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Abstract
We introduce the notion of a simultaneous categorical resolution of singularities, a categor-
ical version of simultaneous resolutions of rational double points of surface degenerations.
Furthermore, we suggest a construction of simultaneous categorical resolutions which, in
particular, applies to the case of a flat projective 1-dimensional family of varieties of arbitrar-
ily high even dimension with ordinary double points in the total space and central fiber. As
an ingredient of independent interest, we check that the property of a geometric triangulated
category linear over a base to be relatively smooth and proper can be verified fiberwise. As
an application we construct a smooth and proper family of K3 categories with general fiber
the K3 category of a smooth cubic fourfold and special fiber the derived category of the K3
surface of degree 6 associated with a nodal cubic fourfold.

1 Introduction

Let f : X → B be a morphism from a scheme X to a pointed base scheme (B, o). We denote
by

Bo := B \ {o}, Xo := X ×B Bo = f −1(Bo), and Xo := X ×B {o} = f −1(o) (1)

the punctured base, its preimage, and the central fiber.
Assume B is smooth and Xo is smooth over Bo. A simultaneous resolution of (X , Xo)

is a proper birational morphism π : X̃ → X such that the morphism

f ◦ π : X̃ → B
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A. Kuznetsov

is smooth. It follows that X̃ and its central fiber X̃o are both smooth; thus, the morphism π

simultaneously resolves singularities of the total space X and central fiber Xo.We also usually
assume that the morphism π is an isomorphism over Bo.

Simultaneous resolutions are usually hard to construct. For instance, if one resolves X
by blowing up a subvariety Z ⊂ X contained in the central fiber, the central fiber of f the
blowup BlZ (X) is the union

(BlZ (X))o = BlZ (Xo) ∪ E,

where E is the exceptional divisor of the blowup; in particular, the central fiber is not smooth,
and hence the morphism f ◦ π is not smooth either. Still, surprisingly, simultaneous resolu-
tions exist in some cases.

Example 1.1 ([2]) Let f : X → B be a flat family of complex surfaces over a smooth pointed
curve (B, o) such that Xo is smooth over Bo, the total space X is smooth, and the central
fiber Xo has a single ordinary double point xo ∈ Xo. Let B ′ → B be a double covering
branched at o and let

X ′ := X ×B B ′

be the base change. Now the central fiber X ′
o

∼= Xo and the total space X ′ both have ordinary
double point at xo. Let π : X̃ ′ → X ′ be a small resolution of X ′ (it may or may not be
projective, but it always exists as an algebraic space, see [1]). It is easy to see that the central
fiber of X̃ ′ is the blowup of X ′

o at xo, hence is smooth. Therefore, the morphism X̃ ′ → B ′ is
smooth, and π is a simultaneous resolution of (X ′, X ′

o).

This example is a particular case of the general result of Brieskorn (see also [25]).

Theorem 1.2 ([5])Let f : X → B be a versal deformation of a surface Xo = f −1(o) that has
rational double points as singularities. Then there exists a branchedGalois covering B ′ → B
such that X ′ = X ×B B ′ → B ′ admits a simultaneous resolution of singularities.

This result is very useful for geometry of surfaces. However, nothing similar is true in
higher dimensions, and the reason for this is the lack of small resolutions (particularly, for
ordinary double points). The goal of this paper is to show that replacing geometric resolutions
by categorical resolutions, one can preserve some of these results in higher dimensions.

Let k be a base field. Recall that a pretriangulated differential graded category D is
smooth over k if its diagonal bimodule considered as an object of the derived category of
bimodulesD⊗kD

op is perfect. Similarly, a DG-enhanced triangulated categoryD is smooth
over k if its enhancement D is; a similar definition works for other types of enhancements,
see, e.g., Definition 2.6, where we use “geometric enhancement”. Finally, a triangulated
category is proper over k if for any its objects F1, F2 the graded vector space Ext•(F1, F2)
has finite total dimension.

Definition 1.3 ([15,18]) A categorical resolution of a proper k-scheme X is defined as a
triple (D, π∗, π∗), where

• D is an enhanced k-linear triangulated category, and
• π∗ : Dperf (X) → D and π∗ : D → Db(X) is a pair of enhanced k-linear triangulated

functors,

such that
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(1) D is smooth and proper over k,
(2) π∗ is left adjoint to π∗, i.e., Hom(π∗F,G) ∼= Hom(F, π∗G) for all F ∈ Dperf (X),

G ∈ D, and
(3) π∗ ◦ π∗ ∼= idDperf (X).

Of course, if π : X̃ → X is a (geometric) resolution of singularities of the scheme X̃ the
categoryD = Db(X̃) � Dperf (X̃) together with the derived pullback and pushforward func-
tors provide a categorical resolution of X , if X has rational singularities (see the discussion
of this issue in [18]).

Examples of categorical resolutions constructed in [15] show that this notion is much
more flexible than the geometric notion, for instance one can construct crepant categorical
resolutions [15, Definition 3.4] in the situations when crepant geometric resolutions do not
exist. In particular, one can construct crepant categorical resolutions of ordinary double points
in any dimension (see Example 3.2).

Extending the definition of a categorical resolution to the setup of simultaneous resolu-
tions, one naturally arrives at the central definition of this paper. We use notation (1).

Definition 1.4 Let f : X → B be a flat proper morphism to a pointed base scheme (B, o)
with central fiber Xo such that Xo is smooth over Bo. A simultaneous categorical resolution
of (X , Xo) is a triple (D, π∗, π∗), where

• D is an enhanced B-linear triangulated category, and
• π∗ : Dperf (X) → D and π∗ : D → Db(X) is a pair of enhanced B-linear triangulated

functors,

such that

(1) D is smooth and proper over B,
(2) π∗ is left adjoint to π∗ (in the same sense as in Definition 1.3), and
(3) π∗ ◦ π∗ ∼= idDperf (X).

We refer to [11, §2.6] and [22, §2] for the definition of B-linear categories and functors
(see also §2 below); for now just note that the derived category of any B-scheme is B-linear, as
well as any its subcategory closed under tensor products with pullbacks of perfect complexes
on B. Similarly, a functor is B-linear if it commutes with tensor products by pullbacks of
perfect complexes on B. Note also that if B = Spec(R) is an affine scheme, a B-linear
structure is equivalent to an R-linear structure in the standard meaning (i.e., Hom-spaces are
R-modules and the composition law is R-linear).

The difference between Definitions 1.4 and 1.3 is, first, in B-linearity of the resolving
category D and functors π∗, π∗, and, second, in smoothness and properness of D over B
(see §2.2 for a discussion of these notions). As before, a geometric simultaneous resolution
provides a categorical one (if X has rational singularities).

The results of [16] (see also [22] for a different approach and §2.1 for a reminder) show
that given a B-linear categoryD one can construct its base changeDB′ along any morphism
B ′ → B; in particular the fiber Db of D over each point b ∈ B is defined. If D is smooth
over B then Db is smooth over the residue field of the point b and if D is proper over B
thenDb is proper. Thus, in the context of a simultaneous categorical resolution of singularities
we obtain a family of smooth and proper categories Db parameterized by the base B. If,
moreover, we assume that the base change of functorsπ∗ andπ∗ along the inclusion Bo → B
are equivalences (this assumption is analogous to the assumption that π is an isomorphism
over Bo which is standard in the geometric context) then the family of categoriesDb agrees
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with the family of derived categories Db(Xb) of fibers of f over Bo; in particular, the central
fiberDo of a simultaneous categorical resolution provides a smooth extension of this family
across the point o ∈ B.

Remark 1.5 It is easy to see that if (D, π∗, π∗) is a simultaneous categorical resolution
of (X , Xo), the triple (Do, π

∗
o , πo∗)obtained bybase change, provides a categorical resolution

for Xo.

Remark 1.6 One can also define a simultaneous categorical resolution for a pair (C,Co),
where C is a B-linear category over a pointed scheme (B, o) such that CBo is smooth and
proper over Bo and Co is the central fiber of C. An example of such situation is provided by
Corollary 1.8 below.

The main result of the paper is a construction of simultaneous categorical resolutions in a
number of new interesting cases. Themost general formof our result is stated inTheorem3.11.
As its formulation is a bit technical, we do not reproduce it here; instead, we state here its
corollary for nodal degenerations which is interesting by itself (in Example 3.13 we list some
other special situations where the general result can be applied).

Theorem 1.7 Let k be a field of characteristic not equal to 2. Let f : X → B be a flat
projective morphism to a smooth pointed k-curve (B, o) such that Xo is smooth over Bo.
Assume the total space X and the central fiber Xo both have an ordinary double point
at xo ∈ Xo ⊂ X and are smooth elsewhere. If dim(Xo) is even, then after a possible quadratic
extension of the base field k, there is a simultaneous categorical resolution of (X , Xo).

When applied in the case of relative dimension 2, the constructed categorical resolution is
equivalent to the geometric simultaneous resolution described in Example 1.1 (in that case
a quadratic extension of the base field may also be necessary to make a small resolution
defined). The assumption that both X and Xo have ordinary double points at xo plays the
same role, and as in Example 1.1 it can be achieved by the double covering trick, if the
original total space X is smooth at xo.

To prove Theorem 1.7 (and the more general Theorem 3.11) we apply the construction of
a categorical resolution of singularities from [15] (which we remind in Theorem 3.1) to an
appropriate blowup π : X̃ → X ; it gives us a B-linear triangulated subcategoryD ⊂ Db(X̃).
It easily follows from the construction that the base change of the category D to the open
subscheme Bo ⊂ B is equivalent to Db(Xo); in particular it is smooth and proper over Bo.
So, the main assertion of the theorem is thatD is smooth and proper over a neighborhood of
the central point o ∈ B.

To deduce this we prove a result of independent interest, Theorem 2.10, saying that ifD is
a geometric B-linear category then (under appropriate assumptions) the subset Bsm,pr ⊂ B
of points b ∈ B such that Db is smooth and proper (over the residue field of the point b)
is open, and moreover, the base change category DBsm,pr is smooth and proper over Bsm,pr.
Thanks to this result, to prove Theorem 1.7, we just need to check that the central fiber Do

of the constructed categorical resolution D of X is smooth and proper.
We do this in two steps. First, we identify (the perfect part of) the categoryDo as an explicit

subcategory of the central fiber of the family X̃ → B, which by construction is a reducible
scheme with two components, the exceptional divisor E ⊂ X̃ of the blowup X̃ → X , and the
strict transform X ′

o ⊂ X̃ of the central fiber Xo ⊂ X . Then we check that this subcategory is
in fact equivalent to an admissible subcategory of one of the components, X ′

o; again, this is
based on a more general result proved in Proposition 3.7, which is also interesting by itself.
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Since X ′
o is smooth and proper by assumption, it follows that the categoryDo is smooth and

proper, hence D is smooth and proper over B and thus provides a simultaneous categorical
resolution for (X , Xo). This completes the proof of the theorem.

We expect Theorem 1.7 to have many applications, similar to those of geometric simul-
taneous resolutions for surfaces. To illustrate this we provide one sample application in the
case of cubic fourfolds (see §4 for a reminder about K3 categories and K3 surfaces associated
to cubic fourfolds).

Corollary 1.8 Let k be an algebraically closed field of characteristic not equal to 2. Let Y be
a cubic fourfold with one ordinary double point. There exists a smooth pointed curve (B, o),
a family of cubic fourfolds X → B smooth over Bo and with central fiber isomorphic to Y ,
and a B-linear category A smooth and proper over B such that

• for b �= o the fiber Ab is equivalent to the K3 category of the smooth cubic fourfold Xb,
• the central fiber Ao is equivalent to the derived category of the smooth K3 surface of

degree 6 that provides a categorical resolution for the K3 category of Y .

A similar result can be proved for nodal Gushel–Mukai fourfolds; in this case the central
fiber of the smooth and proper family of categories is equivalent to the K3 category of a
Verra fourfold, see [6].

The result of Corollary 1.8 shows that the family of K3 categories of cubic fourfolds a
priori defined over the open part C \ (C2 ∪ C6) of the corresponding period domain (here Cd

stand for the Noether–Lefschetz divisors defined by Hassett) extends across the general point
of the Noether–Lefschetz divisor C6. Unfortunately, the same construction does not allow us
to extend the family across the divisor C2 as well.

It would be very interesting to find generalizations of the constructions of this paper
that would allow us to construct simultaneous categorical resolutions (or at least smooth
extensions of families of categories) in more general situations (in particular, to extend the
family of K3 categories of cubic fourfolds across the divisor C2). We hope to come back to
this question in the future.

Conventions. In this paper we work over an arbitrary field k (imposing restriction on k if
necessary). All schemes are noetherian of finite type over k. For a scheme X we denote by

Dperf (X) ⊂ Db(X) ⊂ Dqc(X)

the derived category of perfect complexes, the bounded derived category of coherent sheaves,
and the unbounded derived category of sheaves of OX -modules with quasicoherent coho-
mology, respectively. All pullback, pushforward, and tensor product functors considered in
the paper are derived, although we use underived notation for brevity. For a functor ξ we
usually denote by ξ∗ and ξ ! its left and right adjoint functors (if they exist), respectively.

2 Linear categories

Let f : X → B be a morphism of schemes. A cocomplete subcategory D ⊂ Dqc(X)

is B-linear, if it is closed with respect to tensor product by pullbacks of perfect complexes
on B:

D ⊗ f ∗(Dperf (B)) ⊂ D.

The same definition applies to subcategories of Db(X) or Dperf (X).
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Similarly, a functor ξ : D1 → D2 between B-linear subcategories in the derived categories
of B-schemes f1 : X1 → B and f2 : X2 → B is B-linear if it commuteswith tensor products,
i.e., there is a functorial (in both arguments) isomorphism

ξ(F ⊗ f ∗
1 G) ∼= ξ(F) ⊗ f ∗

2 G

for any F ∈ D1 and G ∈ Dperf (B).

2.1 Base change for admissible subcategories

In this subsection we recall the construction of base change for semiorthogonal decomposi-
tions from [16]. For a subcategory D ⊂ Db(X) we set

Dperf = D ∩ Dperf (X). (2)

Similarly, for a subcategory P ⊂ Dperf (X) we denote by

̂P ⊂ Dqc(X)

the minimal cocomplete (i.e., closed under arbitrary direct sums) triangulated subcategory
containing P.

Now, assume that X is a quasiprojective scheme and let

Db(X) = 〈D1, . . . ,Dn〉 (3)

be a semiorthogonal decomposition with admissible components (strong semiorthogonal
decomposition in the terminology of [16]). We denote by

prDi
: Db(X) → Db(X)

the projection functors to the componentsDi . We usually assume that the functors prDi
have

finite cohomological amplitude (see [15, §2.3]).

Proposition 2.1 ([16, Proposition 4.1 and Proposition 4.2]) If (3) is a semiorthogonal decom-
position with admissible components then there are semiorthogonal decompositions

Dperf (X) = 〈(D1)
perf , . . . , (Dn)

perf 〉 and Dqc(X) = 〈 ̂(D1)perf , . . . ,
̂(Dn)perf 〉,

and if the projection functors of (3) have finite cohomological amplitude the second of these
decompositions is compatible with (3) in the sense that

Di = ̂(Di )perf ∩ Db(X). (4)

In particular, the components of any perfect complex F ∈ Dperf (X) with respect to the
above decomposition ofDperf (X) coincide with the components of F considered as an object
of Db(X) or Dqc(X) with respect to the corresponding decompositions.

We will say that the above decompositions of Dperf (X) and Dqc(X) are induced by (3).
Assume now that f : X → B is a proper morphism of quasiprojective schemes and the

semiorthogonal decomposition (3) is B-linear, i.e., each componentDi is B-linear; then the
projection functors prDi

are B-linear by [16, Lemma 2.8]. Let B ′ → B be a base change
from a quasiprojective base scheme B ′ such that X and B ′ are Tor-independent over B (this
is automatic if f is flat). We consider the fiber product

X ′ = X ×B B ′
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and denote by φ : X ′ → X and f ′ : X ′ → B ′ the induced morphisms of the base change
diagram

X ′

f ′

φ
X

f

B ′ φB
B.

When necessary we denote the morphism B ′ → B by φB .

Theorem 2.2 ([16, Propositions 5.1, 5.3 and Theorem 5.6]) Let f : X → B be a proper
morphism of quasiprojective schemes. Let (3) be a B-linear semiorthogonal decomposi-
tion with admissible components and projection functors of finite cohomological amplitude.
Let B ′ → B be a quasiprojective morphism such that X and B ′ are Tor-independent over B.
Set

(i) Pi B′ := 〈

φ∗ (

(Di )
perf

) ⊗ f ′∗Dperf (B ′)
〉⊕ ⊂ Dperf (X ′), where the angle brackets stand

for the triangulated envelope and the superscript ⊕ stands for the idempotent comple-
tion;

(ii) Di B′ := P̂i B′ ∩ Db(X ′) ⊂ Db(X ′).
Then there are semiorthogonal decompositions

Dperf (X ′) = 〈P1B′ , . . . ,PnB′ 〉, and Db(X ′) = 〈D1B′ , . . . ,DnB′ 〉 (5)

which are compatible, i.e., (Di B′)perf = Pi B′ .
Moreover, the components Di B′ of the semiorthogonal decomposition (5) of Db(X ′) are

admissible and their projection functors prDi B′ have finite cohomological amplitude.
Finally, the derived pushforward and pullback functors φ∗ : Dqc(X ′) → Dqc(X) and

φ∗ : Dqc(X) → Dqc(X ′) are compatible with the semiorthogonal decompositions of the
categories Dqc(X ′) and Dqc(X) constructed in Proposition 2.1:

φ∗
(

P̂i B′
)

⊂ ̂(Di )perf and φ∗ (

̂(Di )perf
)

⊂ P̂i B′ .

We will use the following obvious consequence of this compatibility.

Corollary 2.3 Under the assumptions of Theorem 2.2, assume X → B is flat. Let F ∈ Db(X)

be an object such that φ∗(F) ∈ Db(X ′). Then

φ∗(prDi
(F)) ∼= prDi B′ (φ

∗(F)),

where prDi B′ is the projection functor of (5); in particular, φ∗(prDi
(F)) ∈ Db(X ′).

One of the applications of base change technique in [16] is the existence of Fourier–Mukai
kernels for the projection functors prDi

, see [16, Theorem 7.1] for the absolute case and [16,
Theorem 7.3] for the relative case. We will usually denote by

�Di ∈ Db(X ×B X) (6)

the corresponding kernels, i.e., the objects such that there is an isomorphism of functors

prDi
∼= ��Di

,

where the right side is the Fourier–Mukai functor with kernel �Di . As [16, Theorem 7.3]
proves,�Di is just the component of the structure sheafO�X of the diagonal�X ⊂ X ×B X
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with respect to the semiorthogonal decomposition of Db(X ×B X) obtained by base change
of (3) along the projection X → B. An application of Corollary 2.3 to these objects gives

Corollary 2.4 Under the assumptions of Theorem 2.2, assume X → B is flat. Then

�Di B′ ∼= φ∗�Di ,

where φ : X ′ ×B′ X ′ = (X ×B X) ×B B ′ → X ×B X is the natural projection.

Remark 2.5 In [22] an alternative approach to base change is developed. In this approach the
basic object is a semiorthogonal decomposition of Dperf (X), not of Db(X), and the results
for Db(X) are extracted from those for Dperf (X) by means of the equivalence

Db(X) � FunDperf (B)(D
perf (X)op,Db(B)),

see [22, Theorem 4.26 and §4.8] for more details. In particular, in the situation of base change
the components of the induced semiorthogonal decomposition of Db(X ′) are obtained as

Di B′ = FunDperf (B′)(P
op
i B′ ,Db(B ′)).

However, we prefer to use the more straightforward approach described above.

2.2 Smoothness and properness

Let f : X → B be a flat proper morphism and let D ⊂ Db(X) be an admissible B-linear
subcategory. For any pair of objects F1, F2 ∈ D we define

RHomB(F1, F2) := f∗ RHom(F1, F2) ∈ Dqc(B).

The following definition rephrases in geometric terms the definitions of a category smooth
and proper over base. For intrinsic categorical definitions we refer to [22, Definition 4.5
and Lemma 4.7].

Definition 2.6 Let f : X → B be a flat proper morphism, let D ⊂ Db(X) be an admissible
B-linear subcategory with an admissible orthogonal, and set P :=Dperf . We will say that

• the category P is proper over B if RHomB(F1, F2) ∈ Dperf (B) for any F1, F2 ∈ P;
• the category P is smooth over B if the projection functor ofD has finite cohomological

amplitude and the corresponding Fourier–Mukai kernel�D ∈ Dperf (X ×B X) is perfect.

Recall from §2.1 that the categoryD can be reconstructed from P = Dperf ; in particular,
although in the definitions of smoothness we use D, this is still a property of P. Let us
also briefly explain why the above ad hoc definition is equivalent to the one from [22]. By
[22, Lemma 4.7] for properness there is nothing to explain, and for smoothness note that the
category of continuous B-linear functors from̂P to itself can be identifiedwith an appropriate
subcategory of Dqc(X ×B X) in such a way that the identity functor corresponds to �D;
therefore the condition �D ∈ Dperf (X ×B X) is equivalent to the condition that the identity
functor is a compact object of the functor category.

We have the following obvious observations.

Lemma 2.7 Let f : X → B be a flat proper morphism. LetD ⊂ Db(X) be an admissible B-
linear subcategory with an admissible orthogonal and the corresponding projection functors
of finite cohomological amplitude. If X is smooth or proper over B then Dperf is smooth or
proper over B, respectively.
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Proof If X is smooth over B then the structure sheaf of the diagonal�X ⊂ X×B X is perfect.
By Proposition 2.1 (applied to X ×B X ) its component �D is also perfect, hence Dperf is
smooth over B.

Similarly, assume that the scheme X is proper over B. If objects F1, F2 ∈ Dperf then
RHom(F1, F2) ∈ Dperf (X), and since f is flat and proper, the object RHomB(F1, F2) is also
perfect by [24, III.4.8]. Therefore Dperf is proper over B. ��
Lemma 2.8 Smoothness and properness over a base are preserved under base change.More-
over, smoothness and properness over a base are local (over the base) properties.

Proof Properness of the base change category follows from the isomorphism

φ∗
B RHomB(F1, F2) ∼= RHomB′(φ∗F1, φ∗F2), F1, F2 ∈ Dperf (X).

Smoothness of the base change category and the second part of the lemma follow from
Corollary 2.4 and the local nature of perfectness. ��

The following result will be used in the proofs of Theorems 2.10 and 3.11.

Proposition 2.9 Let X be a projective scheme over a fieldk. LetD ⊂ Db(X) be an admissible
subcategory such that ⊥D is admissible. If the category Dperf is smooth and proper over k
then D = Dperf .

Proof Since Dperf is smooth over k, it has a strong generator by [21, Lemma 3.5, 3.6]; in
other words, it is regular. It is also idempotent complete, because D and Dperf (X) are, and
proper over k by assumption. Therefore, Dperf is saturated by [3, Theorem 1.3]; in other
words every contravariant triangulated functor Dperf → Db(k) is representable. Applying
[4, Proposition 2.6], we conclude that there is a semiorthogonal decomposition

D = 〈D′,Dperf 〉.
On the other hand, the semiorthogonal decomposition Db(X) = 〈D, ⊥D〉 gives decomposi-
tions

Db(X) = 〈D′,Dperf , ⊥D〉 and Dperf (X) = 〈Dperf , (⊥D)perf 〉
(to construct the second we use Proposition 2.1), which imply that D′ ⊂ (Dperf (X))⊥ = 0,
henceD′ = 0 and so D = Dperf . ��

The main result of this section is the following.

Theorem 2.10 Let f : X → B be a flat proper morphism of quasiprojective schemes and
let D ⊂ Db(X) be an admissible B-linear subcategory such that ⊥D is admissible and
the projection functors of the semiorthogonal decomposition Db(X) = 〈D, ⊥D〉 have finite
cohomological amplitude. Denote by Bsm ⊂ B and Bsm,pr ⊂ B the sets of points b ∈ B such
that the category (Db)

perf is smooth and such that (Db)
perf is smooth and proper over the

residue field of b, respectively.
Then the subsets Bsm and Bsm,pr are open in B, the category (DBsm )perf is smooth over Bsm

and the category (DBsm,pr )
perf is smooth and proper over Bsm,pr.

Moreover, if the scheme Bsm,pr is regular, there is an equality of categories

(DBsm,pr )
perf = DBsm,pr . (7)
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It is an interesting question if a similar result holds for B-linear categories which cannot
be represented as admissible subcategories in derived categories of B-linear varieties — we
are not aware of any results in this direction.

The proof of Theorem 2.10 is based on the following results about perfect complexes on
schemes which should be well-known but we did not find a reference.

Lemma 2.11 Let i : Z → Y be a closed embedding of noetherian schemes. If F ∈ Db(Y ) is
such that i∗F ∈ Dperf (Z) then there is an open subset U ⊂ Y containing Z such that F |U
is perfect.

Proof First, assume Y = Spec(A) is affine. Let z ∈ Z be a closed point, let m ⊂ A be the
corresponding maximal ideal, and let Am be the localization of A at m.

First, we check that Fm := F⊗A Am is perfect. Indeed, let P• be theminimal free bounded
above resolution of Fm. Its terms have finite rank because F ∈ Db(Y ) and Y is noetherian.
Recall that the minimality of P• means that the complex P• ⊗Am (Am/mAm) has zero
differentials. Since on the other hand the complex P• ⊗Am (Am/mAm) is quasiisomorphic
to the localization of the perfect complex i∗F , it is perfect, and since this is a complex with
zero differential, it is bounded. Therefore, P• is also bounded, hence it is a perfect complex,
hence the same is true for Fm.

Let again P• be a bounded complex of free Am-modules of finite rank quasiisomorphic
to Fm. Note that the quasiisomorphism can be represented by an actual morphism of com-
plexes P• → Fm. The components of this morphism and the differentials of P• comprise
a finite number of matrices with elements in the localization Am of the ring and localiza-
tions (Fi )m of terms of the complex F ; they contain a finite number of denominators which
are not contained in m. Therefore, there is an open subscheme Uz ⊂ Y containing z, a
bounded complex P̃• of free OUz -modules of finite rank, and a morphism P̃• → F |Uz (the
differentials of P̃• and the components of the morphism are given by the same matrices as
before) which becomes an isomorphism after tensor product with Am. The cone

G := Cone(P̃• → F |Uz )

is, therefore, an object of Db(Uz) which becomes zero after tensoring with Am. Thus, it is
zero on a smaller neighborhood U ′

z ⊂ Uz of z, and hence F |U ′
z
∼= P̃•|U ′

z
is perfect.

Now let Y be arbitrary. The above argument shows that each point z ∈ Z has a neigh-
borhood U ′

z ⊂ Y containing z such that F |U ′
z
is perfect. Therefore, F is perfect on the open

subset U := ⋃

z∈Z U ′
z of Y containing Z . ��

Corollary 2.12 Let Y → B be a proper morphism. For a closed point b ∈ B denote
by i : Yb ↪→ Y the embedding of the fiber over b. If F ∈ Db(Y ) is such that i∗F ∈ Dperf (Yb)
then there is an open subset U ⊂ B containing b such that F |YU ∈ Dperf (YU ).

Proof By Lemma 2.11 there is an open subset V ⊂ Y containing Yb such that F |V is perfect.
Since the morphism Y → B is proper, the image of Y \ V in B is closed. Since it does not
contain the point b, we can just take U to be its complement in B. ��

Now we are ready to prove the theorem.

Proof of Theorem 2.10 Let�D ∈ Db(X×B X) be the Fourier–Mukai kernel of the projection
functor prD defined by (6). Similarly, for each b ∈ B let �Db ∈ Db(Xb × Xb) be the
analogous object for the categoryDb ⊂ Db(Xb). By Corollary 2.4 we have

�Db
∼= i∗�D,
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where i : Xb × Xb ↪→ X ×B X is the embedding of the fiber of X ×B X → B over b.
If b ∈ Bsm then �Db is perfect by Definition 2.6. Therefore, by Corollary 2.12 there is an
open subset U ⊂ B containing b such that �D|XU×U XU is also perfect. But

�D|XU×U XU
∼= �DU ,

again by Corollary 2.4, hence (DU )perf is smooth over U , and hence U ⊂ Bsm. Thus, Bsm

is open. Moreover, by the second part of Lemma 2.8 the category (DBsm )perf is smooth
over Bsm.

For the second part of the theorem we may assume that B = Bsm, so that Dperf is
smooth over B. By Definition 2.6 the object �D ∈ Db(X ×B X) is perfect, and since the
category of perfect complexes of a fiber product is generated by tensor products of perfect
complexes pulled back from the factors ([16, Lemma 5.2]), there is a finite number of perfect
complexes G ′

i ,G
′′
i ∈ Dperf (X) such that

�D ∈ 〈p∗
1G

′
i ⊗ p∗

2G
′′
i 〉⊕,

where p1, p2 : X ×B X → X are the projections and as before the superscript ⊕ means the
idempotent completion of the subcategory generated by objects in the angle brackets. Since
the Fourier–Mukai functor with kernel �D is isomorphic to the projection functor prD, it
follows that for any F ∈ Dperf we have

F ∼= p2∗(p∗
1F ⊗ �D) ∈ 〈p2∗(p∗

1F ⊗ p∗
1G

′
i ⊗ p∗

2G
′′
i )〉⊕

= 〈p2∗ p∗
1(F ⊗ G ′

i ) ⊗ G ′′
i 〉⊕ = 〈 f ∗ f∗(F ⊗ G ′

i ) ⊗ G ′′
i 〉⊕

(the first equality is the projection formula and the second is base change). Since
f∗(Dperf (X)) ⊂ Dperf (B) (see [24, III.4.8]) it follows that the finite number of perfect
objects G ′′

i generate Dperf over B up to idempotent completion. Therefore, for any base
change B ′ → B the pullbacks of G ′′

i to X ′ = X ×B B ′ generate (DB′)perf over B ′ up to
idempotent completion. It follows that properness of (DB′)perf over B ′ is equivalent to per-
fectness of the finite number of objects RHomB′(φ∗G ′′

i , φ
∗G ′′

j ), where φ : X ′ → X is the
base change morphism.

Since X is flat over B, we have RHomB′(φ∗G ′′
i , φ

∗G ′′
j )

∼= φ∗
B RHomB(G ′′

i ,G
′′
j ),

where φB : B ′ → B is the base change morphism, so, Lemma 2.11 shows that if these
objects are perfect for B ′ = {b}, they are also perfect if B ′ is a small neighborhood of b.
Therefore, the subset Bsm,pr ⊂ B is open. It also follows from the second part of Lemma 2.8
that (DBsm,pr )

perf is smooth and proper over Bsm,pr.
For the last statement we may assume that Dperf is smooth and proper over B and B is

regular. Let F ∈ D. For any point b ∈ B the morphism {b} → B has finite Tor-dimension
(because B is regular), hence the same is true for the embedding of the fiber i : Xb → X ,
hence i∗F ∈ Db. On the other hand, since the category (Db)

perf is smooth and proper over
the residue field of b, it follows from Proposition 2.9 that Db = (Db)

perf , hence i∗F is
perfect. Then by Lemma 2.11 the object F is perfect in a neighborhood of Xb. Since this is
true for any b ∈ B, we conclude that F is perfect, henceD ⊂ Dperf (X) and soDperf = D. ��

3 Construction of simultaneous categorical resolutions

The goal of this section is to construct a simultaneous categorical resolution of (X , Xo) under
appropriate assumptions.
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In §3.1 we recall from [15] the construction of a categorical resolution D of the total
space X (see Theorem 3.1 below), check that it is a B-linear category, and compute the
prefect part of its central fiber Do as a subcategory of the perfect derived category of the
reducible central fiber of the blowup X̃ of X .

In §3.2 we show that under appropriate assumptions a subcategory of the derived category
of a reducible scheme can be identified with a subcategory of one of its components.

In §3.3 we impose extra conditions on the categorical resolution D constructed in §3.1
which imply that its central fiber Do is smooth and proper and that D itself is smooth and
proper over B; in particular we state and prove our main result, Theorem 3.11. We also list
in Example 3.13 several cases where Theorem 3.11 can be applied.

Finally, in §3.4we prove Theorem3.14, amore general and precise version of Theorem1.7
from the Introduction, and show that it provides an example of a categorical flop.

3.1 Categorical resolution and its central fiber

First, we recall the setup we are working in and introduce some notation. Letk be an arbitrary
field. Let B be a smooth curve over k with a (closed) base point o ∈ B, let f : X → B be a
flat projective morphism with central fiber Xo such that the morphism Xo → Bo is smooth
(we use notation (1)). Let Z ⊂ Xo be a smooth closed subscheme in the central fiber such
that both the total space X and the central fiber Xo are smooth away from Z . Let

π : X̃ := BlZ (X) → X

be the blowup of X at Z . We denote by E the exceptional divisor of π and by ε : E ↪→ X̃ its
embedding. We have the blowup diagram

E
ε

p

X̃

π

Z X

Finally, we denote by

L :=OE (−E) (8)

the conormal bundle of E in X̃ .
The construction of categorical resolution in [15] starts with a choice of a Z -linear left

Lefschetz decomposition of Db(E) with respect to L , i.e., a semiorthogonal decomposition
of the form

Db(E) = 〈A1−m ⊗ L1−m, . . . ,A−1 ⊗ L−1,A0〉, (9)

where the Ai form a chain of Z -linear subcategories

0 ⊂ A1−m ⊂ · · · ⊂ A−1 ⊂ A0 ⊂ Db(E).

It is assumed additionally that

p∗(Dperf (Z)) ⊂ A0. (10)

Then the following result is proved (recall Definition 1.3).
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Theorem 3.1 ([15]) Assume X is aquasiprojective schemewith rational singularities, Z ⊂ X
is a closed subscheme such that the blowup X̃ = BlZ (X) is smooth, and its exceptional
divisor E is endowed with a Z-linear left Lefschetz decomposition (9) with respect to the
conormal bundle L such that every component Ak of (9) is admissible in Db(E) and (10)
holds. Set

D := {F ∈ Db(X̃) | ε∗F ∈ A0} ⊂ Db(X̃). (11)

Then π∗(Dperf (X)) ⊂ D and the triple (D, π∗, π∗) provides a categorical resolution of X.
Furthermore, the functor ε∗ : Db(E) → Db(X̃) is fully faithful on the subcategories

Ak ⊂ Db(E) for 1 − m ≤ k ≤ −1, these categories have the property (Ak)
perf = Ak , and

there is an X-linear semiorthogonal decomposition

Db(X̃) = 〈ε∗(A1−m ⊗ L1−m), . . . , ε∗(A−1 ⊗ L−1),D〉 (12)

with admissible components and projection functors of finite cohomological amplitude.
Finally, if X is proper then Dperf = D and it is smooth and proper over k.

Proof Most part of this is proved in [15, Theorem 4.4]. Apart from that, the equal-
ity (Ak)

perf = Ak is established in [15, Proposition 4.1], X -linearity of ε∗(Ak ⊗ Lk) follows
easily from Z -linearity of Ak , and X -linearity of D is explained in [15, Lemma 4.6].

Admissibility of the components ε∗(Ak ⊗ Lk) follows from the existence of both adjoints
to ε∗ and admissibility of Ak . To prove admissibility of D note that admissibility of Ak

implies the existence of a right Lefschetz decomposition (see [15, Lemma 2.19])

Db(E) = 〈A0,A1 ⊗ L, . . . ,Am−1 ⊗ Lm−1〉
and then a similar argument (see [19, Proposition 3.11]) gives the semiorthogonal decompo-
sition

Db(X̃) = 〈D, ε!(A1 ⊗ L), . . . , ε!(Am−1 ⊗ Lm−1)〉,
where ε!(F) = ε∗F⊗OX̃ (E)[−1] is the left adjoint functor of ε∗. Now the above decompo-
sition of Db(X̃) shows thatD is left admissible, while (12) shows that it is right admissible.
The projection functors of the components of (12) have finite cohomological amplitude by
[15, Proposition 2.5].

Finally,Dperf = D because Dperf (X̃) = Db(X̃) as X̃ is smooth, and if X is proper then X̃
is smooth and proper and Dperf is smooth and proper by Lemma 2.7. ��

The simplest case where the theorem applies is the following.

Example 3.2 Assume the base field is algebraically closed of characteristic not equal to 2.
Assume X has an ordinary double point at x0 and is smooth elsewhere. Set Z = {x0}. Then
the blowup X̃ = BlZ (X) = Blx0(X) is smooth, its exceptional divisor E is a smooth quadric,
and the conormal line bundle L = OE (−E) is the hyperplane line bundle of the quadric. We
consider the standard Lefschetz decomposition of a quadric, see [20, §2.2] defined by

A0 = 〈S,O〉,
where S is a spinor bundle on E . Then

Ai =

⎧

⎪

⎨

⎪

⎩

A0, if i = −1 and dim(E) is even,

〈O〉, if − dim(E) ≤ i ≤ −2 and dim(E) is even,

or − dim(E) ≤ i ≤ −1 and dim(E) is odd,
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and is zero otherwise, see [20, Lemma 2.4]. Applying Theorem 3.1 we obtain a categorical
resolution of X by the category

D = {F ∈ Db(X̃) | ε∗F ∈ 〈S,O〉}
and the semiorthogonal decomposition (12).

Now assume that X is a scheme over B, hence the same is true for the scheme X̃ . Further-
more, the subcategoryD ⊂ Db(X̃) is X -linear, hence it is a fortiori B-linear. It makes sense,
therefore, to consider its base change Db to various points b ∈ B. For b �= o a description
of Db is straightforward.

Lemma 3.3 If b �= o then Db � Db(X̃b) � Db(Xb).

Proof By Theorem 2.2 we have a semiorthogonal decomposition

Db(X̃b) = 〈(ε∗(A1−m ⊗ L1−m))b, . . . , (ε∗(A−1 ⊗ L−1))b,Db〉.
Now we apply [16, Theorem 6.4] that shows that each of the first m − 1 components is a
subcategory of the base change of the divisor E ⊂ X̃ along the embedding b ↪→ B. But E
is supported over the point o, therefore Eb = ∅ and so each of these components is zero
(this can be also deduced directly from the construction of base change without invoking the
above theorem). Thus, the last component Db is equal to the entire category Db(X̃b) which
is equal to Db(Xb) because X̃b = Xb (since the center Z of the blowup π is contained in the
central fiber Xo of f and so π is an isomorphism over Bo). ��

It is much trickier to describe the central fiberDo. To do this we introduce more notation
and impose an additional assumption: we assume that the scheme central fiber of X̃ , which
is a reducible scheme

X̃o = X ′
o ∪ E, (13)

has reduced components, where

X ′
o

∼= BlZ (Xo)

is the strict transform of the central fiber of X . We denote by

Eo := X ′
o ∩ E

the exceptional divisor of X ′
o → Xo; then we have the following commutative diagram

Eo
iE

iX

E

rE
ε

X ′
o rX

X ′
o ∪ E

j
X̃ .

(14)

We start with an obvious observation.

Lemma 3.4 The normal bundle of the central fiber X̃o in X̃ is trivial. Moreover, if the central
fiber (13) is reduced then the normal bundles of its components are

NX ′
o/X̃

∼= OX ′
o
(−Eo) and NE/X̃

∼= OE (−Eo).

In particular, the line bundle (8) has the form L ∼= OE (Eo).
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Proof The normal bundle of X̃o is trivial because it is a fiber of a flat morphism to a smooth
curve. Therefore, we have the isomorphisms

OX ′
o

∼= NX̃o/X̃
|X ′

o
∼= OX̃o

(E + X ′
o)|X ′

o
∼= OX ′

o
(E) ⊗ OX ′

o
(X ′

o)
∼= OX ′

o
(Eo) ⊗ NX ′

o/X̃

(the second isomorphism holds because the central fiber is reduced) which gives the required
isomorphism for NX ′

o/X̃
. The isomorphism for NE/X̃ is proved similarly. ��

The next proposition describes the perfect part of the category Do. We use notation (2)
and (14).

Proposition 3.5 Assume the central fiber (13) of X̃ → B is reduced. If D ⊂ Db(X̃) is the
subcategory defined by (11) then the perfect part of its central fiber (Do)

perf ⊂ Dperf (X̃o∪E)

can be described as

(Do)
perf = {F ∈ Dperf (X ′

o ∪ E) | r∗
E F ∈ A0}. (15)

Proof First, if F ∈ Dperf then by commutativity of (14) and the definition of D we have

r∗
E j∗F ∼= ε∗F ∈ A0,

hence j∗F belongs to the right side of (15).By identification (Do)
perf = Po fromTheorem2.2

this implies that the entire category (Do)
perf is contained in the right side of (15).

Furthermore, the semiorthogonal decomposition (12) combinedwith Theorem 2.2 implies
that the orthogonal ((Do)

perf )⊥ in Dperf (X̃o) is generated by objects of the form j∗ε∗G,
where G ∈ Ak ⊗ Lk for k ≤ −1. So, it remains to check that if F belongs to the right side
of (15) and G is one of objects as above then Ext•(F, j∗ε∗G) = 0. By (14) we have an
isomorphism j∗ε∗G = j∗ j∗rE∗G and since j is the embedding of a Cartier divisor with
trivial normal bundle, we have a distinguished triangle

j∗ε∗G → rE∗G → rE∗G[2].
So, it is enough to check that Ext•(F, rE∗G) = 0, which follows immediately from the
adjunction isomorphism Ext•(F, rE∗G) ∼= Ext•(r∗

E F,G) and (9). ��

3.2 Perfect derived category of a reducible scheme

In this subsection we prove Proposition 3.7 that allows us to identify some subcategories
of the perfect derived category of a reducible scheme with subcategories of its irreducible
component. This result is crucial for the proof of our main Theorem 3.11 stated later, where
it will be applied to the category (Do)

perf described in Proposition 3.5.
Consider a reducible scheme

D = D1 ∪ D2,

and consider the scheme intersection of its components

D1 ∩ D2 = D0.

Then we have a commutative square of schemes

D0
i1

i2
r0

D1

r1

D2 r2
D

(16)
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In the last part of the following lemma we assume the category T and the functors ϕi
to be enhanced; here one can use a DG-enhancement as in Definitions 1.3 and 1.4 or an
enhancement of any other type.

Lemma 3.6 Consider a reducible scheme D and the diagram (16).

(i) For any object G ∈ Dqc(D) there is a canonical distinguished triangle

G → r1∗r∗
1G ⊕ r2∗r∗

2G → r0∗r∗
0G. (17)

Its formation commutes with arbitrary direct sums in Dqc(D).
(ii) For any objects F,G ∈ Dqc(D) there is a canonical distinguished triangle

Ext•(F,G) → Ext•(r∗
1 F, r∗

1G) ⊕ Ext•(r∗
2 F, r∗

2G) → Ext•(r∗
0 F, r∗

0G). (18)

In particular, F ∈ Dperf (D) if and only if r∗
1 F ∈ Dperf (D1) and r∗

2 F ∈ Dperf (D2).
(iii) IfT is an enhanced triangulated category andϕ1 : T → Dperf (D1),ϕ2 : T → Dperf (D2)

is a pair of enhanced functors such that i∗1 ◦ ϕ1 ∼= i∗2 ◦ ϕ2, there is an enhanced functor
ϕ : T → Dperf (D) such that r∗

1 ◦ ϕ ∼= ϕ1 and r∗
2 ◦ ϕ ∼= ϕ2.

Proof (i) The triangle (17) is obtained by tensoring G with the canonical exact sequence

0 → OD
(r∗
1 ,r∗

2 )−−−−→ OD1 ⊕ OD2

(i∗1 ,−i∗2 )−−−−−→ OD0 → 0.

Formation of (17) commutes with direct sums because the tensor product does.
(ii) The triangle (18) follows from (17) by an application of Ext•(F,−) and adjunction.

If r∗
1 F and r∗

2 F are perfect, so is r∗
0 F

∼= i∗1r∗
1 F

∼= i∗2r∗
2 F , therefore the second and third terms

of (18) commute with arbitrary direct sums in the second arguments. Using (18) we deduce
that Ext•(F,−) commutes with direct sums, therefore F is compact, and hence perfect. The
other implication for perfectness is obvious.

(iii) This is [7, Chapter 8, Corollary A.2.2]. ��
Fix a full triangulated subcategory A ⊂ Dperf (D1) and denote by i∗1 (A) ⊂ Dperf (D0) its

image under the pullback functor i∗1 : Dperf (D1) → Dperf (D0). Consider the full subcate-
gories

C := {F ∈ Dperf (D) | r∗
1 F ∈ A}, (19)

C2 := {F2 ∈ Dperf (D2) | i∗2 F2 ∈ i∗1 (A)}. (20)

We prove the following

Proposition 3.7 Assume the functor i∗1 : A → Dperf (D0) is fully faithful, so that its image
i∗1 (A) ⊂ Dperf (D0) is a full triangulated subcategory equivalent to A. Then the pullback
functor r∗

2 : Dperf (D) → Dperf (D2) induces an equivalence of categories C � C2 defined
by (19) and (20).

The proof takes the rest of this subsection. We start by defining a functor C2 → C.

Lemma 3.8 Assume the functor i∗1 : A → Dperf (D0) is fully faithful. There is a functor
ϕ : C2 → Dperf (D) such that r∗

2 ◦ ϕ : C2 → Dperf (D2) is the natural embedding and there is
an isomorphism of functors

i∗1 ◦ r∗
1 ◦ ϕ ∼= i∗2 |C2 : C2 → Dperf (D0).

Moreover, ϕ(C2) ⊂ C.
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Proof The category C2 is a full subcategory in Dperf (D2), so it has a natural enhancement;
therefore, to construct the required functor we can use Lemma 3.6(iii). So, we need to
construct a pair of enhanced functors ϕs : C2 → Dperf (Ds) and an isomorphism of func-
tors i∗1 ◦ ϕ1 ∼= i∗2 ◦ ϕ2, see the diagram

C2

ϕ2

i∗2

ϕ1

ϕ

i∗1 (A)

(i∗1 )−1

Dperf (D2)
i∗2

Dperf (D0)

Dperf (D)

r∗
2

r∗
1

Dperf (D1)

i∗1

C A.

We take ϕ2 to be the natural embedding and define ϕ1 as the composition

ϕ1 : C2
i∗2−−→ i∗1 (A)

(i∗1 )−1

−−−−→ A ↪→ Dperf (D1)

(note that we use the assumption of full faithfulness of i∗1 on A to define the middle arrow).
Then we have a canonical isomorphism of functors i∗1 ◦ ϕ1 ∼= i∗2 ◦ ϕ2, hence there exists a
functor ϕ : C2 → Dperf (D) such that

r∗
1 ◦ ϕ ∼= ϕ1 r∗

2 ◦ ϕ ∼= ϕ2.

Moreover, we have i∗1 ◦ r∗
1 ◦ ϕ ∼= i∗1 ◦ ϕ1 ∼= i∗2 ◦ ϕ2 ∼= i∗2 |C2 , as required.

For the last claim note that r∗
1 (ϕ(C2)) = ϕ1(C2) ⊂ A by construction; this means that

ϕ(C2) ⊂ C. ��
Next we check that the constructed functor is adjoint to r∗

2 .

Lemma 3.9 Assume the functor i∗1 : A → Dperf (D0) is fully faithful. The functor ϕ : C2 → C

constructed in Lemma 3.8 is right adjoint to the functor r∗
2 : C → C2.

Proof First, note that r∗
2 (C) ⊂ C2; indeed, if F ∈ C then r∗

1 F ∈ A by (19), hence

i∗2r∗
2 F ∼= i∗1r∗

1 F ∈ i∗1 (A),

and therefore r∗
2 F ∈ C2 by (20).

Furthermore, let F ∈ C and F2 ∈ C2. Using the construction of the functor ϕ from
Lemma 3.8 (that relies on Lemma 3.6(iii)) and the triangle (18) we obtain a distinguished
triangle

Ext•D(F, ϕ(F2))
(r∗
1 ,r∗

2 )−−−−→ Ext•D1
(r∗

1 F, ϕ1(F2)) ⊕ Ext•D2
(r∗

2 F, ϕ2(F2))

(i∗1 ,−i∗2 )−−−−−→ Ext•D0
(i∗1r∗

1 F, i∗1 (ϕ1(F2))),

wherewe provide Ext• with subscripts to emphasizewhich schemewe areworking on. Recall
also that ϕs ∼= r∗

s ◦ ϕ. Since r∗
1 F ∈ A by definition of C and ϕ1(F2) ∈ A by construction

of ϕ1, full faithfulness of i∗1 on A means that the morphism

i∗1 : Ext•D1
(r∗

1 F, ϕ1(F2)) → Ext•D0
(i∗1r∗

1 F, i∗1 (ϕ1(F2)))
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is an isomorphism. Therefore,

Ext•D(F, ϕ(F2)) ∼= Ext•D2
(r∗

2 F, ϕ2(F2)),

proves the adjunction. ��
Now we can deduce the proposition.

Proof of Proposition 3.7 Let ϕ : C2 → C be the functor constructed in Lemma 3.8. By
Lemma 3.9 it is right adjoint to the functor r∗

2 : C → C2.Moreover, we know fromLemma 3.8
that r∗

2 ◦ϕ is the natural embedding ϕ2 : C2 ↪→ Dperf (D2). This means that ϕ is fully faithful
and it remains to check that Ker(r∗

2 |C) = 0.
So, assume F ∈ C is such that r∗

2 F = 0. By (16) we have

i∗1r∗
1 F ∼= i∗2r∗

2 F = 0.

Since r∗
1 F ∈ A by definition of C and i∗1 is fully faithful on A, it follows that r∗

1 F = 0.
Finally, the equalities r∗

1 F = 0, r∗
2 F = 0, and r∗

0 F
∼= i∗2r∗

2 F = 0 imply that F = 0 by
Lemma 3.6(i). ��

3.3 Themain result

In this subsection we prove that the base change Do of the category D defined by (11) is
smooth and proper over k if the Lefschetz decomposition (9) satisfies appropriate conditions
and deduce that in this case D is smooth and proper over B.

We start with a simple observation that allows us to apply results from §3.2.

Lemma 3.10 Assume a left Lefschetz decomposition (9) is given. The pullback functor
i∗E : Db(E) → Db(Eo) is fully faithful on the subcategoriesAk ⊂ Db(E) for 1−m ≤ k ≤ −1
and preserves their semiorthogonality, so that we have a subcategory with a semiorthogonal
decomposition

〈A′
1−m ⊗ L2−m, . . . ,A′−2 ⊗ L−1,A′−1〉 ⊂ Db(Eo),

where we denote A′
k := i∗E (Ak) ⊂ Db(Eo) and abbreviate L|Eo to just L.

Proof By Lemma 3.4 the divisor Eo corresponds to a section of the line bundle L , so both
full faithfulness and semiorthogonality follow from the standard properties of Lefschetz
decompositions, see [12, Theorem 6.3] or [14, Proposition 2.4]. ��

Now we can state the main result of the paper. Recall the notation introduced in (1), (8),
and (14), especially the line bundle L and the maps iX : Eo → X ′

o and iE : Eo → E .

Theorem 3.11 Let f : X → B be a flat projectivemorphism to a smooth pointed curve (B, o)
such that Xo is smooth over Bo and let Z ⊂ Xo be a smooth closed subscheme. Assume X
has rational singularities, the blowups X̃ = BlZ (X), X ′

o = BlZ (Xo), and their exceptional
divisors E and Eo are all smooth, and the central fiber (13) of X̃ → B is reduced. Let (9)
be a Z-linear left Lefschetz decomposition of Db(E) such that (10) holds. Let D be the
subcategory of Db(X̃) defined by (11). Assume additionally that the components Ak of (9)
satisfy the condition

A−1 = A0 (21)
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and that the embedding of Lemma 3.10 is an equality, i.e.,

Db(Eo) = 〈A′
1−m ⊗ L2−m, . . . ,A′−2 ⊗ L−1,A′−1〉. (22)

Then

(i) The base changeDo ofD along the embedding {o} ↪→ B is smooth and proper over k,
and

Do � {F ∈ Db(X ′
o) | i∗X F ∈ A′−1} ⊂ Db(X ′

o). (23)

Moreover, there is a semiorthogonal decomposition

Db(X ′
o) = 〈iX∗(A′

1−m ⊗ L2−m), . . . , iX∗(A′−2 ⊗ L−1),Do〉. (24)

(ii) The triple (D, π∗, π∗) is a simultaneous categorical resolution of (X , Xo); in particu-
lar D is smooth and proper over B.

Proof Note that the components Ak of (9) and A′
k of (22) are admissible because E and Eo

are smooth, so the assumptions of Theorem 3.1 are satisfied, both for the blowup

π : X̃ = BlZ (X) → X

with Lefschetz decomposition (9) and for the blowup

π ′ : X ′
o = BlZ (Xo) → Xo

with Lefschetz decomposition (22). The first implies thatD is a categorical resolution for X
and Proposition 3.5 holds. The latter implies that the category

D′ := {F ∈ Db(X ′
o) | i∗X F ∈ A′−1} ⊂ Db(X ′

o)

provides a categorical resolution for X ′
o; in particular that D′ is smooth and proper over k,

and that there is a semiorthogonal decomposition (24) withDo replaced byD′. So, to prove
part (i) of the theorem we only need to check that Do � D′.

We start by checking that (Do)
perf � D′. Recall that by Proposition 3.5 the cate-

gory (Do)
perf is described by (15), so we need to identify the right side of (15) with D′.

For this we apply the results of §3.2. We consider the reducible scheme D = E ∪ X ′
o

with D1 = E , D2 = X ′
o, so that D0 = Eo. Furthermore, we consider the subcate-

gory A :=A0 = A−1 ⊂ Db(E) = Dperf (E). Note that the functor i∗E : A → Dperf (Eo)

is fully faithful by (21) and Lemma 3.10 and its image isA′−1. Thus, Proposition 3.7 applies
and proves

(Do)
perf � D′;

indeed, the above definition of the categoryD′ agreeswith (20) becauseDb(X ′
o) = Dperf (X ′

o)

as X ′
o is smooth. In particular, it follows that the category (Do)

perf is smooth and proper overk
because D′ is. Now we apply Proposition 2.9 which implies that Do = (Do)

perf and hence
we have Do � D′. This proves (i).

To prove (ii) the only thing we need to show is thatD is smooth and proper over B (all the
rest follows fromTheorem3.1). For thiswe use Theorem2.10. So, let Bsm,pr ⊂ B be the locus
of smooth and proper fibers of D over B. For b ∈ Bo the fiber Db is equivalent to Db(Xb)

by Lemma 3.3, hence smooth and proper by Lemma 2.7. On the other hand, the categoryDo

is smooth and proper over k by part (i). Therefore, the open subscheme Bsm,pr ⊂ B contains
all points of B, hence Bsm,pr = B, and soD is smooth and proper over B by Theorem 2.10.

��
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Remark 3.12 The same result can be proved in a more general situation when the base
scheme B has arbitrary dimension, theflat projectivemorphism f : X → B is smooth over the
complement Bo = B \ Bo of a Cartier divisor Bo ⊂ B, the subscheme Z ⊂ Xo := X ×B Bo

is such that all fibers of f are smooth away from Z , the blowup X̃ = BlZ (X) is smooth
over k, the blowup BlZ (Xo) is smooth over Bo, and the other assumptions are the same as
in Theorem 3.11.

To find examples where Theorem 3.11 applies and produces simultaneous categorical
resolutions we need fibrations E → Z with relatively ample line bundle L and Z -linear
Lefschetz decomposition satisfying the properties (10), (21), and (22). Below we list some
examples of such varieties over the trivial base (over more general bases one should consider
their relative analogues) and their Lefschetz decompositions.

Example 3.13 The following Lefschetz decompositions enjoy the properties (10), (21)
and (22) (for any smooth divisor Eo ⊂ E in the linear system |L|):
(1) E = P

n , L = O(1), A0 = A−1 = · · · = A−n = 〈O〉;
(2) E = P

n1 × P
n2 , L = O(1, 1), A0 = A−1 = · · · = A−n2 = p∗

1(D
b(Pn1)), where p1 is

the projection P
n1 ×P

n2 → P
n1 and we assume n1 ≤ n2 (if n1 > n2 a similar Lefschetz

decomposition exists, but it does not have the property (22));
(3) E = Q2n , L = O(1), A0 = A−1 = 〈S,O〉, A−2 = · · · = A1−2n = 〈O〉, where S is one

of the two spinor bundles on the smooth even-dimensional quadric Q2n (if E is a quadric
of odd dimension a similar Lefschetz decomposition exists, see Example 3.2, but it does
not have the property (21));

(4) E = Gr(2, n), L = O(1), A0 = A−1 = · · · = A−n = 〈O,U∨, . . . , S�n/2�−1U∨〉 if n is
odd, and with a slightly more complicated formula if n is even, see [14, Theorem 4.1],
where U is the tautological bundle on the Grassmannian Gr(2, n).

In case (1) the corresponding varieties X and Xo are smooth and it is easy to see that the
categorical resolution of Theorem 3.11 is trivial (i.e., D � Db(X), Do � Db(Xo)).

Case (2) appears in the standard flipping contraction. In this case the categoryD is equiv-
alent to the derived category of the flip.

Case (3) is the most interesting. It corresponds to the assumption that X and Xo have
ordinary double points and dim(Xo) is even. This is precisely the situation of Theorem 1.7
from the Introduction. We will prove a more general result in the next subsection.

3.4 Simultaneous categorical resolutions of nodal degenerations

Recall from [13, §3.5] that if p : E → Z is a fibration in smooth quadrics of even dimen-
sion 2n, then there is an étale double covering Z̃ → Z , a Brauer class β ∈ Br(Z̃) (represented
by an explicit Azumaya algebra), and a Z -linear Lefschetz decomposition

Db(E) = 〈p∗Db(Z) ⊗ OE (1 − 2n),

. . . , p∗Db(Z) ⊗ OE (−1), p∗Db(Z̃ , β) ⊗ SE , p∗Db(Z) ⊗ OE 〉, (25)

where SE is a β−1-twisted spinor bundle on E×Z Z̃ . We call Z̃ → Z and β the discriminant
double cover and Brauer class of E/Z .

Similarly, if p : E ′ → Z is a fibration in smooth quadrics of odd dimension 2n − 1 then
by [13, §3.6] there is a Brauer class β ∈ Br(Z) and a Z -linear Lefschetz decomposition
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Db(E ′) = 〈p∗Db(Z) ⊗ OE ′(2 − 2n),

. . . , p∗Db(Z) ⊗ OE ′(−1), p∗Db(Z , β) ⊗ SE ′ , p∗Db(Z) ⊗ OE ′ 〉, (26)

where SE ′ is a β−1-twisted spinor bundle on E ′.
We say that a scheme Y is nodal along a smooth subscheme Z ⊂ Y , if Sing(Y ) = Z and

a transverse slice to Z in Y at any point of Z has an ordinary double point.

Theorem 3.14 Let k be a field of characteristic not equal to 2. Let f : X → B be a flat
projective morphism to a smooth pointed k-curve (B, o) such that Xo is smooth over Bo.
Let Z ⊂ Xo be a smooth closed subscheme in the central fiber of f such that both X and Xo

are nodal along Z. Assume

codimZ (Xo) = 2n

is even. Let ε : E → X̃ = BlZ (X) be the exceptional divisor of the blowup. Let p : E → Z
be the corresponding fibration in smooth quadrics of dimension 2n. Let Z̃ → Z be the
corresponding discriminant étale double covering and let β ∈ Br(Z̃) be the corresponding
Brauer class.

If the covering Z̃ → Z splits then there is a semiorthogonal decomposition

Db(X̃) = 〈ε∗(p∗Db(Z) ⊗ OE ((2n − 1)E)),

. . . , ε∗(p∗Db(Z) ⊗ OE (E)), ε∗(p∗Db(Z , β) ⊗ S),D〉, (27)

whereS is aβ−1-twisted spinor bundle on E and the categoryD defined by this decomposition
provides a simultaneous categorical resolution of (X , Xo). Moreover, the central fiberDo of
the categoryD fits into a semiorthogonal decomposition

Db(BlZ (Xo)) = 〈iX∗(p∗
oD

b(Z) ⊗ OEo((2n − 2)Eo)),

. . . , iX∗(p∗
oD

b(Z) ⊗ OEo(Eo)),Do〉,
where iX : Eo ↪→ BlZ (Xo) is the exceptional divisor of the blowup BlZ (Xo) and po : Eo →
Z is the natural projection.

Proof Set OE (1) :=OE (−E) and consider the semiorthogonal decomposition (25). If the
covering Z̃ → Z splits as Z̃ = Z1 � Z2, the “spinor” component of the semiorthogonal
decomposition also splits as

p∗Db(Z̃ , β) ⊗ SE = 〈p∗Db(Z1, β) ⊗ S1, p
∗Db(Z2, β) ⊗ S2〉,

where Si are the restrictions of SE to E ×Z Zi ∼= E . Mutating p∗Db(Z2, β)⊗S2 to the right
of p∗Db(Z) ⊗OE we obtain p∗Db(Z1, β) ⊗ S1(1) (this follows from a relative version [13,
Lemma 4.5] of the exact sequences (30)). Thus, identifying the component Z1 of Z̃ with Z
and writing S instead of S1, we can rewrite the obtained semiorthogonal decomposition
of Db(E) as the Lefschetz decomposition (9) with

A0 = A−1 = 〈p∗Db(Z) ⊗ OE , p∗Db(Z , β) ⊗ S(1)〉 and

A−2 = · · · = A1−2n = p∗Db(Z) ⊗ OE .
(28)

In particular, the condition (21) holds. Moreover, the condition (22) follows from (26). Now
Theorem 3.11 applies, providing the required semiorthogonal decompositions of the cate-
goriesDb(X̃) andDb(BlZ (Xo)) and proving that the categoryD = {F ∈ Db(X̃) | ε∗F ∈ A0}
fits into (27) and provides a simultaneous categorical resolution of (X , Xo). ��

Now we can deduce Theorem 1.7.
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Proof of Theorem 1.7 We apply Theorem 3.14 with Z = {xo} ∼= Spec(k). If the double
covering Z̃ → Z splits (this is certainly true if k is algebraically closed) we obtain the
required simultaneous categorical resolution. Otherwise, Z̃ = Spec(k′), where k′/k is a
quadratic extension, hence after extension of scalars to k′ the double covering splits, and the
same argument applies. ��

In the setup of Theorem1.7, if the fieldk is algebraically closed, hence the double covering
splits and the Brauer class vanishes, the semiorthogonal decomposition (27) takes the form

Db(X̃) = 〈OE (1 − 2n), . . . ,OE (−2),OE (−1), ε∗S,D〉, (29)

where recall that ε : E ↪→ X̃ = Blxo(X) is the embedding of the exceptional divisor and S

is a spinor bundle on the smooth quadric E . Note that the subcategory D ⊂ Db(X̃) defined
by (29) depends on the choice of the spinor bundle S. In the rest of this subsection we show
that the two different choices result in equivalent categories related by a “categorical flop”
(see Remark 3.16).

Recall that the two spinor bundles S+ and S− on a quadric of dimension 2n are completely
orthogonal and are related by the exact sequences

0 → S− → O⊕N → S+(1) → 0 and 0 → S+ → O⊕N → S−(1) → 0, (30)

where N = 2n .

Proposition 3.15 Let k be an algebraically closed field of characteristic not equal to 2.
Assume X has an ordinary double point at x0 and is smooth elsewhere. Let X̃ = Blxo(X)

be the blowup with the exceptional divisor ε : E ↪→ X̃ (isomorphic to a smooth quadric of
dimension 2n). Let S+ and S− be the two spinor bundles on E and letD+,D− ⊂ Db(X̃) be
the categorical resolutions defined by (29) for the choices S = S+ and S = S−, respectively.
Then the following are true:

(i) The objects ε∗S+ and ε∗S− in Db(X̃) are exceptional, and, moreover,

ε∗S− ∈ D⊥− ∩ ⊥D+, ε∗S+ ∈ D⊥+ ∩ ⊥D−.

(ii) The right mutationsK+ :=Rε∗S+(ε∗S−) andK− :=Rε∗S−(ε∗S+) fit into distinguished
triangles

K+ → ε∗S− → ε∗S+[2], and K− → ε∗S+ → ε∗S−[2], (31)

and we have K+ ∈ D+ and K− ∈ D−.
(iii) The right mutation functors

�− :=Rε∗S− : D+ → D− and �+ :=Rε∗S+ : D− → D+

are equivalences of categories. Moreover, the objectsK± are spherical and the compo-
sitions of equivalences �+ ◦ �− and �− ◦ �+ are isomorphic to the spherical twists
with respect to K+ and K−, respectively.

Proof We will denote by A±
k , 1 − 2n ≤ k ≤ 0, the components of the semiorthogonal

decompositions (28) (cf. Example 3.2) corresponding to the choices S = S+ and S = S−,
respectively, so that in particular

A+
0 = A+

−1 := 〈O, S+(1)〉 = 〈S−,O〉 andA−
0 = A−

−1 := 〈O, S−(1)〉 = 〈S+,O〉, (32)

where the equalities in the right hand sides follow from (30).
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First, recall that S+ and S− are exceptional and completely orthogonal on E . More-
over, S∓ ∈ A±

−1, hence the functor ε∗ is fully faithful on them by Theorem 3.1; thus the
sheaves ε∗S+ and ε∗S− are exceptional.

Next, we note that ε∗S± ∈ D⊥± by (29) for S = S±. Let us prove that ε∗S− ∈ ⊥D+. For
this take F ∈ D+ and note that since the normal bundle of E is OE (−1) it follows from
Grothendieck duality that

Ext•(ε∗S−, F) ∼= Ext•(S−, ε!F) ∼= Ext•(S−, ε∗F(−1)[−1]).
Since S− ∈ A+

0 and ε∗F(−1) ∈ A+
0 (−1) = A+

−1(−1) by (32), the above space vanishes,
hence indeed we have ε∗S− ∈ ⊥D+. The containment ε∗S+ ∈ ⊥D− is analogous, so (i) is
proved.

Next, since the conormal bundle of E is OE (1), we have the distinguished triangle

ε∗ε∗S± → S± → S±(1)[2].
Using this triangle combined with adjunction and orthogonality of S+ and S− on E , we
obtain

Ext•(ε∗S±, ε∗S∓) ∼= Ext•(S±(1)[1], S∓).

From (30) we conclude that the right side is equal to k[−2], hence
Ext•(ε∗S±, ε∗S∓) ∼= k[−2]. (33)

This shows that themutation triangles definingK+ :=Rε∗S+(ε∗S−) andK− :=Rε∗S−(ε∗S+)

take the form (31).
It follows from (29) for S = S+ that to prove the containment K+ ∈ D+ we must check

that K+ is left-orthogonal to OE (−i) with 1 ≤ i ≤ 2n − 1 and to ε∗S+. The first part of
orthogonality is immediate from (31) and the two decompositions (29) for S = S+ and S−,
while the second part follows from the definition ofK+ as right mutation. The containment
K− ∈ D− is proved analogously. This proves (ii).

To prove (iii) set

D̃ = ⊥〈OE (1 − 2n), . . . ,OE (−2),OE (−1)〉 ⊂ Db(X̃).

The semiorthogonal decompositions (29) for S = S+ and S = S− imply that

D̃ = 〈ε∗S+,D+〉 = 〈ε∗S−,D−〉.
On the other hand, we also have

D̃ = 〈D−, ε∗S+〉 = 〈D+, ε∗S−〉;
indeed, semiorthogonality of the components is proved in part (i) and generation follows
from (31) and the containmentsK± ∈ D± proved in part (ii). So, we see that the functors�±
are just the equivalences

(ε∗S+)⊥ ∼−−→ ⊥(ε∗S+) and (ε∗S−)⊥ ∼−−→ ⊥(ε∗S−)

given by the right mutation functors in D̃. The fact that their compositions are given by
spherical twists follows from [8, Theorem 3.11] since the above decompositions of D̃ form
a 4-periodic sequence of semiorthogonal decompositions. ��
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Remark 3.16 Note that when n = 1 the simultaneous categorical resolution of a nodal surface
degeneration constructed in Theorem 1.7 reduces to the geometric simultaneous resolution
of Example 1.1. Indeed, the blowup X̃ of X at xo is isomorphic to the blowup of a small
resolution of singularities X at its exceptional curve; and comparing the blowup formula
with the semiorthogonal decomposition (29) (note that S = OE (−1, 0) in this case) gives
an identification of the simultaneous categorical resolution D with the derived category of
the geometric simultaneous resolution. Furthermore, the categorical flop described above is
equivalent to the standard Atiyah flop.

4 Application to cubic fourfolds

In this section k is an algebraically closed field of characteristic not equal to 2.
For any cubic hypersurface Y ⊂ P

5 there is a semiorthogonal decomposition [9]

Db(Y ) = 〈AY ,OY ,OY (1),OY (2)〉. (34)

If Y is smooth the componentAY is smooth and proper and it is a K3 category (i.e., its Serre
functor is isomorphic to the shift functor [2]), see [10, Corollary 4.4] or [17, Corollary 4.1].

On the other hand, if Y has a single ordinary double point yo, the categoryAY is no longer
smooth and proper, but it has a nice categorical resolution provided by the derived category
of a K3 surface S (it is also, of course, a K3 category), which is naturally associated to Y ,
see [9, Theorem 5.2].

More precisely, the linear projection Y ��� P
4 out of yo induces an isomorphism

Blyo(Y ) ∼= BlS(P
4),

where S is a smooth complete intersection of a smooth 3-dimensional quadric Q ⊂ P
4 and a

cubic hypersurface inP
4, and the exceptional divisor of Blyo(Y )maps isomorphically onto Q.

In this situation Theorem 3.1 shows that on the one hand, the categorical resolutionDY of Y
constructed in Example 3.2 is a component of the semiorthogonal decomposition

Db(Blyo(Y )) = 〈OQ(−2),OQ(−1),DY 〉, (35)

where Q is identified with the exceptional divisor of the blowup, and on the other hand, by
[9, Theorem 5.2] it has a semiorthogonal decomposition

DY = 〈ÃY ,OBlyo (Y ),OBlyo (Y )(1),OBlyo (Y )(2)〉, (36)

where the line bundles are pulled back from Y and

ÃY � Db(S). (37)

In this section we prove Corollary 1.8 by showing that K3 categories of both types (AY for
smooth cubic fourfolds and ÃY for nodal ones) fit into a single smooth and proper family.

First, we construct an appropriate geometric family of cubic fourfolds.

Lemma 4.1 For any cubic fourfold Y with a single ordinary double point yo there is a family
f : X → B of cubic fourfolds over a smooth pointed curve (B, o) in which the central fiber
is Xo ∼= Y , the point yo ∈ X is an ordinary double point, and the morphism f is smooth
over Bo.
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Proof Let F0(x) and F1(x) be the equations of Y ⊂ P
5 and of a smooth cubic fourfold

Y1 ⊂ P
5 (in the same projective space) such thatY1 does not contain the singular point yo ∈ Y .

Consider the family

X = {(x, t) ∈ P
5 × A

1 | (1 − t2)F0(x) + t2F1(x) = 0}
of cubic fourfolds over A

1. The fiber of X over 0 ∈ A
1 is Y and the fiber over 1 ∈ A

1 is Y1.
Since Y1 is smooth, the general fiber of the projection X → A

1 is smooth as well, hence the
set of points t ∈ A

1 such that the fiber Xt is singular is a finite set T ⊂ A
1 containing the

point 0. Furthermore, it is easy to see that yo ∈ X is an ordinary double point of the total
space. Now we let

B := A
1 \ (T \ {0})

be the complement of all points in T except for 0. Then the morphism XB → B has the
prescribed properties. ��

Now, applying Theorem 1.7 to the family X → B constructed in Lemma 4.1, we prove
Corollary 1.8.

Proof of Corollary 1.8 Let X̃ = Blyo(X) and letD ⊂ Db(X̃) be the simultaneous categorical
resolution of (X , Xo = Y ) constructed in Theorem 1.7 (that relies on Theorem 3.14), so that

Db(X̃) = 〈OE (−3),OE (−2),OE (−1), ε∗S,D〉.
Then we have

Db � Db(Xb) for b �= o,

and Do is the categorical resolution of the singular cubic fourfold Y that fits into the
semiorthogonal decomposition

Db(Blyo(Y )) = 〈OEo(−2),OEo (−1),Do〉,
where Eo is the exceptional divisor of the blowup Blyo(Y ), i.e., Eo = Q. Therefore, Do

coincides with the categorical resolution DY of Y defined by (35). Note further that the
pullbacks OX̃ (i) of the line bundles O

P5(i) are contained in the subcategory D for all i .
Moreover, the triple (OX̃ ,OX̃ (1),OX̃ (2)) restricts to an exceptional triple in each fiber ofD
over B, therefore by [23, Theorem 2] it is a B-exceptional triple and there is a B-linear
semiorthogonal decomposition

D = 〈A, f̃ ∗Db(B) ⊗ OX̃ , f̃ ∗Db(B) ⊗ OX̃ (1), f̃ ∗Db(B) ⊗ OX̃ (2)〉

defining the B-linear admissible subcategory A ⊂ D ⊂ Db(X̃), where f̃ is the composition
X̃ → X → B. Taking the base change of the above decomposition to fibers over all
points b �= o and comparing it with (34) we deduce that Ab is the K3 category of Xb.
Similarly, the definition of the fiber Ao of A at o coincides with the definition (36) of the
category ˜AY . Finally, this category is equivalent to Db(S) by (37). ��
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