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Abstract
Using the technique of categorical absorption of singularities we prove that the
nontrivial components of the derived categories of del Pezzo threefolds of degree
d ∈ {2,3,4,5} and crepant categorical resolutions of the nontrivial components of
the derived categories of nodal del Pezzo threefolds of degree d = 1 can be smoothly
deformed to the nontrivial components of the derived categories of prime Fano three-
folds of genus g = 2d + 2 ∈ {4,6,8,10,12}. This corrects and proves the Fano
threefolds conjecture of the first author from (Kuznetsov in Tr. Mat. Inst. Steklova
264:116–128, 2009), and opens a way to interesting geometric applications, including
a relation between the intermediate Jacobians and Hilbert schemes of curves of the
above threefolds. We also describe a compactification of the moduli stack of prime
Fano threefolds endowed with an appropriate exceptional bundle and its boundary
component that corresponds to degenerations associated with del Pezzo threefolds.
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1 Introduction

1.1 Fano threefolds and their derived categories

The main characters of this paper are smooth or nodal Fano threefolds with Picard
number 1 and index 1 or 2, i.e.,

• 5 families of del Pezzo threefolds, i.e., threefolds Y with the Picard group Pic(Y )

generated by the half of the anticanonical class H := − 1
2KY , classified by the

degree

d(Y ) := H 3 = 1
8 (−KY )3 ∈ {1,2,3,4,5}

(see §2 for a more detailed description), and
• 10 families of prime Fano threefolds, i.e., threefolds X with the Picard group

Pic(X) generated by the anticanonical class −KX , classified by the genus

g(X) := 1
2 (−KX)3 + 1 ∈ {2,3,4,5,6,7,8,9,10,12}

(see §4 for a more detailed description for g(X) ∈ {4,6,8,10,12}), so that
(−KX)3 = 2g(X) − 2.

Since any terminal Gorenstein Fano threefold is smoothable by [47], we can con-
sider singular varieties of this type as degenerations of smooth varieties. The main
advance of this paper is the discovery of a relation between derived categories asso-
ciated with some of these degenerations.

A systematic study of derived categories of smooth Fano threefolds was initiated
in [29], where it was shown that

• If Xg is a prime Fano threefold with g(Xg) = g ∈ {4,6,7,8,9,10,12} (for genus
g = 4 the corresponding threefold should be general, see Proposition 4.2), there is
a semiorthogonal decomposition

Db(Xg) = 〈AXg ,OXg ,U∨
Xg

〉, (1)

where UXg is the Mukai bundle, see Definition 1.2 below (if g = 4 and X4 is
general there are two different Mukai bundles, hence two different decompositions
of the form (1)).

• If Xg is a prime Fano threefold with g ∈ {2,3,5} (or a special threefold with g = 4)
there is only a more coarse semiorthogonal decomposition

Db(Xg) = 〈AXg ,OXg 〉.
• If Yd is a del Pezzo threefold with d(Yd) = d , 1 ≤ d ≤ 5, there is a semiorthogonal

decomposition

Db(Yd) = 〈BYd
,OYd

,OYd
(H)〉. (2)
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The components AXg and BYd
of these decompositions encode the most important

geometric properties of the corresponding varieties Xg and Yd . For instance, one can
detect rationality of the varieties Xg or Yd from the properties of their components
AXg and BYd

, see [31].
In some cases, the components AXg have an explicit description:

AX7 � Db(C7(X)), AX9 � Db(C3(X)),

AX10 � Db(C2(X)), AX12 � Db(Qu3),

where Cg(X) is a (smooth proper) curve of genus g depending on X and Qu3 is the
quiver with 2 vertices and 3 arrows (which can be thought of as a noncommutative
curve), see [27, §§6.2–6.4] for the first three equivalences and [29, Theorem 4.1]
(summarizing the results from [24, Theorem 3] and [25, Theorem 2]) for the fourth.
Similarly, for the categories BYd

we have

BY4 � Db(C2(Y )), BY5 � Db(Qu3),

see [7, Theorem 2.9] or [27, §6.5], or [28, Corollary 5.7] for the first, and [48] or [27,
§6.1] for the second. In particular, we have equivalences

AX10 � BY4 and AX12 � BY5 (3)

for pairs (X10, Y4) such that C2(X) ∼= C2(Y ) and all pairs (X12, Y5). In the other
cases no explicit description of the categories AXg or BYd

is available, but still one
can prove yet another equivalence

AX8 � BY3 (4)

for many pairs (X8, Y3), see [26, Theorem 3.17] or [29, Theorem 4.7].

1.2 Fano threefolds conjecture

Motivated by the equivalences (3) and (4) and by some numerical coincidences, the
first author suggested in [29, Conjecture 3.7] so-called “Fano threefolds conjecture”,
saying that for any 1 ≤ d ≤ 5 there is an equivalence

AX2d+2 � BYd

for “many” pairs (X2d+2, Yd). To explain what “many” means here, we need to define
appropriate moduli spaces. We introduce the necessary definitions in a slightly more
general form, allowing for singularities and dealing with the stack structure of the
moduli spaces; this will be useful later.

Definition 1.1 The moduli stacks MFXg and MFYd
of nodal prime Fano threefolds

of genus g or nodal del Pezzo threefolds of degree d are the fibered categories over
(Sch/k) with fiber over a scheme S the groupoid of flat projective morphisms of
schemes f : X → S such that for every geometric point s ∈ S the scheme Xs is
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a prime Fano threefold of genus g or a del Pezzo threefold of degree d , respec-
tively, with only (isolated) ordinary double points as singularities. A morphism from
f : X → S to f ′ : X ′ → S′ is a fiber product diagram

X
φX

f

X ′

f ′

S
φ

S′.

The moduli stacks MFXg ⊂ MFXg and MFYd
⊂ MFYd

of smooth prime Fano three-
folds or smooth del Pezzo threefolds are defined as the substacks of morphisms
f : X → S such that f is smooth.

In the case of prime Fano threefolds of even genus we will need an upgrade of the
stack MFXg ; to define it we need the following notion:

Definition 1.2 Let X be a nodal Fano threefold of even genus g over a field k. A
Mukai bundle on X is a (−KX)-stable vector bundle U such that

rk(U) = 2, c1(U) = KX, H•(X,U) = 0, and Ext•(U ,U) = k. (5)

Note that if U is a Mukai bundle on X then the pair (OX,U∨) is exceptional.

Given a morphism X → S we define the étale sheaf VBX /S of vector bundles
as the étale sheafification of the presheaf on S that takes an étale morphism S′ → S

to the set of isomorphism classes of vector bundles on X ×S S′; this is analogous
to the widely used étale sheaf PicX /S of line bundles ([22, §9.2]). A global section
E of VBX /S over S is, by definition, the data of an étale covering {Si} → S and a
collection of vector bundles Ei on X ×S Si whose pullbacks to X ×S (Si ×S Sj )

are isomorphic. For a global section E = (Si,Ei ) ∈ VBX /S(S) and a geometric point
s ∈ S we denote by EXs

the vector bundle on Xs defined as the restriction of the local
section Ei of E from any open X ×S Si over s.

Definition 1.3 Let g ∈ {4,6,8,10,12}. The moduli stack MFMXg of Fano–Mukai
pairs is the fibered category over (Sch/k) with fiber over a scheme S the groupoid of
pairs (f : X → S,U), where

• f : X → S is a flat projective morphism of schemes and
• U ∈ VBX /S(S) is a global section of the étale sheaf of vector bundles,

such that f : X → S is an S-point of MFXg and UXs
is a Mukai bundle on Xs for

every geometric point s ∈ S. Morphisms are defined as fiber product diagrams as in
Definition 1.1 such that there is an equality φ∗

X (U ′) = U of sections of VBX /S(S).
The stack MFMXg ⊂ MFMXg of smooth Fano–Mukai pairs is defined as the substack
of pairs (f : X → S,U) such that f is smooth.
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The Fano threefolds conjecture [29, Conjecture 3.7] claimed that for 1 ≤ d ≤ 5
there is a substack

Zd ⊂ MFMX2d+2 ×MFYd
(6)

such that for each geometric point (X2d+2,UX,Yd) of Zd there is an equivalence of
categories AX2d+2 � BYd

defined in (1) and (2), respectively, and that Zd is dominant
over both factors.

The equivalences (3) and (4) proved the cases 3 ≤ d ≤ 5 of the conjecture. So only
the cases d = 2 and d = 1 were left open. However, for d = 1 the dimensions of the
intermediate Jacobians of X4 and Y1 differ by 1, so the components AX4 and BY1

have no chance to be equivalent on the nose. Furthermore, for d = 2 the conjecture
also turned out to be wrong: it was recently disproved in [2, 61]; in fact, it was shown
that the categories AX6 and BY2 are never equivalent.

1.3 Modified Fano threefolds conjecture

The goal of this paper is to explain a modification of the Fano threefolds conjecture
and prove it. The key idea is to include into consideration singular Fano threefolds
(this is why we extended Definitions 1.1 and 1.3 to include singular threefolds), and
to rely on the technique of categorical absorption of singularities developed in [38].

Our main theorem, stated below, uses the notion of base change for B-linear
semiorthogonal decompositions for which we refer to [30]. It also uses a natural
crepant categorical resolution B̃Y (see Lemma 3.1 for its construction) of the cate-
gory BY for a 1-nodal del Pezzo threefold of degree 1 (that is defined by (2), like in
the smooth case).

Theorem 1.4 (= Theorem 3.6) Let Y be a smooth del Pezzo threefold of degree
2 ≤ d ≤ 5 or a 1-nodal del Pezzo threefold of degree d = 1. There is a B-point
(f : X → B,UX ) of MFMX2d+2 for a smooth pointed curve (B,o) and a B-linear
semiorthogonal decomposition

Db(X ) = 〈Db(o), ĀX , f ∗Db(B),f ∗Db(B) ⊗ U∨
X 〉

such that

(a) for each point b �= o the fiber Xb is a smooth prime Fano threefold of genus
2d + 2 and (ĀX )b � AXb

;
(b) the fiber Xo is 1-nodal and (ĀX )o � BY if 2 ≤ d ≤ 5 or (ĀX )o � B̃Y if d = 1.

In particular, the category ĀX is smooth and proper over B .

In other words, the category ĀX provides a (smooth and proper) interpolation
between the components AXb

of smooth prime Fano threefolds of genus g = 2d + 2
defined by (1) and the components BY (or their crepant categorical resolutions B̃Y )
of del Pezzo threefolds of degree d defined by (2).
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Remark 1.5 We do not prove this here, but in the case d ≥ 3 one can choose the
B-point (f : X → B,UX ) of the stack MFMX2d+2 in such a way that the family of
categories ĀX is isotrivial, i.e., (ĀX )b � (ĀX )o for all b; then AXb

� BY , which
implies that the correspondence Zd ⊂ MFMX2d+2 ×MFYd

defined in (6) is dominant
over MFYd

.

In fact, Theorem 1.4 can be deduced by base change from a more general result
describing the structure of the derived category of more general families of Fano
threefolds, see (46) and the preceding discussion. Our techniques also allow us to
prove similar extension results for the moduli stacks of curves and moduli stacks of
prime Fano threefolds of genus 9, 7, and 5; these results will be presented elsewhere.

A similar result in the case d = 2 was proved by a completely different technique
in [2, Theorem 1.6]. However, the approach of [2] only works for special Y (for
double solids whose ramification divisor contains a line) and provides families X /B

of special threefolds of genus 6 (double covers of a quintic del Pezzo threefold), but
the category constructed in [2] in this case is equivalent to our category ĀX .

1.4 Geometric applications

A smooth and proper family of complex varieties gives rise to a variation of pure
Hodge structures and, under appropriate assumptions, to a smooth and proper family
of principally polarized abelian varieties. In particular, the family of intermediate Ja-
cobians of a smooth and proper family of Fano threefolds is also smooth and proper.
We expect the same to be true for the smooth and proper family of triangulated cate-
gories ĀX constructed in Theorem 1.4.

Recall that the intermediate Jacobian of an admissible triangulated subcategory
C ⊂ Db(Z) in the derived category of a smooth and proper complex variety Z was
defined in [51, Definition 5.24] as

J (C) = J (Ktop
1 (C)),

where Ktop
1 (C) is the degree 1 component of the topological K-theory of categories,

endowed with appropriately defined pure Hodge structure of weight −1 (see [51,
Proposition 5.4]). On the other hand, a relative version of topological K-theory of
categories was constructed by Moulinos in [44, §7.2].

Conjecture 1.6 (cf. [51, Remark 5.8]) Let S be a scheme over C and let C/S be a
smooth and proper S-linear triangulated category. If for each point s ∈ S the category
Cs is equivalent to an admissible subcategory in the derived category of a smooth
and proper variety, the relative topological K-theory Ktop

1 (C/S) admits a variation
of pure Hodge structures of weight −1 which for each point s ∈ S agrees with the
Hodge structure of Ktop

1 (Cs). In particular,

J (C/S) := J (Ktop
1 (C/S))

is a smooth and proper family of complex tori, such that for each point s ∈ S we have
J (C/S)s ∼= J (Cs).
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Table 1 Dimensions of the intermediate Jacobians of Fano threefolds

Prime Fano threefolds X12 X10 X9 X8 X7 X6 X5 X4 - X3 X2

Del Pezzo threefolds Y5 Y4 - Y3 - Y2 - - Y1 - -

dim(Jac(−)) 0 2 3 5 7 10 14 20 21 30 52

Applying this to the smooth and proper family of categories ĀX and using [51,
Theorem 1.6] to identify the fibers, we would obtain the following

Corollary 1.7 For Y and X constructed in Theorem 1.4 there is a family J → B of
principally polarized abelian varieties such that

Jb
∼=

{
Jac(Xb), if b �= o,

Jac(Y ), if b = o,

where in the case d = 1 the right-hand side is understood as Jac(Bly0(Y )), where
y0 ∈ Y is the node.

Although we would like to see Corollary 1.7 as a consequence of Theorem 1.4
and Conjecture 1.6, there is a direct Hodge-theoretic proof, using the geometric con-
struction of X from Y ; we deduce it in the Appendix from a slightly more general
Proposition A.16.

Corollary 1.7 provides a conceptual explanation for the coincidences between the
dimensions of the intermediate Jacobians that we list in Table 1 (Mukai calls it “the
periodic table of Fano threefolds”, see [46, Table 1.4]). Note how the discrepancy
between dim(Jac(X4)) and dim(Jac(Y1)) matches the fact that in Theorem 1.4 and
Corollary 1.7 we consider 1-nodal threefolds of type Y1: if Y is a 1-nodal and Y ′ is
a smooth del Pezzo threefold of degree d = 1, we have an equality of dimensions
dim(Jac(Y )) = dim(Jac(Y ′)) − 1 = 20.

Similarly, a proper family of varieties gives rise to various relative moduli spaces
of stable coherent sheaves; the same is true for families of categories if they are
endowed with appropriate stability conditions, see [3, Definition 1.1 and Theo-
rem 21.24]. We expect that stability conditions for the families of categories ĀX
exist and give rise to interesting relative moduli spaces.

Conjecture 1.8 For a del Pezzo threefold Y , a family of prime Fano threefolds X /B ,
and the B-linear category ĀX /B constructed in Theorem 1.4, the étale sheafification
Knum

0 (ĀX /B) of the relative numerical Grothendieck group is locally constant, and
there is a numerical stability condition σ on ĀX over B such that the corresponding
stability condition σb on the fiber (ĀX )b of ĀX is

• a numerical stability condition on AXb
, if b �= o, and

• a numerical stability condition on BY (for 2 ≤ d ≤ 5) or B̃Y (for d = 1), if b = o.

Moreover, if v ∈ Knum
0 (ĀX /B)(B) is a section, there is a moduli space Mσ(ĀX ,v)

over B such that

Mσ(ĀX ,v)b ∼=
{

Mσb
(AXb

,v), if b �= o,

Mσo
(BY ,v) or Mσo

(B̃Y ,v), if b = o and 2 ≤ d ≤ 5 or d = 1.
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In other words, the fibers of Mσ(ĀX ,v) are appropriate moduli spaces of stable
objects in AXb

, BY , or B̃Y .

If d = 2, an interesting example of a moduli space associated with a stability
condition in the category AX ⊂ Db(X) for a general smooth Fano threefold X of
genus 2d + 2 = 6 is the minimal model Fmin

2 (X) of the Hilbert scheme of conics
F2(X) on X, see [19, Theorem 7.12]. It is natural to expect that the analogous moduli
space associated with the category BY ⊂ Db(Y ) is the Hilbert scheme of lines F1(Y ).
In this example we expect the following to be true.

Conjecture 1.9 For a quartic double solid Y → P
3 that contains no lines in the

ramification divisor and a family of prime Fano threefolds X /B of genus g = 6
constructed in Theorem 1.4 there is a stability condition σ on ĀX and a section
v ∈ Knum

0 (ĀX /B)(B) such that the corresponding moduli space Mσ(ĀX ,v) is a
smooth and proper family of surfaces F(X /B) such that

F(X /B)b ∼=
{

Fmin
2 (Xb), if b �= o,

F1(Y ), if b = o.

By [11, Theorem 1.1] and [60, Theorem 4.1] the relative Albanese variety
Alb(F(X /B)/B) of the above family of surfaces should be isomorphic to the rel-
ative family of intermediate Jacobians, so Conjecture 1.9 should give yet another
proof of Corollary 1.7 for d = 2.

Of course, we expect a similar result to be true for d ≥ 3, but it is less interesting,
because in this case F1(Yd) ∼= F2(X2d+2) for any Yd and appropriate X2d+2, see [39,
Propositions B.4.1, B.5.1, and B.6.1], and, for instance, if we consider a family X /B

giving rise to an isotrivial family of categories ĀX /B (see Remark 1.5), the corre-
sponding family of surfaces F(X /B) will also be isotrivial.

On the other hand, the case d = 1 may be very interesting, and may provide a
useful insight into the geometry of the Hilbert scheme of conics on X4 and the Hilbert
scheme of lines on Y1.

Remark 1.10 We were informed by the authors that Conjectures 1.8 and 1.9 are
proved when B is the spectrum of a complete DVR (and d ≥ 2 for the first con-
jecture) in the forthcoming paper [40].

1.5 A sketch of the proof

Our proof of Theorem 1.4 and its generalization (46) is based on a geometric con-
struction, which we call a bridge. This construction connects the realms of del Pezzo
threefolds and prime Fano threefolds of even genus.

If d ≥ 2 to construct a bridge we consider a smooth del Pezzo threefold Y of
degree d , a smooth rational curve C ⊂ Y of degree d − 1, and the blowup BlC(Y ).
In Proposition 2.6 we show that the anticanonical class of BlC(Y ) is nef and big and
defines a small birational contraction

π : BlC(Y ) → BlC(Y )can =: X
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to a 1-nodal nonfactorial prime Fano threefold X of genus 2d + 2, the anticanonical
model of BlC(Y ). The morphism π contracts a single smooth rational curve (the
strict transform of the unique bisecant line for C in Y ) in BlC(Y ) to the node x0 ∈ X.
Furthermore, in Lemma 2.12 and Proposition 3.3 we construct a Mukai bundle UX

on X; it is worth pointing here that UX depends on both Y and C.
If d = 1 the construction is similar. In this case we consider a 1-nodal del Pezzo

threefold Y of degree d = 1, the blowup Bly0(Y ) of Y at the node y0 ∈ Y , its anti-
canonical model X := Bly0(Y )can, and construct a Mukai bundle UX on X that de-
pends on a choice of ruling F of the exceptional divisor of Bly0(Y ) → Y (the ruling
F plays here the role similar to that of a curve C when d ≥ 2).

From now on we concentrate on the simpler case where d ≥ 2. Let (Y,C) be
a smooth del Pezzo threefold of degree d ≥ 2 with a smooth rational curve of de-
gree d − 1, let X = BlC(Y )can be the anticanonical model of the blowup BlC(Y ), and
let UX be the corresponding Mukai bundle, obtained by the bridge construction. Let,
furthermore, f : X → B be a smoothing of X (it exists by [47, Theorem 11]) over
a smooth pointed curve (B,o). Using exceptionality of the bundle UX we check that
(possibly after base change to an étale neighborhood of the point o ∈ B) it extends
to a global section UX ∈ VBX /B(B) such that (f : X → B,UX ) is a B-point of the
stack MFMX2d+2 , the central fiber Xo is isomorphic to X, and the morphism f is
smooth over the punctured curve B \ {o}.

To complete the proof of Theorem 1.4 it remains to explain how the subcategory
ĀX ⊂ Db(X ) is constructed and how its properties are verified. We do this using
the technique of categorical absorption of singularities developed in [38]. More pre-
cisely, applying [38, Theorem 1.5 and Theorem 6.1] we obtain semiorthogonal de-
compositions

Db(X ) = 〈ι∗PX,D〉, Db(X) = 〈PX,Do〉, and Db(Xb) = Db,

where ι : X → X is the embedding of the central fiber, PX ∈ Db(X) is a so-called
P

∞,2-object, so that ι∗PX ∈ Db(X ) is an exceptional object, D is a B-linear admis-
sible subcategory in Db(X ) which is smooth and proper over B , while Do and Db

are its base changes along the embeddings {o} ↪→ B and {b} ↪→ B . The category D
can be thought of as a family of smooth and proper triangulated categories parame-
terized by the curve B . For more details about this construction see Theorem 3.6 and
its proof.

Finally, we refine the above decomposition slightly. We observe that the structure
sheaf OX and the dual Mukai bundle U∨

X on X are contained in the subcategory
D ⊂ Db(X ) and form a relative over B exceptional pair, hence they induce a B-linear
semiorthogonal decomposition

D = 〈ĀX , f ∗(Db(B)) ⊗OX , f ∗(Db(B)) ⊗ U∨
X 〉,

thus defining a B-linear triangulated subcategory ĀX ⊂ D ⊂ Db(X ) which is
smooth and proper over B . It follows from [30, Theorem 5.6] that the fibers
(ĀX )b of this category corresponding to points b �= o are equivalent to the subcate-
gories AXb

⊂ Db(Xb) from (1). On the other hand, the category (ĀX )o correspond-
ing to the origin o ∈ B can be identified (by an appropriate sequence of mutations,
explained in Proposition 3.3) with the subcategory BY ⊂ Db(Y ) defined by (2).
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In the case d = 1 the argument proving Theorem 1.4 is essentially the same.

1.6 Boundary components of the compactified moduli stack

Theorem 1.4 shows that the family of categories AX defined by (1) for all smooth
prime Fano threefolds (or, more precisely, for all smooth Fano–Mukai pairs) of
genus g ∈ {4,6,8,10,12} extends naturally to some degenerations of these varieties.
In §5 we describe precisely the locus in the stack MFMXg corresponding to such
degenerations.

For this we consider the stack MFCYd
parameterizing pairs (Y,C) or (Y,F ) used

in the bridge construction as described in §1.3 (see Definition 5.1 for the actual def-
inition of this stack) and applying a relative version of the bridge construction we
define in Lemma 5.5 a morphism of stacks

μ : MFCYd
→ MFM

(1)

X2d+2
⊂ MFMX2d+2 ,

where MFM
(1)

X2d+2
⊂ MFMX2d+2 is the 1-nodal locus of the stack of Fano–Mukai pairs.

In fact, as we check in Theorem 4.5 the substack MFM
(1)

X2d+2
is a Cartier divisor in

the open substack MFM
≤1
X2d+2

⊂ MFMX2d+2 of at most 1-nodal Fano–Mukai pairs
and we prove in Theorem 5.7 that μ is an isomorphism of MFCYd

onto a connected

component of MFM
(1)

X2d+2
, which we denote

MFM
(1)

X2d+2,Yd
⊂ MFM

(1)

X2d+2
⊂ MFMX2d+2

and call the del Pezzo component of MFM
(1)

X2d+2
. Thus, Theorem 1.4 (or rather its gen-

eralization (46)) can be interpreted as a construction of a smooth and proper extension
of the family of categories AX across the del Pezzo component of the boundary of
the stack MFMX2d+2 . We discuss a convenient way to think about such an extension
in §1.7 below.

The above observation motivates the following problem, which is also interesting
by itself.

Problem 1.11 Classify all connected components of the boundary divisor

MFM
(1)

X2d+2
⊂ MFMX2d+2 and study possible extensions of the family of categories

AX across these components.

The categorical absorption point of view suggests that a nice extension is possible
for those boundary components that correspond to nonfactorial 1-nodal degenera-
tions of X; such degenerations are classified in [36] and independently in [9], thus
answering the first half of this question.

1.7 The categorical period map

We finish the Introduction with a speculative section, discussing a possible reformu-
lation of our results in terms of a categorical period map.
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To define the categorical period map we need to introduce a stack MTrCat of trian-
gulated categories. One option is to define it as the étale sheafification of the fibered
category over (Sch/k) whose fiber over a scheme S is the groupoid of S-linear en-
hanced triangulated categories and their S-linear enhanced equivalences. To make
this into a real definition, we need, however, to treat MTrCat as higher stack, which
goes very far out of the scope of this paper. Another option is to use the approach de-
veloped in [1]. Anyway, assuming that MTrCat is defined appropriately, given any flat
projective morphism f : X → S and an admissible S-linear triangulated subcategory
D ⊂ Db(X ) one should be able to produce an S-point of MTrCat, i.e., a morphism

℘D : S → MTrCat

which (by analogy with Hodge theory) we call the categorical period map.
Now we explain how our results would be interpreted in the (hypothetical) terms

of the moduli stack MTrCat and the categorical period map ℘. Since the components
AX ⊂ Db(X ) and BY ⊂ Db(Y) of the family versions of decompositions (1) and (2)
associated to families (f : X → S,UX ) and g : Y → S are admissible S-linear sub-
categories, they should define the categorical period maps of stacks

℘A : MFMXg → MTrCat, and ℘B : MFYd
→ MTrCat .

Then the original Fano threefolds conjecture (which holds for d ≥ 3 but fails for
d ≤ 2) can be rephrased as the dominance of the fiber product

Zd = MFMX2d+2 ×
MTrCat

MFYd
,

(with respect to the categorical period maps ℘A and ℘B) over both factors.
On the other hand, the semiorthogonal decomposition of Theorem 1.4 (or rather

its generalization (46)) can be interpreted as a commutative diagram

MFCYd

μ

∼ MFM
(1)

X2d+2,Yd

℘Ā

MFYd

℘B
MTrCat

for d ≥ 2, or

MFCY1

μ

∼ MFM
(1)

X4,Y1

℘Ā

MF
(1)

Y1

℘B̃
MTrCat

for d = 1.

In both diagrams the left vertical arrow is the forgetful map, ℘Ā is the categorical
period map associated with the component ĀX ⊂ Db(X ) of the semiorthogonal de-
composition from (46) for a family (f : X → S,UX ) of Fano–Mukai pairs, while ℘B
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or ℘B̃ is the categorical period map associated with (the categorical resolution B̃Y of)
the component BY ⊂ Db(Y). In particular, we see that

MFCYd
⊂ Z̄(1)

d := MFM
(1)

X2d+2,Yd ×
MTrCat

MFYd
, or

MFCY1 ⊂ Z̄(1)
1 := MFM

(1)

X4,Y1 ×
MTrCat

MF
(1)

Y1
,

and therefore Z̄d is dominant over MFYd
for d ≥ 2, and over the 1-nodal locus

MF
(1)

Y1
⊂ MFY1 for d = 1.

Note that ℘Ā differs on the boundary of MFMX2d+2 from the naive extension of
the categorical period map ℘A; in fact, ℘Ā takes values in smooth and proper trian-
gulated categories, while the naive extension does not.

Thus, our construction provides a partial extension ℘Ā of the categorical period

map ℘A across the del Pezzo component MFM
(1)

X2d+2,Yd
⊂ MFMX2d+2 , but it has dif-

ferent flavor in the cases d ≥ 3 and d ≤ 2.
When d ≥ 3 the images of ℘A and ℘Ā are the same (and equal to the image

of ℘B), but the fibers of ℘Ā are partial compactifications of the fibers of ℘A. For
instance, in the case d = 3 the fiber of ℘A over the point ℘B([Y ]) = [BY ] for a
smooth cubic threefold Y is isomorphic to the “locally free” locus in a certain moduli
space of stable coherent sheaves of rank 2 on Y , see [26]. The complement of this
locus is the union of two divisors, see [13], and the corresponding fiber of ℘Ā also
includes a dense open subset of one of these. We expect that a dense open subset of
the second divisor corresponds to another boundary component of MFMX8 ; we plan
to discuss this elsewhere.

On the other hand, when d ≤ 2 the fibers of ℘A and ℘Ā are the same, but the
image of ℘Ā is larger than the image of ℘A. Moreover, the fibers of ℘Ā over the
image of ℘B or ℘B̃ , respectively, are deformations of the fibers of ℘A. For instance,
in the case d = 2 the fiber of ℘Ā over the point ℘B([Y ]) for a quartic double solid Y

is isomorphic to the Hilbert scheme of lines on Y , and this is a deformation of double
Eisenbud–Popescu–Walter surfaces that are (conjecturally) isomorphic to the fibers
of ℘A.

Thus, ℘Ā compactifies ℘A “vertically” for d ≥ 3, and “horizontally” for d ≤ 2.

1.8 Structure of the paper

In §2 we explain the bridge construction of a 1-nodal prime Fano threefold X of
genus 2d + 2 from a del Pezzo threefold Y of degree d endowed with a curve C or
a ruling F . In §3 we construct the P

∞,2-object PX and the Mukai bundle UX on X

and prove Theorem 1.4. In §4 we discuss general properties of the moduli spaces of
Mukai bundles and moduli stacks of Fano threefolds and Fano–Mukai pairs. Finally,
in §5 we identify the del Pezzo component of the boundary divisor of the moduli
stack MFMX2d+2 .

In the Appendix we discuss some material about nodal varieties that is used in the
body of the paper and give a Hodge-theoretic proof of Corollary 1.7.
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1.9 Conventions

We work over an algebraically closed field k of characteristic 0. When we say that a
variety X is nodal (resp. k-nodal), we mean that Sing(X) is finite or empty (resp. has
length k) and every point in Sing(X) is an ordinary double point on X, see Defini-
tion A.1.

2 The bridge

In this section we present the main geometric construction of the paper — the bridge,
linking del Pezzo threefolds Y to prime Fano threefolds X of even genus. We upgrade
this construction to an isomorphism of moduli stacks in §5.

Recall that for any del Pezzo threefold Y with Pic(Y ) = Z ·H , where H := − 1
2KY ,

we denote by d(Y ) := H 3 the degree of Y . Then d = d(Y ) ∈ {1,2,3,4,5}, and Y can
be described as follows (see [35, Theorem 1.2]):

• if d = 5 then Y = Gr(2,5) ∩ P
6 ⊂ P

9;
• if d = 4 then Y is a complete intersection of two quadrics in P

5;
• if d = 3 then Y is a cubic hypersurface in P

4;
• if d = 2 then Y is a quartic double solid, i.e., a double covering of P3 branched at

a quartic;
• if d = 1 then Y is a sextic hypersurface in the weighted projective space

P(1,1,1,2,3).

By the Riemann–Roch Theorem, we have dim |H | = d +1, and the linear system |H |
defines a map

ϕ = ϕd : Y ��� Pd+1. (7)

If d ≥ 3 it is a closed embedding, if d = 2 it is a regular double covering, and if d = 1
it is a rational elliptic fibration with a single indeterminacy point, called the base
point of Y that coincides with the intersection of Y with the weighted projective line
P(2,3) ⊂ P(1,1,1,2,3).

Remark 2.1 If d = 1 the linear system |2H | is base point free and defines a regular
double covering

ϕ̂1 : Y → P(1,1,1,2).

This follows from the analogous property of del Pezzo surfaces of degree 1 by the
argument of [35, Proposition 2.2(ii)]. Because of this property, Y is called a double
Veronese cone.

We will say that a singular point y0 ∈ Y is a cusp (also called generalized cusp
in [36]) if it is a hypersurface singularity such that Bly0(Y ) is smooth along the ex-
ceptional divisor E ⊂ Bly0(Y ) which is an irreducible singular quadric surface and
OE(−E) is the hyperplane class of E.
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Setup 2.2 In the rest of the paper we work in one of the following two situations:

(a) (Y,C) is a pair, where Y is a smooth del Pezzo threefold of degree d ∈ {2,3,4,5},
C ⊂ Y is a smooth rational curve on Y of degree d − 1, and

Ỹ := BlC(Y )
σ−→ Y

is the blowup with exceptional divisor E ⊂ Ỹ , or
(b) (Y,F ) is a pair, where Y is a del Pezzo threefold of degree d = 1 with a single

node or cusp y0 ∈ Y ,

Ỹ := Bly0(Y )
σ−→ Y

is the blowup with exceptional divisor E ⊂ Ỹ , so that E is a quadric surface and
F ∈ Cl(E) is a ruling.

Note that in any case Ỹ is a smooth projective threefold, σ∗OỸ
∼= σ∗OỸ

(E) ∼= OY ,
and the derived pushforward of O

Ỹ
(−E) is the ideal sheaf of C or y0.

Remark 2.3 In the case d = 2 the curve C ⊂ Y is a line; if it is contained in the
ramification divisor of ϕ2 : Y → P

3, we say it is a ramification line. In the case d = 1
the point y0 ∈ Y is distinct from the base point of Y ([35, Proposition 2.2(ii)]) and
contained in the ramification divisor of ϕ̂1 : Y → P(1,1,1,2).

Remark 2.4 Any del Pezzo variety Y as above is locally factorial: for 2 ≤ d ≤ 5 this
follows from smoothness of Y , and for d = 1 this is proved in [50, Corollary 2.5]
or [36, Corollary B.4] (in the case of a cusp, see [21, (2.8) and Proposition 3.6]
or [36, Remark 2.2]). Thus, the class group of Weil divisors Cl(Y ) is generated by H

and the degree D · H 2 of any surface D ⊂ Y is divisible by d .

Lemma 2.5 Assume Setup 2.2. The linear system |H − E| on Ỹ is a pencil, its base
locus

L̃ := Bs(|H − E|) ⊂ Ỹ (8)

is a smooth rational curve such that

H · L̃ = 1, E · L̃ = 2, (9)

and

N
L̃/Ỹ

∼= O
L̃
(−1)⊕2, (10)

Moreover,

• if d ≥ 3 or d = 2 and C is not a ramification line the map σ : L̃ → σ(L̃) is an
isomorphism onto a line σ(L̃) ⊂ Y distinct from C, the scheme E ∩ L̃ has length 2,
it is not contained in a fiber of the P

1-bundle E → C, and the scheme C ∩ σ(L̃)

has length 2 as well;
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• if d = 2 and C is a ramification line then L̃ is the exceptional section of the P
1-

bundle E → C and, moreover, the map σ : L̃ → σ(L̃) is an isomorphism onto the
line σ(L̃) = C;

• if d = 1 the scheme E ∩ L̃ has length 2, it is not contained in a ruling of E, the
map σ : L̃ → σ(L̃) is the normalization morphism, and σ(L̃) ⊂ Y is the fiber of
the elliptic fibration ϕ1 : Y ��� P2 with singularity at the singular point y0 of Y .

Proof In case 2.2(a) we consider the linear subsystem |H − C| ⊂ |H | and prove that

dim |H − C| = 1.

Indeed, if 2 ≤ d ≤ 4 the image ϕd(C) ⊂ P
d+1 of C under the morphism (7) is a

smooth rational curve of degree 1 ≤ d − 1 ≤ 3, it spans a P
d−1 ⊂ P

d+1, hence
dim |H − C| = 1. On the other hand, if d = 5 the image ϕ5(C) ⊂ P

6 is a smooth
rational quartic curve. If it only spans a P

3, then there is a unique quadric surface in
this P3 containing ϕ5(C) (otherwise, C would be contained in a curve of degree 4 and
arithmetic genus 1, which is absurd), and since Y is an intersection of quadrics, this
quadric surface must be contained in Y which is impossible by Remark 2.4. There-
fore, ϕ5(C) spans a P

4 and dim |H − C| = 1.
Moreover, in all these cases the base locus Bs(|H − C|) = Y ∩ 〈C〉 contains no

divisorial components (again by Remark 2.4), hence it is a local complete intersec-
tion curve. Since on the other hand, its degree equals d and it contains the curve
C of degree d − 1, it is equal to the union of C and an extra line L, or the curve
C with multiplicity 2 (this is only possible if d = 2 and C ⊂ Y is a ramification
line). It also follows that the dimension of the tangent space to Bs(|H − C|) at any
point does not exceed 2; indeed, if d = 2 then Bs(|H − C|) is the preimage of a
line in P

3 under the double covering ϕ2 : Y → P
3, which factors as the composition

Y ↪→ P(1,1,1,1,2) ��� P
3, hence Bs(|H − C|) is contained in the smooth locus

of the surface P(1,1,2) ⊂ P(1,1,1,1,2), and if d > 2 this follows from the fact
that Bs(|H − C|) is a local complete intersection curve with two smooth compo-
nents.

Now consider the linear system |H − E| on the blowup Ỹ ; the morphism σ in-
duces its isomorphism onto |H − C|, so it is a pencil. Note that Bs(|H − E|) does
not contain any fiber of E → C, because the dimension of the tangent space to
Bs(|H − C|) at any point of C does not exceed 2; in particular E �⊂ Bs(|H − E|),
and therefore the scheme L̃ := Bs(|H − E|) has no divisorial components. More-
over, it follows that L̃ is a local complete intersection curve, the restriction of σ to L̃

is finite, and

[L̃] = (H − E)2

in the Chow group CH2(Ỹ ). Standard intersection theory (see, e.g., [18, Lem-
ma 4.1.2]) gives

H 3 = d, H 2 · E = 0, H · E2 = 1 − d, E3 = 4 − 2d, (11)

and (9) follows. In particular, since H · L̃ = 1 and |H | is base point free, it fol-
lows that L̃ is irreducible and generically reduced, and since it is a local complete
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intersection, it is everywhere reduced. Moreover, the image ϕd(σ (L̃)) ⊂ P
d+1 must

be a line, therefore σ(L̃) ⊂ Y is also a line, and the map σ : L̃ → σ(L̃) is finite
of degree 1, hence it must be an isomorphism; in particular, L̃ is a smooth rational
curve.

Next, we consider the Koszul complex

0 → O
Ỹ
(2E − 2H) → O

Ỹ
(E − H)⊕2 → O

Ỹ
→O

L̃
→ 0. (12)

Restricting it to L̃ and using (9), we deduce (10).
Finally, if L̃ is not contained in the divisor E it follows from (9) that the inter-

section E ∩ L̃ is a scheme of length 2. This scheme is not contained in a fiber of
the P

1-bundle E → C because the projection L̃ → σ(L̃) is an isomorphism. There-
fore, C ∩ σ(L̃) is a scheme of length 2 as well. On the other hand, if L̃ ⊂ E then
we have σ(L̃) = C, hence d − 1 = H · C = H · L̃ = 1 by definition of C and (9),
respectively, hence d = 2. Moreover, since Y in this case is a quartic double solid
and C is a line, the base locus of |H − C| is the union of C and its image under
the involution of the double covering ϕ2 : Y → P

3, therefore the equality σ(L̃) = C

means that C is fixed by the involution, hence it is a ramification line. Finally, it
follows from (9) in this case that L̃ is the exceptional section of the P

1-bundle
E → C.

Now consider case 2.2(b). Since the singular point y0 ∈ Y is distinct from the
base point of the two-dimensional linear system |H | (see Remark 2.3), it follows
that

dim |H − y0| = 1 and |H − 2y0| = ∅.

Now consider the linear system |H − E| on the blowup Ỹ ; the morphism σ in-
duces its isomorphism onto |H − y0|, so it is a pencil, and its base locus L̃ does not
contain E. As before, L̃ is a local complete intersection curve, hence O

L̃
has the

Koszul resolution (12). Moreover, the equalities (11) still hold true (see, e.g., [18,
Lemma 4.1.6]), hence (9) follows. In particular, H · L̃ = 1, and therefore L̃ has a
unique horizontal component L̃0, the map L̃0 → σ(L̃0) is finite of degree 1, and the
image σ(L̃) = σ(L̃0) is a fiber of the elliptic fibration ϕ1 : Y ��� P

2. Thus, σ(L̃0) is
a curve of arithmetic genus 1.

On the other hand, E is an irreducible quadric surface and OE(−E) is its
hyperplane class, hence the divisor E has negative intersection with any curve
in E. Therefore, E · L̃0 ≥ E · L̃ = 2, hence the fiber of L̃0 → σ(L̃0) over the
point y0 ∈ σ(L̃0) has length at least 2. This implies that y0 is a singular point
of σ(L̃0), L̃0 is a smooth rational curve, the map L̃0 → σ(L̃0) is the normal-
ization morphism, the length of the fiber over y0 is 2, and E · L̃0 = E · L̃,
hence L̃ has no vertical components. Moreover, the length 2 scheme E ∩ L̃ is
not contained in a ruling of E because it is an intersection in E of two divi-
sors equivalent to (H − E)|E and O

Ỹ
(H − E) restricts to E as the hyperplane

class.
It only remains to prove (10). For this we again restrict the Koszul complex (12)

to L̃ and use (9). �
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In what follows we will often use the notation introduced in Lemma 2.5. Further-
more, we consider the following two classes in the group of 1-cycles on Ỹ modulo
numerical equivalence:

• ℓ̃ — the class of the curve L̃ defined by (8);
• ℓE — the class of a fiber of E → C if d ≥ 2, or the class of a ruling of E if d = 1.

Note that in the latter case, if y0 ∈ Y is a node, so that E ∼= P
1 ×P

1, the classes of the
two rulings are numerically equivalent because Y is locally factorial, see Remark 2.4.

Proposition 2.6 Assume Setup 2.2.

(i) The nef cone of Ỹ is generated by H and 2H −E and the Mori cone is generated
by ℓ̃ and ℓE .

(ii) The effective cone of Ỹ is generated by E and H − E.
(iii) The linear system |2H −E| on Ỹ is base point free and defines a small birational

contraction

π : Ỹ → X

onto a 1-nodal prime Fano threefold X of genus g = 2d + 2. The exceptional
locus of π is the smooth rational curve L̃ ⊂ Ỹ defined in (8), and x0 := π(L̃) is
the node of X.

Proof First, we show that the sheaf O
Ỹ
(2H − E) on Ỹ is globally generated. For

this we twist the Koszul complex (12) by O
Ỹ
(2H − E), and using (9) we obtain the

following exact sequence:

0 →O
Ỹ
(E) → O

Ỹ
(H)⊕2 → O

Ỹ
(2H − E) → O

L̃
→ 0. (13)

The sheaves O
Ỹ
(E), O

Ỹ
(H), and O

L̃
have no higher cohomology, hence the same is

true for O
Ỹ
(2H − E). It also follows that

dim H0(Ỹ ,O
Ỹ
(2H − E)) = 2(d + 2) − 1 + 1 = 2d + 4, (14)

and (13) induces a long exact sequence of global sections. Therefore, there is a com-
mutative diagram

0 O
Ỹ

O⊕2(d+2)

Ỹ
O⊕(2d+4)

Ỹ
O

Ỹ
0

0 O
Ỹ
(E) O

Ỹ
(H)⊕2 O

Ỹ
(2H − E) O

L̃
0,

where the vertical arrows are given by evaluation and the rows are exact.
If d ≥ 2 the sheaves O

Ỹ
(H) and O

L̃
are globally generated, hence the second and

fourth vertical arrows are surjective, hence so is the third arrow, i.e., O
Ỹ
(2H − E) is

globally generated.
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If d = 1 the above argument works as well over the complement of the base point
of |H |, therefore

Bs(|2H − E|) ⊂ Bs(|H |).
On the other hand, the linear system |2H | defines the regular double covering
ϕ̂1 : Y → P(1,1,1,2) (see Remark 2.1) and the point y0 lies on its ramification divi-
sor (see Remark 2.3), hence we have

Bs(|2H − E|) ⊂ E.

The right sides of the inclusions are disjoint (by Remark 2.3), hence O
Ỹ
(2H − E) is

globally generated.
(i) Now we describe the nef cone and the Mori cone of Ỹ . Since Cl(Y ) = Z ·H (see

Remark 2.4) the group Pic(Ỹ ) = Cl(Ỹ ) is generated by H and E. Since O
Ỹ
(2H −E)

is globally generated, it is nef. Moreover, the line bundle O
Ỹ
(H) is the pullback of

an ample line bundle from Y , hence it is also nef. On the other hand, using (9), we
compute

H · ℓE = 0, H · ℓ̃ = 1,

(2H − E) · ℓE = 1, (2H − E) · ℓ̃ = 0.
(15)

Since both ℓE and ℓ̃ are effective curve classes, we conclude that H and 2H − E

generate the nef cone of Ỹ , while ℓE and ℓ̃ generate the Mori cone.
(ii) Assume D = aH + bE is an effective divisor. It is enough to show that a ≥ 0

and a + b ≥ 0. The first follows immediately because σ(D) ∼ aH is also effective.
For the second, using (11) we compute

D · (2H − E) · (H − E) = (a + b)(d + 1),

and since H − E has no fixed components and 2H − E is nef, this must be nonneg-
ative, hence a + b ≥ 0.

(iii) We already checked that the linear system |2H −E| is base point free and has
dimension 2d + 3. Now consider the morphism Ỹ → P

2d+3 induced by this linear
system, and its Stein factorization

Ỹ
π−→ X −→ P

2d+3, (16)

where the morphism π has connected fibers, the scheme X is normal, and the mor-
phism X → P

2d+3 is finite.
Note that any curve in a fiber of π has zero intersection with 2H − E; therefore

the description of the Mori cone in (i) implies that its class is a positive multiple of
the class of L̃. Since (H − E) · L̃ = −1 by (9), it follows that any such curve has
negative intersection with H − E, hence it is contained in the base locus of the linear
system |H − E| which, as we showed in Lemma 2.5, equals L̃. Thus, L̃ is the only
curve contracted by π ; in particular π is birational and small.
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Since Ỹ is smooth, X is smooth away from the point x0 := π(L̃). On the other
hand, (10) implies that the point x0 ∈ X is an ordinary double point, so X is 1-nodal.

Furthermore, by (9) the subgroup in Pic(Ỹ ) of classes restricting trivially to L̃

is generated by the anticanonical class 2H − E of Ỹ , and since π is small, it is
the pullback of the anticanonical class of X, which therefore generates Pic(X). By
definition of π , this class is the pullback of the hyperplane class of P2d+3 under the
finite morphism in (16), hence it is ample, hence X is a prime Fano threefold. Finally,

H0(X,OX(−KX)) = H0(Ỹ ,O
Ỹ
(2H − E)) = 2d + 4,

where we used (14) in the second equality, so it follows that the genus of the Fano
threefold X is 2d + 2. �

In what follows we refer to the construction of Proposition 2.6 as the bridge con-
struction, and to the variety X constructed in Proposition 2.6 as the anticanonical
model of BlC(Y ), and use for it the notation

X :=
{

BlC(Y )can, if d ≥ 2,

Bly0(Y )can, if d = 1.
(17)

Remark 2.7 By construction, X is not factorial; indeed, Pic(X) = Z · KX while
Cl(X) = Cl(Ỹ ) ∼= Z

2. Furthermore, since H · L̃ = 1, it follows that X is maximally
nonfactorial, see §A.3 or [38, Lemma 6.14], that is the map from Cl(X) to the direct
sum of local class groups of the singular points is surjective. This is not a coincidence:
in Proposition A.14 we show that every nodal Fano threefold such that

rk(Cl(X)) = rk(Pic(X)) + |Sing(X)|

is maximally nonfactorial. This is important because maximal nonfactoriality is
a necessary condition for the categorical absorption of singularities [38, Proposi-
tion 6.12], which is crucial for our applications.

Remark 2.8 For d ≥ 3 one can check that the anticanonical class of X is very ample,
so that the second arrow in (16) is a closed embedding, and its image is an intersection
of quadrics, see, e.g., [53, Theorem 4.5] or [36, Corollary 4.11]. On the other hand,
one can check that if d = 1 then X is a hyperelliptic threefold of type H5 from [54]
(see [53, Example 4.3] or [36, Proposition 4.4(iv)]), and if d = 2 then X is a trigonal
threefold of type T7 from [54] (see [53, Example 4.7] or [36, Proposition 4.7(iv)]).

Remark 2.9 One can extend the blowup morphism σ : Ỹ → Y and the small contrac-
tion π : Ỹ → X to a Sarkisov link by flopping the curve L̃. By [58] (or [36, Table 2])
the other extremal contraction is a del Pezzo fibration Ỹ+ → P

1 of degree d + 1, so
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that we have the following diagram

X̃

Ỹ

σ π

ψ

Ỹ+

π+ σ+

Y X P
1,

(18)

where the morphism X̃ → Ỹ is the blowup of L̃, the morphism X̃ → X is the blowup
of the node x0 ∈ X, and ψ is the flop of L̃. Moreover, if D is the exceptional divisor of
X̃ over X, it is not hard to check that the nef cone of X̃ is generated by the pullbacks
H , 2H −E, and H −E −D of the ample generators of Pic(Y ), Pic(X), and Pic(P1),
respectively. In particular, the three rays of the nef cone give contractions of different
type, which allows one to reconstruct the entire diagram (18) from X by blowing up
the node and running the minimal model program. We will use this idea in the proof
of Theorem 5.7.

We will also need the following observation regarding the Hilbert scheme Fd−1(Y )

of curves with Hilbert polynomial p(t) = (d − 1)t + 1 on a del Pezzo threefold Y .

Lemma 2.10 Let Y be a smooth del Pezzo threefold of degree 2 ≤ d ≤ 5.

(i) The open subset F◦
d−1(Y ) ⊂ Fd−1(Y ) parameterizing smooth rational curves of

degree d − 1 is nonempty and connected.
(ii) Assume C ⊂ Y is a smooth rational curve of degree d − 1 which is not a ramifi-

cation line when d = 2. Then

H1(C,NC/Y ) = 0 and dim H0(C,NC/Y ) = 2d − 2. (19)

In particular, the Hilbert scheme Fd−1(Y ) is smooth of dimension 2d − 2 at [C].

Proof (i) If d = 2 then F◦
d−1(Y ) = Fd−1(Y ) is the Hilbert scheme of lines; connect-

edness (and nonemptiness) of this Hilbert scheme is proved in [60, Theorem 3.57 and
Remark 3.58].

Assume d ≥ 3. In this case we apply a construction converse to that of Lemma 2.5.
More precisely, we consider a general hyperplane section S ⊂ Y (this is a smooth del
Pezzo surface of degree d), choose any line L ⊂ S, and a general curve in the lin-
ear system |H − L| on S; it is easy to see that this is a smooth rational curve of
degree d − 1 (see, e.g., [41, Lemma 4.6]). This proves that F◦

d−1(Y ) has a structure
of a fibration over the Hilbert scheme of lines on Y (which is connected, see [39,
Proposition 2.2.10]) with fiber over a line L an open dense subset of the Grassman-
nian Gr(2, d) that parameterizes pencils of hyperplanes through L, hence F◦

d−1(Y ) is
nonempty and connected.
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(ii) We use notation of Lemma 2.5. Twisting the Koszul complex (12) by O
Ỹ
(−E)

and pushing it forward along σ , we obtain an exact sequence

0 →OY (−2H) → OY (−H)⊕2 → JC → σ∗(OL̃
(−E)) → 0. (20)

Combining it with (9) we obtain a right exact sequence

OY (−H)⊕2 → JC → OL(−2) → 0,

where we set L := σ(L̃). Restricting it to C we obtain a right exact sequence

OC(1 − d)⊕2 → N∨
C/Y → OC∩L → 0.

where C∩L is a scheme of length 2 by Lemma 2.5. Note that OC(1−d)⊕2 and N∨
C/Y

are locally free sheaves of rank 2, and the cokernel of the first arrow is a torsion sheaf,
hence the kernel is a torsion subsheaf of a locally free sheaf, hence it vanishes, and
this morphism is injective. Thus, the above sequence is also left exact. Twisting it by
det(NC/Y ) ∼= OC(2d − 4) we obtain

0 → OC(d − 3)⊕2 → NC/Y → OC∩L → 0.

Since d ≥ 2, the equalities (19) as well as the dimension and smoothness of the
Hilbert scheme follow. �

Remark 2.11 The argument does not work when d = 2 and C is a ramification line,
because in this case L = C, so restricting (20) to C we obtain a right exact sequence

OC(−1)⊕2 →N∨
C/Y →OC(−2) → 0

which implies NC/Y
∼= OC(2) ⊕ OC(−2). In particular, the cohomology groups of

NC/Y jump, hence the point [C] on the Hilbert scheme is singular.

In the next lemma we construct an important vector bundle U
Ỹ

of rank 2 on Ỹ . As
we will prove later (see Proposition 3.3), the sheaf π∗(U∨

Ỹ
) is locally free and dual to

a Mukai bundle on X.
If d = 1 the construction works both in the nodal and cuspidal cases, but the nodal

case is simpler and as we do not need the cuspidal case for applications, we omit it.

Lemma 2.12 Assume Setup 2.2 and if d = 1 assume that Y is 1-nodal. Then there is
an exact sequence

0 → U∨
Ỹ

→O
Ỹ
(H) ⊕O

Ỹ
(H) → OE(dF ) → 0, (21)

where F is the class of a fiber of E → C if d ≥ 2, or a ruling on E ∼= P
1 × P

1 if
d = 1. It defines a vector bundle U

Ỹ
on Ỹ of rank 2 with c1(UỸ

) = E − 2H = K
Ỹ

.
Moreover, the sheaf π∗(U∨

Ỹ
) is (−KX)-stable.
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Proof If d ≥ 2 the curve C has degree d − 1, hence O
Ỹ
(H)|E ∼= OE((d − 1)F ), and

if d = 1 the divisor E is contracted by σ to a point, hence O
Ỹ
(H)|E ∼= OE . In any

case, we have

Ext•(O
Ỹ
(H),OE(dF )) = Ext•(OE((d − 1)F ),OE(dF )) = H•(E,OE(F )) = k

2.

The natural evaluation morphism O
Ỹ
(H)⊕O

Ỹ
(H) → OE(dF ) is surjective because

the line bundle OE(F ) is globally generated. Since E is a Cartier divisor, the projec-
tive dimension of the sheaf OE(dF ) on Ỹ is 1, hence the kernel of this epimorphism
is a vector bundle of rank 2, and its first Chern class is obvious.

To prove the stability of π∗(U∨
Ỹ

) consider any saturated subsheaf F ⊂ π∗(U∨
Ỹ

) of
rank 1. The restriction of the sheaf F to X \ {x0} is reflexive; considering it as a sheaf
on Ỹ \ L̃ and taking its reflexive extension to the scheme Ỹ , we obtain a reflexive
subsheaf F̃ ⊂ U∨

Ỹ
of rank 1, which is invertible because Ỹ is smooth. Composing the

embeddings F̃ ↪→ U∨
Ỹ

↪→ O
Ỹ
(H)⊕2, we see that the line bundle F̃∨(H) has global

sections. This line bundle is nontrivial, because H•(Ỹ ,U∨
Ỹ

(−H)) = 0 by construc-
tion, hence by Proposition 2.6(ii) we have

c1(F̃∨(H)) = aE + b(H − E), a, b ≥ 0, (a, b) �= (0,0).

It follows easily that c1(F) = H − aE − b(H − E), hence either c1(F) ≤ H − E or
c1(F) ≤ H − (H − E) = E. Now using (11) we see that the slope of F̃ with respect
to 2H − E is bounded from above by the maximum of

(H − E) · (2H − E)2 = d + 1 and E · (2H − E)2 = 2d.

On the other hand, the slope of U∨
Ỹ

is equal to

1
2 (2H − E)3 = 2d + 1.

It follows that the slope of F̃ is strictly less than the slope of U∨
Ỹ

, hence the quadratic

term in the reduced Hilbert polynomial of π∗F̃ is less than the quadratic term in the
reduced Hilbert polynomial of π∗(U∨

Ỹ
). But the sheaves F and π∗F̃ are isomorphic

away from the point x0, hence their reduced Hilbert polynomials agree up to a con-
stant, and hence the reduced Hilbert polynomial of F is less than the reduced Hilbert
polynomial of π∗(U∨

Ỹ
). Therefore, π∗(U∨

Ỹ
) is stable. �

Remark 2.13 Note that in the case d = 1 the bundle U
Ỹ

depends on the choice of a
ruling of E.

3 Derived categories

In §2 we introduced the bridge construction of the 1-nodal prime Fano threefold X

from a del Pezzo threefold Y with some extra data as in Setup 2.2. In this section
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we relate the component BY of the derived category of Y , defined in (2), and the
components AXb

of smoothings Xb of X, defined in (1).
We start with a remark about the case d = 1. Recall that in this case Y is singular,

hence the category BY defined in (2) is not proper. On the other hand, Ỹ is a resolution
of singularities of Y , so one can find a smooth and proper replacement for BY inside
the category Db(Ỹ ). We do this in the next lemma.

In contrast to Lemma 2.12, it is crucial here to assume that Y is 1-nodal, be-
cause in the cuspidal case the sheaf OE(F ) is not exceptional; in fact, in this case
Ext•(OE(F ),OE(F )) ∼= k ⊕ k[−1] ⊕ k[−2] (where we consider OE(F ) as an ob-
ject of Db(Ỹ )).

Lemma 3.1 Let (Y,F ) be as in Setup 2.2(b) and let Y be 1-nodal, so that F is a
ruling of the exceptional divisor E of the blowup Ỹ = Bly0(Y ) at the node y0 ∈ Y .
Then there is a semiorthogonal decomposition

Db(Ỹ ) = 〈B̃Y ,O
Ỹ
,O

Ỹ
(H),OE,OE(F )〉, (22)

where B̃Y is a smooth and proper triangulated category.

Proof We apply [38, Theorem 5.8] (see also [8, Theorem 1.1] for a slightly dif-
ferent treatment or [28, §4] for a general approach). Using [38, (43)] we obtain a
semiorthogonal decomposition

Db(Ỹ ) = 〈OE(E),OE(E + F), D̃Y 〉,
where the category D̃Y = {F ∈ Db(Ỹ ) | F |E ∈ 〈OE(−F),OE〉} is smooth and proper
and contains the image of the fully faithful functor σ ∗ : Dperf(Y ) → Db(Ỹ ). Mutating
the objects OE(E) and OE(E +F) to the right of D̃Y and using the fact that the class
−K

Ỹ
= 2H − E restricts to E as −E, we obtain a semiorthogonal decomposition

Db(Ỹ ) = 〈D̃Y ,OE,OE(F )〉.
As σ ∗ is fully faithful, the pair (OY ,OY (H)) from (2) gives rise to the exceptional
pair (O

Ỹ
,O

Ỹ
(H)) in D̃Y and therefore to the semiorthogonal decomposition (22)

defining the subcategory B̃Y . It is admissible in the derived category of a smooth and
proper variety Ỹ , hence it is a smooth and proper category. �

Remark 3.2 One can make a relation between the categories B̃Y and BY more pre-
cise; in fact, using the techniques developed in [38] and [37] one can check that the
restrictions of the functors σ∗ : Db(Ỹ ) → Db(Y ) and σ ∗ : Dperf(Y ) → Db(Ỹ ) give
functors

σ∗ : B̃Y → BY and σ ∗ : BY ∩ Dperf(Y ) → B̃Y

such that σ∗ is a crepant categorical contraction and (B̃Y , σ ∗, σ∗) is a crepant cate-
gorical resolution of BY .
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For convenience, in the case where 2 ≤ d ≤ 5 we will write

B̃Y := σ ∗(BY ) ⊂ Db(Ỹ ). (23)

Thus, in all cases B̃Y ⊂ Db(Ỹ ) is a smooth and proper admissible subcategory, and
when d ≥ 2 the functors σ∗ : B̃Y → BY and σ ∗ : BY → B̃Y are equivalences.

In the following crucial proposition we show that the bundle U
Ỹ

constructed in
Lemma 2.12 is a pullback of a Mukai bundle UX on X (as defined in Definition 1.2)
and construct a semiorthogonal decomposition of Db(X) containing B̃Y as one of
components.

Recall that an object P ∈ Db(X) is called a P
∞,2-object if Ext•(P,P) = k[θ] with

deg(θ) = 2, see [38, Definition 2.6 and Remark 2.7].

Proposition 3.3 Assume Setup 2.2 and if d = 1 assume that Y is 1-nodal. Let X be
the 1-nodal Fano threefold constructed in Proposition 2.6 and let U

Ỹ
be the vector

bundle constructed in Lemma 2.12. Then

U
Ỹ

∼= π∗UX, (24)

where UX
∼= π∗UỸ

is a Mukai bundle on X, and there is a semiorthogonal decompo-
sition

Db(X) = 〈PX, ĀX,OX,U∨
X〉, (25)

where the category PX is generated by the P
∞,2-object PX := π∗(OỸ

(E − H)) and

ĀX � B̃Y .

In particular, the category ĀX is smooth and proper.

Proof If d ≥ 2 we apply the blowup formula for the morphism σ : Ỹ = BlC(Y ) → Y ;
combining it with (2) and (23) and using the standard semiorthogonal decomposition
Db(C) = 〈OC(d − 1),OC(d)〉 for the curve C ∼= P

1, we obtain the semiorthogonal
decomposition:

Db(Ỹ ) = 〈B̃Y ,O
Ỹ
,O

Ỹ
(H),OE((d − 1)F ),OE(dF )〉, (26)

where B̃Y is defined in (23) and F stands for the class of a fiber of E → C. If d = 1
we use the semiorthogonal decomposition (22); it has exactly the same form as (26).

Next, we modify (26) by a sequence of mutations.
Step 1. First, mutate the last two objects to the left of O

Ỹ
(H). The computation

similar to that of Lemma 2.12 shows that Ext•(O
Ỹ
(H),OE((d − 1)F )) = k, hence

the mutation of OE((d − 1)F ) is given by the exact sequence

0 → O
Ỹ
(H − E) → O

Ỹ
(H) →OE((d − 1)F ) → 0;

in particular, the result of the mutation is the exceptional bundle O
Ỹ
(H − E). The

mutation of O
Ỹ
(dF ) is described in Lemma 2.12 and the result is U∨

Ỹ
. Thus, we
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obtain the semiorthogonal decomposition

Db(Ỹ ) = 〈B̃Y ,O
Ỹ
,O

Ỹ
(H − E),U∨

Ỹ
,O

Ỹ
(H)〉. (27)

Step 2. Next, mutate O
Ỹ
(H − E) to the left of O

Ỹ
. Twisting (12) by O

Ỹ
(H − E)

and using (9) we obtain an exact sequence

0 → O
Ỹ
(E − H) →O⊕2

Ỹ
→ O

Ỹ
(H − E) → O

L̃
(−1) → 0. (28)

By (27) the pair (O
Ỹ
,O

Ỹ
(H − E)) is exceptional, hence H•(Ỹ ,O

Ỹ
(E − H)) = 0,

and so it follows from (28) that H•(Ỹ ,O
Ỹ
(H − E)) = k

2 and that the middle arrow
in (28) is the evaluation morphism. Therefore, the result of the mutation is the cone of
the middle arrow in (28), and it also follows that the same object can be represented
as the cone of the morphism O

L̃
(−1)[−1] → O

Ỹ
(E − H)[1] associated with (28),

which itself is considered as Yoneda extension.
On the other hand, Serre duality gives

Ext•(O
Ỹ
(H − E),O

Ỹ
(E − H)) = H•(Ỹ ,O

Ỹ
(2E − 2H))

∼= H•(Ỹ ,O
Ỹ
(−E)[3])∨ = 0.

Combining this with the vanishing H•(Ỹ ,O
Ỹ
(E −H)) = 0 proved above, we deduce

from (28) that

Ext•(O
L̃
(−1),O

Ỹ
(E − H)) ∼= Ext•(O

Ỹ
(E − H)[2],O

Ỹ
(E − H)) ∼= k[−2]

and that the morphism O
L̃
(−1)[−1] → O

Ỹ
(E − H)[1] associated with (28) is

the evaluation morphism. Since by (10) the object O
L̃
(−1) is spherical, we fi-

nally conclude that the result of the mutation (up to shift) is the spherical twist
TO

L̃
(−1)(OỸ

(E − H)) and we have the triangle

O
L̃
(−1)[−2] → O

Ỹ
(E − H) → TO

L̃
(−1)(OỸ

(E − H)). (29)

Thus, we obtain the semiorthogonal decomposition

Db(Ỹ ) = 〈B̃Y ,TO
L̃
(−1)(OỸ

(E − H)),O
Ỹ
,U∨

Ỹ
,O

Ỹ
(H)〉.

Step 3. Next, we mutate O
Ỹ
(H) to the far left. Since K

Ỹ
= E − 2H , we obtain

Db(Ỹ ) = 〈O
Ỹ
(E − H), B̃Y ,TO

L̃
(−1)(OỸ

(E − H)),O
Ỹ
,U∨

Ỹ
〉.

Step 4. Finally, we mutate B̃Y to the right of TO
L̃
(−1)(OỸ

(E − H)):

Db(Ỹ ) = 〈O
Ỹ
(E − H),TO

L̃
(−1)(OỸ

(E − H)),

RTO
L̃

(−1)(OỸ
(E−H))(B̃Y ),O

Ỹ
,U∨

Ỹ
〉, (30)

where RTO
L̃

(−1)(OỸ
(E−H)) is the right mutation functor through the subcategory

TO
L̃
(−1)(OỸ

(E − H)).
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Now we check that (30) induces a decomposition of Db(X). Indeed, the func-
tor π∗ : Db(Ỹ ) → Db(X) is a Verdier localization with respect to the subcategory
generated by the sheaf O

L̃
(−1) (this, e.g., follows from [38, Theorem 5.8 and Corol-

lary 5.11]), i.e.,

Db(X) � Db(Ỹ )/O
L̃
(−1).

By [37, Propositions 5.5 and 6.1] the functors π∗ and π∗ induce an equivalence be-
tween the left orthogonal of O

L̃
(−1) in Db(Ỹ ) and Dperf(X). By (29) and (30) the

bundle U∨
Ỹ

belongs to this left orthogonal, hence U∨
Ỹ

is the pullback of a perfect com-

plex U∨
X on X. Since pullback of perfect complexes commutes with dualization, we

obtain (24), and then the projection formula implies UX
∼= π∗UỸ

.
It is clear that UX is a vector bundle, rk(UX) = 2, and c1(UX) = KX . Moreover,

UX is (−KX)-stable by Lemma 2.12, and it is acyclic and exceptional because π∗
is fully faithful and the pair (O

Ỹ
,U∨

Ỹ
) is exceptional by (30). Thus, UX is a Mukai

bundle on X.
Similarly, RTO

L̃
(−1)(OỸ

(E−H))(B̃Y ) is left orthogonal to O
L̃
(−1), hence π∗ and π∗

induce an equivalence

RTO
L̃

(−1)(OỸ
(E−H))(B̃Y ) � ĀX

with a subcategory ĀX ⊂ Dperf(X) ⊂ Db(X), which is smooth and proper because B̃Y

is. Finally, applying [38, Proposition 4.1] we obtain the required decomposition (25),
where

PX := 〈O
Ỹ
(E − H),TO

L̃
(−1)(OỸ

(E − H))〉/O
L̃
(−1).

and using [38, Theorem 6.17], we deduce that PX is generated by the object

PX := π∗(OỸ
(E − H)), (31)

which is a P
∞,2-object. �

Remark 3.4 For future reference we note that the equivalence B̃Y � ĀX is given by
the functors

π∗ ◦ RTO
L̃

(−1)(OỸ
(E−H)) : B̃Y → ĀX and

LTO
L̃

(−1)(OỸ
(E−H)) ◦ π∗ : ĀX → B̃Y ,

(32)

where LTO
L̃

(−1)(OỸ
(E−H)) is the left mutation functor, and when d ≥ 2 the equiva-

lence BY � ĀX is given by their compositions with σ ∗ and σ∗, respectively.

Remark 3.5 When X is a smooth prime Fano threefold of genus 2d + 2 and UX is a
Mukai bundle, then the dual bundle U∨

X is globally generated and induces an embed-
ding X ↪→ Gr(2, d + 3). For d ≤ 4 this leads to a nice description of X which will
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be recalled in §4. One can check that for 1-nodal threefolds constructed in Proposi-
tion 2.6 the dual Mukai bundle U∨

X constructed in Proposition 3.3 is globally gener-
ated if and only if d ≥ 3; it would be interesting to understand how the description of
the image of X in Gr(2, d + 3) differs from the smooth case.

All the components of the semiorthogonal decomposition (25) constructed in
Proposition 3.3 except for PX are smooth and proper; in terminology of [38] this
means that PX absorbs singularities of X (see [38, Definition 1.1]). An important
property of a subcategory generated by a P

∞,2-object, called the universal deforma-
tion absorption property in [38, Definition 1.4], is that it disappears in any smooth-
ing of the variety, while its orthogonal complement deforms. Using this property we
prove the main result of this section, a more precise version of Theorem 1.4 from the
Introduction.

Recall that a smoothing of X is a flat projective morphism f : X → B to a smooth
pointed curve (B,o) such that the total space X is smooth, the central fiber Xo is
isomorphic to X, and f is smooth over B \ {o}. Note also that by [47] any nodal Fano
threefold X admits a smoothing such that for each b �= o the fiber Xb is a smooth
prime Fano threefold with g(Xb) = g(X), see Theorem A.9 for details.

Theorem 3.6 Assume Setup 2.2 and if d = 1 assume that Y is 1-nodal. Let X be
the 1-nodal Fano threefold constructed in Proposition 2.6 and let UX and PX be the
Mukai bundle and the P

∞,2-object on X constructed in Proposition 3.3.
For any smoothing f : X → B of X after appropriate étale base change there is

a vector bundle UX on X such that

• UX |X ∼= UX ,
• UX |Xb

is a Mukai bundle for all b �= o in B , and
• the object ι∗PX ∈ Db(X ) is exceptional, where ι : X ↪→X is the embedding of the

central fiber.

Moreover, there is a B-linear semiorthogonal decomposition

Db(X ) = 〈ι∗PX, ĀX , f ∗Db(B),f ∗Db(B) ⊗ U∨
X 〉, (33)

where ĀX is an admissible B-linear subcategory in Db(X ) which is smooth and
proper over B . Finally,

(ĀX )o � B̃Y and (ĀX )b � AXb
for b �= o,

where B̃Y is defined in (22) for d = 1 and in (23) for d ≥ 2, and AXb
is defined in (1).

Proof To construct a vector bundle UX we consider the relative moduli space of stable
vector bundles on the fibers of X /B . Since UX is stable (by Proposition 3.3 and
Definition 1.2), it corresponds to a point of this relative moduli space over o ∈ B , and
by [17, Corollary 4.5.2] the property Ext•(UX,UX) = k implies that the moduli space
is étale over B at the point [UX]. Therefore, after a base change from B to a small
étale neighborhood of o ∈ B , we will have a section of this relative moduli space,
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i.e., a fiberwise stable vector bundle UX of rank 2 on X which restricts to UX on the
central fiber.

Since the Picard sheaf of X /B is locally constant by Corollary A.8 and we have
c1(UX) = KX , it follows that c1(UX |Xb

) = KXb
for all b ∈ B . Semicontinuity of

cohomology implies that, after appropriate shrinking of B , we may assume that for
each b ∈ B the bundle UX |Xb

is acyclic and exceptional; therefore, it is a Mukai
bundle.

The object ι∗PX is exceptional by [38, Theorem 1.8]. The sheaves OX and
U∨
X form a relative exceptional pair, and (25) implies that they are semiorthogonal

to ι∗PX . Therefore, together they induce the required semiorthogonal decomposi-
tion (33).

Since ι∗PX is supported on the central fiber of f : X → B the base change of the
subcategory it generates along the embedding b ↪→ B for b �= o is zero. Therefore,
such a base change results in a semiorthogonal decomposition

Db(Xb) = 〈(ĀX )b,OXb
,U∨

Xb
〉.

Comparing it with (1) we conclude that (ĀX )b = AXb
.

On the other hand, using [38, Theorem 1.5] we obtain a semiorthogonal decom-
position

Db(Xo) = 〈PX, (ĀX )o,OX,U∨
X〉

and comparing it with (25), we conclude that (ĀX )o = ĀX . Finally, Proposition 3.3
provides an equivalence (ĀX )o � BY .

Since ĀXb
is smooth and proper for all points b ∈ B (including b = o), the cate-

gory ĀX is smooth and proper over B by [33, Theorem 2.10]. �

Informally, the category ĀX provides an interpolation between the component
AXb

⊂ Db(Xb) and the component BY ⊂ Db(Y ) if d ≥ 2 or its categorical resolution
B̃Y ⊂ Db(Ỹ ), if d = 1.

4 Moduli stacks

In this section we study the stacks MFYd
, MFXg , and MFMXg of del Pezzo three-

folds, prime Fano threefolds, and Fano–Mukai pairs, respectively, introduced in Def-
initions 1.1 and 1.3 in the Introduction.

To start with, we discuss some properties of Mukai bundles, see Definition 1.2.
We denote by M(X;p) the coarse moduli space of (−KX)-semistable sheaves with
Hilbert polynomial p(t) ∈ Q[t] (computed with respect to −KX) on X; this is a
projective scheme, see, e.g., [17, Theorem 4.3.4].

Lemma 4.1 Let X be a nodal prime Fano threefold of genus g ∈ {4,6,8,10,12}. For
any Mukai bundle U on X one has

c2(U) · KX = − g+2
2 and pU (t) = pMu(t) := 2g−2

3 t3 + 16−g
6 t. (34)
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Moreover, the subscheme Mu(X) ⊂ M(X;pMu) corresponding to Mukai bundles is
an open subscheme. Finally, Mu(X) is a finite reduced scheme.

Proof Assume U is a Mukai bundle on a nodal prime Fano threefold X of genus
g ∈ {4,6,8,10,12}. Let S ⊂ X be a general anticanonical divisor; then S is a smooth
K3 surface (when X is smooth, this is a result of Shokurov [57, Theorem 1.2] and
Reid [55, Theorem 0.5], and in the nodal case we can use [42, Theorem 1] because
we have g ≥ 4). Consider the standard exact sequence

0 → U∨ ⊗ U ⊗ ωX → U∨ ⊗ U → U |∨S ⊗ U |S → 0.

Using exceptionality of U and Serre duality on X, we deduce that

Ext•(U |S,U |S) = H•(S,U |∨S ⊗ U |S) = k⊕ k[−2], (35)

hence χ(U |S,U |S) = 2. Since c1(U) = KX by Definition 1.2, we deduce the equality
c1(U |S)2 = K2

X · (−KX) = 2g − 2, hence the Riemann–Roch theorem on S applied
to U |∨S ⊗ U |S gives

c2(U |S) = g+2
2 and pU |S (t) = (2g − 2)(t2 − t) + g+4

2 .

Since pU |S (t) = pU (t) − pU (t − 1), these formulas imply (34) up to constant term
of pU (t). On the other hand, the constant term must be zero because U is acyclic by
Definition 1.2.

What we have proved so far implies that Mu(X) ⊂ M(X;pMu). This is an open
embedding because stability and local freeness of U and the conditions H•(X,U) = 0
and Ext•(U ,U) = k defining Mu(X) are open properties. Furthermore, first order
deformations of U are classified by the space Ext1(U ,U) and the obstruction space is
Ext2(U ,U) (see, e.g., [17, §2.A.6 and Corollary 4.5.2]); since U is exceptional, both
spaces vanish, hence both schemes Mu(X) and M(X;pMu) are smooth and zero
dimensional at [U]. This means that Mu(X) is a union of reduced isolated points of
M(X;pMu), and since M(X;pMu) is projective, it follows that Mu(X) is a finite
reduced scheme. �

In the next proposition we identify the scheme Mu(X) in the cases where X is
smooth. Recall that a smooth prime Fano threefold of genus 4 is a complete inter-
section of a quadric and a cubic in P

5; moreover, the quadric passing through X is
unique (and thus canonically defined by X) and has corank 0 or 1. We denote this
quadric by Q(X).

Proposition 4.2 Let X be a smooth prime Fano threefold of genus g ∈ {4,6,8,10,12}.
Then

Mu(X) ∼=

⎧⎪⎨
⎪⎩

Spec(k), if g ∈ {6,8,10,12},
Spec(k) � Spec(k), if g = 4 and Q(X) is smooth,

∅, if g = 4 and Q(X) is singular.
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Proof If g ∈ {6,8,10,12} this is [4, Theorem 1.1], see also [39, Theorem B.1.1,
Proposition B.1.5, and Lemma B.1.9].

Now let g = 4. First, assume the quadric Q(X) is smooth. Let S be one of the
two spinor bundles on Q(X) (see [49]). Then the restriction S|X is a vector bundle
of rank 2 with c1(S|X) = KX . Using the vanishing of cohomology of S and S(−3)

(see [49, Theorems 2.1 and 2.3]) and the Koszul resolution

0 → S(−3) → S → i∗(S|X) → 0,

where i : X ↪→ Q(X) is the embedding, we deduce that S|X is acyclic. Similarly,
using the vanishing of Ext•(S,S(−3)) and exceptionality of S on Q(X), we deduce
that Ext•(S, i∗(S|X)) ∼= k, which by adjunction imples that S|X is exceptional. Fi-
nally, since S|X has rank 2 and c1(S|X) = KX and X is smooth of Picard rank 1,
stability of S|X follows from the vanishing of H•(X,S|X) proved above. We con-
clude that S|X is a Mukai bundle.

Similarly, the restriction S ′|X of the other spinor bundle to X is another
Mukai bundle, not isomorphic to S|X . Indeed, one has Ext•(S ′,S) = 0 and
Ext•(S ′,S(−3)) = k[−3], therefore Ext•(S ′|X,S|X) = k[−2].

On the other hand, the argument of [39, Proposition B.1.5] shows that if U is a
Mukai bundle on X then either U ∼= S|X or Ext1(S|X(1),U) �= 0. If we assume the
second then applying the functor Ext•(−,U) to the natural exact sequence (restricted
from Q(X), see [49, Theorem 2.8])

0 → S ′|X →O⊕4
X → S|X(1) → 0

and using the acyclicity of U we deduce that Hom(S ′|X,U) �= 0. Since S ′|X and U
are stable bundles with equal rank and first Chern class, they are isomorphic. This
proves that either U ∼= S|X or U ∼= S ′|X , hence the moduli space Mu(X) has exactly
two points: [S|X] and [S ′|X].

Now assume that the quadric Q(X) is singular, i.e., Q(X) ∼= Cone(Q̄) is the cone
over a smooth quadric threefold Q̄. Since X is smooth, the cubic hypersurface cutting
out X ⊂ Q(X) does not pass through the vertex of the cone, hence the projection out
of the vertex defines a regular triple covering X → Q̄. Let S|X be the pullback to X

of the unique spinor bundle of Q̄. It is stable, acyclic, but not exceptional; in fact it is
easy to see that

Ext•(S|X,S|X) ∼= k⊕ k[−1] ⊕ k[−2].
Moreover, using the exact sequence (pulled back from Q̄, see [49, Theorem 2.8])

0 → S|X → O⊕4
X → S|X(1) → 0

and the same argument as above, one can check that any Mukai bundle U would
have been isomorphic to S|X , but as S|X is not a Mukai bundle, we conclude that
Mu(X) = ∅. �

Remark 4.3 In [4, 5] the existence and uniqueness of Mukai bundles is proved for any
locally factorial Fano threefolds of genus g ≥ 6 with terminal Gorenstein singulari-
ties.
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Before we pass to the stacks MFYd
, MFXg , and MFMXg , we discuss a simple

but instructive example of the moduli stacks MQn ⊂ MQn of smooth and nodal n-
dimensional quadrics (with the definition analogous to Definition 1.1) and the moduli
stack MQSn of smooth quadrics endowed with a spinor bundle (with the definition
analogous to Definition 1.3). We denote by ξQ : MQSn → MQn the morphism of
stacks that forgets the spinor bundle.

Lemma 4.4 The stacks MQn, MQn, and MQSn are smooth irreducible Artin stacks
of finite type over k, the substack MQn ⊂ MQn is open and dense, and the comple-

ment MQ
(1)

n := MQn \MQn is a Cartier divisor. Moreover, if n is even the morphism

ξQ : MQSn → MQn is a finite étale covering of degree 2, branched over MQ
(1)

n .

Proof Let Vn+2 denote a vector space of dimension n + 2. Consider the open subsets

U0
n ⊂ U≤1

n ⊂ P(Sym2 V ∨
n+2)

parameterizing n-dimensional quadrics in P(Vn+2) of corank 0 (i.e., smooth) and
corank ≤ 1 (i.e., nodal), respectively. Note that the complement P(Sym2 V ∨

n+2)\U0
n is

a Cartier divisor of degree n+ 2, and its intersection U≤1
n \U0

n with U≤1
n is smooth. If

n is even, we denote by Û≤1
n → U≤1

n and Û0
n → U0

n the flat double covering branched
over U≤1

n \ U0
n and its restriction, which is étale over U0

n. Then it is easy to prove the
following global quotient representations

MQn
∼= U0

n/PGL(Vn+2), MQn
∼= U≤1

n /PGL(Vn+2) and

MQSn
∼= Û0

n/PGL(Vn+2).

Thus, U≤1
n , U0

n, and Û0
n are smooth irreducible atlases for MQn, MQn, and MQSn,

respectively, and all statements of the lemma follow easily. �

Now we finally consider the moduli stacks of Fano threefolds. Below, when dis-
cussing the stacks MFXg of prime Fano threefolds we concentrate on the cases where
g ∈ {4,6,8,10,12} that are crucial for this paper, although the same arguments can
be also applied for g ∈ {2,3,5,7,9}.

Recall from [18, §12.2], [45, §2], or [5, Theorem 1.1] the following descriptions of
smooth prime Fano threefolds X of genus g ∈ {4,6,8,10,12} as zero loci of regular
global sections of vector bundles:

• if g = 12 then X is the zero locus of a section of (∧2U∨
3 )⊕3 on Gr(3,7),

• if g = 10 then X is the zero locus of a section of U⊥
2 (1) ⊕O(1)⊕2 on Gr(2,7),

• if g = 8 then X is the zero locus of a section of O(1)⊕5 on Gr(2,6),
• if g = 6 then X is the zero locus of a section of O(1)⊕3 ⊕O(2) on CGr(2,5),
• if g = 4 then X is the zero locus of a section of O(2) ⊕O(3) on P

5,

where Uk stands for the tautological vector bundle of rank k on the Grassmannian
Gr(k, n), U⊥

k is the dual of the corresponding quotient bundle, and CGr(2,5) is the
cone over Gr(2,5). The stacks MFXg , MFYd

, and MFMXg were defined in Defini-
tions 1.1 and 1.3; the 1-nodal loci are defined in §A.1.
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Theorem 4.5 The stacks MFXg and MFMXg for g ∈ {4,6,8,10,12} and MFYd
for

d ∈ {1,2,3,4,5} are smooth irreducible algebraic stacks of finite type over k, their
substacks

MFXg ⊂ MFXg , MFMXg ⊂ MFMXg , and MFYd
⊂ MFYd

are open and dense, and MFXg \MFXg , MFMXg \MFMXg , and MFYd
\MFYd

are

Cartier divisors, smooth along the 1-nodal loci MF
(1)

Xg
, MFM

(1)

Xg
, and MF

(1)

Yd
, respec-

tively.
Moreover, the forgetful morphism ξ : MFMXg → MFXg is étale, separated, and

representable, and its fiber over [X] ∈ MFXg is the moduli space Mu(X) of Mukai
bundles on X. More precisely,

• if g ≥ 6 then ξ is an open embedding and induces an isomorphism

MFMXg

ξ |MFMXg−−−−−−→∼ MFXg ;

• if g = 4 then ξ |MFMX4
is induced by the double covering ξQ, i.e., there is a Carte-

sian diagram

MFMX4

ξ |MFMX4

MQS4

ξQ

MF◦
X4

MQ4,

(36)

where MF◦
X4

⊂ MFX4 is the open substack parameterizing smooth X with smooth
quadric Q(X), and the bottom horizontal arrow is defined by [X] �→ [Q(X)].

Proof Let M be either of the stacks MFXg or MFYd
and let M be the corresponding

stack MFXg or MFYd
.

By [20, Lemmas 2.4 and 2.5] the stack M is a smooth algebraic stacks locally of
finite type over k (it is a union of connected components of the stack FANO considered
in [20]). Moreover, M is irreducible of finite type because the corresponding Fano
varieties have uniform descriptions listed just before the theorem (in the case where
M = MFXg ) and at the beginning of §2 (in the case where M = MFYd

); indeed, we see
that in each case an open subset of an appropriate vector space (of global sections)
surjects onto M.

Note that smoothness of Fano varieties is only used in [20, §2] to deduce unob-
structedness of their deformations in the proof of [20, Lemma 2.5]. However, nodal
(or even terminal Gorenstein) Fano threefolds are also unobstructed by [47, Proposi-
tion 3], hence the same argument proves that the stack M is a smooth algebraic stack
of finite type over k (for finiteness just note that terminal Gorenstein Fano varieties
form a bounded family by [23, Proposition 2.6.4]). Furthermore, M is dense in M
because any nodal Fano variety is smoothable by [47, Proposition 4]; therefore irre-
ducibility of M implies irreducibility of M, and since M is smooth, also its integrality.



Derived categories of Fano threefolds and degenerations 409

Next, we prove that the boundary M\M is a Cartier divisor in M. First, the argu-
ment of [47, Theorem 11] shows that any nodal Fano variety has a partial smoothing
which is 1-nodal; this means that the boundary M\M is equal to the closure of the

1-nodal locus M
(1) ⊂ M\M. On the other hand, as the property of being Cartier di-

visor is local on the base in the smooth topology, Corollary A.5 proves that M
(1)

is a

Cartier divisor in M
≤1

, the substack of threefolds with at most one node. Therefore,
the boundary M\M is a Weil divisor in M, and since M is smooth, M\M is a Cartier

divisor in M. Note also that for any point [X] in the 1-nodal locus M
(1)

there is a
smoothing X /B of X with smooth X (see Theorem A.9), hence by Lemma A.4 the

corresponding curve B → M intersects the divisor M
(1)

transversely at [X], hence
the divisor is smooth at [X].

Now consider the canonical morphism of stacks ξ : MFMXg → MFXg . Let
(X,UX) be a k-point of MFMXg . By standard deformation theory (see [17, Corol-
lary 4.5.2]) the relative tangent space to deformations of the pair (X,UX) over MFXg

is Ext1(UX,UX) and the obstruction space is Ext2(UX,UX). Since UX is exceptional,
both spaces vanish, hence the morphism ξ is étale.

Since MFXg is smooth, we deduce that MFMXg is also smooth. Since the preimage
of a Cartier divisor under an étale map is a Cartier divisor, we conclude that the
boundary MFMXg \MFMXg is a Cartier divisor in MFMXg , and since the complement
of a Cartier divisor is dense, we conclude that MFMXg is dense in MFMXg . It also

follows that the 1-nodal locus MFM
(1)

Xg
is smooth.

Now consider the fiber of ξ over a k-point [X]. By Definition 1.3 this is the fibered
category over (Sch/k) whose fiber over a scheme S is the groupoid — or rather the
set — of global sections U ∈ VBX×S/S(S) such that Us is a Mukai bundle on X for
every geometric point s ∈ S. By definition of the étale sheaf VB the datum of U is
the same as a collection of vector bundles on X × Si for an étale covering {Si} → S

whose pullbacks are isomorphic on X × (Si ×S Sj ). Obviously, this fibered category
is equivalent to the étale sheafification of the usual functor of semistable sheaves as
in [17, §4.1]. Finally, using the condition that Us are Mukai bundles and Lemma 4.1,
we conclude that ξ−1([X]) ∼= Mu(X).

The same argument combined with a relative version of Lemma 4.1 shows that
ξ factors through an open embedding into a relative moduli space of semistable
sheaves, which is projective over MFXg . Therefore, ξ is separated and representable.

Now assume g ≥ 6. If X is smooth then ξ−1([X]) ∼= Spec(k) by Proposition 4.2.
Since ξ is étale and separated, and MFXg is dense in MFXg , it follows that every
nonempty fiber of ξ is a point. Since the property of being open immersion is local
on the base in the smooth (and even in the fpqc) topology (see [59, Lemma 02L3]),
it follows that ξ is an open embedding; in particular, it follows that MFMXg is irre-
ducible.

Finally, assume g = 4. Given an S-point f : X → S of MF◦
X4

we consider the

relative anticanonical embedding X ↪→ PS(V), where V := (f∗ω−1
X )∨. It is easy to

see that there is a unique flat family of quadrics Q(X ) ⊂ PS(V) containing X , and
this family defines an S-point of MQ4. This construction is functorial in S, hence
defines a morphism of stacks MF◦

X4
→ MQ4. The argument of Proposition 4.2 then
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proves that MFMX4
∼= MQS4 ×MQ4 MF◦

X4
, i.e., that (36) is a Cartesian diagram. It

also follows that MFMX4 is an open substack in a projective space bundle over MQS4,
and since MQS4 is irreducible (by Lemma 4.4), MFMX4 , and hence also MFMX4 , is
irreducible. �

Remark 4.6 If g ≤ 10 and d ≤ 4 the stacks MFXg , MFMXg , and MFYd
are Deligne–

Mumford stacks; this follows from finiteness of the automorphisms groups of the
corresponding Fano threefolds ([39, Theorem 1.1.2]) by the argument of [34, Propo-
sition A.2].

5 A boundary divisor

In this section we show that Fano threefolds obtained in §2 by the bridge construction

form a connected component of the open substack MFM
(1)

Xg
of the boundary divisor

MFM
≥1
Xg

= MFMXg \MFMXg . We also discuss generalizations of Theorem 3.6 for
families of nodal Fano threefolds over arbitrary bases.

We need to define yet another stack. Note that for any family of 1-nodal threefolds
Y → S, if y0 is the nodal S-point of Y then the blowup Bly0(Y) is smooth over S and
its exceptional divisor E → S is a smooth family of quadric surfaces, see Lemma A.6.

Definition 5.1 For each d ∈ {1,2,3,4,5} we define the stack MFCYd
as the fibered

category over (Sch/k) whose fiber over a scheme S is the groupoid of:

• (for d ≥ 2) pairs (Y → S,C), where Y → S is an S-point of MFYd
, i.e., a family of

smooth del Pezzo threefolds of degree d , and C ⊂ Y is a family of smooth rational
curves of degree d − 1;

• (for d = 1) pairs (Y → S,F), where Y → S is an S-point of MF
(1)

Y1
, i.e., a family

of 1-nodal del Pezzo threefolds of degree 1, and F ∈ PicE/S(S) is a global section
of the relative Picard sheaf for the exceptional divisor E of the blowup Bly0(Y),
where y0 is the nodal S-point of Y , such that for each geometric point s ∈ S the
divisor class Fs ∈ Pic(Es) is a ruling of Es

∼= P
1 × P

1.

Morphisms in MFCYd
are defined as morphisms in MFYd

compatible with C or F in
the obvious way.

Lemma 5.2 For all d ∈ {1,2,3,4,5} the stack MFCYd
is smooth and connected.

Proof For d ≥ 3 the stack MFCYd
is an open substack in the relative Hilbert scheme

of rational curves of degree d − 1 over the stack MFYd
of del Pezzo threefolds of de-

gree d . Its connectedness and smoothness follow from Theorem 4.5 and Lemma 2.10.
Let d = 2. Since Lemma 2.10 fails for ramification lines, see Remark 2.11, we ar-

gue differently. Every smooth del Pezzo threefold Y of degree 2 is a quartic hypersur-
face in the weighted projective space P(1,1,1,1,2) (see, e.g., [35, Theorem 1.2(ii)]),
which can be thought of as a cone in P

10 over the second Veronese embedding
P

3 ↪→ P
9. The Hilbert scheme F◦

1(P(1,1,1,1,2)) of curves C ⊂ P(1,1,1,1,2) of
degree 1 with respect to the generator of the class group Cl(P(1,1,1,1,2)) (i.e., of
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degree 2 in the ambient P10) not passing through the singular point of the cone has
the following structure: the projection from the vertex of the cone maps any such
curve C isomorphically onto a line in P

3 (which under the second Veronese embed-
ding becomes a conic in P

9), the preimage of this line in P(1,1,1,1,2) is P(1,1,2),
i.e., a quadratic cone in P

3 ⊂ P
10, and the curve C is a hyperplane section of this

quadratic cone. Thus, the Hilbert scheme F◦
1(P(1,1,1,1,2)) is an open subscheme

in a projective space bundle over Gr(2,4), hence it is smooth and connected. Fur-
thermore, the Hilbert scheme of pairs C ⊂ Y is an open subscheme in a projective
space bundle over F◦

1(P(1,1,1,1,2)), hence it is also smooth and connected. Finally,
the moduli stack MFCY2 is the quotient stack of this smooth and connected scheme
by the automorphism group of the weighted projective space, hence it is smooth and
connected.

Finally, let d = 1. Every 1-nodal del Pezzo threefold Y of degree 1 is a sextic
hypersurface in the weighted projective space P(1,1,1,2,3) (see, e.g., [35, Theo-
rem 1.2(i)]) and the position of the node y0 ∈ Y is constrained to the complement of
the line P(2,3) ⊂ P(1,1,1,2,3), (see, e.g., [35, Proposition 2.2(ii)]). Therefore, the
Hilbert scheme of pairs y0 ∈ Y is an open subscheme in a projective space bundle
over P(1,1,1,2,3) \ P(2,3), hence it is smooth and connected. The moduli stack

MF
(1)

Y1
of 1-nodal del Pezzo threefolds of degree 1 is the quotient stack of this smooth

and connected scheme by the automorphism group of the weighted projective space,
hence it is smooth and connected.

Furthermore, since the spinor bundles on a smooth quadric surface are the line
bundles associated with the rulings, the definition of the stack MFCY1 implies that
there is a Cartesian diagram

MFCY1

ε̂
MQS2

ξQ

MF
(1)

Y1

ε
MQ2,

(37)

where ε takes a family Y → S of 1-nodal del Pezzo threefolds to the family of quadric
surfaces E → S where E is the exceptional divisor of Bly0(Y), and ξQ is the étale
double covering defined in Lemma 4.4. It follows that the left vertical arrow in (37)

is finite étale of degree 2, hence the smoothness of MF
(1)

Y1
proved above implies the

smoothness of MFCY1 . It also follows that the morphism ε̂ : MFCY1 → MQS2 is a
quotient of a locally trivial fibration with smooth connected fibers by an algebraic
group, and since MQS2 is connected by Lemma 4.4, the same is true for MFCY1 . �

Next, we discuss a universal version of the bridge construction from §2 and its
inverse. To explain it we need universal versions of the line bundles OY (H) and
OE(F ) and the Mukai bundle UX used in §2. A convenient notion to use here is that
of a vector bundle on a family of varieties twisted by a Brauer class pulled back from
the base of the family, see [32, §2.2] for a discussion of this notion.
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Note that if X → S is a flat morphism of schemes, β ∈ Br(S) is a Brauer class,
and E ∈ Coh(X ,β) is a β-twisted vector bundle on X , then there is an étale cov-
ering {Si} → S on which β becomes trivial, hence the pullbacks of E to X ×S Si

are untwisted vector bundles Ei such that for all i, j the pullbacks of Ei and Ej to
X ×S Si ×S Sj are isomorphic. Therefore, the collection {Ei} defines a global section
of the étale sheaf VBX /S . If this is the case we will say that the twisted bundle E
represents the corresponding global section of VBX /S , which we will abusively also
denote E .

In the next lemma we show that some global sections of VB can be represented
by twisted sheaves.

Lemma 5.3 Let d ∈ {1,2,3,4,5} and let S be a k-scheme.

(a) For any S-point Y → S of MFYd
there is a 2-torsion Brauer class βH ∈ Br(S)

and a βH-twisted line bundle OY (H) ∈ Coh(Y,βH) such that for any geometric
point s ∈ S the restriction OY (H)|Ys

is the ample generator of Pic(Ys).
(b) For any S-point (Y → S,C) or (Y → S,F) of MFCYd

there is a 2-torsion Brauer
class βF ∈ Br(S) and a βF -twisted line bundle OE(F) ∈ Coh(E,βF ) on the
exceptional divisor E of Ỹ = BlC(Y) or Ỹ = Bly0(Y) such that for any geometric
point s ∈ S the restriction OE(F)|Es is the line bundle corresponding to the class
of a fiber of the map Es → Cs or to the chosen ruling of Es .

(c) For any S-point (X → S,UX ) of MFMX2d+2 there is a 2-torsion Brauer
class βU ∈ Br(S) and a βU -twisted vector bundle UX ∈ Coh(X ,βU ) that repre-
sents the global section UX ∈ VBX /S(S).

Proof We use [32, Lemma 2.11] which is stated for smooth morphisms and line bun-
dles, but the second part of this lemma that we are applying here does not use the
smoothness assumption, and besides, the same argument works for any global sec-
tion of VB whose fibers are simple sheaves.

(a) If Y → S is an S-point of MFYd
, the étale Picard sheaf PicY/S is constant of

rank 1 by Corollary A.8, hence there is a global section H ∈ PicY/S(S) that restricts to
the ample generator of the Picard group of each geometric fiber. By [32, Lemma 2.11]
it gives rise to a Brauer class βH and a twisted line bundle as required. The Fano
index of Y/S is 2, hence βH is 2-torsion, see [32, Corollary 2.17].

(b) If (Y → S,C) is an S-point of MFCYd
for d ≥ 2, then C → S is a P

1-bundle.
The argument of part (a) allows us to construct a 2-torsion Brauer class on S and
a twisted line bundle on C that restricts to the ample generator of the Picard group
of each geometric fiber; its pullback along E → C is then the required twisted line
bundle on E.

Similarly, if (Y → S,F) is an S-point of MFCY1 we just apply [32, Lemma 2.11]
to F ∈ PicE/S(S).

(c) Let (X → S,UX ) be an S-point of MFMX2d+2 . Then arguing as in the second
part of the proof of [32, Lemma 2.11] and using exceptionality of UX on the fibers
of X /S we construct the Brauer class βU and a βU -twisted vector bundle on X
representing UX . The class βU is 2-torsion, because ∧2UX is, on the one hand, β2

U -
twisted (by [32, Lemma 2.13]), and on the other hand, it is untwisted, because it is
isomorphic to the canonical line bundle on each fiber. �
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Remark 5.4 Using the argument of [32, Corollary 2.17] it is easy to check that

βH = 1 when d ∈ {1,3,5}, and

βU = 1 when d ∈ {2,4}, i.e., g ∈ {6,10}.
Indeed, the pushforward of OY (H) to S is a βH-twisted vector bundle of rank d + 2,
hence its top wedge power is a βd+2

H -twisted line bundle on S, hence βd+2
H = 1. Since

d +2 is odd for d ∈ {1,3,5} and βH is 2-torsion, we conclude that βH = 1. Similarly,
the pushforward of U∨

X to S is a βU -twisted vector bundle of rank d + 3 (this follows
from the Hilbert polynomial computation in Lemma 4.1), and the same argument
applies. It is also easy to see that βF = βH (hence βF ·βH = 1) for d ∈ {2,4}.

Now we explain the relative version of the bridge construction.

Lemma 5.5 For each d ∈ {1,2,3,4,5} there is a morphism of stacks

μ : MFCYd
→ MFM

(1)

X2d+2
(38)

which takes a geometric point (Y,C) or (Y,F ) of the stack MFCYd
to the Fano–

Mukai pair (X,UX), where X is constructed in Proposition 2.6 and UX is constructed
in Proposition 3.3.

Proof First, assume d ≥ 2. Let (g : Y → S,C) be an S-point of the stack MFCYd
.

Then Ỹ := BlC(Y)
σ−→ Y is a family of smooth threefolds over the scheme S. Let

g̃ := g ◦ σ : Ỹ → S, and let OY (H) and OE(F) be the twisted line bundles con-
structed in Lemma 5.3, where E is the exceptional divisor of the blowup σ . By Propo-
sition 2.6(iii) the (untwisted, because βH is 2-torsion) line bundle OỸ (2H − E) is
globally generated over S. Let V := (g̃∗OỸ (2H− E))∨. The Stein factorization

Ỹ π−→ X −→ PS(V)

of the morphism to PS(V) given by OỸ (2H − E) (a relative version of (16)) gives a
family f : X → S of 1-nodal prime Fano threefolds of genus 2d + 2. Furthermore,
the relative version of (21)

0 → U∨
Ỹ → OỸ (H) ⊗ g̃∗g̃∗OE(F) →OE(H+F) → 0,

defines a (βF · βH)-twisted vector bundle UỸ on Ỹ , Proposition 3.3 implies that
UX := π∗UỸ is a (βF · βH)-twisted Mukai bundle on X such that UỸ

∼= π∗UX , so

that (f : X → S,UX ) is an S-point of MFM
(1)

Xg
.

Similarly, if d = 1, let (g : Y → S,F) be an S-point of MFCY1 and let y0 be the
nodal S-point of Y/S. Then Ỹ := Bly0(Y) is a family of smooth threefolds over S

(see Lemma A.6), and as before we construct a family f : X → S of 1-nodal prime
Fano threefolds of genus 4 with a (βF ·βH)-twisted Mukai bundle UX on X so that

(f : X → S,UX ) is an S-point of MFM
(1)

X4
.

In both cases the construction is functorial in S, hence defines a morphism of
stacks. �
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In the case d = 1 we will need the following obvious observation.

Lemma 5.6 There is a morphism of stacks μ̄ : MF
(1)

Y1
→ MF

(1)

X4
and a Cartesian dia-

gram

MFCY1

μ

MFM
(1)

X4

ξ

MF
(1)

Y1

μ̄

MF
(1)

X4
,

(39)

where the left vertical arrow is the natural étale double cover and ξ is defined in
Theorem 4.5.

Proof Indeed, in the case d = 1 the construction of the family f : X → S of prime
Fano threefolds in Lemma 5.5 does not depend on the choice of F ∈ PicE/S(S) (only
the Mukai bundle does), therefore it defines a morphism μ̄ such that the diagram (39)
commutes.

The diagram (39) induces a morphism

MFCY1 → MFM
(1)

X4
×

MF
(1)
X4

MF
(1)

Y1
,

which is étale, because the vertical arrows in (39) are étale. Now, the fibers of the left

side over MF
(1)

Y1
are 2-point sets, while the fibers of the right side over MF

(1)

Y1
are at

most 2-points sets (by separatedness of ξ and Proposition 4.2), hence the morphism
is bijective, and therefore the diagram (39) is Cartesian. �

Recall from Lemma 5.2 that the stack MFCYd
is connected. Now for each degree

d ∈ {1,2,3,4,5} let

MFM
(1)

X2d+2,Yd
⊂ MFM

(1)

X2d+2
⊂ MFMX2d+2

be the connected component of the 1-nodal locus MFM
(1)

X2d+2
of the stack MFMX2d+2

containing μ(MFCYd
).

Theorem 5.7 For all d ∈ {1,2,3,4,5} the morphism μ defined in Lemma 5.5 induces
an isomorphism

MFCYd

μ−−→∼ MFM
(1)

X2d+2,Yd
.

Proof We will construct a morphism MFM
(1)

X2d+2,Yd
→ MFCYd

inverse to μ.

Let S → MFM
(1)

X2d+2,Yd
be a chart (i.e., a smooth morphism from a connected

scheme S) meeting the image of μ. Since MFM
(1)

X2d+2,Yd
is smooth by Theorem 4.5,
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the scheme S is also smooth. Let (X → S,UX ) be the corresponding 1-nodal Fano–
Mukai pair. Let x0 be the nodal S-point of X and let

X̃ := Blx0(X ) and D ⊂ X̃

be the blowup and its exceptional divisor. For general s ∈ S we have ρ(X̃s) = 3 by
Remark 2.9. Therefore, by Corollary A.8 we have ρ(X̃s) = 3 for every s ∈ S, hence
Xs is nonfactorial for all s. Moreover, by [36, Theorem 1.1] for each point s ∈ S the
anticanonical class of X̃s is nef and big; it is also not ample for general s, hence not
ample for all s by openness of ampleness.

Let X̄ → S be the relative anticanonical model of X̃ → S. For general s ∈ S it
follows from [36, Theorem 1.4 and Remark 1.5] that X̄s ⊂ Y × P

1 is a complete
intersection of ample divisors, where Y is a del Pezzo threefold of degree d , and
Pic(X̄s) is generated by the pullbacks of the ample generators of Pic(Y ) and Pic(P1).
By Corollary A.8 the étale Picard sheaf PicX̄ /S is constant of rank 2 and has relatively
nef generators H1 and H2 that by semicontinuity satisfy the inequalities

dim H0(X̄s ,OX̄s
(H1)) ≥ d + 2 and dim H0(X̄s ,OX̄s

(H2)) ≥ 2

for all s ∈ S. Now applying [36, Theorem 1.4 and Remark 1.5] we conclude that for
each point s ∈ S the anticanonical model of X̃s is a divisor

X̄s ⊂ Ys × P
1

of bidegree (1,1), where Ys is a del Pezzo threefold of degree d (which is smooth
if d ≥ 2 and has a single node or cusp if d = 1) and H1, H2 are the pullbacks of the
ample generators of the Picard groups of the factors. The relative over S contraction
defined by the class H1 is a morphism

X̄ → Y,

where Y → S is a flat family of del Pezzo threefolds of degree d . If d ≥ 2 this family
is smooth over S and if d = 1 the singular locus of Y over S is an S-point y0 of
Y such that Bly0(Y) is smooth over S and its exceptional divisor E is a family of
irreducible quadric surfaces over S.

Assume d ≥ 2; then Y → S is an S-point of MFYd
. Moreover, in this case the ex-

ceptional divisor of the composition X̃ → X̄ → Y has two irreducible components:
one of them is the exceptional divisor D and the other component E is contracted
onto a family of smooth rational curves C ⊂ Y of degree d − 1. Then (Y → S,C) is
an S-point of the stack MFCYd

, and it is clear that

μ(Y → S,C) = (X → S,UX ). (40)

The above construction is obviously functorial in S, hence it gives a morphism of
stacks which is right inverse to μ. Moreover, a simple verification shows that this
map is also left inverse to μ, which completes the proof of the theorem for d ≥ 2.

Now assume d = 1. Then the above argument gives a morphism

MF
(1)

X4,Y1
→ MF

(1+)

Y1
(41)
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from a component of the stack of 1-nodal Fano threefolds of genus 4 to the stack of
1-nodal or 1-cuspidal del Pezzo threefolds of degree 1 (whose definition is analogous
to Definition 1.1) which is inverse to the natural extension of the morphism μ̄ to the

stack MF
(1+)

Y1
. Thus, these two stacks are isomorphic.

Furthermore, the morphism μ is a lift of μ̄ to the natural double coverings

MFCY1 → MF(1)
Y1

, and MFM
(1)

X4,Y1

ξ−→ MF
(1)

X4,Y1

where the first is induced by ξQ, see diagram (37), and the second is the restriction
of the morphism defined in Theorem 4.5. Since ξ is étale and ξQ is ramified over

the substack MQ
(1)

2 ⊂ MQ2 of nodal quadrics by construction (see Lemma 4.4), it

follows that the image of MFM
(1)

X4,Y1
under the composition

MFM
(1)

X4,Y1

ξ−→ MF
(1)

X4,Y1

μ̄−1

−−−→ MF
(1+)

Y1

ε−→ MQ2

does not intersect the branch divisor MQ
(1)

2 ⊂ MQ2 of ξQ, hence the image of μ̄−1 ◦ ξ

does not intersect the cuspidal locus in MF
(1+)

Y1
. This proves that the restriction of μ̄

induces an isomorphism

μ̄ : MF
(1)

Y1
−−→∼ ξ(MFM

(1)

X4,Y1
)

Finally, Lemma 5.6 implies that μ induces an isomorphism MFCY1 −−→∼ MFM
(1)

X4,Y1

over μ̄. �

In conclusion we explain how one can construct semiorthogonal decompositions
for families of Fano threefolds more general than those considered in Theorem 3.6.

On the one hand, for all d ∈ {1,2,3,4,5} and all S-points

(f : X → S,UX ) ∈ MFMX2d+2(S), (g : Y → S) ∈ MFYd
(S), and

(g : Y → S,F) ∈ MFCY1(S)

the construction of Lemma 5.3 provides 2-torsion Brauer classes on S and the cor-
responding twisted sheaves UX , OY (H), and OE(F) on X , Y , and the exceptional
divisor E of Ỹ = BlC(Y) or Ỹ = Bly0(Y), respectively, that form relative exceptional
collections over S and induce semiorthogonal decompositions

Db(X ) = 〈AX , f ∗Db(S), f ∗Db(S,βU ) ⊗ U∨
X 〉, (42)

Db(Y) = 〈BY , g∗Db(S), g∗Db(S,βH) ⊗OY (H)〉, (43)

Db(Ỹ) = 〈B̃Y , g̃∗Db(S), g̃∗Db(S,βH) ⊗OY (H),

g̃∗Db(S) ⊗OE, g̃∗Db(S,βF ) ⊗OE(F)〉. (44)
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Here g̃ : Ỹ → S is the composition of the blowup morphism with g and for d ≥ 2 the
category B̃Y defined by (44) is equivalent to the category BY defined by (43), while
for d = 1 it provides a crepant categorical resolution of BY as in Remark 3.2.

On the other hand, consider the open substack

MFMX2d+2,Yd
:= MFMX2d+2 �MFM

(1)

X2d+2,Yd

= MFMX2d+2 �μ(MFCYd
) ⊂ MFMX2d+2 (45)

that parameterizes Fano–Mukai pairs (X,UX) such that either X is smooth or (X,UX)

is obtained by the bridge construction of §2. Note that MFM
(1)

X2d+2,Yd
⊂ MFMX2d+2,Yd

is a smooth Cartier divisor. Consider an S-point of MFMX2d+2,Yd
transverse to the

boundary, i.e., an S-point (f : X → S,UX ) such that the 1-nodal locus

S(1) = S ×MFMX2d+2,Yd
MFM

(1)

X2d+2,Yd

is a smooth Cartier divisor in S. By Theorem 5.7 there is an S(1)-point (Y → S(1),C)

or (Y → S(1),F) of MFCYd
such that

X (1) := X ×S S(1) ∼= Ỹcan,

where Ỹ = BlC(Y) or Ỹ = Bly0(Y), and

π : Ỹ → Ỹcan = X (1)

is a small birational contraction. Consider the twisted sheaf

P := π∗OỸ (E −H) ∈ Db(X (1),βH),

this is a relative twisted version of the P
∞,2-object constructed in (31). Furthermore,

let ι : X (1) ↪→ X be the embedding induced by the embedding S(1) ↪→ S. One can
prove that the S-linear Fourier–Mukai functor

�P : Db(S(1),βH) → Db(X ), �P(−) = ι∗((f |X (1) )
∗(−) ⊗ P)

is fully faithful and there is an S-linear semiorthogonal decomposition

Db(X ) =
〈
�P(Db(S(1),βH)), ĀX , f ∗Db(S), f ∗Db(S,βU ) ⊗ U∨

X
〉

(46)

refining (42), where the category ĀX , defined as the orthogonal complement in AX
of the image of �P, is smooth and proper over S. Finally, setting S(0) := S \ S(1) and
X (0) := X ×S S(0), one can check that

(ĀX )S(0) � AX (0) and (ĀX )S(1) �
{
BY , if d ≥ 2,

B̃Y , if d = 1,
(47)

where the categories in the right-hand sides are defined in (42), (43), and (44), re-
spectively.
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One way to prove (46) and (47) is by extending our results from [38] about P∞,2-
objects to the relative setting. Another way is to bootstrap from Theorem 3.6 by base
change to appropriate curves B ⊂ S and the technique developed in [27]. We leave
the details to the interested reader.

Appendix: Nodal varieties

In this appendix we discuss geometry of nodal varieties and of families of nodal va-
rieties. We assume that the base field k is algebraically closed of characteristic zero.
Recall that a scheme X of dimension n has hypersurface singularities if it is locally
isomorphic to a hypersurface {ϕ = 0} in A

n+1; this is equivalent to the inequality
dimTx(X) ≤ n + 1 for each geometric point x ∈ X (the fact that this condition on
the Zariski tangent space implies that some Zariski neighborhood of x embeds as a
hypersurface in A

n+1 follows from a classical argument using generic linear projec-
tions). We will use the following

Definition A.1 A k-scheme X of dimension n is nodal if it has isolated hypersur-
face singularities and the Hessian matrix (∂2ϕ/∂xi∂xj )

n+1
i,j=0 of its local equation is

nondegenerate at every singular point of X.

By definition any nodal scheme X is Gorenstein. Moreover, it follows (see
Lemma A.6 for an argument in the relative case) that the blowup π : X̃ → X of
X at its singular points is smooth, each connected component E ⊂ X of the excep-
tional divisor is a smooth quadric of dimension n−1 with conormal bundle OE(−E)

isomorphic to the hyperplane bundle of the quadric. Moreover, the discrepancy of E

equals n − 2; in particular, X has terminal singularities when n ≥ 3.

A.1 Morphisms with nodal fibers

We will say that f : X → S is a morphism with nodal fibers if f is flat and all geomet-
ric fibers of f are smooth or nodal. We always assume that the base S is Noetherian.

Lemma A.2 If every geometric fiber of a flat morphism f : X → S has hypersurface
singularities then X /S has hypersurface singularities, i.e., X is locally isomorphic
to a hypersurface in an affine space over S. In particular, a morphism with nodal
fibers has hypersurface singularities.

Proof Let x ∈ X be a geometric point and set s = f (x) ∈ S. Since the fiber Xs has
hypersurface singularities, there is a Zariski neighborhood (Us, x) of x in Xs and
an open embedding Us ↪→ {ϕ = 0} ⊂ A

n+1, where n = dim(X /S). The morphism
Us ↪→A

n+1 is given by n + 1 functions; they extend to regular functions on a neigh-
borhood (U,x) of x in X such that U ∩Xs = Us and define an S-morphism

g : U → A
n+1
S

that restricts to the above morphism of Us over s. The image of g is a hypersurface
over s, hence it is a hypersurface over a neighborhood of s in S. The property of being
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an open immersion is local on the base (see [59, Lemma 02L3]), hence, shrinking U

if necessary, we may assume that locally g is an open embedding into a hypersurface
in A

n+1
S . �

If f : X → S is a flat morphism and X /S has hypersurface singularities, the Ja-
cobian ideals of local equations of X ⊂ A

n+1
S provide the relative singular locus

Sing(X /S) with a scheme structure. More precisely, if {ϕ = 0} ⊂ A
n+1
S is a local

presentation of X then

Sing(X /S) := {ϕ0 = ϕ1 = · · · = ϕn = 0} ⊂ X ,

where ϕi = ∂ϕ/∂xi is the derivative of ϕ with respect to i-th coordinate on A
n+1
S . We

always endow Sing(X /S) with this scheme structure.

Lemma A.3 If f : X → S is a flat proper morphism with nodal fibers then Sing(X /S)

is finite over S.

Proof The singular locus of X over S is quasi-finite over S by Definition A.1, and on
the other hand it is closed in X , hence proper over S; therefore, it is finite over S. �

Now assume f : X → S is a morphism with nodal fibers and Sing(X /S) is finite
over S (by Lemma A.3 this holds if f is proper). Then f∗OSing(X /S) is a coherent
sheaf on S. We denote by

S≥m ⊂ S and S≤m−1 ⊂ S

the closed subscheme where the rank of f∗OSing(X /S) is at least m (it is defined by
an appropriate Fitting ideal) and its open complement, respectively. Furthermore, we
denote

S(m) := S≤m ∩ S≥m.

The subscheme S(m) is closed in S≤m, open in S≥m, and locally closed in S; it
parametrizes points of S over which the fibers are exactly m-nodal. We also write
X≤m/S≤m, X≥m/S≥m, and X (m)/S(m) for the corresponding families obtained from
X /S by base change.

Lemma A.4 If f : X → S is a morphism with nodal fibers, the morphism
Sing(X /S) → S is unramified. Moreover, if Sing(X /S) is finite over S then the closed
subscheme S(1) ⊂ S≤1 is locally principal and the morphism Sing(X (1)/S(1)) → S(1)

is an isomorphism. Finally, if S is smooth then S(1) is smooth if and only if X is
smooth along f −1(S(1)).

Proof By Lemma A.2 we may assume that X ⊂ A
n+1
S is a hypersurface with local

equation ϕ. Consider the critical locus of ϕ, that is the subscheme

S̃ := {ϕ0 = ϕ1 = · · · = ϕn = 0} ⊂ A
n+1
S .
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Then Sing(X /S) = S̃ ∩ X , and since the Hessian matrix of ϕ is nondegenerate at
every point of Sing(X /S), the projection f |

S̃
: S̃ → S is étale along Sing(X /S),

hence Sing(X /S) → S is unramified.
For the second claim we may assume S = S≤1, i.e., S≥2 = ∅. The assumption

S≥2 = ∅ implies that the sheaf of algebras f∗OSing(X /S) as OS -module is locally
generated by its unit, hence the morphism f |Sing(X /S) : Sing(X /S) → S is a closed
embedding and S(1) = f (Sing(X /S)) by definition. Finally, since locally around S(1)

the morphism f |
S̃
: S̃ → S is an isomorphism, and Sing(X /S) is cut out in S̃ by the

equation ϕ = 0, it follows that Sing(X /S) is locally principal in S̃, hence S(1) is
locally principal in S.

For the last claim note that the scheme X is smooth away from Sing(X /S). So,
let x ∈ Sing(X /S) be a point such that s = f (x) ∈ S(1). Then x ∈ S̃, hence ϕi(x) = 0
for 0 ≤ i ≤ n, and the equality Sing(X /S) = S̃ ∩X implies that the tangent space to
X at x is equal to the sum of the tangent space to Sing(X /S) and the relative tangent
space to A

n+1
S at x. Therefore, X is smooth at x if and only if Sing(X /S) is smooth

at x, and since Sing(X (1)/S(1)) → S(1) is an isomorphism, this holds if and only if
S(1) is smooth at s. �

Corollary A.5 Let f : X → S be a flat proper morphism with nodal fibers over an
integral scheme S. If the general fiber of f is smooth then S(1) ⊂ S≤1 is a Cartier
divisor.

Proof By Lemma A.4 the subscheme S(1) ⊂ S≤1 is locally principal. It is not equal
to S≤1 because the general fiber of f is smooth, hence the equation locally defining
S(1) in S≤1 is nonzero, and since S is integral, this equation is not a zero divisor.
Therefore, S(1) ⊂ S≤1 is a Cartier divisor. �

We will say that f : X → S is uniformly m-nodal if Sing(X /S) is finite over S

and S(m) = S. In the special case where m = 1 the subscheme Sing(X /S) ⊂ X is an
S-point of X ; it will be called the nodal S-point or simply the node of X /S.

Lemma A.6 If f : X → S is a uniformly m-nodal flat morphism, then

(i) the scheme Sing(X /S) is finite étale of degree m over S,
(ii) the blowup BlSing(X /S)(X ) is smooth over S,

(iii) the exceptional divisor E ⊂ BlSing(X /S)(X ) is a smooth quadric fibration over
Sing(X /S), and

(iv) the conormal bundle OE(−E) is the relative hyperplane bundle on this quadric
fibration.

Proof (i) The equality S(m) = S means that f∗OSing(S/S) is locally free of rank m,
hence Sing(X /S) is flat and finite over S. Since it is also unramified over S by
Lemma A.4, it is étale.

(ii)–(iv) All these claims are étale local around Sing(X /S), so we may assume that
m = 1 and Sing(X /S) is just the nodal S-point x0 of X . Furthermore, by Lemma A.2
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we may assume that X ⊂ A
n+1
S is a hypersurface with equation ϕ. Note that ϕ van-

ishes together with its first derivatives at x0, while the Hessian matrix of ϕ at x0 is
nondegenerate. Clearly,

Blx0(X ) ⊂ Blx0(A
n+1
S )

is the Cartier divisor with equation obtained by dividing the pullback of ϕ by the
square of the equation of the exceptional divisor Ẽ of Blx0(A

n+1
S ), and the exceptional

divisor E of Blx0(X ) is the quadric in Ẽ ∼= P
n
S associated with the Hessian matrix at

the point x0. In particular, E is smooth over S, hence Blx0(X ) is smooth along E.
On the other hand, Blx0(X ) \ E = X \ {x0} is also smooth over S, hence Blx0(X ) is
smooth over S. Finally, the conormal bundle of E is isomorphic to the restriction of
the conormal bundle of Ẽ; the latter is obviously the hyperplane bundle, hence so is
the former. �

A.2 Families of nodal Fano varieties

In this section we study properties of families of nodal Fano varieties, i.e., proper
morphisms f : X → S with nodal fibers such that the relative anticanonical class
ω−1
X /S

is f -ample. However, for the statement of Proposition A.7 we can weaken the
assumptions.

We denote by PicX /S the étale sheafification of the Picard functor, see [22, §9.2].

Proposition A.7 Let f : X → S be a flat projective morphism of relative dimension
n ≥ 3 such that

H1(Xs ,OXs
) = H2(Xs ,OXs

) = 0 (48)

for any geometric point s ∈ S. Assume also that either

(a) f has nodal fibers, or
(b) the scheme S is integral of positive dimension, the fiber of f over a geometric

point s ∈ S has isolated hypersurface singularities, and over S \{s} the morphism
f is smooth.

Then the étale sheaf PicX /S is locally constant on S. In particular, if S is connected
then the Picard rank of geometric fibers of f is constant.

Proof Recall from [22, Theorem 9.4.8, Theorem 9.5.11, Remark 9.5.12, and Propo-
sition 9.5.19] that the assumption (48) implies that the Picard sheaf PicX /S is repre-
sented by the Picard scheme PicX /S which is étale and separated over S. Therefore,
any line bundle on a geometric fiber Xs of f extends uniquely to a line bundle over
an étale neighborhood of s in S.

Let us prove that the morphism PicX /S → S satisfies the valuative criterion for
properness (note, however, that this morphism is not of finite type, hence not proper).
So, assume S is the spectrum of a discrete valuation ring, s ∈ S is the closed point,
and L0 is a line bundle on the general fiber of X /S. We need to show that there is a
line bundle L on X which restricts to the general fiber as L0.
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First, consider case (b). Then we extend L0 to a coherent sheaf on X and then, by
taking the double dual, to a reflexive sheaf L of rank 1. Since X /S is smooth over
the general point of S, we have an inclusion Sing(X ) ⊂ Sing(Xs). Moreover, X has
isolated hypersurface singularities by Lemma A.2. Finally, since dim(Xs) ≥ 3, we
have dim(X ) ≥ 4. Now it follows from [15, XI, Corollaire 3.14] that X is locally
factorial, hence L is a line bundle.

Now, consider case (a). Since Sing(X /S) is finite and unramified over S by Lem-
mas A.3 and A.4, we have

Sing(X /S) = Z � Z′,

where Z is finite étale over S and Z′ is a finite reduced scheme contained in the
central fiber of X /S. Consider the blowup

π : X ′ := BlZ(X ) → X .

By Lemma A.6 the map X ′ → S has nodal fibers, Sing(X ′/S) = Sing(X ′
s ) = Z′, and

the exceptional divisor E of π is a smooth quadric fibration over Z. In particular,
the morphism X ′ → S satisfies the assumption of part (b). Therefore, the line bundle
L′

0 := π∗L0 extends to a line bundle L′ on X ′. Let E0 and Z0 be the general fibers
of E and Z over S. The line bundle L′|E0

∼= L′
0|E0

∼= π∗L0|E0 is trivial over Z0, and
since E → Z is a smooth quadric bundle, L′|E is trivial over Z, and therefore there is
a line bundle L on X such that L′ ∼= π∗L. Clearly, the restriction of L to the general
fiber of X /S is isomorphic to L0.

Finally, since PicX /S is étale and satisfies the valuative criterion for properness
over S, it follows that étale sheaf PicX /S represented by it is locally constant. �

Since any nodal Fano variety satisfies (48) (see [18, Proposition 2.1.2(i)]), the
conclusion of Proposition A.7 holds for families of nodal Fano varieties of dimension
at least 3.

Corollary A.8 If f : X → S is a family of nodal Fano varieties of dimension n ≥ 3
then the Picard rank, Fano index, and anticanonical degree of the fibers of X /S are
locally constant.

Moreover, if the Picard rank of fibers is 1, the étale sheaf PicX /S
∼= ZS is constant.

Proof The sheaf PicX /S is locally constant by Proposition A.7, hence by [32, §2.1]
it corresponds to a monodromy action of the étale fundamental group π1(S) on the
Picard group Pic(Xs) of a geometric fiber. It follows that the Picard rank is locally
constant. Since the canonical class KXs

∈ Pic(Xs) is monodromy invariant (see [32,
Lemma 2.5]), the Fano index and anticanonical degree are also locally constant.

Assume now the Picard rank of Xs is 1. Since Xs is Fano, the group Pic(Xs) is
torsion free by [18, Proposition 2.1.2(ii, iii)] hence Pic(Xs) ∼= Z. Since the canonical
class KXs

∈ Pic(Xs) is monodromy invariant and nonzero, the monodromy action is
trivial, and the sheaf PicX /S is constant. �

The following result proved by Namikawa is crucial for our paper.
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Theorem A.9 ([47]) Let X be a nodal Fano threefold. There exists a smoothing of X,
i.e., a flat projective morphism X → B over a smooth connected pointed curve (B,o)

such that

• the total space X is smooth,
• Xo

∼= X,
• the morphism f −1(B \ {o}) → B \ {o} is a smooth family of Fano threefolds of the

same Picard number, Fano index, and anticanonical degree as X.

Proof In [47, Proposition 3] it is proved that deformations of a nodal Fano threefold
X are unobstructed, and in [47, Proposition 4] it is proved that any local deformation
of X around its singular locus lifts to a global deformation. Since nodal singularities
are hypersurface singularities, they are locally smoothable, hence a global smoothing
X → B also exists.

Since ampleness is an open property, shrinking B if necessary we can assume that
the line bundle ω−1

X /B
is ample over B , hence every fiber of X → B is a Fano variety.

The equalities of the Picard rank, Fano index, and anticanonical degree of all fibers
of X /B follow from Corollary A.8. �

A.3 Maximal nonfactoriality of Fano threefolds

In this subsection we work over k = C and study the topology of maximally nonfac-
torial threefolds.

Recall from [21, Definition 3.4] that a nodal threefold X is maximally nonfactorial
(respectively, Q-maximally nonfactorial) if the natural morphism from the class group
of X to the direct sum of the local class groups of X at the singular points is sur-
jective (respectively, has finite cokernel). See [38, Definition 6.10] for an equivalent
definition in terms of the blowup of X at the nodes. For us, however, the following
reformulation is more convenient: assume X has a small resolution of singularities
X̂ → X, let C1, . . . ,Cm ⊂ X̂ be its exceptional curves, and consider the natural linear
map

Pic(X̂) → Z
m, D �→ (D · Ci)

m
i=1. (49)

Then by [38, Lemma 6.14] maximal nonfactoriality (respectively, Q-maximal non-
factoriality) of X is equivalent to surjectivity (respectively, surjectivity after tensoring
with Q) of (49). Restating this criterion in terms of homology groups, we obtain

Lemma A.10 Let � : X̂ → X be a small resolution of a nodal projective complex
threefold X such that the condition (48) holds for X. Let C1, . . . ,Cm ⊂ X̂ be the
exceptional curves of � . Then

(i) X is Q-maximally nonfactorial if and only if the classes [C1], . . . , [Cm] in
H2(X̂,Z) are linearly independent,

(ii) X is maximally nonfactorial if and only if the classes [C1], . . . , [Cm] ∈ H2(X̂,Z)

are linearly independent and the subgroup in H2(X̂,Z) generated by these
classes is saturated.
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Proof Let γ : Zm → H2(X̂,Z) be the map given by the classes [C1], . . . , [Cm] of the
exceptional curves. It follows from (48) that Pic(X̂) � H2(X̂,Z), hence the map (49)
can be rewritten as the composition

H2(X̂,Z) � Hom(H2(X̂,Z),Z)
γ ∗

−−→ Hom(Zm,Z).

The first arrow is surjective by the universal coefficient theorem, hence (49) is sur-
jective if and only if γ ∗ is, which holds exactly when γ is an isomorphism onto a
saturated subgroup of H2(X̂,Z). Similarly, tensor product of (49) with Q is surjec-
tive if and only if γ ∗

Q
is, which holds exactly when γ is injective. �

By [38, Proposition 6.13] for any Q-maximally nonfactorial nodal threefold X

there exists a small resolution. We will need the following standard topological com-
putation (see, e.g., [16, §1]).

Lemma A.11 Let X be a maximally nonfactorial m-nodal threefold with a small res-
olution � : X̂ → X. Then the map � ∗ : H3(X,Z) → H3(X̂,Z) is an isomorphism.
If, moreover, X is proper then

b4(X) = b2(X) + m (50)

and the natural mixed Hodge structure of H3(X,Z) is pure.

Proof Let C1, . . . ,Cm ⊂ X̂ be the exceptional curves. The cohomology exact se-
quence of a pair gives

0 → H2(X,Z)
� ∗−−→ H2(X̂,Z)

γ ∗
−−→

m⊕
i=1

H2(Ci,Z) → H3(X,Z)
� ∗−−→ H3(X̂,Z) → 0,

where γ : � Ci ↪→ X̂ is the embedding. Since (49) is surjective by the maximal
nonfactoriality assumption, γ ∗ is also surjective, hence � ∗ : H3(X,Z) → H3(X̂,Z)

is an isomorphism. It also follows that b2(X̂) = b2(X) + m and b4(X̂) = b4(X).
If X is proper, then X̂ is smooth and proper, the Hodge structure of H3(X̂,Z) is

pure, hence the Hodge structure of H3(X,Z) is pure as well. Finally, Poincaré duality
on X̂ implies (50). �

The following result is well known but we could not find a reference. For an
abelian group A we denote by Ator ⊂ A the subgroup of torsion elements in A.

Lemma A.12 If X is a smooth complex Fano threefold then

H3(X,Z)tor = 0 and H2(X,Z)tor = 0.

Proof By the universal coefficient theorem it is enough to prove the second vanishing.
We use the classification of Fano threefolds and two simple observations.

First, using an appropriate version of the Lefschetz hyperplane theorem we de-
duce H2(X,Z)tor = 0 if X is a smooth complete intersection of Cartier divisors in a
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weighted projective space (see [12, Proposition 6]), or a complete intersection of am-
ple divisors in a smooth rational variety (see, e.g., [10, Lemma 3.2(c)]), or a double
covering of a smooth rational variety with smooth ample branch divisor, (see, e.g.,
[10, Lemma 3.3(c)]).

Moreover, since H2(X,Z)tor is a birational invariant, we conclude that
H2(X,Z)tor = 0 for all X birational to threefolds as above; in particular, this holds if
X is rational.

Finally, looking at the classification of smooth Fano threefolds (see [43] or [6]),
we see that the above observations cover all the possibilities. �

Remark A.13 Lemma A.12 also proves that the Brauer group Br(X) is zero for any
Fano threefold.

The proof of the following result, answering in the case of Fano threefolds the
question posed after [38, Proposition 6.13], uses an idea suggested to us by Claire
Voisin.

Proposition A.14 If X is a nodal Q-maximally nonfactorial complex Fano threefold
then X is maximally nonfactorial.

Proof Let � : X̂ → X be a small resolution (recall that it exists by [38, Proposi-
tion 6.13]). Since X is Q-maximally nonfactorial, the classes [C1], . . . , [Cm] of the
exceptional curves are linearly independent in H2(X̂,Z) by Lemma A.10. On the
other hand, by Theorem A.9 there exists a smoothing X of X over a smooth pointed
curve (B,o). Using [14, Lemma 8.1] for b �= o in B we obtain

H2(Xb,Z) = H2(X̂,Z)/〈[C1], . . . , [Cm]〉.

Since Xb is a smooth Fano threefold, Lemma A.12 proves that H2(Xb,Z) is torsion
free. Thus, the subgroup in H2(X̂,Z) generated by the classes [C1], . . . , [Cm] is sat-
urated, hence X is maximally nonfactorial by Lemma A.10. �

A.4 The family of intermediate Jacobians

In this section we discuss the Hodge theory of nodal complex Fano threefolds; in par-
ticular, we give a Hodge-theoretic proof of Corollary 1.7. We will need the following
standard topological computation for topological one-parameter degenerations see,
e.g., [52, §C.2.2].

Lemma A.15 Let f : X → (�,o) be a smoothing of a proper 1-nodal maximally
nonfactorial threefold X = Xo over a pointed complex disc. For any point b �= o in the
disc � the monodromy action on H3(Xb,Z) is trivial, and we have an isomorphism
of abelian groups

H3(X,Z) ∼= H3(X ,Z) ∼= H3(Xb,Z). (51)
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Proof Since X is smooth, there is a continuous retraction map r : X → X. Obviously,
it induces an isomorphism of cohomology groups r∗ : H3(X,Z) −−→∼ H3(X ,Z).

Choose a point b �= o in �, consider the map rb := r|Xb
: Xb → X, and denote by

S3
b := r−1

b (x0) ⊂ Xb the vanishing 3-sphere and by ib : S3
b ↪→ Xb its embedding. The

cohomology sequence of a pair (see, e.g., [52, (C-10)]) gives an exact sequence

0 → H3(X,Z)
r∗
b−−→ H3(Xb,Z)

i∗b−−→ H3(S3
b,Z) −→ H4(X,Z)

r∗
b−−→ H4(Xb,Z) → 0.

It also follows that b2(X) = b2(Xb). Combining this with (50) and Poincaré duality
on Xb , we obtain

b4(X) = b2(X) + 1 = b2(Xb) + 1 = b4(Xb) + 1.

We see that the kernel of the morphism r∗
b : H4(X,Z) → H4(Xb,Z) has rank 1, hence

the morphism H3(S3
b,Z) → H4(X,Z) must be injective, and hence the morphism

i∗b : H3(Xb,Z) → H3(S3
b,Z) must be zero. This means that the vanishing sphere S3

b

is homologically trivial, hence the natural monodromy action on H3(Xb,Z) is trivial
as well, and the map r∗

b : H3(X,Z) → H3(Xb,Z) is an isomorphism. �

Now we can state the main result of this subsection. We denote by Jac(X) the
intermediate Jacobian of a smooth projective rationally connected threefold X; this
is a principally polarized abelian variety.

Proposition A.16 Let f : X → B be a smoothing of a 1-nodal maximally nonfacto-
rial Fano threefold X. There is a smooth and proper family J → B of principally
polarized abelian varieties such that

Jb
∼=

{
Jac(Xb), if b �= o,

Jac(X̂), if b = o,

where X̂ is a small resolution of X. Moreover, these isomorphisms are compatible
with the principal polarizations.

We note that a general approach for relative Jacobians of degenerations has been
developed in [62], but in our simple situation of trivial monodromy we do not need
that formalism.

Proof By Lemma A.15 the analytic sheaf H3
X /B

:= R3f∗ZX on B is locally constant
and we have a base change isomorphism

(H3
X /B)o −−→∼ H3(X,Z). (52)

Moreover, away from the origin o ∈ B the local system H3
X /B

is endowed with a
polarized variation of pure Hodge structures, and since the monodromy around the
origin o acts trivially on H3(Xb,Z) (again by Lemma A.15) the Hodge filtration of
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(H3
X /B

)b has a limit when b approaches o, see [56, (6.15)], and the limiting filtration

endows (H3
X /B

)o with a rational mixed Hodge structure.

Consider a semistable reduction σ : X̃ → X of the family X /B and the composi-
tion of maps

H3(X,Q) = H3(Xo,Q)
σ ∗

o−−→ H3(X̃o,Q)
sp−−→ (H3

X /B)o ⊗Q −−→∼ H3(X,Q),

where sp is the specialization map, see [52, §11.3.1], and the last arrow is induced by
the map (52). Unwinding the definitions, we see that their composition is an isomor-
phism of Q-vector spaces, hence sp◦σ ∗

o is also an isomorphism. On the other hand,
both σ ∗

o and sp are compatible with the Hodge filtrations; this is obvious for σ ∗
o , and

for sp this is [52, Theorem 11.29]. Therefore, the limiting mixed Hodge structure
is isomorphic to the Hodge structure of H3(X,Q); in particular, it is pure and has a
natural integral structure.

Now we see that the local system H3
X /B

carries a polarized variation of pure in-
tegral Hodge structures, so we can define J → B as the corresponding family of
principally polarized abelian varieties. The isomorphism Jb

∼= Jac(Xb) follows from
the definition of H3

X /B
, and the isomorphism Jo

∼= Jac(X̂) follows from the isomor-

phism of the limiting Hodge structure and the Hodge structure of H3(X,Z) proved
above combined with the isomorphism of Lemma A.11. �

Now we can use this to prove Corollary 1.7 from the Introduction.

Proof of Corollary 1.7 Consider the smoothing X → B constructed in Theorem 1.4.
Its central fiber X is maximally nonfactorial (either by Remark 2.7, or by Proposi-
tion A.14), hence Proposition A.16 provides a smooth and proper family J → B of
abelian varieties such that Jb

∼= Jac(Xb) for b �= o. Moreover, using the small res-
olution π : Ỹ → X from Proposition 2.6 we obtain an isomorphism Jo

∼= Jac(Ỹ ).
Finally, if d ≥ 2 the morphism σ : Ỹ → Y is the blowup of a smooth rational curve,
hence Jac(Ỹ ) ∼= Jac(Y ). �
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