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DOI: https://doi.org/10.4213/sm9897e

Explicit deformation of the horospherical variety of type G2

A. G. Kuznetsov

Abstract. We give two simple geometric constructions of a smooth family
of projective varieties with central fiber isomorphic to the horospherical
variety of type G2 and all other fibers isomorphic to the isotropic orthogonal
Grassmannian OGr(2, 7), and we discuss briefly the derived category of this
family.
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§ 1. Introduction

Let G be a simple algebraic group of Dynkin type G2. If V1 and V2 are the fun-
damental representations of G of dimension 7 and 14, respectively, then the highest
weight vector orbits in P(V1) and P(V2) are as follows:

• X1 ⊂ P(V1) is a smooth quadric of dimension 5;
• X2 ⊂ P(V2) is the so-called adjoint variety of G.

In fact, X2 can be realized as a subvariety of Gr(2, V1) (see Lemma 2.1 below
for details), and if UX2 is the restriction to X2 of the tautological rank 2 subbundle
from the Grassmannian, then

X̃ := PX2(UX2)
p2−→ X2 (1.1)

is the flag variety of G; in particular, the bundle UX2 and the P1-fibration p2

are G-equivariant.
Similarly, there is a G-equivariant vector bundle CX1 of rank 2 on the quadric X1

such that
X̃ ∼= PX1(CX1)

p1−→ X1 (1.2)

is a G-equivariant P1-fibration; CX1 is known as the Cayley bundle (see [2],
Lemma 8.3, and [6]).

The horospherical variety X of type G2 can be constructed out of these data
in several ways. We outline below three related constructions; for details, see [7]
and [1]. Let H1 and H2 denote the hyperplane classes of P(V1) and P(V2); by abusing
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the notation we denote their pullbacks to X1 and X2, respectively, and to X̃ in the
same way. Consider the following projective bundles:

PX1(OX1(−H1)⊕CX1), PX2(UX2⊕OX2(−H2)) and PX̃(OX̃(−H1)⊕OX̃(−H2))

over X1, X2 and X̃, respectively. Note that the summands of rank 1 induce sections
of the first two projective bundles, and a pair of sections of the last one. It is not
hard to prove that the relative hyperplane class of each of these projective bundles
is base point free and induces a G-equivariant morphism into P(V1⊕V2). The image
of each morphism is the horospherical variety X ⊂ P(V1 ⊕ V2), and the images of
the sections are the disjoint subvarieties

X1 = X ∩ P(V1) and X2 = X ∩ P(V2),

and in this way we obtain isomorphisms

BlX2(X) ∼= PX1(OX1(−H1)⊕ CX1), (1.3)
BlX1(X) ∼= PX2(UX2 ⊕OX2(−H2)) (1.4)

and

BlX1⊔X2(X) ∼= PX̃ (OX̃(−H1)⊕OX̃(−H2)). (1.5)

All these isomorphisms are G-equivariant.
The constructions described above are quite general and can be applied to horo-

spherical varieties with Picard number 1 of other types (see [7], Theorem 0.1, for
classification). The special property of the horospherical variety of type G2 is
its relationship with another smooth projective G-variety, the orthogonal isotropic
Grassmannian

Y = OGr(2, V1), (1.6)

which is the subvariety of Gr(2, V1) that parameterizes the two-dimensional sub-
spaces isotropic with respect to the quadratic equation of X1 ⊂ P(V1).

It can be observed that X and Y share all numerical invariants; in particular,
they have the same rank of the Grothendieck groups (equal to 12), the same Fano
index (equal to 4), the same dimension of the spaces of global sections of O(1)
(equal to 21), and so on. A nice explanation for these coincidences was given
in [8], Proposition 2.3, where a smooth degeneration of Y to X, that is, a smooth
projective variety over A1 with central fiber isomorphic to X and all other fibers
isomorphic to Y , was constructed.

This degeneration was constructed in [8] as a certain orbit closure, which makes
it slightly implicit and hard to use. The goal of this paper is to give two geo-
metric constructions of such a family, which are more convenient for applications;
these constructions work over an arbitrary smooth pointed curve (C, 0).
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Theorem 1.1. Let (C, 0) be a smooth pointed curve, and set Y := Y × C . Then
there is a commutative diagram

BlX1(X )
πX

��

BlX2(Y)
πY

��
X1

� � // X

fX %%

Y

fYzz

X2
? _oo

C

(1.7)

where
• fX : X → C is a smooth projective morphism such that

X0 := f−1
X (0) ∼= X,

• fY : Y → C is the projection onto the second factor, so that

Y0 := f−1
Y (0) ∼= Y,

• πX and πY are the blowups of the smooth subvarieties

X1 ⊂ X = X0 ⊂ X and X2 ⊂ Y = Y0 ⊂ Y.

In particular, f−1
X (C \ {0}) ∼= f−1

Y (C \ {0}) ∼= Y × (C \ {0}), so that X is a smooth
degeneration of Y .

Theorem 1.2. There is a vector bundle W̃ of rank 3 on X1×C and a commutative
diagram

X̃ × C� _

��
p1





p2

��

PX1×C(W̃)

xx
ρ

��
X1 × C X X2 × C? _oo

(1.8)

over C , where X is the same as in Theorem 1.1 and ρ is the blowup of X2×C ⊂ X .

The crucial observation (Proposition 2.3) on which the proof of both theorems
relies is that there is a natural embedding X2 ↪→ Y and that the blowup BlX2(Y )
has the structure of a projective bundle over X1 which is analogous to (1.3).

§ 2. The key observation

Recall that V1 denotes the fundamental 7-dimensional representation of the
group G and Y was defined in (1.6). We denote by U ⊂ V1 ⊗O and U⊥ ⊂ V ∨

1 ⊗O
the tautological subbundles of rank 2 and 5 on Gr(2, V1), respectively, and write
O(1) for the Plücker line bundle. We also denote by S the spinor bundle on Y with
the convention opposite to that in § 6 of [3], so that ∧2S ∼= O(−1).
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Lemma 2.1. There exists a chain of embeddings

X2 ↪→ Y ↪→ Gr(2, V1) ⊂ P(∧2V1)

such that
• Y ⊂ Gr(2, V1) is the zero locus of a regular section of Sym2 U∨ ,
• X2 ⊂ Gr(2, V1) is the zero locus of a regular section of U⊥(1) and
• X2 ⊂ Y is the zero locus of a regular section of S∨ .

Moreover, the restrictions of U and S to X2 are isomorphic.

Proof. The description of X2 as a zero locus in Gr(2, V1) was discovered by Mukai
(a global section of U⊥(1) is given by a 3-form λ ∈ ∧3V ∨

1 whose stabilizer is the
group G). The restriction of O(1) to X2 generates Pic(X2), the linear span of X2

in P(∧2V1) is P(V2), and the corresponding embedding V2 ↪→ ∧2V1 extends to an
exact sequence

0 −→ V2 −→ ∧2V1
λ−→ V ∨

1 −→ 0 (2.1)

of representations of G. Note that the G-action on V1 preserves a nondegenerate
quadratic form (the equation of the quadric X1 ⊂ P(V1)), hence we have the chain
of group embeddings

G ⊂ SO(V1) ⊂ GL(V1).

Moreover, a highest weight vector of V2 with respect to G is also a highest weight
vector of ∧2V1 with respect to SO(V1) and GL(V1), and therefore we have the chain
of highest-weight vector orbits

X2 ⊂ Y ⊂ Gr(2, V1)

of the respective groups.
The description of Y ⊂ Gr(2, V1) as the zero locus is tautological (the section

corresponds to a quadratic form on V1 preserved by SO(V1)), and the description
of X2 ⊂ Y as the zero locus of a section of S∨ and an isomorphism S|X2

∼= U|X2

were established in [2], Lemma 8.3. □

Corollary 2.2. There is an equalty of schemes X2 = Y ∩ P(V2).

The intersection on the right-hand side is, of course, highly non-transverse.

Proof of Corollary 2.2. Let IX2 be the ideal of X2 ⊂ Y = OGr(2, V1). By
Lemma 2.1 we have an exact sequence

0 −→ OY −→ S∨ −→ IX2(1) −→ 0.

The space of global sections of S∨ on Y is the spinor 8-dimensional representation S
of Spin(V1); when restricted to G, it is isomorphic to the direct sum V1 ⊕ k, where
the second summand corresponds to the section of S∨ defining X2 ⊂ Y . Since,
moreover, S∨ is globally generated, the above exact sequence gives an epimor-
phism V1 ⊗OY ↠ IX2(1). This means that X2 ⊂ Gr(2, V1) is scheme-theoretically
cut out by the hyperplanes corresponding to the subspace

V1 ⊂ H0(Y,OY (1)) = ∧2V ∨
1 .

This embedding is obviously G-equivariant, hence it is given by the dual of the
second map in (2.1), and therefore X2 = Y ∩ P(V2). □
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The following proposition is an analogue of (1.3); it is the key to the proof of
Theorems 1.1 and 1.2.

Proposition 2.3. There is a G-equivariant isomorphism

BlX2(Y ) ∼= PX1(WX1), (2.2)

where WX1 is a G-equivariant vector bundle on X1 of rank 3; it fits into an exact
sequence

0 −→ CX1 −→WX1 −→ OX1(−H1) −→ 0. (2.3)

Proof. Consider the orthogonal isotropic partial flag variety and its two projections:

OFl(2, 3; V1)

ww ''
OGr(2, V1) OGr(3, V1).

The fibers of the first are nondegenerate conics; in fact, it is a P1-bundle, the
corresponding vector bundle on OGr(2, V1) is precisely the spinor bundle S, hence
we have an isomorphism

OFl(2, 3; V1) ∼= POGr(2,V1)(S) = PY (S).

Similarly, the second map is a P2-bundle. We denote the corresponding SO(V1)-
equivariant vector bundle of rank 3 on OGr(3, V1) by W, so that we have an iso-
morphism

OFl(2, 3; V1) ∼= POGr(3,V1)(W). (2.4)

Note that OGr(3, V1) is a smooth 6-dimensional quadric in the projectiviza-
tion of the 8-dimensional spinor representation S of Spin(V1) (the universal cov-
ering of SO(V1)). The restriction of this representation to the group G splits
as S = V1 ⊕ k, and the hyperplane section of OGr(3, V1) ⊂ P(S) by P(V1) is the
quadric X1. Its preimage

OFl(2, 3; V1)×OGr(3,V1) X1
∼= PX1(W|X1)

is a relative (over Y = OGr(2, V1)) hyperplane section of PY (S); therefore, it is
isomorphic to the blowup of Y along the zero locus of the corresponding section
of S∨. By Lemma 2.1 this zero locus is X2 ⊂ Y , hence we obtain the required
isomorphism (2.2), where WX1 := W|X1 .

To construct the exact sequence (2.3) note that by Lemma 2.1 the normal bundle
of X2 ⊂ Y is

NX2/Y
∼= S|∨X2

∼= U∨X2
;

hence, using (1.1) and (1.2), we deduce that the exceptional divisor of the blowup is

PX2(NX2/Y ) ∼= PX2(U∨X2
) ∼= PX2(UX2) = X̃ = PX1(CX1).

Moreover, the induced embedding PX1(CX1) ↪→ PX1(WX1) is compatible with the
projection onto X1 and also with the relative hyperplane classes, hence it induces
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an embedding of vector bundles CX1 ↪→ WX1 . The quotient is a line bundle, so
it can be identified with OX1(−H1) by the determinant computation, taking into
account the isomorphisms

det(CX1) ∼= OX1(−3H1) and det(WX1) ∼= OX1(−4H1),

which follow from (1.2) and (2.4) by a canonical class computation. □

Remark 2.4. The crucial difference between (2.2) and (1.3) is that the extension
(2.3) defining the vector bundle WX1 is nontrivial. One can see this as follows: if
the extension (2.3) were split, then the embedding OX1(−H1) ↪→WX1 would give
an embedding X1 ↪→ Y of the 5-dimensional quadric X1, but it is well known that
Y = OGr(2, V1) (and even the ambient Grassmannian Gr(2, V1)) does not contain
quadrics of dimension greater than 4.

§ 3. Proof of Theorem 1.1

Recall that Y = Y ×C and the map fY : Y → C is the projection. Consider the
subvariety

X2 ↪→ Y = Y0 ↪→ Y
(where we recall that Y0 ⊂ Y denotes the central fiber of fY) and the blowup
πY : BlX2(Y) → Y. This gives us the right half of the diagram (1.7). To construct
the left half we need two lemmas.

Lemma 3.1. The scheme central fiber of BlX2(Y)
πY−−→ Y fY−−→ C is the normal

crossing divisor
PX2(UX2 ⊕OX2(−H2))

⋃
X̃

PX1(WX1),

where the first component is the exceptional divisor of πY and the second is the
strict transform of Y0

∼= Y .

Proof. Since Y is the product Y × C, using Lemma 2.1 we compute the normal
bundle

NX2/Y ∼= NX2/Y ⊕OX2
∼= U∨X2

⊕OX2 .

This is a twist of UX2 ⊕ OX2(−H2), hence we obtain a description of the first
component of the central fiber of BlX2(Y). The second component is isomorphic
to the blowup BlX2(Y ), so Proposition 2.3 applies. Finally, the intersection of the
components is the projectivization of NX2/Y

∼= U∨X2
, hence (1.1) shows that it is

isomorphic to X̃. □

Now consider the trivial vector bundle ∧2V1 ⊗OC and the filtration (2.1) on its
central fiber. It induces a vector bundle V on C and a morphism α : ∧2V1⊗OC → V,
that fit into an exact sequence

0 −→ ∧2V1 ⊗OC
α−→ V −→ V2 ⊗O{0} −→ 0,

where O{0} is the structure sheaf of the point {0} ∈ C; the central fiber of V is
canonically an extension

0 −→ V ∨
1 −→ V{0} −→ V2 −→ 0 (3.1)
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(opposite to (2.1)), and the morphism α{0} factors as ∧2V1
λ−→ V ∨

1 −→ V{0}.
Note that α is an isomorphism over the punctured curve C \ {0}, hence it induces
a birational map PC(∧2V1 ⊗OC) 99K PC(V) of projective bundles over C.

Lemma 3.2. Consider the embeddings

P(V2) ⊂ P(∧2V1) ↪→ PC(∧2V1 ⊗OC) and P(V ∨
1 ) ⊂ P(V{0}) ↪→ PC(V)

into the central fibers of projective bundles. The birational map α induces an iso-
morphism of blowups

BlP(V2)(PC(∧2V1 ⊗OC)) ∼= BlP(V ∨1 )(PC(V))

over C such that the exceptional divisor of each side coincides with the strict trans-
form of the central fiber of the projective bundle of the other side.

This is an elementary transformation of projective bundles, so the argument is
standard.

Now we construct the left half of (1.7). Consider the natural embedding

Y = Y × C = OGr(2, V1)× C ↪→ P(∧2V1)× C = PC(∧2V1 ⊗OC).

By Corollary 2.2 the strict transform of Y under the blowup BlP(V2)(PC(∧2V1⊗OC))
from Lemma 3.2 is isomorphic to BlX2(Y). Consider the composition

BlX2(Y) ↪→ BlP(V2)(PC(∧2V1 ⊗OC)) ∼= BlP(V ∨1 )(PC(V)) → PC(V)

of the induced embedding with the isomorphism from Lemma 3.2 and the obvi-
ous contraction. We denote its image by X ⊂ PC(V) and consider the resulting
morphisms

BlX2(Y) πX−→ X fX−→ C.

It remains to prove that fX is smooth, its central fiber is isomorphic to X and πX
is the blowup of X1 ⊂ X .

By Lemma 3.2 the morphism BlP(V2)(PC(∧2V1 ⊗ OC)) → PC(V) contracts the
strict transform of the central fiber of PC(∧2V1⊗OC) and is an isomorphism on its
complement. It follows that πX contracts the strict transform of the central fiber
of Y and is an isomorphism on its complement.

The restriction of πX to the exceptional divisor PX2(UX2⊕OX2(−H2)) of πY (see
Lemma 3.1) is the morphism given by the relative hyperplane class, hence by (1.4)
its image is the horospherical variety X. This is the scheme central fiber of fX , so
the smoothness of X implies that fX is smooth.

The restriction of πX to the strict transform BlX2(Y ) ∼= PX1(WX1) of the central
fiber of Y over C coincides by construction with the morphism in Proposition 2.3,
and therefore πX (BlX2(Y )) = X1 ⊂ X.

Finally, the fact that πX is the blowup of X1 ⊂ X = X0 ⊂ X follows from
Lemma 2.5 in [5], which completes the proof.
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§ 4. Proof of Theorem 1.2

Recall the exact sequence (2.3), and let

ϵ ∈ Ext1(OX1(−H1), CX1)

denote its extension class; note that ϵ ̸= 0 by Remark 2.4.
Let L be the line bundle of degree 1 on C associated with the point {0} ∈ C and

let s0 ∈ H0(C,L) be the corresponding global section. We define a vector bundle
W̃ on X1 × C as an extension

0 −→ CX1 ⊠ L −→ W̃ −→ OX1(−H1) ⊠OC −→ 0 (4.1)

with extension class

ϵ⊗ s0 ∈ Ext1(OX1(−H1), CX1)⊗H0(C,L) ∼= Ext1(OX1(−H1) ⊠OC , CX1 ⊠ L).

Thus, the extension splits over {0}, so that

W̃|X1×{0}
∼= OX1(−H1)⊕ CX1 , (4.2)

while for each 0 ̸= t ∈ C the extension is isomorphic to (2.3), so that

W̃|X1×(C\{0}) ∼= WX1 ⊠OC\{0}. (4.3)

Now consider the projective bundle PX1×C(W̃) and its relative hyperplane
class H. Since both the vector bundles C∨X1

and OX1(H1) are globally generated,
the linear system |H| is base point free on each fiber over C, and therefore it defines
a morphism

PX1×C(W̃) → PC(V ′)
to an appropriate projective bundle over C (in fact, this bundle can be identified
with the bundle PC(V) constructed in the proof of Theorem 1.1). We denote the
image by X and claim that it is smooth over C with fibers X and Y over {0} ∈ C
and C \ {0}, respectively, and that

PX1×C(W̃) ∼= BlX2×C(X ).

Indeed, the fiber Xt of X over a point t ∈ C is the image of PX1(W̃t) under the
morphism given by the relative hyperplane class. When t = 0, by (4.2) this agrees
with the definition (1.3) of the horospherical variety, so that

X0
∼= X.

On the other hand, for t ̸= 0 we use (4.3) and Proposition 2.3 and deduce that

Xt
∼= Y.

Finally, note that the exceptional locus of the morphism ρ : PX1×C(W̃) → X is the
projective subbundle

PX1×C(CX1 ⊠ L) ∼= PX1(CX1)× C ∼= X̃ × C ∼= PX2(UX2)× C,

and it is contracted by ρ onto the subvariety X2 × C ⊂ X . □

Remark 4.1. One can obtain the vector bundle W̃ on X1 × C from the (trivial
over C) vector bundle WX1 ⊠ OC and the filtration (2.3) of its central fiber by
using an elementary transformation similar to the one in Lemma 3.2. Using this
one can merge the constructions in Theorems 1.1 and 1.2.
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§ 5. Derived categories

There are several ways in which the constructions in Theorems 1.1 and 1.2 can
be applied. For instance, one can relate the derived categories of X and Y . Recall
that both have a full exceptional collection: in the case of X this was proved in [1],
Theorem 8.20, and in the case of Y in [3], Theorem 7.1; moreover, Remark 8.22
in [1] points out that these collections have the same structure.

It turns out that these two collections can be glued. In fact, one can define
a relative exceptional collection on X over C that coincides with the collection from
Theorem 7.1 in [3] over C \ {0} and with the collection from Theorem 8.20 in [1]
on the central fiber.

Explicitly, recall the notation of diagram (1.7) and denote additionally by
• i1 : E1 ↪→ BlX1(X ) the embedding of exceptional divisor of πX , and by
• i2 : E2 ↪→ BlX2(Y) the embedding of exceptional divisor of πY .

Recall from Lemma 3.1 that E1 → X1 and E2 → X2 are P2-bundles and the
intersection

E := E1 ∩ E2
∼= X̃

is transverse. Set UY := U ⊠ OC and SY := S ⊠ OC . Then one can check that
on BlX1(X ) ∼= BlX2(Y) there are distinguished triangles

π∗XSX → π∗YSY → i1∗OE1(−E),
π∗YUY → π∗XUX → i2∗OE2(−H2 − 2E),

(5.1)

which define objects SX and UX in Db(X ). Note that both E1 and E2 are supported
over {0} ∈ C, hence over C \ {0} these triangles simplify to isomorphisms between
the restrictions of SX and SY , and UX and UY , respectively. On the other hand the
restrictions to the central fiber X0

∼= X can be identified as

SX |X ∼= U and UX |X ∼= Ŝ,

where the right-hand sides were defined in [1], Propositions 8.4 and 8.7 and
Lemma 8.12.

One can also prove that there is a C-linear semiorthogonal decomposition

Db(X ) = ⟨A,A(H),A(2H),A(3H)⟩,

where H is the relative hyperplane class for X over C and

A = ⟨SX ⊗Db(C),UX ⊗Db(C),OX ⊗Db(C)⟩.

Moreover, after the base changes to {0} and C \ {0} (see [4]) these decompositions
coincide with the corresponding decompositions of Db(X) and Db(Y × (C \ {0})).
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