦ is the open orbit, (Ỹ +
∅ )◦

and E◦
i are the orbits of codimension 1 and all other orbits have higher codimension.

The linear projection out of the point [vi] defines a PGL(Vi)vi
-equivariant rational map

P(Vi) ��� P(V̄i), which is regular if i≥ p+1. The product of these maps is a G-equivariant
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rational map, which we denote by ψ0 : Y ��� Y +. It gives rise to the following birational

transformation.

Theorem 3.1. There is a small birational G-equivariant isomorphism ψ : Ỹ ��� Ỹ + that

fits into the commutative diagram

Ỹ

σ

��

ψ ��������

ψ̂ ��

Ỹ +

σ̃+

��
σ+

		

Ŷ +

σ̂+

��
Y

ψ0 ��������

ψ̂0





Y +

, (3.1.8)

where σ̂+ : Ŷ+ = PY +(E ) → Y + and σ̃+ : Ỹ+ → Blsp+1(Y +)�···�sp+q(Y +)(Ŷ
+) → Ŷ + is

the projection and the blowup, respectively, σ+ := σ̂+ ◦ σ̃+ and, such that ψ induces

isomorphisms of G-orbits

Ỹ ◦
∅
∼= (Ỹ +)◦, E◦

∅
∼= (Ỹ +

∅ )◦ and Ỹ ◦
i
∼= E◦

i

of codimension 0 and 1. Moreover, if

• Hi, 1≤ i≤ r, are the hyperplane classes of P(Vi) and H =H1+ · · ·+Hr,
• E is the exceptional divisor of σ,
• h is the relative hyperplane class of the projective bundle σ̂+,
• hi, 1≤ i≤ p, are the hyperplane classes of P(V̄i) and
• ei, p+1≤ i≤ p+ q, are the exceptional divisor classes of the blowup σ̃+,

then in the Picard group Pic(Ỹ ) = Pic(Ỹ +), there are the following equalities

hi = Hi−E, 1≤ i≤ p,

ei = Hi−E, p+1≤ i≤ p+ q,
h = H− (r−1)E.

(3.1.9)

Conversely, one has

E = h−
p∑

i=1

hi−
p+q∑

j=p+1

ej, Hi =

{
hi+E, for 1≤ i≤ p,

ei+E, for p+1≤ i≤ p+ q.
(3.1.10)

The maps ψ̂0 and ψ̂ in (3.1.8) will be defined in the course of proof.

Proof. For each ui ∈ Vi, denote by ūi ∈ V̄i the image of ui under the linear projection
from the fixed vector vi ∈ Vi. Then the rational map ψ0 : Y ��� Y + is given by the formula

(u1, . . . ,ur) �−→ (ū1, . . . ,ūr).

This map is regular on the open orbit Y ◦ ⊂ Y (given by the conditions ūi �= 0 for all

indices 1≤ i≤ r), and it extends regularly to the orbits Y ◦
i ⊂ Y of codimension 1 (given

by the condition ūi = 0 for some p+1≤ i≤ p+ q and ūj �= 0 for all j �= i).
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Now, consider the rational G-equivariant map

ψ̂0 : Y ��� Ŷ +, (u1, . . . ,ur) �−→

⎛⎝(ū1, . . . ,ūr),
∑

|I|≥r−1

⊗
i∈I

ūi

⎞⎠ . (3.1.11)

Here, we consider the summand ⊗i∈I ūi as a point in the fibre of the line bundle O(−hI)

and their sum for |I| ≥ r−1 as a point in the fibre (of the projectivisation) of the vector
bundle E . Obviously, the map ψ̂0 induces an isomorphism of the open orbit Y ◦ ⊂ Y onto

the open orbit PY +(E )\PY +(Ē∅) in Ŷ + and contracts each orbit Y ◦
i of codimension 1 to

the section si(Y
+)⊂ Ŷ +, p+1≤ i≤ p+ q.

Now, consider the composition ψ̂ = ψ̂0 ◦ σ : Ỹ ��� Ŷ +. The restriction of ψ̂ to the
exceptional divisor E is given by

E = P(V̄1⊕·· ·⊕ V̄r) ��� Ŷ +,

(ū1+ · · ·+ ūr) �−→

⎛⎝(ū1, . . . ,ūr),
∑

|I|=r−1

⊗
i∈I

ūi

⎞⎠ . (3.1.12)

It maps E◦
∅ ⊂ Ỹ isomorphically onto the G-orbit (Ỹ +

∅ )◦ = PY +(Ē ) \
(⋃r

i=1PY +(Ēi)
)
of

codimension 1. By the above arguments, it also gives an isomorphism of open G-orbits and

contracts the orbits Ỹ ◦
i
∼= Y ◦

i , p+1 ≤ i ≤ p+ q, to the sections si(Y
+) ⊂ Ŷ +. Therefore,

ψ̂ induces a birational isomorphism

ψ : Ỹ ��� Blsp+1(Y +)�···�sp+q(Y +)(PY +(E )) = Ỹ +.

Finally, it is easy to see that the induced map Ỹ ◦
i →E◦

i is an isomorphism for all indices
p+1≤ i≤ p+q. This gives the commutative diagram (3.1.8) and proves that ψ is small.

The first two lines in (3.1.9) follow easily from the formulas (3.1.11), (3.1.12) and (3.1.2).

The last line follows from the equality of the canonical classes of Ỹ and Ỹ + expressed in
terms of Hi and E on the one hand, and hi, h and ei on the other hand.

Finally, (3.1.10) follows from (3.1.9).

Remark 3.2. Alternatively, one can use the fact that the varieties Ỹ and Ỹ +, as well as

the birational isomorphism ψ, are toric. Thus, to check that ψ is small, it is enough to
identify the generators of rays of the corresponding fans. Moreover, comparing the other

cones in the fans, one can check that the map ψ factors as the composition

Ỹ
ψ1 ������� Ỹ ′ ψ2 ������� . . .

ψr−2 ������� Ỹ (r−2)
ψr−1 ������� Ỹ +

of standard (anti)flips ψl in the strict transforms of ỸI for |I| = l, 1 ≤ l ≤ r− 2 and

for |I|= r−1 with {p+1, . . . ,p+ q} ⊂ I, respectively.

3.2. Rationality of forms of products of projective spaces

Here, we apply the birational transformation of the previous subsection to deduce the

following corollary (see [23] for a different proof).
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Corollary 3.3. Let Y be a k-form of Pn1 ×Pn2 ×·· ·×Pnr . For any y ∈ Y (k), the diagram

(3.1.8) is defined over k, and if Y (k) �=∅, then Y is k-rational.

Proof. First, we prove that for any y ∈ Y (k), the diagram (3.1.8) is defined over k. The
divisor classes H =

∑r
i=1Hi and H ′ :=

∑p
i=1Hi on Yk̄ are Galois-invariant, and since we

have Y (k) �= ∅ by assumption, we conclude that they are defined over k. Also Ỹ and E
are defined over k as y is a k-point. Therefore, the divisor classes

p∑
i=1

hi =H ′−pE, h=H− (r−1)E and −
p+q∑

i=p+1

ei =H−H ′− qE

(which, by Theorem 3.1, are equal to the strict transforms of the classes that are ample

on Y +, relatively ample for Ŷ + → Y + and for Ỹ + → Ŷ +, respectively) are defined over k,
hence, the varieties Y +, Ŷ + and Ỹ +, equal to the images of Ỹ under the maps given by

their appropriate linear combinations, are defined over k, as well as the remaining arrows

in the diagram.
Now to prove k-rationality of Y, we argue by induction in dim(Y ) =

∑
ni. If the

dimension is zero, there is nothing to prove. So, assume the dimension is positive

and consider the diagram (3.1.8). By Theorem 3.1, the variety Y + is a k-form of the
product Y +

k̄
= Pn1−1

k̄
× Pn2−1

k̄
× ·· · × Pnr−1

k̄
. By the Nishimura lemma (see [18]), we

have Y +(k) �= ∅, hence, Y + is k-rational by the induction assumption. Furthermore,

the morphism Ŷ + → Y + is a k-form of a projective bundle and, by (3.1.10), the strict

transform of the exceptional divisor E of Ỹ provides for it a relative hyperplane section.
But E is defined over k, therefore, Ỹ + is rational over Y +, hence, it is k-rational. It
remains to note that the morphisms σ, ψ and σ̃+ in (3.1.8) are birational, hence, Y is

k-rational as well.

Applying this to the case of a k-form of (P1)3, we obtain

Corollary 3.4. If X is a Fano threefold of type X(1,1,1) with X(k) �= ∅, then X is k-
rational.

For other applications of the theorem, we will often use the following observation.

Recall the definitions (3.1.2) and (3.1.7) of the subvarieties Yi ⊂ Y of codimension ni and

subbundles Ēi ⊂ E of corank 2.

Proposition 3.5. Let Y be a k-form of (Pn)r where n≥ 2, and assume Y has a k-point
y ∈ Y (k). Let X ⊂ Y be a closed k-subvariety containing the point y, such that

Xk̄ =

c⋂
α=1

Dα ⊂ (Pn
k̄ )

r

is a complete intersection of divisors Dα ⊂ (Pn
k̄
)r, where 1 ≤ α ≤ c. Let D̃α ⊂ Ỹk̄ and

D̃+
α ⊂ Ỹ +

k̄
= Ŷ +

k̄
be the strict transforms of Dα, and set

X̃+
k̄
:=

c⋂
α=1

D̃+
α ⊂ Ỹ +

k̄
= Ŷ +

k̄
= P(Pn−1

k̄
)r (E ).
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If X is smooth at y and for each 1≤ i≤ r one has

dim(Xk̄∩ (Yi)k̄)< dim(Xk̄) and dim(X̃+
k̄
∩PY +

k̄
(Ēi))< dim(Xk̄), (3.2.1)

then the strict transform X̃+ = ψ∗(Bly(X)) of X in Ỹ + is a k-form of the complete

intersection X̃+
k̄

and X is birational to X̃+ over k.

Proof. By Corollary 3.3 the diagram (3.1.8) is defined over k, so it is enough to check that
the complete intersection X̃+

k̄
is equal to the strict transform of Bly(Xk̄). First, note that

the assumption that y is a smooth point of X implies that the strict transform Bly(Xk̄)

of Xk̄ in Ỹ is the complete intersection of the divisors D̃α. Furthermore, the first part of

the assumptions (3.2.1) implies that the intersection of Bly(Xk̄) with the open G-orbit
in Ỹk̄ is dense in Bly(Xk̄). Therefore, the strict transform of Bly(Xk̄) in Ỹ +

k̄
is contained

in X̃+
k̄
. So, it remains to check that X̃+

k̄
is irreducible of dimension dim(Xk̄). This is

definitely true for the intersection of X̃+
k̄

with the complement of the union of projective

subbundles PY +

k̄
(Ēi), because the map ψ defines an isomorphism of this complement with

an open subset of Ỹk̄. On the other hand, the second part of the assumptions (3.2.1) gives
a bound for the dimension of the intersections with these projective subbundles, which

implies the irreducibility.

4. Rationality and unirationality of types X(2,2), X(2,2,2) and X(1,1,1,1)

In this section, we prove rationality of Fano threefolds of types X(2,2) and X(2,2,2) as well

as unirationality of threefolds of type X(1,1,1,1) under the assumption X(k) �=∅.

4.1. Rationality of X(2,2)

To start with, we deal with threefolds of type X(2,2).

Proposition 4.1. Let X be a Fano threefold of type X(2,2). If X(k) �= ∅, then X is k-
rational.

Proof. Let x be a k-point of X. By definition, X is a smooth divisor of bidegree (1,1) in a

k-form Y of P2×P2. Since the birational isomorphism ψ : Blx(Y ) = Ỹ ��� Ỹ + = PY +(E )

is small by Theorem 3.1, it follows that X is birational to a k-form of a divisor

X̃+
k̄
⊂ PP1×P1(E ) = PP1×P1(O(−1,−1)⊕O(−1,0)⊕O(0,−1)),

which by (3.1.10) has type H1+H2−E = h. Any such divisor corresponds to a morphism

ξ : O(−1,−1)⊕O(−1,0)⊕O(0,−1)−→ O.

Furthermore, the divisor X̃+ ⊂ Ỹ + comes with a morphism σ+ : X̃+ → Y + defined over k.
By the Nishimura lemma, we have X̃+(k) �= ∅, hence, Y +(k) �= ∅, and since Y + is

a k-form of P1 ×P1, it is k-rational by Corollary 3.3. Finally, the general fibre of the
morphism σ+ : X̃+ → Y + is a 1-dimensional linear section of a form of a projective

plane, hence, it is isomorphic to P1, hence, X̃+ is rational over Y +, hence, is k-rational,
hence, so is X.

https://doi.org/10.1017/S1474748022000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000378


Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank 19

Remark 4.2. One can check that the birational isomorphism ψ : X̃ ��� X̃+is a flop

in the union of the strict transforms of two k̄-lines passing through the point x ∈ X,
that σ+ : X̃+ → Y + is the projectivisation of the vector bundle Ker(ξ) of rank 2

over Y + and that these maps provide a Sarkisov link (1.2.1). This is an example of a

pseudoisomorphism between almost del Pezzo varieties of degree 5 (see [11, Lemma 5.4

and Proof of Theorem 1.2]).

4.2. Rationality of X(2,2,2)

A similar argument works for threefolds of type X(2,2,2).

Proposition 4.3. Let X be a Fano threefold of type X(2,2,2). If X(k) �= ∅, then X is

k-rational.

Proof. Let x be a k-point of X. By definition, Xk̄ is a complete intersection of three
divisors in Yk̄ = P(V1)×P(V2)×P(V3) ∼= P2×P2×P2 of multidegree (1,1,0), (1,0,1) and

(0,1,1), respectively. Denote by

F12 ∈ V ∨
1 ⊗V ∨

2 , F13 ∈ V ∨
1 ⊗V ∨

3 , F23 ∈ V ∨
2 ⊗V ∨

3 ,

their equations. We apply Proposition 3.5; for this, we consider the intersection

X̃+
k̄
⊂ PP1×P1×P1(E )

= PP1×P1×P1(O(−1,−1,−1)⊕O(−1,−1,0)⊕O(−1,0,−1)⊕O(0,−1,−1))

of the three strict transforms of the above divisors, which, by (3.1.10), have types

H1+H2−E = h−h3, H1+H3−E = h−h2, H2+H3−E = h−h1,

hence, correspond to a morphism of vector bundles

ξ : O(−1,−1,−1)⊕O(−1,−1,0)⊕O(−1,0,−1)⊕O(0,−1,−1)−→
−→ O(0,0,−1)⊕O(0,−1,0)⊕O(−1,0,0).

It is easy to see that ξ is given by the matrix

ξ =

⎛⎝F̄12 0 F12(−,v2) F12(v1,−)
F̄13 F13(−,v3) 0 F13(v1,−)

F̄23 F23(−,v3) F23(v2,−) 0

⎞⎠, (4.2.1)

where we write x= (v1,v2,v3), choose splittings Vi = k̄vi⊕ V̄i, write F̄ij for the restriction

of Fij to V̄i⊗ V̄j and consider Fij(vi,−) and Fij(−,vj) as linear functions on V̄j and V̄i

by restriction.
Let us check the dimension conditions (3.2.1). Since (Yi)k̄ is a fibre of the projection

πi : Yk̄ = P2×P2×P2 −→ P2,

it follows from Lemma 2.9 that Xk̄∩(Yi)k̄ is a conic, hence, the first part of the dimension
conditions is satisfied. To check the second part, we need to show that the restriction

ξ2,3 : O(−1,0,−1)⊕O(0,−1,−1)−→ O(0,0,−1)⊕O(0,−1,0)⊕O(−1,0,0)

https://doi.org/10.1017/S1474748022000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000378


20 A. Kuznetsov and Y. Prokhorov

of ξ to the last two summands of E (given by the last two columns of (4.2.1)) cannot be

everywhere degenerate and similarly for the restrictions ξ1,3 and ξ1,2. Assuming that ξ2,3
is everywhere degenerate, we conclude from (4.2.1) that

F12(v1,−) = F13(v1,−) = 0 or

F12(−,v2) = F23(v2,−) = 0 or

F13(v1,−) = F23(v2,−) = 0.

In any case, it would follow that at least two of the bilinear forms Fi,j are degenerate,

hence, at least two of the divisors Wi,j ⊂ P(Vi)×P(Vj) (defined by the equation Fi,j) are
singular, which contradicts Lemma 2.4(i).

Thus, the conditions (3.2.1) are satisfied and we conclude from Proposition 3.5 that X

is k-birational to a k-form of the complete intersection X̃+
k̄
.

Finally, the subvariety X̃+ ⊂ Ỹ + comes with a morphism σ+ : X̃+ → Y + defined over k.
By the Nishimura lemma, we have X̃+(k) �= ∅, hence, Y +(k) �= ∅, and since Y + is a k-
form of P1×P1×P1, it is k-rational by Corollary 3.3. Moreover, the general fibre of the

morphism σ+ : X̃+ → Y + is a zero-dimensional linear section of a form of a projective
space, hence, this morphism is birational, hence, X̃+ is k-rational, hence, so is X.

Remark 4.4. If the point x does not lie on a k̄-line, that is, F1(X,x) = ∅, one can
check that the birational isomorphism ψ : X̃ ��� X̃+ is a flop in the union of the strict

transforms of three smooth k̄-conics passing through the point x∈X, that σ+ : X̃+ → Y +

is the blowup of a smooth geometrically rational curve of multidegree (2,2,2) and that

these maps provide a Sarkisov link (1.2.1).

4.3. Unirationality of X(1,1,1,1)

Finally, we deal with threefolds of type X(1,1,1,1).

Proposition 4.5. Let X be a Fano threefold of type X(1,1,1,1). If X(k) �= ∅, then X is
k-unirational.

Proof. Let x be a k-point of X. By definition, the variety X is a smooth divisor of
multidegree (1,1,1,1) in a k-form Y of P1 ×P1 ×P1 ×P1. The birational isomorphism

ψ : Blx(Y ) = Ỹ ��� Ỹ + =Bls1,s2,s3,s4(P
4) is small by Theorem 3.1, so it follows that X is

birational to a k-form of a divisor

X̃+
k̄
⊂ Bls1,s2,s3,s4(P

4),

which, by (3.1.10), has type H1+H2+H3+H4−E = 3h− 2
∑4

i=1 ei, in particular, X̃+

is a cubic hypersurface. Moreover, the exceptional divisor E ∩Blx(X) ⊂ Ỹ = Blx(Y ) of

the blowup Blx(X)→X is an irreducible k-rational surface birational to a k-form of the

complete intersection of X̃+
k̄

with the linear span P3 ⊂ P4 of the points si.

Let us prove that X̃+
k̄

is not a cone. Indeed, X̃+
k̄

is smooth away from the linear span P3

of the si, because the map ψ from Theorem 3.1 is an isomorphism over its complement

and Xk̄ is smooth, so if X̃+
k̄
is a cone, its vertex belongs to the P3. But then its intersection

with the P3 (which has been shown to be an irreducible k-rational surface) is itself a cone
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and has a singular point at each of the si. But it is easy to see that any such cone is
reducible; this contradiction proves the claim. Now, we conclude that X̃+ is k-unirational
by [9, Theorem 1.2].

5. Rationality of type X(4,4)

In this section, we prove rationality of Fano threefolds of type X(4,4).

5.1. Sarkisov links

We start with a construction of two Sarkisov links. Recall that F1(X,x) denotes the
Hilbert scheme of lines on X passing through x, see §2.2; and that by Lemma 2.8,

if x ∈ X(k) and F1(X,x) is not empty, then F1(X,x) is the union of two reduced

k̄-points swapped by the Galois action. If L1 and L2 are the corresponding k̄-lines
on X (passing through x ), then

Θ(x) := L1∪L2

is a singular k-conic on X irreducible over k and with Sing(Θ(x)) = {x}.
Recall that a quintic del Pezzo threefold is a Fano threefold of index 2 and

half-anticanonical degree 5. Over an algebraically closed field, it can be realised
as a complete intersection of the Grassmannian Gr(2,5) with a linear subspace of

codimension 3 (see [6, Chapter 2, Theorem 1.1]).

Theorem 5.1. Let X be a Fano threefold of type X(4,4), and let x ∈X(k) be a k-point.

(i) If F1(X,x) =∅, there exists a Sarkisov link (1.2.1) defined over k, where:
• σ is the blowup of the point x,
• X+ is a smooth quintic del Pezzo threefold and
• σ+ is the blowup of a smooth k-irreducible curve B+ ⊂X+ of degree 4 with two

geometrically rational k̄-components.

(ii) If F1(X,x) �=∅, there exists a Sarkisov link (1.2.1) defined over k, where:
• σ is the blowup of the singular k-irreducible conic Θ(x),
• X+ is a smooth Fano threefold of type X(2,2) and
• σ+ is the blowup of a singular k-irreducible curve B+ ⊂X+ of degree 6 with two

geometrically rational k̄-components.

The proof of the theorem takes §5.1 and §5.2: in the rest of §5.1, we prove the existence
of the links, and in §5.2, we describe them in detail. The proofs of cases (i) and (ii) are

completely analogous, so to carry them on simultaneously, we introduce the following

convenient notation:

m=m(x) :=

{
2, if F1(X,x) =∅,

1, if F1(X,x) �=∅.
(5.1.1)

The proof of the existence of the links is analogous to the first parts of [10, Theorems 5.9
and 5.17], so we use some results from [10, §5.1] below.
Let

σ : X̃ −→X
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be the blowup of X at x or at Θ(x), respectively. We denote by H (the pullback to X̃

of) the anticanonical class of X and by E the exceptional divisor of σ.
First, note that for m=m(x), the anticanonical linear system

|−KX̃ |= |H−mE|

is base-point free by Theorem 2.1 and [10, Lemmas 5.5 and 5.7]. Moreover, combining

[10, (5.1.7) and (5.1.9)], we can uniformly write

H3 = 2g−2, H2 ·E = 0, H ·E2 = 2(m−2), E3 =m−1, (5.1.2)

where we recall from Table 1 that g = g(X) = 15. We will also need the following
observation.

Lemma 5.2. The linear system M := |H− (m+1)E| on the blowup X̃ of X has positive
dimension:

dimM ≥ g−m−7≥ 6 (5.1.3)

and has no fixed components.

Proof. The dimension is estimated in [10, Lemma 5.4(i) and (iii)]. To prove that M has

no fixed components, note that the linear system |kE| is zero-dimensional for any k ≥ 0

(since E is the exceptional divisor of a blowup), hence, the only possibility for a fixed
component of M is provided by the divisor E with some multiplicity. So, assume

|H− (m+1)E|= (a−m−1)E+ |H−aE|,

where a ≥ m+2 and E is not a fixed component of the linear system |H − aE|. Since
the linear system |H −mE| is base-point free and |H − aE| has no fixed components,
using (5.1.2) we obtain

0≤ (H−aE)2 · (H−mE) = 2g−2−a2(m2−3m+4)+4am(m−2).

When m= 2, this gives a2 ≤ 14, hence, a≤ 3, and when m= 1, this gives (a+1)2 ≤ 15,

hence, a≤ 2. In both cases, this contradicts the assumption a≥m+2.

Now, we can deduce the existence of the Sarkisov links.

Proposition 5.3. Let X be a Fano threefold of type X(4,4) with a k-point x.

(i) If F1(X,x) =∅, there exists a Sarkisov link (1.2.1), where σ is the blowup of x.

(ii) If F1(X,x) �=∅, there exists a Sarkisov link (1.2.1), where σ is the blowup of Θ(x).

In both cases, the link is defined over k.

Proof. We use notation (5.1.1). Recall that the anticanonical class H = −KX is very

ample and the image of the anticanonical embedding X ⊂ Pg+1 is an intersection of

quadrics (see Theorem 2.1). The anticanonical morphism φ : X̃ →Pg−m−1 cannot contract
a divisor D, because by [10, Lemmas 5.5 and 5.7], this divisor is then a fixed component

of M , but by Lemma 5.2, this linear system has no fixed components. Therefore, the

required link exists and is defined over k by [10, Lemmas 5.5 and 5.7].
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5.2. The second contraction

By Proposition 5.3 we have the diagram (1.2.1), so to finish the proof of Theorem 5.1, it

remains to describe the extremal contraction σ+. During this step, we systematically use

the classification of extremal contractions from [5] and [16].

We denote by H+,E+ ∈ Pic(X̃+), the strict transforms of the classes H,E ∈ Pic(X̃).
Note that

−KX̃+ =H+−mE+

because −KX̃ = H −mE by definition of X̃ and the map ψ is an isomorphism in

codimension one. Consider also the strict transform

M+ := |H+− (m+1)E+|

of the linear system M .

We denote by Υi ⊂ X̃ the flopping curves and by Υ+
i ⊂ X̃+ the corresponding flopped

curves. Finally, when F1(X,x) = ∅, we denote by C a general twisted cubic curve on X

passing through x, and otherwise, we denote by C a general conic meeting Θ(x) (recall

Lemmas 2.11 and 2.12 for the description of the corresponding Hilbert schemes). Note

that

H ·C =m+1. (5.2.1)

We denote by C̃ the strict transform of C in X̃ and by C̃+ the strict transform of C̃

in X̃+. Note that by Remarks 2.10 and 2.13, the curve C̃ is smooth and

E · C̃ = 1; (5.2.2)

in particular, (H−mE) · C̃ = 1 and C̃ does not contain the curves Υi.

Lemma 5.4. The nef cone of X̃+ is generated by the anticanonical class −KX̃+ and

M+ ∈ M+, and the Mori cone of X̃+ is generated by the class of the curves Υ+
i and the

class of C̃+. In particular, the extremal contraction σ+ is given by a multiple of the linear
system M+ and contracts the extremal ray generated by C̃+.

Proof. Since φ is crepant and ψ is a flop, the morphism φ+ is crepant as well. Moreover,

the anticanonical linear system | −KX̃ | is base-point free by [10, Lemma 5.7], hence,
|−KX̃+ | is base-point free as well.

On the other hand, we have (H −mE) ·Υi = −KX̃ ·Υi = 0, and since H ·Υi > 0, we

conclude that E ·Υi > 0. Therefore, for M ∈ M we have

M ·Υi = (H− (m+1)E) ·Υi =−E ·Υi < 0.

If M+ ∈ M+ is the strict transform of M, this implies that M+ ·Υ+
i > 0 by one of

the definitions of a flop (see, for example, [7, Definition 6.10]). Now if M+ is not nef,
it is negative on the extremal ray R corresponding to the contraction σ+ : X̃+ → X+.

Since the canonical class is also negative on R, the contraction σ+ cannot be small

(see [2, Theorem 0] or [17, Corollary 6.3.4]), hence, curves in R sweep a subvariety
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of X̃+ of dimension ≥ 2, hence, the base locus of M+ is at least two-dimensional, which

contradicts Lemma 5.2. This proves that M+ is nef.
Now, we have −KX̃ ·C̃ = (H−mE) ·C̃ =1 by (5.2.1) and (5.2.2), hence, −KX̃+ ·C̃+ =1.

On the other hand, since a general divisor H meets C away from the indeterminacy locus

of the map X ��� X̃+, we have H+ · C̃+ ≥H ·C =m+1 and so E+ · C̃+ ≥ 1. Thus,

M+ · C̃+ = (−KX̃+ −E+) · C̃+ = 1−E+ · C̃+ ≤ 0.

Since M+ is nef, M+ · C̃+ = 0.

Combining the above computations, we conclude that the nef cone of X̃+ is generated

by −KX̃+ and M+ and the Mori cone is generated by Υ+
i and C̃+. The rest of the lemma

follows from the Mori contraction theorem [16, Theorems 3.1 and 3.2].

Now, we can finally prove Theorem 5.1.

Proof of Theorem 5.1. Let X be a Fano threefold of type X(4,4). By Proposition 5.3,

there exists a Sarkisov link (1.2.1), and it remains to describe the contraction σ+.
Since σ+ is an extremal contraction, we have ρ(X+) = ρ(X̃+)− 1 = ρ(X̃)− 1 = ρ(X),

hence, ρ(X+) = 1. Similarly, we have ρ(X+
k̄
)≤ ρ(X̃+

k̄
)−1 = ρ(X̃k̄)−1 = ρ(Xk̄) = 2, hence

ρ(X+
k̄
)≤ 2. (5.2.3)

On the other hand, in the case F1(X,x) �= ∅, the varieties X̃ and X̃+ are not smooth

and, arguing as in the proof of [10, Theorem 5.9], we obtain

rkCl(X̃+) = 2, rkCl(X̃+
k̄
) = 5−m. (5.2.4)

Since φ and φ+ are crepant morphisms, the projection formula implies that any triple

intersection product of divisor classes on X̃+ which includesKX̃+ is equal to the analogous
triple product on X̃, so using (5.1.2), we compute (recall that g = g(X) = 15)

(−KX̃+)
3 = 2(g−m−3) = 24−2m,

(−KX̃+)
2 ·E+ = 4, (5.2.5)

(−KX̃+) · (E+)2 =−2.

On the other hand, by Lemma 5.4 and primitivity of H+− (m+1)E+, we have

H+− (m+1)E+ = σ∗
+A

+, (5.2.6)

where A+ is the ample generator of the Picard group of X+. We have

(σ∗
+A

+)2 · (−KX̃+) = (H+− (m+1)E+)2 · (−KX+)

= 2(g−m−8) = 14−2m> 0,
(5.2.7)

therefore, σ+ is not a del Pezzo fibration. Similarly, if σ+ is a conic bundle, it follows that

(A+)2 = 7−m,

hence, X+ is a smooth quintic or sextic del Pezzo surface, which of course contradicts

the inequality (5.2.3). Therefore, the morphism σ+ is birational.
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By Lemma 5.4, the morphism σ+ contracts the strict transform R+ of the divisor swept

by curves C, that is, the strict transform of the divisor Rx ⊂ X if F1(X,x) = ∅, or of

the divisor RΘ(x) otherwise. In both cases, Lemmas 2.11 and 2.12 show that R+ has
over k̄ two irreducible components swapped by the Galois group. Therefore, it follows

from (5.2.4) that

rkCl(X+) = 1, rkCl(X+
k̄
) = 3−m,

and σ+ is the blowup of two k̄-curves or two k̄-points. Furthermore, by Lemmas 2.11

and 2.12, we have

R+ ∼H+− (m+2)E+.

Denoting by i+ the index of X+ and by a+ the discrepancy of the exceptional divisor R+

of σ+, and computing the anticanonical class of X̃+ in two ways, we obtain the equality

H+−mE+ = i+(H
+− (m+1)E+)−a+(H

+− (m+2)E+).

Solving this equation, we obtain i+ = 2 and a+ = 1. Thus, X+ is a Fano threefold of
index 2 and σ+ is either the blowup of a k-irreducible curve B+ with two k̄-components

or of two rational double k̄-points on X+ swapped by the Galois action. Moreover, using

the equality from (5.2.7), we obtain

14−2m= (σ∗
+A

+)2 · (−KX̃+) = (σ∗
+A

+)2 · (2σ∗
+A

+−R+) = 2(σ∗
+A

+)3,

hence, X+ is a quintic or sextic del Pezzo threefold, respectively. Finally, if X+ is singular,

its class group Cl(X+) has rank greater than 1 (see [20, Theorem 1.7]), which contradicts
to the equality rkCl(X+) = 1 obtained above. Thus, X+ is smooth and σ+ is the blowup

of a curve B+, such that B+
k̄

has two irreducible k̄-components swapped by the Galois

group.

To finally compute the degree of B+, recall that R+ is the exceptional divisor of σ+.
Note that on the one hand, equalities (5.2.5) and (5.2.6) imply that

(σ∗
+A

+) · (−KX̃+)
2 = 2g−2m−10 = 20−2m,

and on the other hand, this expression is equal to

(σ∗
+A

+) · (2σ∗
+A

+−R+)2 = 4(σ∗
+A

+)3+(σ∗
+A

+) · (R+)2 = 4(7−m)−deg(B+)

(where the degree is computed with respect to A+). Thus,

deg(B+) = 8−2m,

hence, B+ is a quartic or sextic curve with two connected k̄-components (swapped by the

Galois action), that is, a union of two conics or two cubic curves.

5.3. Rationality

Now, we use the constructed links to prove rationality of threefolds of type X(4,4).

Proposition 5.5. Let X be a Fano threefold of type X(4,4). If X(k) �= ∅, then X is

k-rational.
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Proof. Let x ∈ X(k) be a k-point. First, assume that F1(X,x) = ∅. Then, by

Theorem 5.1(i), the variety X is birational to a smooth quintic del Pezzo threefold X+.

But X+ is k-rational by [10, Theorem 3.3], hence, so is X.
Now, assume that F1(X,x) �=∅. Then, by Theorem 5.1(ii), the variety X is birational

to a smooth Fano threefold X+ of type X(2,2). Moreover, by the Nishimura lemma, we

have X+(k) �=∅. Therefore, X+ is k-rational by Proposition 4.1, hence, so is X.

6. Fano threefolds of type X(3,3)

In this section, we prove that a Fano threefold X of type X(3,3) is k-unirational if X(k) �=∅

but not k-rational if ρ(X) = 1.

6.1. The discriminant curve

Let X be a Fano threefold of type X(3,3) with X(k) �=∅. Recall from Lemma 2.5 that the

image GX of the Galois group G(k̄/k) in Aut(Pic(Xk̄)) is a group of order 2 swapping the

generators H1 and H2 of Pic(Xk̄). The homomorphism G(k̄/k)→GX , therefore, defines
a quadratic extension k′/k, such that H1 and H2 are defined on Xk′ , hence,

Xk′
∼=
(
P(V1)×P(V2)

)
∩P(A⊥),

where Vi are k′-vector spaces of dimension 4 and A ⊂ V ∨
1 ⊗V ∨

2 is the three-dimensional

subspace of linear equations of Xk′ . Note that the k′-spaces V1⊗V2 and A are defined

over k, as well as the inclusion A⊂ V ∨
1 ⊗V ∨

2 . We think of vectors a ∈A as bilinear forms
on V1⊗V2 and denote by

Γ ↪−→ P(A)

the discriminant curve parameterising degenerate bilinear forms; it is also defined over k.

Lemma 6.1. The curve Γ is a smooth plane quartic curve; in particular, it is a

nonhyperelliptic curve of genus 3.

Proof. The discriminant divisor in P(V ∨
1 ⊗ V ∨

2 ), that is, the divisor parameterising

degenerate bilinear forms, is a quartic hypersurface, hence, Γ is a quartic curve or the

entire plane. To prove that Γ is a smooth curve, we can work over k′, and it is enough to

show that the tangent space to Γ at any point is one-dimensional. Assume to the contrary,
that the tangent space at a point [a] ∈ P(A) is two-dimensional; then

(i) either the bilinear form a(−,−) ∈ V ∨
1 ⊗V ∨

2 has corank at least 2,

(ii) or a has corank 1, and if the vectors v1 ∈ V1 and v2 ∈ V2 generate its left and right

kernels, respectively, the point ([v1],[v2]) ∈ P(V1)×P(V2) belongs to Xk′ .

In case (i), if K1 ⊂ V1 and K2 ⊂ V2 are the left and right kernels of a (they have dimension

≥ 2 by assumption), then the form a vanishes on P(K1)×P(K2), hence, the intersection(
P(K1)×P(K2)

)
∩Xk′ is a codimension-2 linear section of P(K1)×P(K2), hence, it is

nonempty. Therefore, in case (i), similarly to the case (ii), there is a point ([v1],[v2])∈Xk′ ,

such that v1 and v2 belong to the left and right kernels of some a. Then, the hyperplane
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section of P(V1)×P(V2) by the hyperplane corresponding to a is singular at ([v1],[v2]),

hence, Xk′ is also singular at this point.

As explained in Lemma 2.4(iii), the projections π1 : Xk′ → P(V1) and π2 : Xk′ → P(V2)
defined over k′, but not over k, are the blowups of smooth curves Γi ⊂ P(Vi) of genus 3 and

degree 6 also defined over k′. The next lemma relates the k′-curves Γi to the discriminant

curve Γ defined over k.

Lemma 6.2. There is a natural isomorphism Γi
∼= Γk′ of curves over k′.

Proof. The fibre of the projection π1 over a point [v1] ∈ P(V1) is the intersection of

the projectivisations of the orthogonals of v1 with respect to all bilinear forms a ∈ A.

Therefore, it has positive dimension if and only if v1 belongs to the left kernel of one of
the forms. Furthermore, if v1 belongs to the left kernel of two distinct forms in A, the

fibre of π1 over [v1] contains a plane, which contradicts Corollary 2.6. This means that

the morphism

γi : Γk′ −→ P(Vi), a �−→Keri(a),

where Ker1 and Ker2 denote the left and right kernels of the bilinear form a, respectively,
is an isomorphism Γk′ → Γi.

Remark 6.3. It is also easy to check that if Hi|Γ are the pullbacks of the hyperplane
classes of Γi ⊂P(Vi) to Γk′ under the isomorphism of Lemma 6.2, thenH1|Γ+H2|Γ =3KΓ,

and that the divisor classesHi|Γ−KΓ are noneffective and swapped by the G(k′/k)-action.
Conversely, given two such classes on a curve Γk′ one can reconstruct the variety X.

6.2. The double projection from a point

Recall the quadratic extension k′/k defined in §6.1. Recall also the canonical embedding

X ⊂ Y , where Y is a k-form of P3 ×P3. We consider the birational transformation of
Theorem 3.1 for the variety Yk′ = P(V1)×P(V2) associated with a k-point

x0 = ([v1],[v2]) ∈X ⊂ Y.

As in §3.1, we denote V̄i :=Vi/k
′vi and choose a splitting Vi = k′vi⊕V̄i. The transformation

of Theorem 3.1 in this case looks as follows:

Ỹ

σ

��

ψ ����������� Ỹ +

σ+

��
Y Y +

, (6.2.1)

where σ is the blowup of x0, Y
+
k′

∼= P(V̄1)×P(V̄2), σ+ is the projectivisation of the vector
bundle

E = O(−h1−h2)⊕O(−h1)⊕O(−h2) (6.2.2)

(here, hi stand for the hyperplane classes of P(V̄i)) over Y +
k′ and the map ψ is a small

birational isomorphism. Note that all varieties and maps in (6.2.1) are defined over k.
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Recall also the relations (3.1.9) in Pic(Ỹk′) =Pic(Ỹ +
k′ ) between the hyperplane classesHi

of the factors P(Vi) of Yk′ , the class E of the exceptional divisor of σ, the hyperplane
classes hi and the relative hyperplane class h of Ỹ +

k′ = PY +

k′
(E )⎧⎪⎨⎪⎩

h1 =H1−E,

h2 =H2−E,

h =H1+H2−E

⎧⎪⎨⎪⎩
H1 = h−h2,

H2 = h−h1,

E = h−h1−h2.

(6.2.3)

Since X is a smooth linear section of Y, containing the point x0, it is a complete

intersection of three divisors Dα, 1 ≤ α ≤ 3, in the linear system |H1 +H2|, whose

strict transforms on Ỹ belong to the linear system |H1 +H2 −E|. Now, it follows
from (6.2.3) that their strict transforms D̃+

α on Ỹ + belong to the linear system |h|.
As in Proposition 3.5, we consider the complete intersection

X̃+
k′ := D̃+

1 ∩ D̃+
2 ∩ D̃+

3 ⊂ PY +

k′
(E ).

It follows that X̃+
k′ is determined by a morphism of vector bundles

ξ : E −→A∨⊗O,

and if we choose a basis a1,a2,a3 in A, it is easy to see that ξ is given by the matrix

ξ =

⎛⎝ā1(−,−) a1(−,v2) a1(v1,−)
ā2(−,−) a2(−,v2) a2(v1,−)

ā3(−,−) a3(−,v2) a3(v1,−)

⎞⎠, (6.2.4)

where āi ∈ V̄ ∨
1 ⊗ V̄ ∨

2 denotes the restriction of the bilinear form ai to V̄1 ⊗ V̄2, while

ai(−,v2) ∈ V ∨
1 and ai(v1,−) ∈ V ∨

2 are considered as linear functions on V̄1 and V̄2,
respectively.

Proposition 6.4. The threefold X is k-birational to the k-form X̃+ of the threefold X̃+
k′

defined by (6.2.4) and to a k-form X+ of its image in Y +

X+
k′ = σ+(X̃

+
k′ ) = {det(ξ) = 0} ⊂ P(V̄1)×P(V̄2),

which is a geometrically irreducible and normal divisor of bidegree (2,2). Moreover,

• if F1(X,x0) = ∅, then the variety X̃+ ∼= X̃ = Blx(X) is smooth, the morphism
σ+ : X̃+ → X+ is induced by the double projection from x0 and it is a small
resolution of singularities;

• if F1(X,x0) �= ∅, then the variety X+ contains a k-form of a quadric surface
P1×P1 ⊂ P(V̄1)×P(V̄2) rational over k.

Proof. To prove birationality of X̃ and X̃+ = ψ∗(X̃), we apply Proposition 3.5, so we
need to verify the dimension conditions (3.2.1). We have (Y1)k′ = [v1]×P(V2), hence

Xk′ ∩ (Y1)k′ = ([v1]×P(V2))∩P(A⊥)

is a fibre of the projection π1 : Xk′ → P(V1). By Lemma 2.4, it is a point or a line. A

similar argument for Xk′ ∩ (Y2)k′ shows that the first part of (3.2.1) holds. Moreover, this
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argument also shows that in the case F1(X,x0) =∅, the blowup X̃k′ of Xk′ has an empty

intersection with the indeterminacy locus (Ỹ1)k′ 	 (Ỹ2)k′ of the map ψ.
On the other hand, the subbundle Ē1 ⊂ E is just the summand O(−h2) in (6.2.2), hence,

the corresponding intersection X̃+
k′ ∩PY +

k′
(Ē1) is the zero locus of the morphism

ξ2 : O(−h2) �−→A∨⊗O

given by the last column of (6.2.4). It is easy to see that this is empty, if F1(X,x0) =∅,
or isomorphic to a line otherwise. A similar argument works for X̃+

k′ ∩PY +

k′
(Ē2); therefore,

the second part of (3.2.1) also holds. This proves that X̃+ = ψ∗(X̃) is a k-form of X̃+
k′ ,

it is k-birational to X, and if F1(X,x0) =∅, it is isomorphic to X̃, and, in particular, in

this case, it is smooth.
Now, we describe the image of X̃+ in Y +. By definition, X̃+

k′ parameterises points in

the projectivisations of kernel spaces of ξ; therefore, its image in Y +
k′ = P(V̄1)×P(V̄2)

is the degeneracy locus X+
k′ of ξ, which is, of course, given by the equation det(ξ) = 0.

Since det(E ) ∼= O(−2h1 − 2h2) by (6.2.2), this is a divisor of bidegree (2,2), which is

geometrically irreducible because X̃+
k′ is. Moreover, fibres of the morphism σ+ : X̃+

k′ →X+
k′

are linear spaces, so, since both the source and the target are three-dimensional, the
morphism is birational. To prove that X+

k̄
is normal, we consider the Koszul resolution

0−→ OP
Y

+
k̄

(−E )(−3h)−→ OP
Y

+
k̄

(−E )(−2h)⊕3

−→ OP
Y

+
k̄

(−E )(−h)⊕3 −→ OP
Y

+
k̄

(−E ) −→ OX̃+

k̄
−→ 0.

Pushing it forward to Y +
k̄
, we obtain the following exact sequence

0−→ OY +

k̄
(−2h1−2h2)−→ OY +

k̄
−→ σ+∗OX̃+

k̄
−→ 0.

It follows that σ+∗OX̃+

k̄

∼= OX+

k̄
, and since X̃+

k̄
is normal, so is X+

k̄
.

Now, assume F1(X,x0) = ∅. In this case, the pullback along the morphism σ+ of
the ample divisor class h1 + h2 on P(V̄1)×P(V̄2) by (6.2.3) equals H1 +H2 − 2E, the

anticanonical class of X̃+ ∼= X̃, hence, the morphism σ+ is the double projection from

the point x0. Consequently, it is small by the argument of [10, Theorem 5.17]. Indeed, by

[10, Lemma 5.4(iii)], we have dim |H1+H2−3E| ≥ g−9 = 2 (recall that g = g(X) = 11,
see Table 1), hence, by [10, Lemma 5.7(ii)], any divisor D contracted by σ+ must be a

fixed component of |H1+H2−3E|, and at the same time by [10, (5.1.8)], its class should

be a multiple of H1+H2−5E, and these two conclusions are incompatible.
Finally, assume that F1(X,x0) �=∅. As it was explained in Lemma 6.2, this means that

(for appropriate k′-basis in A) we have

a1(v1,−) = 0 and a2(−,v2) = 0

as linear functions on V̄2 and V̄1, respectively; moreover, [a1],[a2] ∈ P(A) as above are

unique and swapped by the Galois action. Consider the surface

{a1(−,v2) = 0, a2(v1,−) = 0} ⊂ P(V̄1)×P(V̄2) = Y +
k′
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(isomorphic to P1
k′ ×P1

k′). The equations defining it are Galois-conjugate, hence, it comes

from a k-surface in Y +. This surface is the image of the exceptional divisor E of σ, hence,
it is k-rational. It is clear from (6.2.4) that this surface is contained in the degeneracy

locus X+ of ξ.

6.3. A conic bundle structure

In this section, we work under the assumption F1(X,x0) =∅ and show that, in this case,
X admits a nice conic bundle structure.

We will need a general result about what we call Springer resolutions. Let M be a

variety, let ξ : E1 → E ∨
2 be a morphism of vector bundles on M of the same rank and

let ξ∨ : E2 → E ∨
1 be its dual morphism. Assume the degeneracy locus Z ⊂ M of ξ is a

geometrically integral divisor. Let Z1 ⊂ PM (E1) and Z2 ⊂ PM (E2) be the zero loci of the

morphisms

O(−hE1
) ↪→ p∗1E1

p∗
1ξ−−−−−−→ p∗1E

∨
2 and O(−hE2

) ↪→ p∗2E2
p∗
2ξ

∨

−−−−−−−→ p∗2E
∨
1 ,

where pi : PM (Ei)→M are the projections, hEi
are their relative hyperplane classes and

the first arrows are the tautological embeddings.

Lemma 6.5. If one of the morphisms

p1|Z1
: Z1 −→ Z or p2|Z2

: Z2 −→ Z

is birational, then so is the other. Moreover, if one of them is small, then so is the other,

and there is an equality

(hE1
+c1(p

∗
1E1))+(hE2

+c1(p
∗
2E2)) = 0 (6.3.1)

in the group Cl(Z1) ∼= Cl(Z) ∼= Cl(Z2), where the isomorphisms of the class groups are

induced by the small birational morphisms pi.

Proof. Let Z≥c ⊂ Z be the locus of points where the corank of ξ is at least c (so
that Z = Z≥1). Then, both morphisms pi|Zi

are Pc−1-fibrations over Z≥c \Z≥c+1. In

particular, if one of the morphisms is birational, then dimZ≥c ≤ dimZ− c for c≥ 2, and

then the other morphism is also birational. Similarly, if one of the morphisms is small,
then dimZ≥c ≤ dimZ−c−1 for c≥ 2, and then the other morphism is also small. Finally,

assuming that the morphisms are small, we have

Cl(Z1) = Cl(Z1 \p−1
1 (Z≥2)) = Cl(Z \Z≥2) = Cl(Z2 \p−1

2 (Z≥2)) = Cl(Z2),

and when restricted to Z \Z≥2, the morphism ξ has constant corank 1, the summands
in (6.3.1) are equal to c1(Im(ξ)) and c1(Im(ξ∨)) (respectively) and (6.3.1) follows from

the natural duality isomorphism Im(ξ∨)∼= Im(ξ)∨.

Now, coming back to the threefold X of type X(3,3) and assuming F1(X,x0) = ∅, we

recall that the subvarietyX+ ⊂Y + is the degeneracy locus of ξ : E →A∨⊗O and note that

X̃+ ⊂ PY +(E ) is one of its Springer resolutions. Consider the other Springer resolution

X̃++ ⊂ PY +(A⊗O)∼= Y +×P(A),

https://doi.org/10.1017/S1474748022000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000378


Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank 31

which, by definition, is the zero locus of the morphism

O(−hA) ↪→A⊗O
ξ∨−−−−−→ E ∨,

where hA is the hyperplane class of P(A) and we suppress the pullbacks in the notation.
In view of (6.2.2), the scheme X++

k′ is just a complete intersection of divisors of types

h1+h2+hA, h1+hA and h2+hA in P(V̄1)×P(V̄2)×P(A) that correspond to the columns

of (6.2.4).

Proposition 6.6. If F1(X,x0) =∅, there is a commutative diagram defined over k

X̃

σ

��

ψ
X̃+

σ+

����
���

���
���

ψ+ ������������� X̃++

σ++

�����
���

���
��

f

��
X X+ P(A),

(6.3.2)

where X̃+ and X̃++ are the Springer resolutions of the degeneracy locus X+ ⊂ Y + of ξ,
the morphisms σ+ and σ++ are small birational contractions and ψ+ = σ−1

++ ◦σ+ is a flop.

Moreover, X̃++ is smooth, f is a flat conic bundle whose discriminant curve is the
curve Γ defined in §6.1, the map f ◦ψ+ ◦ψ : X̃ ��� P(A) is given by the linear system

|H1+H2−3E| and the exceptional divisor E ⊂ X̃ of σ dominates P(A).

Proof. The morphism σ+ is small by Proposition 6.4, hence, σ++ is small by Lemma 6.5;

moreover, it follows that both morphisms are crepant. Now, the relation (6.3.1) implies
that the σ+-antiample class −h is σ++-ample, hence, ψ+ := σ−1

++ ◦ σ+ is a flop. Since

X̃+ ∼= X̃ is smooth and ψ+ is a flop, X̃++ is smooth as well (see [8, Theorem 2.4]).

Next, we show that f is a conic bundle and identify its discriminant. For this, note
that by definition, the fibre of f over a point [a] ∈ P(A) is given in P(V̄1)×P(V̄2) by the

equations

a(−,v2) = a(v1,−) = ā(−,−) = 0.

The first is a linear function on V̄1, the second is a linear function on V̄2 and both are

nonzero because F1(X,x0) =∅, so their common zero locus is P1
k′ ×P1

k′ ⊂ P(V̄1)×P(V̄2).
The last equation ā(−,−) = 0 cuts a divisor of bidegree (1,1) on this P1

k′ ×P1
k′ , that is, a

conic; and if ā(−,−) vanishes identically, then the corresponding bilinear form a vanishes

on P2
k′ ×P2

k′ ⊂ P(V1)×P(V2), hence, has corank 2, which is impossible by the argument
of Lemma 6.1 as X is smooth. This shows that f is a flat conic bundle. Finally, note that

if v̄′i, v̄
′′
i , v̄

′′′
i are bases of vector spaces V̄i, such that,

a(v1,v̄
′
2) = a(v1,v̄

′′
2 ) = a(v̄′1,v2) = a(v̄′′1 ,v2) = 0

then the matrix of a has the form⎛⎜⎜⎝
0 0 0 a(v1,v̄

′′′
2 )

0 ā(v̄′1,v̄
′
2) ā(v̄′1,v̄

′′
2 ) ∗

0 ā(v̄′′1 ,v̄
′
2) ā(v̄′′1 ,v̄

′′
2 ) ∗

a(v̄′′′1 ,v2) ∗ ∗ ∗

⎞⎟⎟⎠
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with nonzero entries a(v1,v̄
′′′
2 ) and a(v̄′′′1 ,v2) and with the 2-by-2 matrix in the middle

giving the equation of the conic f−1(a) in P1
k̄
×P1

k̄
. Therefore, the conic is singular if and

only if det(a) = 0, that is, if and only if [a]∈ Γ. Thus, the discriminant curve of f equals Γ.
Finally, using (6.3.1), (6.2.2) and (6.2.3), we deduce that the map f ◦ψ+ ◦ψ is given by

the linear system

hA = 2(h1+h2)−h=H1+H2−3E.

Since the canonical class of X̃ is equal to H1+H2−2E and ψ+ is a flop, it follows that

ψ∗(E) is a relative anticanonical divisor for f, hence, it dominates P(A).

If f : X → S is a flat conic bundle over a surface S (not necessarily proper) with a

smooth discriminant curve Δ⊂S, consider the preimage XΔ := f−1(Δ), its normalisation

X ν
Δ → XΔ and the Stein factorisation

X ν
Δ −→ Δ̃−→Δ.

Then, the first arrow is a P1-bundle and the second arrow is an étale double covering

(because Δ was assumed to be smooth). We will say that the étale covering Δ̃→Δ is the
discriminant double covering of the conic bundle f.

Lemma 6.7. The discriminant double covering of the conic bundle f : X̃++ → P(A) has

the form

Γ̃∼= Γ×k k
′ −→ Γ.

Proof. If the conic f−1([a]) is singular, it is a union of two irreducible components that

correspond to the two factors P(V̄i) in Y +
k′ and each of them is contracted by appropriate

projection Y +
k′ →P(V̄i). Therefore, the discriminant double covering Γ̃→Γ becomes trivial

after the extension of scalars to k′, while it is nontrivial over k, hence, the claim.

6.4. Unirationality

In this section, we prove unirationality of X assuming that X(k) �=∅. We start with the

following observation, which might be useful in other situations.

Lemma 6.8. Let Y be a k-form of P2×P2, and let W ⊂ Y be a k-rational k-form of a

quadric surface P1×P1 ⊂ P2×P2. Any geometrically irreducible normal divisor Z ⊂ Y of

bidegree (2,2), such that W ⊂ Z is k-unirational.

Proof. Consider the toric birational isomorphism

BlP1×P1(P2×P2)

			
			

			
		

BlP1�P1(P4)

��















P2×P2 χ ����������������������� P4,

analogous to the birational transformation of Theorem 3.1 (see also [23, Proposition 3]).

Here, the map χ is the projection from the linear span of W under the Segre embedding

P2×P2 ⊂ P8 and the right arrow is the blowup of two skew lines in P4. Denoting by ê the
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class of the exceptional divisor of the left blowup, by ĥ the hyperplane class of P4 and by
e1 and e2 the classes of the exceptional divisors of the right blowup, it is easy to check

that we have the relations⎧⎪⎨⎪⎩
ĥ= h1+h2− ê,

e1 = h1− ê,

e2 = h2− ê,

and

⎧⎪⎨⎪⎩
h1 = ĥ− e2,

h2 = ĥ− e1,

ê= ĥ− e1− e2.

In particular, the map χ is given by the linear system |h1+h2− ê|, hence, it is defined

over k. Furthermore, we have 2h1+2h2− ê=3ĥ−e1−e2, and since Z is normal, the strict

transform of Z under the map χ is a cubic threefold Ẑ ⊂ P4 passing through the pair
of skew lines P1 	P1. Moreover, we have ê = ĥ− e1 − e2, hence, the image of Ê is the

hyperplane section of this cubic threefold (by the linear span of these lines). On the other

hand, Ê is birational to the k-rational surface W, hence, it is k-rational. In particular,

Ẑ(k) �=∅.
Now, if Ẑ is not a cone, it is k-unirational by Kollár’s theorem [9, Theorem 1.2].

Otherwise, if Ẑ is a cone, and its vertex lies away from the hyperplane spanned by the

two skew lines, then the base of the cone is the k-rational surface Ê, hence, the cone Ẑ is
also k-rational. Finally, if the vertex of the cone lies on Ê, then Ê itself must be a cubic

cone in P3, and since it also contains two skew lines, it is not geometrically irreducible,

which is absurd.

Now, we can deduce unirationality of X.

Proposition 6.9. If X is a Fano threefold of type X(3,3) with X(k) �= ∅, then X is k-
unirational.

Proof. Let x0 be a k-point on X.

First, assume F1(X,x0)=∅. By Proposition 6.6, we have a k-birational mapX ��� X̃++,

where f : X̃++ → P(A) is a conic bundle, and the k-rational surface E ∼= P(Tx0
X) ⊂ X̃

dominates the base of this conic bundle. Therefore, X̃ is k-unirational (see, e.g. [10,

Lemma 4.14(i)]); and, hence, so is X.

Now, assume F1(X,x0) �=∅. By Proposition 6.4, we have a birational map X ���X+,

where X+ is a geometrically irreducible normal divisor of bidegree (2,2) in a k-form of
P2×P2 that contains a k-form of a k-rational quadric surface P1×P1. Therefore, X+ is

k-unirational by Lemma 6.8, hence, so is X.

6.5. Nonrationality

In this section, we prove nonrationality of Fano threefolds of type X(3,3). We will use the
following reformulation of a result of Benoist–Wittenberg from [3].

Theorem 6.10. Let X →S be a flat conic bundle over a smooth k-rational surface S with

smooth connected discriminant curve Δ ⊂ S. Assume the discriminant double covering
takes the form

Δ̃∼=Δ×k k
′ −→Δ,
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where k′/k is a quadratic extension of the base field. If the conic bundle Xk′ → Sk′ admits

a rational section, and the curve Δ is not hyperelliptic, then X is not k-rational.

Note that we require neither the surface S nor the curve Δ to be proper; moreover,

during the proof, we will further shrink S but keep (the generic point of) the

curve Δ in S.

Proof. Since S is normal and f is proper, any rational section of f extends to

codimension 1 point, hence, defines a regular section over the complement of a finite
subscheme of S. Moreover, over the complement of this finite subscheme, the section does

not pass through singular points of fibres of f, hence, it defines a section of the morphism

X ν
Δ →Δ, where recall that X ν

Δ is the normalisation of XΔ = f−1(Δ). Therefore, it also
gives a section of the discriminant double covering Δ̃→Δ. If the original section is defined

over k, we obtain a contradiction with the isomorphism Δ̃∼=Δ×k k
′; this means that the

morphism f has no rational sections defined over k.
Now, consider a rational section of f : Xk′ → Sk′ . Removing, if necessary, a finite

subscheme from S, we may assume that this section is regular. Its intersection with

the conjugate section (with respect to the G(k′/k)-action) projects to a curve in S which

is disjoint from Δ (because a regular section does not pass through singular points of
fibres). So, shrinking S further, we may assume that the section and its conjugate do not

intersect. Then the union

Z ⊂ X

of the section and its conjugate is a 2-section of f defined over k; moreover, Z ∼= S×k k
′,

and, in particular, Z is étale over S.

Consider the bundles V := (f∗ω
−1
X )∨ of rank 3 and VZ := (f∗ω

−1
X |Z)∨ of rank 2 on S.

The restriction morphism ω−1
X → ω−1

X |Z induces an embedding of vector bundles VZ ↪→ V
and a Cartesian square

Z ��

��

PS(VZ)

��
X �� PS(V ),

where all arrows are the natural embeddings.

Shrinking the surface S again but keeping an open part of the curve Δ in it, we may
assume that the bundles V and VZ are trivial, that the subvarieties X ⊂ PS(V ) and

Z ⊂ PS(VZ) are given by a quadratic form q ∈ Sym2V ∨ and its restriction qZ ∈ Sym2V ∨
Z

to VZ , respectively. Since Z is étale over S, the form qZ is everywhere nondegenerate and
can be written as follows:

qZ = x2−αy2,

where (x,y) are homogeneous coordinates in the fibre of PS(VZ)∼= S×P1 and α ∈ k× is,

such that k′ = k(
√
α). Now, considering the orthogonal complement to VZ in V , we see
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that q takes the form

q = x2−αy2−Fz2,

where F is an equation of Δ on S. Thus, the conic bundle X → S is birational to conic

bundles considered in [3, §3.3.1], hence, X is not k-rational by [3, Proposition 3.4].

Now, we apply this to prove nonrationality of threefolds of type X(3,3).

Corollary 6.11. If X is a Fano threefold of type X(3,3), then X is not k-rational.

Proof. If X is not k-unirational, there is nothing to prove. So, assume X is k-unirational.
Then, there exists a k-point x0 ∈X, such that F1(X,x0) =∅. Consider the conic bundle

X̃++ → P2 constructed in Proposition 6.6. By Lemma 6.1, the discriminant curve of f is

the smooth nonhyperelliptic curve Γ defined in §6.1, and by Lemma 6.7, the discriminant
double covering has the form Γ̃∼=Γ×k k

′. Finally, the description of Proposition 6.6 shows

that f admits a rational section after base change to k′. Therefore, Theorem 6.10 applies

and proves that X̃++ is not k-rational, hence, X is not k-rational as well.

7. Fano threefolds of type X(1,1,1,1)

In this section, we apply the degeneration technique of [19] to prove Theorem 1.4.

7.1. Toric degeneration

To start with, we consider Y0 = (P1)4, denote by (ui : vi) the homogeneous coordinates

on the i -th factor and consider the point

y0 := (1,1,1,1) ∈Y0.

Clearly, Y0 is a toric variety with respect to the action of the split torus G4
m that rescales

the vi. We also consider the action of S4 on Y0 that permutes the factors. It normalises

the torus action, and together they generate an action of the group G4
m �S4. Finally,

consider the subtorus

T0 :=
{
(t1,t2,t3,t4) ∈G4

m | t1t2t3t4 = 1
}

(7.1.1)

and the collection of three 1-parametric subgroups

Ti1,i2;i3,i4
0 :=

{
(t1,t2,t2,t4) | ti1 = ti2 = t−1

i3
= t−1

i4

}
⊂ T0, (7.1.2)

where (i1,i2)(i3,i4) ∈V4 \{1} ⊂S4 is a nontrivial element of the Klein subgroup.

Lemma 7.1. The subvariety

Xtoric
0 := {u1u2u3u4−v1v2v3v4 = 0} ⊂Y0

is the unique T0-invariant divisor of multidegree (1,1,1,1) in Y0, which contains the

point y0. It is a toric variety with six ordinary double points

xp,q =
{
((u1 : v1),(u2 : v2),(u3 : v3),(u4 : v4)) | ui = 0 if i ∈ {p,q} and vi = 0 if i �∈ {p,q}

}
.
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For each permutation (i1,i2)(i3,i4) ∈V4 \{1} ⊂S4 the curve

Ci1,i2;i3,i4 := Ti1,i2;i3,i4
0 ·y0 ⊂Xtoric

0 (7.1.3)

is a smooth rational curve and Ci1,i2;i3,i4 ∩Sing(Xtoric
0 ) = {xi1,i2,xi3,i4}.

Proof. The monomial basis in the space of homogeneous polynomials of multidegree

(1,1,1,1) is a weight basis for the action of T0, and all weights are different except for

the weight 0, which has multiplicity 2 and the corresponding weight space is spanned
by the monomials u1u2u3u4 and v1v2v3v4. Therefore, every T0-invariant divisor is either

given by a monomial equation (but then it does not contain the point y0) or by a linear

combination of u1u2u3u4 and v1v2v3v4, and if it contains the point y0, it is equal to Xtoric
0 .

The latter is obviously a toric variety with respect to the natural action of T0.
In the affine chart v1 �= 0, v2 �= 0, u3 �= 0, u4 �= 0, we can set v1 = v2 = u3 = u4 = 1 and

use u1, u2, v3, v4 as coordinates. Then, the equation of Xtoric
0 takes the form

u1u2−v3v4 = 0,

which means that the origin of the chart, that is, the point x3,4 = (0,0,∞,∞) ∈ Y0 is an

ordinary double point of Xtoric
0 . Considering similarly the other charts, we see that the

singular locus of Xtoric
0 is the S4-orbit of the point x3,4; in particular, each singular point

of Xtoric
0 is an ordinary double point. Moreover, we see that the hypersurface Xtoric

0 is

normal.
The orbits of the point y0 under the 1-parametric subgroups (7.1.2) are

{(t, t, t−1, t−1) | t ∈Gm}, {(t, t−1, t, t−1) | t ∈Gm}, {(t, t−1, t−1, t) | t ∈Gm}.

It is easy to see that the closure of the first orbit is smooth and contains the point x1,2
and x3,4 and similarly for the other two orbits.

For a field extension k′/k, we denote by Resk′/k : Schk′ → Schk the Weil restriction of

scalars functor from the category of k′-schemes to the category of k-schemes, the right

adjoint to the extension of scalars −⊗k k
′ : Schk → Schk′ . Consider the projective line P

1
k′ ,

the torus Gm acting faithfully on P1
k′ and denote by 0,∞∈ P1

k′ its fixed points.

Proposition 7.2. For a field extension k′/k of degree 4 consider the k-forms

Y := Resk′/k(P
1
k′), T := Ker

(
Resk′/kGm −→Gm

)
(7.1.4)

of Y0 = (P1)4 and of the torus T0 and the natural faithful T-action on Y. Let

y ∈ Y

be the k-point that corresponds to the point 1 ∈ P1
k′ . Then

(i) the half-anticanonical linear system of Y is defined over k, and it contains a unique
T-invariant divisor Xtoric ⊂ Y passing through y.

(ii) the divisor Xtoric is integral and has ordinary double points in the sense of [19,

Definition 4.2.1] with the singular locus of length 6.

https://doi.org/10.1017/S1474748022000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000378


Rationality over nonclosed fields of Fano threefolds with higher geometric Picard rank 37

Proof. The fact that Y and T are k-forms of Y0 and T0 is obvious from the definition
of Weil restriction of scalars, and the k-point y is obtained from the extension–restriction

adjunction. Note that upon extension of scalars to k̄, the triple (Y ,T,y) becomes

isomorphic to the triple (Y0,T0,y0).
(i) Let H denote the Segre class of Y (the half of the anticanonical class); it is obviously

Galois-invariant, and since Y has a k-point, H is defined over k. Therefore, the linear

system

P= |H−y| ∼= P14 (7.1.5)

of divisors in |H| containing y is defined over k. We define Xtoric ⊂ Y as the closure of

the T -orbit of the point y ; the uniqueness of Xtoric follows from Lemma 7.1.

(ii) The extension of scalars of Xtoric ⊂ Y to k̄ coincides with Xtoric
0 ⊂ Y0, hence, its

singular locus Z := Sing(Xtoric) has length 6, and if E is the exceptional divisor of the

blowup

X̃ := BlZ(X
toric),

then E → Z is a smooth quadric bundle. According to [19, Definition 4.2.1], it remains

to check that this bundle has a section. For this, note that the union of the 1-parametric

subgroups Ti1,i2;i3,i4
0 ⊂ T0 defined in (7.1.2) is Galois-invariant, hence, it comes from a

k-subset in the torus T, and, hence, the closure of the image of the point y under the

action of this subset is a curve C ⊂ X defined over k. Furthermore, the extension of

scalars of C to k̄ is the union of the curves (7.1.3). In particular, the curve C contains

the singular locus Z and the intersection of its strict transforms to the blowup X̃, and
the exceptional divisor E provides a section for E → Z.

Now, let X be a smooth Fano threefold of type X(1,1,1,1). Recall the definition (2.1.5)
of the Galois group GX ⊂ S4 of X. In the next lemma, we use notation introduced in

Proposition 7.2.

Lemma 7.3. If k′/k is the field extension of degree 4 associated with an epimorphism
G(k̄/k)� G onto a transitive subgroup G ⊂S4, then a general divisor X ⊂ Y from the

linear system (7.1.5) is a smooth Fano threefold of type X(1,1,1,1) with GX =G, ρ(X) = 1

and X(k) �=∅.

Proof. The smoothness of a general divisor X in the linear system P follows from the
Bertini theorem, the property X(k) �=∅ is obvious because X contains the k-point y, the
equality GX = G follows from the construction and ρ(X) = 1 follows from transitivity

of G⊂S4.

Remark 7.4. One can also prove the converse statement: any Fano threefold X of type

X(1,1,1,1) with X(k) �= ∅ and GX = G is isomorphic to a divisor in the linear system P

(see [14, Proposition 7.16]).

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We consider the field extension k′/k as in Lemma 7.3 and use
the construction and notation of Proposition 7.2; in particular, the linear system P∼= P14

k

of half-anticanonical divisors in Y. Let p0 ∈P be the point that corresponds to the toric
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divisor Xtoric ⊂ Y . Note that the space of lines in P through the point p0 is the projective

space P13
k , in particular, k-points are Zariski dense in it. Therefore, there is a line L⊂P

through p0 defined over k. We denote by

X → L

the corresponding family of half-anticanonical divisors in Y. Then, the general point of L

corresponds to a smooth variety XL of type X(1,1,1,1) over the field k(L)∼= k(t).
Since for a general k-point p ∈ L the fibre of Xp has GXp

=G by Lemma 7.3, and since

the natural restriction morphism of Galois groups G(k(L)/k(L))→ G(k̄/k) is surjective,
we have GXL

= G. Since G ⊂ S4 is transitive, this implies ρ(XL) = 1. Finally, XL by

construction contains the k(L)-point y×k k(L), hence, XL(k(L)) �=∅.

Assume XL is stably rational. Consider the point p0 ∈ L as a special point of the
family X /L. By Proposition 7.2, the corresponding variety Xp0

=Xtoric is integral with

ordinary double points, hence, by [19, Proposition 4.2.9], the family X /L is L-faithful

in the sense of [19, Definition 4.2.7]. Therefore, by [19, Proposition 4.2.10], the special

fibre Xtoric is stably rational.
On the other hand, by definition, the Galois group of the extension k′/k coincides

with the group GX and contains the Klein group V4. By [22, §2.4.8], for any smooth

compactification V ⊃ T one has

H1(G(k̄/k), Pic(Vk̄)) =H1(GX, Pic(Vk̄)) �= 0.

Since this group is a stable birational invariant (see, e.g. [4, §2.A] or [22, §4.4]), the torus

T and the corresponding toric variety Xtoric are not stably rational. This contradiction

shows that XL is not stably rational and completes the proof of the theorem.

Appendix A. Constructing morphisms of Hilbert schemes

In this section, we show how one can use the technique of derived categories to construct
morphisms of Hilbert schemes. For smooth projective varieties X and Y, we denote by

πX and πY the projections from X×Y to the factors, and for an object K ∈D(X×Y ),

we denote by

ΦK : D(X)−→D(Y ), F �−→RπY ∗(Lπ
∗
X(F )⊗L K )

the corresponding Fourier–Mukai functor from the bounded derived category D(X) of
coherent sheaves on X to that of Y. For an integral valued polynomial p ∈ Q[t], we

denote by Hilbp(X) the Hilbert scheme of subschemes in X with Hilbert polynomials p

with respect to a given polarisation.

Proposition A.1. Let X and Y be smooth projective varieties. If K ∈ D(X × Y ) is

an object of the derived category, such that for any subscheme Z ⊂ X with Hilbert

polynomial p the object ΦK (OZ) ∈D(Y ) is isomorphic to the structure sheaf of a point

y(Z) ∈ Y , then there is a morphism of schemes

ϕ : Hilbp(X)−→ Y ,

such that ϕ([Z]) = y(Z).
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Proof. Let Z ⊂ X × S be an family of subschemes in X flat over S with Hilbert
polynomial p. Let

F := Φπ∗
XY K (OZ) =RπSY ∗(Lπ

∗
XS(OZ)⊗L π∗

XY K ) ∈D(S×Y )

be the image of the structure sheaf of Z under the induced Fourier–Mukai functor from

D(X×S) to D(S×Y ), where πXS , πSY and πXY are the projections of X×S×Y to the

pairwise products of factors. By base change and the projection formula, for each point
s ∈ S, we have

i∗sF
∼=ΦK (OZs

),

where is : {s}×Y ↪→ S×Y is the natural embedding and Zs ⊂X is the fibre of Z over

s ∈ S. Thus, we have i∗sF
∼= Oy(Zs) by assumption, therefore, by [13, Lemma 4.4(iii)],

there is a unique morphism ϕS : S → Y , such that F is isomorphic up to twist to the
structure sheaf of the graph of ϕS ; in particular, ϕS(s) = y(Zs) for each s ∈ S. Now

applying this argument to S = Hilbp(X) and Z the universal subscheme, we obtain the

required morphism ϕ.

In §2.3, we apply Proposition A.1 to the Hilbert scheme of conics on the threefold

X ∼= BlΓ1
(Q1), where Q1 ⊂ P4 is a smooth quadric and Γ1 ⊂ Q1 is a linearly normal

smooth rational quartic curve. Recall that F1(X) and F2(X) denote the Hilbert schemes

of lines and conics on X, and that there is a natural embedding Γ1 ⊂ F1(X) of a

connected component (see Lemma 2.7). Recall also that the second connected component

Γ2 ⊂ F1(X) corresponds to lines on Q1 bisecant to Γ1.

Corollary A.2. There is a morphism ϕ1 : F2(X) → Γ1, such that for a smooth conic

C ⊂X, one has ϕ1([C]) = [L], where L⊂X is the unique line corresponding to a point of

Γ1, such that C∩L �=∅. Moreover, if C =L1∪L2 is a reducible conic, so that L1∩L2 �=∅,
and if L′

2 is the other line corresponding to a point of Γ1, such that L1 ∩L′
2 �= ∅, then

ϕ1([C]) = [L′
2].

Proof. Let π1 : X → Q1 be the blowup morphism, and let E1 ⊂ X be its exceptional

divisor; note that E1 is the universal family of lines on X over the connected component
Γ1 ⊂ F1(X) of the Hilbert scheme of lines. Let ε : E1 → X ×Γ1 be the corresponding

embedding and consider

K := ε∗OE1
(E1) ∈D(X×Γ1).

Let us check that the assumption of Proposition A.1 is satisfied for Y = Γ1.

If C ⊂X is a smooth conic, then C ·E1 = 1, and C �⊂ E1, therefore, C ∩E1 = {x} is a
single point and the intersection is transverse. Therefore, OC ⊗L OE1

(E1) ∼= Ox, hence,

ΦK (OC)∼= Oπ1(x).

If C = L1∪L2 is a reducible conic, so that we have L2 ⊂E1 and L1∩E1 = {x,x′} with
L1∩L2 = {x} (if L1 is tangent to E1, we take x′ = x), then using the exact sequences

0−→ OL1
(−1)−→ OC −→ OL2

−→ 0 and 0−→ OL2
(−1)−→ OC −→ OL1

−→ 0,

https://doi.org/10.1017/S1474748022000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000378


40 A. Kuznetsov and Y. Prokhorov

it is easy to check that OC ⊗L OE1
(E1) fits into a distinguished triangle

OC ⊗L OE1
(E1)−→ OL2

(−1)⊕Ox′ −→ OL2
(−1)[2]

(if L1 is tangent to E1, the middle term should be replaced by an extension of OL2
(−1)

by Ox′). Since the pushforward functor Rπ1∗ kills the sheaf OL2
(−1), it follows that

ΦK (OC)∼= Oπ1(x′).

Now, applying Proposition A.1, we conclude that there is a morphism ϕ1 : F2(X)→ Γ1,

such that ϕ1([C]) = π1(x) if C is smooth and ϕ1([L1 ∪L2]) = π1(x
′), with the notation

for points x and x′ introduced above.

Acknowledgements. We would like to thank Sergey Gorchinskiy, Zhenya Shinder

and Costya Shramov for useful discussions. We are also grateful to the anonymous

referee for correcting a mistake in the original statement of Theorem 1.4 and for useful
comments. This work was performed at the Steklov International Mathematical Center

and supported by the Ministry of Science and Higher Education of the Russian Federation

(agreement no. 075-15-2022-265). The paper was also partially supported by the HSE
University Basic Research Program.

Competing Interests. None.

References

[1] A. Alzati and M. Bertolini, Sulla razionalità delle 3-varietà di Fano con B2 ≥ 2,
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