
ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2025, Vol. 329, pp. 88–116. c© Pleiades Publishing, Ltd., 2025.
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2025, Vol. 329, pp. 100–131.

Spinor Modifications of Conic Bundles
and Derived Categories of 1-Nodal Fano Threefolds

Alexander Kuznetsov a,b

Received June 2, 2025; revised July 2, 2025; accepted July 6, 2025

To Yura Prokhorov,
with deep respect and admiration

Abstract—Given a flat conic bundle X/S and an abstract spinor bundle F on X , we define a
new conic bundle XF/S, called a spinor modification of X , such that the even Clifford algebras
of X/S and XF/S are Morita equivalent and the orthogonal complements of Db(S) in Db(X)
and Db(XF) are equivalent as well. We demonstrate how the technique of spinor modifications
works in the example of conic bundles associated with some nonfactorial 1-nodal prime Fano
threefolds. In particular, we construct a categorical absorption of singularities for these Fano
threefolds.
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1. INTRODUCTION

One of the most important types of Mori fiber spaces in the minimal model program are conic
bundles, i.e., projective dominant morphisms f : X → S of relative dimension 1 with relatively ample
anticanonical class. Conic bundles are extremely useful in studying the birational geometry of X.
For instance, in dimension 3, the intermediate Jacobian of X can be computed from the discriminant
divisor ΔX/S of f , and there are powerful non-rationality criteria for X in terms of ΔX/S (see [16]
for a recent survey).

On the other hand, if a conic bundle is flat (this is always the case when the total space of
a conic bundle is a Gorenstein threefold; see [4, Theorem 7]), one can also control the bounded
derived category Db(X) of X; it has a semiorthogonal decomposition with components Db(S)
and Db(S, C�0(X/S)), where C�0(X/S) is the even Clifford algebra of X/S. While the first com-
ponent of this decomposition is quite familiar (for example, if X is a smooth rationally connected
threefold, then S is a smooth rational surface), the second component is not so easy to understand,
especially when C�0(X/S) has a complicated structure. The goal of this paper is to develop tools
for understanding this category and to demonstrate how these tools work in the geometrically
interesting examples of conic bundles corresponding to nonfactorial 1-nodal prime Fano threefolds.

So, from now on we assume that f : X → S is a flat conic bundle (of any dimension, not neces-
sarily relatively minimal; see Definition 2.1 for the assumptions we impose). Let q : L → Sym2 E∨

be the corresponding quadratic form, where L is a line bundle and E is a vector bundle of rank 3
on S, so that X ⊂ PS(E) is a divisor of relative degree 2 with equation given by q. Then

C�0(X/S) = C�0(q) = C�0(E ,L, q) := OS ⊕ (∧2E ⊗ L), (1.1)
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SPINOR MODIFICATIONS OF CONIC BUNDLES 89

and the multiplication in C�0(q) is induced by the wedge product and the form q (see Subsection 2.1
and Example 2.3 for explicit formulas). The kernel category of X/S is the subcategory in Db(X)
defined by

Ker(X/S) = Ker(f∗) :=
{
G ∈ Db(X)

∣∣ f∗(G) = 0
}
⊂ Db(X). (1.2)

By [5, Theorem 4.2] there is a semiorthogonal decomposition

Db(X) =
〈
Ker(X/S), f∗(Db(S))

〉

and an equivalence of triangulated categories

Ker(X/S) � Db(S, C�0(q)), (1.3)

where the right-hand side is the bounded derived category of coherent sheaves of modules over C�0(q).
As we explained above, our goal is to study this category.

1.1. Spinor modifications. The starting point of our approach to the study of Ker(X/S)
is a simple observation: there are, in fact, many different flat conic bundles over S that have the
same kernel category but different (although Morita equivalent) even Clifford algebras, and some
of these Clifford algebras are easier to deal with. The goal is, therefore, to take control over such
conic bundles.

A construction that allows one to pass between conic bundles (or, more generally, quadric
bundles) with equivalent kernel categories was developed in [9]. This is an iteration of two opera-
tions: the hyperbolic reduction, which decreases the relative dimension of a quadric bundle, and the
hyperbolic extension, which increases the relative dimension; together, they generate an equivalence
relation, called hyperbolic equivalence. Thus, to pass from one conic bundle to another, one needs
to consider intermediate quadric bundles of higher dimension, which is, of course, a disadvantage
of this approach.

In this paper we propose another way to find conic bundles with equivalent kernel categories
(and Morita equivalent Clifford algebras). To this end we introduce the following notion.

Definition 1.1. A vector bundle F of rank 2 on a conic bundle f : X → S is an abstract spinor
bundle if

(i) f∗(F) = 0 and
(ii) c1(F) = KX/S in Pic(X/S),

where Pic(X/S) := Pic(X)/f∗Pic(S) is the relative Picard group of X/S.
By [5] a conic bundle X/S has a natural sequence of canonical spinor bundles F i

X/S , the images
of the standard modules C�i(q) over C�0(q) under the equivalence (1.3) (see also (2.10) or, for a
down-to-earth description, Lemma 2.16), but they do not exhaust all possibilities. In fact, the main
result of this paper is the following modification theorem.

We denote by End0(F) ⊂ End(F) the trace-free part of the endomorphism bundle of F .
Theorem 1.2. Let X/S be a flat conic bundle over S with quadratic form q. For any abstract

spinor bundle F on X, there is a flat conic bundle XF ⊂ PS(EF ) over S with quadratic form
qF : LF → Sym2 E∨

F , where

LF ∼= det(f∗End0(F)) and EF ∼= (f∗End0(F))∨,

such that C�0(qF ) ∼= f∗End(F) and
(i) there is an S-linear Morita equivalence of algebras C�0(qF ) ∼ C�0(q), and
(ii) there is an S-linear t-exact Fourier–Mukai equivalence of categories Ker(XF/S)�Ker(X/S).

Moreover, the equivalence in (ii) takes the canonical spinor bundle F0
XF/S ∈ Ker(XF/S) to the

abstract spinor bundle F ∈ Ker(X/S).
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90 A. KUZNETSOV

Conversely, if X ′/S is a flat conic bundle with quadratic form q′ such that there is an equivalence

C�0(q′) ∼ C�0(q) or Ker(X ′/S) � Ker(X/S)

as in (i) or (ii), then there is an abstract spinor bundle F on X such that X ′ ∼= XF .
The conic bundle XF/S produced from X/S and the abstract spinor bundle F on X will be

called the F-modification of X/S or, if we do not want to specify F , simply a spinor modification
of X/S.

By Theorem 1.2 the classification of conic bundles X ′/S with Morita equivalence C�0(q′) ∼ C�0(q)
reduces to the classification of abstract spinor bundles on X.

As mentioned above, hyperbolic equivalent conic bundles have Morita equivalent Clifford alge-
bras (see [9, Proposition 1.1(3)]). Combined with the converse part of Theorem 1.2, this has the
following simple consequence.

Corollary 1.3. Any conic bundle hyperbolic equivalent to X/S is a spinor modification
of X/S.

We expect that the converse is also true.
Conjecture 1.4. If X ′/S is a spinor modification of X/S, then X ′/S is hyperbolic equivalent

to X/S.

1.2. Outline of the proof. We prove Theorem 1.2 in Section 2. The proof consists of three
steps.

First, we show that the isomorphism class of the restriction of an abstract spinor bundle to a
geometric fiber of a conic bundle only depends on the isomorphism class of the fiber (see Propo-
sition 2.13). In particular, it follows that any abstract spinor bundle F is fiberwise isomorphic to
the canonical spinor bundle F0

X/S , and therefore the algebra f∗End(F) on S is a pointwise Clifford
algebra (see Definition 2.5).

Next, we observe that the even Clifford algebra C�0(q) of a quadratic form q contains all the
information about q (see Example 2.3), and using this observation we check that any pointwise
Clifford algebra is isomorphic to the even Clifford algebra of an appropriate quadratic form (see
Proposition 2.7).

Remark 1.5. The result proved in Proposition 2.7 is similar to [3, Theorem 6.12], where a
bijection between flat conic bundles (over a smooth base scheme) and locally Clifford algebras is
established. Note that R is a locally Clifford algebra (see [3, Definition 4.6]) on a scheme S if for any
closed point s the localization of R at s is the Clifford algebra of a family of quadratic forms, and R
is a pointwise Clifford algebra if for any geometric point s the fiber of R at s is the even Clifford
algebra of a quadratic form. The latter notion is obviously weaker; hence the bijection proved in
Proposition 2.7 is stronger.

Moreover, the proof of Proposition 2.7 is more direct and transparent than the proof of [3,
Theorem 6.12]; instead of relying on the notion of a Severi–Brauer scheme of an arbitrary family of
algebras, it reconstructs the quadratic form of the conic bundle directly from the commutator map
of a pointwise Clifford algebra.

To deduce Theorem 1.2 from Propositions 2.7 and 2.13, we check that any abstract spinor
bundle F is a relative tilting bundle for the category Ker(X/S) over S. Therefore, on the one
hand, there is an equivalence Ker(X/S) � Db(S, f∗End(F)), and, on the other hand, f∗End(F) is a
pointwise Clifford algebra, so that f∗End(F) ∼= C�0(qF ) for an appropriate quadratic form qF . Thus,

Ker(X/S) � Db(S, C�0(qF )) � Ker(XF/S),

where XF is the conic bundle associated with qF and the second equivalence is (1.3) for XF .
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One thing we want to point out is that the combination of the above steps makes the construction
of the spinor modification XF completely explicit and effective; we demonstrate this in Section 3.

To prove the converse part of Theorem 1.2, we show that the image of the canonical spinor
bundle F0

X′/S under any S-linear t-exact equivalence Ker(X ′/S) � Ker(X/S) is an abstract spinor
bundle F on X. Then it is easy to see that XF ∼= X ′.

We conclude Section 2 by discussing a few properties of spinor modifications. First, we check
that the spinor modification relation on the set of all flat conic bundles is an equivalence relation
(see Corollary 2.20). We also show that any spinor modification XF/S of a conic bundle X/S is
birational to X over S (see Lemma 2.21) and that XF is regular or smooth if and only if X is
regular or smooth (see Proposition 2.22).

1.3. Application to 1-nodal Fano threefolds. In Section 3 we show how Theorem 1.2
works in an example of geometric interest: for conic bundles Y → P

2 providing small resolutions of
nonfactorial 1-nodal Fano threefolds with Picard number 1 classified in [10]. There are four interest-
ing conic bundles of this sort (altogether there are six types, but two of them are projectivizations
of vector bundles, so for them the Clifford algebra is Morita-trivial): in the notation of [10, Table 2]
they correspond to 1-nodal Fano threefolds X of types

12nb, 10na, 8nb, and 5n

of genera 12, 10, 8, and 5, respectively. So, we consider small resolutions π : Y → X of such
threefolds that have a structure of a conic bundle Y → P

2. The quadratic forms associated with
these conic bundles can be described explicitly (see (3.1) and (3.2) for the first three types and (3.28)
for the last one).

We introduce a uniform construction of an interesting abstract spinor bundle F in all these
cases, applying Serre’s construction to the (unique) K-trivial curve in Y (i.e., to the exceptional
curve of the small contraction π : Y → X; see Lemma 3.1). In the first three cases we show that F
is exceptional (see Corollary 3.4) and identify the spinor modifications YF with

• a divisor YF ⊂ P
2 × P

2 of bidegree (2, 1), for type 12nb;
• a double covering YF → P

1 × P
2 branched at a divisor of bidegree (2, 2), for type 10na;

• the blowup YF → Y of a smooth cubic threefold Y ⊂ P
4 in a line, for type 8nb

(see Proposition 3.3 and Corollary 3.5). Using these identifications and the equivalences

Ker(Y/P2) � Ker(YF/P
2)

proved in Theorem 1.2, we identify the orthogonal complement F⊥ ⊂ Ker(Y/P2) of F with

• the derived category of a quiver with two vertices and three arrows (see Proposition 3.7),
• the derived category of a curve of genus 2 (see Proposition 3.9), and
• a component of the derived category of the cubic threefold Y (see Proposition 3.12),

for types 12nb, 10na, and 8nb, respectively.
We use these results to describe the derived categories Db(X) of the corresponding 1-nodal

Fano threefolds of types 12nb, 10na, and 8nb. We show that, up to twist, the spinor bundle F is
isomorphic to the pullback of a vector bundle, denoted further by UX , along the small contraction
π : Y → X. We also show that UX is a Mukai bundle on X (see Proposition 3.13) and that there is
a semiorthogonal decomposition

Db(X) = 〈PX ,AX ,UX ,OX〉,

where PX is a P
∞,2-object (in the sense of [12]) and AX is a smooth and proper category equivalent

to the category F⊥ described above (see Theorem 3.15). In particular, PX provides a universal
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deformation absorption of singularities of X, and for any smoothing X/B of X over a pointed
curve (B, o) there is a smooth and proper category A over B with central fiber Ao = AX and with
general fiber Ab ⊂ Db(Xb) equivalent to the orthogonal complement of the structure sheaf and the
Mukai bundle of the smooth Fano threefold Xb (see Corollary 3.16).

For the conic bundle Y → P
2 of the small resolution π : Y → X of a nonfactorial 1-nodal Fano

threefold X of type 5n, the object F is not exceptional. In this case we do not have a precise result
similar to that for types 12nb, 10na, and 8nb. However, we show that there is a semiorthogonal
decomposition

Db(X) = 〈PX ,AX ,OX〉,

where PX is again a P
∞,2-object and AX is a smooth and proper category which is a Krull–Schmidt

partner of Ker(Y/P2) in the sense of [14]. We also show that AX deforms to the orthogonal
complement of OXb

in Db(Xb) for any smoothing X of X.
Conventions. All schemes are separated schemes of finite type over a field k of characteristic

different from 2. We denote by Db(S) the bounded derived category of coherent sheaves on S and
by Dperf(S) the category of perfect complexes. Similarly, given a sheaf of OS-algebras R, we write
Db(S,R) for the bounded derived category of coherent right R-modules.

All functors are derived by default; in particular, we write f∗ and f∗ for the derived pushforward
and pullback functors, ⊗ for the derived tensor product, and, given an object F , we write Fs and F|Z
for the derived restriction of F to a closed point s and a closed subscheme Z, respectively.

2. SPINOR MODIFICATIONS OF CONIC BUNDLES

For the purposes of this paper we adopt the following
Definition 2.1. A conic bundle f : X → S is a flat projective Gorenstein morphism of relative

dimension 1 such that f∗OX
∼= OS , the relative anticanonical class −KX/S is f -ample, and S is

integral.
The fiber of a conic bundle f : X → S over a geometric point s ∈ S is a connected projective

Gorenstein curve Xs, and its anticanonical line bundle ω−1
Xs

∼= ω−1
X/S |Xs is ample. Thus, every

geometric fiber of f is isomorphic to a plane conic (with respect to the anticanonical embedding).
It also follows that

E := f∗
(
ω−1
X/S

)∨

is a vector bundle of rank 3, and the natural morphism Sym2 E∨ = Sym2(f∗(ω
−1
X/S)) → f∗(ω

−2
X/S) is

an epimorphism onto a vector bundle of rank 5; hence its kernel is a line bundle, which we denote
by L. The induced embedding of vector bundles

q : L → Sym2 E∨

can be thought of as a family of nowhere vanishing quadratic forms on E . It defines a global section
of the line bundle p∗L∨ ⊗ OPS(E)/S(2) on PS(E), where p : PS(E) → S is the natural projection,
whose zero locus is exactly X ⊂ PS(E).

Conversely, given a vector bundle E of rank 3, a line bundle L, and a nowhere vanishing quadratic
form q : L → Sym2 E∨ on S, we can define the subscheme X ⊂ PS(E) as the zero locus of the induced
global section of p∗L∨ ⊗ OPS(E)/S(2) on PS(E); then the morphism f := p|X : X → S is a conic
bundle. Furthermore, if M is a line bundle on S, the quadratic form q can also be considered as a
quadratic form L ⊗M⊗2 → Sym2(E ⊗M∨)∨ whose zero locus in PS(E ⊗M∨) = PS(E) coincides
with X. Thus, we obtain a bijection between conic bundles and quadratic forms up to twists.

Remark 2.2. It is easy to check that starting with a quadratic form q : L → Sym2 E∨ on S and
using the above constructions first to produce from it a conic bundle, and then to produce a quadratic
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form again, we obtain the normalized twist q′ : L′ → Sym2 E ′∨ of the same quadratic form, where

L′ := L ⊗ det(E)⊗2 ⊗ L⊗2 ∼= det(E)⊗2 ⊗ L⊗3, E ′ := E ⊗ det(E)∨ ⊗ L∨ ∼= (∧2E ⊗ L)∨.

Note that normalized quadratic forms are characterized by the existence of an isomorphism

L ∼= det(E)∨. (2.1)

In particular, any quadratic form has a unique normalized twist.

2.1. Pointwise Clifford algebras. Given a quadratic form q : L → Sym2 E∨, we define the
even Clifford OS-algebra C�0(q) by formula (1.1) from the Introduction, and we endow it with
multiplication as follows. The first component OS of C�0(q) is generated by the unit 1 of the
algebra, and the multiplication on the second component ∧2E ⊗ L is defined as the sum of the two
maps

(∧2E ⊗ L)⊗ (∧2E ⊗ L) ↪→ E ⊗ E ⊗ L ⊗ E ⊗ E ⊗ L idE⊗q⊗idE⊗idL−−−−−−−−−−→ E ⊗ E ⊗ L −→ ∧2E ⊗ L,

(∧2E ⊗ L)⊗ (∧2E ⊗ L) ↪→ E ⊗ E ⊗ L ⊗ E ⊗ E ⊗ L idE⊗q⊗idE⊗idL−−−−−−−−−−→ E ⊗ E ⊗ L q−→ OS ,

(2.2)

where the first arrow is the natural embedding, the second is induced by the composition

E ⊗ L ⊗ E idE⊗q⊗idE−−−−−−−→ E ⊗ Sym2 E∨ ⊗ E −→ OS ,

with the second arrow being the natural pairing, the last map in the second row in (2.2) is analogous,
and the last map in the first row is the wedge product.

Example 2.3. It is easy to compute the Clifford multiplication C�0(q) ⊗ C�0(q) → C�0(q) ex-
plicitly. Assume S = Spec(k) and q is a diagonal quadratic form in a basis e1, e2, e3 of a vector
space E , so that

q(x1e1 + x2e2 + x3e3) = a1x
2
1 + a2x

2
2 + a3x

2
3, where a1, a2, a3 ∈ k.

Then in the basis e12 = e1 ∧ e2, e13 = e1 ∧ e3, e23 = e2 ∧ e3 of ∧2E the multiplication takes the
form

e2ij = −2aiaj · 1 and eij · ejk = −ejk · eij = ajeik for i �= j �= k �= i.

Thus, the restriction of the commutator to the second summand C�00(q) := ∧2E ⊗ L of (1.1) is
the map

∧2 (C�00(q))
[−,−]−−−−→ C�00(q), eij ∧ ejk 
→ 2ajeik. (2.3)

Note that the determinant of this map is equal to the determinant of q up to an invertible constant,
and in the case where q is nondegenerate this map is surjective and C�00(q) = [C�0(q), C�0(q)].

Remark 2.4. Assume k is algebraically closed. The computation of Example 2.3 shows that

• if rk(q) = 3 then C�0(q) is the algebra of 2× 2 matrices;

• if rk(q) = 2 then C�0(q) is the path algebra of the quiver •
α

•
β

with relations α ·β = β ·α=0;

• if rk(q) = 1 then C�0(q) is the exterior algebra with two generators.

It also follows that one can reconstruct the quadratic form q from the even Clifford algebra.
To make use of this observation, we introduce the following
Definition 2.5. A locally free OS-algebra R endowed with a direct sum decomposition

R = OS ⊕R0, (2.4)
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where the first component is generated by the unit of R and the second component contains the
commutator subsheaf of R (i.e., [R,R] ⊂ R0), is called a pointwise Clifford algebra if for all
geometric points s ∈ S there is an isomorphism of the algebra Rs with the even Clifford algebra
of a nonzero quadratic form such that the restriction Rs = k(s) ⊕ R0

s of the decomposition (2.4)
coincides with the decomposition (1.1) of the even Clifford algebra.

Remark 2.6. Note that specifying a decomposition (2.4) is equivalent to choosing a trace map
tr : R → OS (i.e., a map vanishing on the commutator subsheaf [R,R] ⊂ R) such that tr(1) is
an invertible section of OS , up to rescaling. In particular, if R is an Azumaya algebra, then the
decomposition (2.4) is unique.

Now we can prove the following generalization of [3, Theorem 6.12].
Proposition 2.7. If R is a pointwise Clifford algebra on a reduced scheme S, then R∼= C�0(qR)

for a nowhere vanishing quadratic form qR : det(R0) → Sym2(R0).
In particular, the operations q 
→ C�0(q) and R 
→ qR define a bijection between the set of all

nowhere vanishing quadratic forms up to twist and the set of pointwise Clifford algebras on S.
Proof. Let R = OS ⊕R0 be a pointwise Clifford algebra. Consider the commutator map

det(R0)⊗ (R0)∨ ∼= ∧2(R0)
[−,−]−−−−→ R0.

Since for every geometric point s ∈ S the algebra Rs is isomorphic to an even Clifford algebra
and R0

s corresponds to the second summand in (1.1), the computation of Example 2.3 shows that
the induced map

qR : det(R0) → R0 ⊗R0

is symmetric at every geometric point of S; therefore, the composition of qR with the projection
R0 ⊗ R0 → ∧2(R0) vanishes at every geometric point of S. Since S is reduced and R0 is locally
free, it follows that qR factors as det(R0) → Sym2(R0); hence it defines a quadratic form on the
vector bundle E := (R0)∨ with L := det(R0). It remains to note that the isomorphism of sheaves

C�0
(
(R0)∨,det(R0), qR

)
= OS ⊕

(
∧2(R0)∨ ⊗ det(R0)

) ∼= OS ⊕R0 = R

is compatible with the Clifford multiplication of the left-hand side and with the multiplication of the
right-hand side at every geometric point s ∈ S; hence it is an isomorphism of OS-algebras (again,
because S is reduced).

Finally, note that if q is a nowhere vanishing quadratic form and R := C�0(q) is its even Clifford
algebra, then R0 = ∧2E ⊗ L ∼= E∨ ⊗ det(E)⊗ L and the quadratic form

qR : det(E)⊗2 ⊗ L⊗3 ∼= det(R0) → Sym2(R0) ∼= Sym2
(
E∨ ⊗ det(E)⊗ L

)

is isomorphic to the normalized twist of q (see Remark 2.2). Thus, the maps q 
→ C�0(q) and R 
→ qR
give the required bijection. �

2.2. The kernel category. Let f : X → S be a conic bundle. The kernel category was
defined in (1.2); it is an admissible triangulated subcategory in Db(X). Similarly,

Kerperf(f∗) = Kerperf(X/S) :=
{
G ∈ Dperf(X)

∣
∣ f∗(G) = 0

}
= Ker(f∗) ∩Dperf(X)

denotes the perfect part of the kernel category.
We briefly review some properties of Ker(f∗).
Lemma 2.8. The kernel category Ker(f∗) ⊂ Db(X) of a conic bundle f : X → S is S-linear ;

i.e.,

Ker(f∗)⊗ f∗H ⊂ Ker(f∗) and Kerperf(f∗)⊗ f∗H ⊂ Kerperf(f∗) for all H ∈ Dperf(S).
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Moreover, if φ : S′ → S is any morphism and f ′ : X ′ := X ×S S′ → S′ is the base change of X → S,
then

φX∗(Ker(f ′
∗)) ⊂ Ker(f∗) and φ∗

X(Kerperf(f∗)) ⊂ Kerperf(f ′
∗), (2.5)

where φX : X ′ → X is the morphism induced by φ. In particular, if G ∈ Kerperf(f∗), then

H•(Xs,G|Xs) = 0 (2.6)

for every geometric point s ∈ S.
Proof. The S-linear property of the kernel category follows immediately from the projection

formula f∗(G ⊗ f∗H) ∼= f∗(G)⊗H. Furthermore, f∗ ◦ φX∗ ∼= φ∗ ◦ f ′
∗, and since f is flat, we have a

base change isomorphism

f ′
∗ ◦ φ∗

X
∼= φ∗ ◦ f∗ : Dperf(X) → Dperf(S′),

and (2.5) follows. Applying the second inclusion for S′ = {s}, we obtain (2.6). �
Lemma 2.9. The subcategory Ker(f∗) ⊂ Db(X) is closed under the truncation functors of

the standard t-structure on Db(X). In other words, f∗(G) = 0 if and only if f∗(Hi(G)) = 0 for
all i ∈ Z, where Hi(G) is the i-th cohomology sheaf of G. Moreover, the subcategories

Ker(f∗)
≤0 := Ker(f∗) ∩D(X)≤0 and Ker(f∗)

≥0 := Ker(f∗) ∩D(X)≥0

define a t-structure on Ker(f∗) such that the embedding functor Ker(f∗) ↪→ Db(X) is t-exact.
Proof. To prove that Ker(f∗) is closed under truncations, note that the dimension of the fibers

of f is 1; hence the hypercohomology spectral sequence

Rjf∗(Hi(G)) ⇒ Hi+j(f∗G)

degenerates in the second term and the vanishing of f∗G is equivalent to the vanishing of f∗(Hi(G))
for all i. This in turn implies that the truncation functors of the standard t-structure preserve
Ker(f∗) and that the standard t-structure induces a t-structure on Ker(f∗). �

By [5] the kernel category is a component of the S-linear semiorthogonal decomposition

Db(X) = 〈Ker(f∗), f
∗(Db(S))〉 (2.7)

and is equivalent to the bounded derived category Db(S,C�0(q)) of coherent right modules over C�0(q).
To explain the construction of this equivalence, recall from [5, Sect. 3.3] that the even Clifford
algebra C�0(q) comes with a sequence of natural C�0(q)-bimodules:

C�1(q) := E ⊕ (∧3E ⊗ L), C�2i(q) := C�0(q)⊗ L−i, C�2i+1(q) := C�1(q)⊗ L−i, (2.8)

where the bimodule structure is defined by the Clifford multiplication C�i(q) ⊗ C�j(q) → C�i+j(q)
defined analogously to (2.2) (see [8, § 3]). Moreover, by [5, Lemma 3.8, Corollary 3.9] we have

C�i(q)⊗C�0(q) C�j(q) ∼= C�i+j(q) and RHomC�0(q)(C�i(q), C�j(q)) ∼= C�j−i(q). (2.9)

In particular, all C�i(q) are locally projective left or right modules over C�0(q).
We denote by ι : X ↪→ PS(E) the embedding and by p : PS(E) → S the projection, so that

f = p ◦ ι.
Theorem 2.10 [5, Lemmas 4.5, 4.7, Proposition 4.9, Theorem 4.2]. For each i ∈ Z there is a

left f∗C�0(q)-module F i
X/S on X, which is locally free of rank 2 over OX , and an exact sequence of

left p∗C�0(q)-modules

0 → p∗C�i−1(q)⊗OPS(E)/S(−2)
ϕi−−→ p∗C�i(q)⊗OPS(E)/S(−1) → ι∗F i

X/S → 0, (2.10)
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where the morphism ϕi is induced by the embedding OPS(E)/S(−1) ↪→ p∗E ↪→ p∗C�1(q) and the
Clifford multiplication C�i−1(q)⊗ C�1(q) → C�i(q). Moreover, the functor

ΦF i
X/S

: Db(S, C�0(q)) → Db(X), M 
→ f∗M⊗f∗C�0(q) F i
X/S (2.11)

is S-linear, t-exact, fully faithful, and defines an equivalence Db(S, C�0(q)) � Ker(f∗) ⊂ Db(X) of
triangulated categories, while

Φ!
F i

X/S
: Db(X) → Db(S, C�0(q)), G 
→ f∗RHom(F i

X/S ,G) (2.12)

is its right adjoint. In particular, the restriction Φ!
F i

X/S

∣
∣
Ker(f∗)

is the inverse of ΦF i
X/S

.

We will say that a bundle F ∈ Ker(f∗) compactly generates Ker(f∗) over S if
(
F ⊗ f∗Dperf(S)

)⊥ ∩Ker(f∗) = 0.

When S = Spec(k), this notion agrees with the usual notion of compact generation.
Corollary 2.11. For each i ∈ Z we have F i

X/S
∼= ΦF0

X/S
(C�i(q)) and

f∗RHom(F i
X/S ,F

j
X/S)

∼= C�j−i(q). (2.13)

Moreover, F i
X/S ∈ Ker(f∗) and it compactly generates Ker(f∗) over S.

Proof. First, using the projection formula and the definition of ΦF0
X/S

, we obtain

ι∗ΦF0
X/S

(C�i(q)) ∼= ι∗
(
f∗C�i(q)⊗f∗C�0(q) F0

X/S

) ∼= p∗C�i(q)⊗p∗C�0(q) ι∗F0
X/S .

Next, tensoring the resolution (2.10) of ι∗F0
X/S by p∗C�i(q), using (2.9), and comparing the result

with (2.10), we see that ι∗ΦF0
X/S

(C�i(q)) ∼= ι∗F i
X/S , and the first statement follows. In particular,

we have F i
X/S ∈ Ker(f∗). Since ΦF0

X/S
is an S-linear equivalence Db(S, C�0(q)) → Ker(f∗), it also

follows that
f∗RHom

(
F i
X/S ,F

j
X/S

) ∼= RHomC�0(q)(C�i(q), C�j(q)) ∼= C�j−i(q),

where the second isomorphism is (2.9). Compact generation follows immediately from Theorem 2.10
because C�0(q) is a compact generator for Db(S, C�0(q)) over S. �

We also note that (2.7) implies a similar semiorthogonal decomposition for the perfect categories.
Corollary 2.12. If f : X → S is a conic bundle, then there is a semiorthogonal decomposition

Dperf(X) =
〈
Kerperf(f∗), f

∗(Dperf(S))
〉
. (2.14)

Proof. The claim is local over S, so we may assume that S is quasiprojective. Moreover, since
f is proper and Gorenstein, the functor f∗ has both adjoints on the bounded category; hence (2.7)
is a strong semiorthogonal decomposition in the sense of [7, Definition 2.6]. Thus, we can apply [7,
Proposition 4.1]. �

2.3. Abstract spinor bundles. Recall Definition 1.1 from the Introduction. The following
proposition shows what the restrictions of an abstract spinor bundle to the geometric fibers of a
conic bundle look like. In the statement we relax the conditions defining an abstract spinor bundle.

Proposition 2.13. Let X be a conic over an algebraically closed field k, and let F be an
acyclic vector bundle of rank 2 on X such that

(i) either −c1(F) is ample,
(ii) or F compactly generates Ker(X/k).
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Then det(F) ∼= ωX and the isomorphism class of F is uniquely determined. Explicitly,

(a) if X is smooth, so that X ∼= P
1, then F ∼= OX(−1)⊕2;

(b) if X is reducible, so that X = X ′ ∪x0 X
′′ ∼= P

1 ∪x0 P
1, then there is an exact sequence

0 → F → (OX′ ⊕OX′(−1))⊕ (OX′′ ⊕OX′′(−1)) → O⊕2
x0

→ 0, (2.15)

where the second arrow is given by the matrix
(
1 0 0 1
0 1 1 0

)
;

(c) if X is non-reduced, so that Xred ∼= P
1, then there is an exact sequence

0 → ξ∗
(
OXred(−1)⊕OXred(−2)

)
→ F → ξ∗

(
OXred ⊕OXred(−1)

)
→ 0, (2.16)

where ξ : Xred ↪→ X is the natural embedding, and the connecting morphisms

L1ξ
∗ξ∗

(
OXred ⊕OXred(−1)

)
→ L0ξ

∗ξ∗
(
OXred(−1)⊕OXred(−2)

)
, (2.17)

H0
(
Xred,OXred ⊕OXred(−1)

)
→ H1

(
Xred,OXred(−1)⊕OXred(−2)

)
(2.18)

are isomorphisms.

Proof. (a) If X is smooth, the isomorphism F ∼= OX(−1)⊕2 follows easily from acyclicity of F .
(b) Assume X is reducible. Then we have exact sequences

0 → OX′(−1) → OX → OX′′ → 0 and 0 → OX′′(−1) → OX → OX′ → 0.

Tensoring by F , we obtain exact sequences

0 → F|X′(−1) → F → F|X′′ → 0 and 0 → F|X′′(−1) → F → F|X′ → 0.

As F is acyclic and dim(X) = 1, the cohomology exact sequences imply

H0(X ′,F|X′(−1)) = H0(X ′′,F|X′′(−1)) = H1(X ′,F|X′) = H1(X ′′,F|X′′) = 0,

H0(X ′′,F|X′′) ∼= H1(X ′,F|X′(−1)), H0(X ′,F|X′) ∼= H1(X ′′,F|X′′(−1)).

On the other hand, since F is a vector bundle of rank 2 and X ′ ∼= X ′′ ∼= P
1, we can write

F|X′ ∼= OX′(−a′)⊕OX′(−b′) and F|X′′ ∼= OX′′(−a′′)⊕OX′′(−b′′),

and the cohomology equalities imply that 0 ≤ a′, b′, a′′, b′′ ≤ 1 and a′ + b′ + a′′ + b′′ = 2. We
prove that the cases where a′ = b′ = 0 or a′′ = b′′ = 0 are impossible. Indeed, if (i) holds, i.e.,
if −c1(F) is ample, then a′ + b′, a′′ + b′′ > 0, as required. Similarly, if (ii) holds and a′ = b′ = 0
or a′′ = b′′ = 0, then F is left orthogonal to OX′(−1) or OX′′(−1), respectively. Thus, we must
have {a′, b′} = {a′′, b′′} = {0, 1}.

Now consider the exact sequence 0 → OX → OX′ ⊕ OX′′ → Ox0 → 0. Tensoring it by F and
using the above computation of F|X′ and F|X′′ , we obtain (2.15). Now the acyclicity of F implies
the surjectivity of the morphism OX′ ⊕OX′′ → O⊕2

x0
; hence there is a basis in the target such that

this morphism is given by the matrix
(
1 0
0 1

)
. Finally, using the local freeness of F and acting by

appropriate automorphisms of F|X′ and F|X′′ , it is easy to reduce the second arrow of (2.15) to
the required form.

The uniqueness of F follows from (2.15).
(c) Assume X is non-reduced. Tensoring the exact sequence

0 → ξ∗OXred(−1) → OX → ξ∗OXred → 0

by F , we obtain an exact sequence

0 → ξ∗(F|Xred(−1)) → F → ξ∗(F|Xred) → 0.
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As in case (b), we can write F|Xred
∼= OXred(−a) ⊕Xred (−b) and, arguing similarly, conclude that

a = 0 and b = 1, which yields (2.16).
Applying the functor L•ξ∗ to (2.16), we obtain a long exact sequence

. . . → L1ξ
∗(F) → L1ξ

∗ξ∗(F|Xred) → L0ξ
∗ξ∗(F|Xred(−1)) → L0ξ

∗(F) → L0ξ
∗ξ∗(F|Xred) → 0.

The last arrow here is an isomorphism, and the term L1ξ
∗(F) is zero (because F is locally free);

hence the connecting morphism (2.17) is an isomorphism. Similarly, applying the functor H•(−)
to (2.16) and using the acyclicity of F , we conclude that (2.18) is an isomorphism as well.

To complete the proof, it remains to show that an extension (2.16) for which the connecting
morphisms (2.17) and (2.18) are isomorphisms is unique up to isomorphism. To this end note that
there is an exact sequence

0 → Ext1
(
F|Xred ,F|Xred(−1)

)
→ Ext1

(
ξ∗(F|Xred),ξ∗(F|Xred(−1))

)

→ Hom
(
F|Xred(−1),F|Xred(−1)

)
→ 0.

The second arrow here takes an extension to the connecting morphism (2.17), and the first arrow is
the action of ξ∗. Note also that Ext1(F|Xred ,F|Xred(−1)) = Ext1(O ⊕O(−1),O(−1) ⊕O(−2)) = k

and the composition

Ext1
(
F|Xred ,F|Xred(−1)

)
→ Ext1

(
ξ∗(F|Xred),ξ∗(F|Xred(−1))

)

→ Hom
(
H0(F|Xred),H

1(F|Xred(−1))
)

(where the second arrow takes an extension to the connecting morphism (2.18)) is an isomorphism.
This means that the morphism

Ext1
(
ξ∗(F|Xred),ξ∗(F|Xred(−1))

)

→ Hom
(
F|Xred(−1),F|Xred(−1)

)
⊕Hom

(
H0(F|Xred),H

1(F|Xred(−1))
)

that takes an extension to the connecting morphisms (2.17) and (2.18) is an isomorphism. It remains
to note that the automorphisms of the first and last terms of (2.16) act transitively on pairs (φ1, φ2)
of isomorphisms in the target of the above map; hence the isomorphism class of F is unique.

The isomorphism det(F) ∼= ωX in cases (a), (b), and (c) follows easily. �
The following corollary shows that the second assumption in Definition 1.1 may be relaxed.
Corollary 2.14. Let F be a vector bundle of rank 2 on a conic bundle X/S such that f∗(F) = 0

and
(i) either −c1(F) is f -ample,
(ii) or F compactly generates Ker(f∗) over S.

Then c1(F) = KX/S in Pic(X/S). In particular, F is an abstract spinor bundle.
Proof. Indeed, if F satisfies condition (i) or (ii), then the restriction of F to any geometric

fiber of X/S satisfies one of the assumptions of Proposition 2.13. Hence det(F) is isomorphic
to ωX/S on each geometric fiber, so c1(F) = KX/S in Pic(X/S), and therefore F is an abstract
spinor bundle. �

2.4. Canonical spinor bundles. The following is an immediate consequence of Theo-
rem 2.10, Corollaries 2.11 and 2.14, equations (2.8), and the definitions.

Lemma 2.15. The sheaves F i
X/S on X defined by (2.10) are abstract spinor bundles. More-

over,
F i−2
X/S

∼= F i
X/S ⊗ f∗L, (2.19)

and the restrictions of F i
X/S to geometric fibers of X/S are the sheaves described in Proposition 2.13.
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The bundles F i
X/S are called the canonical spinor bundles on X/S. The following lemma gives

an explicit description for F0
X/S and F−1

X/S
. By (2.19) all other F i

X/S can be obtained from these
two by twists. In the computation we use the exact sequence

0 → OX/S → f∗E ⊗ OX/S(1) → f∗(∧2E)⊗OX/S(2) → f∗(∧3E)⊗OX/S(3) → 0 (2.20)

obtained by restricting the Koszul complex from PS(E) to X.
Lemma 2.16. There are unique abstract spinor bundles F0 and F−1 on X fitting into exact

sequences
0 → ωX/S → F0 → OX → 0, (2.21)

0 → F−1 → f∗E∨ → OX/S(1) → 0. (2.22)

Moreover, F i
X/S

∼= F i ⊗ f∗(det(E)⊗ L) for i ∈ {−1, 0}.
In particular, if the quadratic form q is normalized (see Remark 2.2), then we have F i

X/S
∼= F i

for i ∈ {−1, 0}. The extension F0 was also considered in [3, Definition 6.2].
Proof. Since f∗ωX/S

∼= OS [−1], there is a unique extension (2.21) such that f∗(F0) = 0 (cf. [3,
Lemma 6.3]). Further, (2.21) implies that c1(F0) = KX/S in Pic(X); hence F0 is an abstract spinor
bundle.

Similarly, since f∗OX/S(1) ∼= E∨, there is a unique exact sequence (2.22) such that f∗(F−1) = 0.
Moreover, (2.22) implies that c1(F−1) = KX/S in Pic(X/S); hence F−1 is an abstract spinor bundle.

To relate F0
X/S to F0, consider the composition

f∗C�0(q)⊗OX/S(−1) ↪→ f∗C�0(q)⊗ f∗E � f∗((∧2E ⊗ L)⊗ E) � f∗(∧3E ⊗ L),

where the first arrow is the tautological embedding, the second is the projection of C�0(q) onto the
second component of (1.1), and the third is the wedge product. Its restriction to the summand
f∗(∧2E ⊗ L)⊗OX/S(−1) of f∗C�0(q) ⊗OX/S(−1) coincides with the last morphism in the Koszul
complex (2.20), which is surjective; hence the above composition is surjective as well. On the other
hand, the composition

f∗C�−1(q)⊗OX/S(−2)
ι∗(ϕ0)−−−−→ f∗C�0(q)⊗OX/S(−1) � f∗(∧3E ⊗ L) (2.23)

with the first morphism in (2.10) restricted to X vanishes. Indeed, on the summand E ⊗ L ⊂ C�−1(q)
at any geometric point x∈X (where we consider x as a vector in Ef(x) via the embedding X ⊂PS(E)),
the composition (2.23) is given by

e 
→ e ∧ x+ q(e, x) · 1 
→ e ∧ x ∧ x = 0.

Similarly, on the summand ∧3E ⊗ L⊗2 ⊂ C�−1(q) at a point x, the composition (2.23) is equal to

e1 ∧ e2 ∧ e3 
→ q(e1, x) e2 ∧ e3 − q(e2, x) e1 ∧ e3 + q(e3, x) e1 ∧ e2


→ q(e1, x)x ∧ e2 ∧ e3 − q(e2, x)x ∧ e1 ∧ e3 + q(e3, x)x ∧ e1 ∧ e2

(where (e1, e2, e3) is a basis in the fiber Ef(x) of E), and the right-hand side of the above formula is
equal to q(x, x) e1 ∧ e2 ∧ e3 = 0.

Thus, (2.23) vanishes. On the other hand, restricting (2.10) to X, we see that F0
X/S is the

cokernel of the first arrow ι∗(ϕ0) in (2.23); hence we obtain an epimorphism F0
X/S � f∗(∧3E ⊗ L).

Furthermore, by Lemma 2.15 and Definition 1.1 we have c1(F0
X/S) = KX/S in Pic(X/S); hence the

kernel of this epimorphism can be written as ωX/S ⊗ f∗L′ for a line bundle L′ on S, and so we have
an exact sequence

0 → ωX/S ⊗ f∗L′ → F0
X/S → f∗(∧3E ⊗ L) → 0.
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Pushing it forward to S and using the projection formula, the isomorphism f∗ωX/S
∼= OS [−1], and

the fact that F0
X/S ∈ Ker(f∗) by Corollary 2.11, we see that L′ ∼= ∧3E ⊗ L and conclude that F0

X/S

is the twist of the sheaf F0 defined in (2.21) by f∗(∧3E ⊗ L).
Similarly, to relate F−1

X/S to F−1, we note that the composition

f∗OS ⊗OX/S(−2) ↪→ f∗C�0(q)⊗OX/S(−2)
ι∗(ϕ1)−−−−→ f∗C�1(q)⊗OX/S(−1)

at a geometric point x ∈ X is given by 1 
→ x ∈ Ef(x) ⊂ C�1(q)f(x); hence the morphism ι∗(ϕ1)
preserves the filtrations of f∗C�0(q) ⊗ OX/S(−2) and f∗C�1(q) ⊗ OX/S(−1) induced by the exact
sequences

0 → OS → C�0(q) → ∧2E ⊗ L → 0 and 0 → E → C�1(q) → ∧3E ⊗ L → 0.

Furthermore, a simple computation shows that the maps induced by ι∗(ϕ1) on the factors are the
maps

OX/S(−2) → f∗E ⊗ OX/S(−1) and f∗(∧2E ⊗ L)⊗OX/S(−2) → f∗(∧3E ⊗ L)⊗OX/S(−1)

obtained by twist from the Koszul complex (2.20). It follows that the sheaf F1
X/S

∼= Coker(ι∗(ϕ1))

(see (2.10)) is isomorphic to the cokernel of the first arrow in the Koszul complex twisted
by OX/S(−2), i.e., to the kernel of the third arrow twisted by OX/S(−2); explicitly

F1
X/S

∼= Ker
(
f∗(∧2E) → f∗(∧3E)⊗OX/S(1)

)

∼= Ker
(
f∗E∨ → OX/S(1)

)
⊗ f∗(∧3E) ∼= F−1 ⊗ f∗(∧3E).

Twisting this by f∗L and using (2.19), we obtain the last claim. �
2.5. Proof of Theorem 1.2 and Corollary 1.3. Recall Definition 2.5 of pointwise Clifford

algebras.
Proposition 2.17. If F is an abstract spinor bundle, then F is a tilting generator for the

category Ker(f∗) over S. Moreover, RF := f∗End(F) is a pointwise Clifford algebra on S, and the
adjoint functors

ΦF : Db(S,RF ) → Db(X), H 
→ f∗H⊗f∗RF F ,

Φ!
F : Db(X) → Db(S,RF ), G 
→ f∗RHom(F ,G)

(2.24)

define an S-linear t-exact equivalence Db(S,RF ) � Ker(f∗) such that ΦF (RF ) ∼= F .
Proof. Let F0

X/S be the canonical spinor bundle of X/S. Note that

F|Xs
∼= F0

X/S |Xs (2.25)

for any geometric point s ∈ S, because both F0
X/S and F satisfy the assumptions of Proposition 2.13.

We deduce from (2.25) that the functor Φ!
F agrees pointwise with the functor Φ!

F0
X/S

defined in (2.12);
i.e.,

Φ!
F (G)s ∼= Φ!

F0
X/S

(G)s (2.26)

for all G ∈ Ker(f∗) and all geometric points s ∈ S. Indeed, since f is flat, base change isomorphisms
imply

Φ!
F(G)s = (f∗RHom(F ,G))s ∼= H•(Xs,RHom(F|Xs ,G|Xs)

)

∼= H•(Xs,RHom(F0
X/S |Xs ,G|Xs)

) ∼=
(
f∗RHom(F0

X/S ,G)
)
s
= Φ!

F0
X/S

(G)s,

as required.
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Next, we check that the functor Φ!
F is t-exact on Ker(f∗). Indeed, since F is locally free, Φ!

F is
left exact, so it remains to show that it is right exact. If it is not, Lemma 2.9 implies that there is
a sheaf G ∈ Ker(f∗) and a geometric point s ∈ S such that (Φ!

F (G))s /∈ D(S)≤0. But then (2.26)
implies that Φ!

F0
X/S

(G)s /∈ D(S)≤0 in contradiction to the t-exactness of the functor Φ!
F0

X/S

|Ker(f∗),
which follows from Theorem 2.10.

A similar argument shows that F is a compact generator for Ker(f∗) over S. Indeed, other-
wise there is a nonzero object G ∈ Ker(f∗) such that Φ!

F (G) = 0. But then (2.26) implies that(
Φ!
F0

X/S
(G)

)
s
= 0 for any s ∈ S; hence Φ!

F0
X/S

(G) = 0, and so G = 0 by Theorem 2.10.

Now we prove that RF is a pointwise Clifford algebra. First, since Φ!
F is t-exact, RF ∼= Φ!

F (F) is
a pure algebra. Furthermore, applying f∗ to the direct sum decomposition End(F) ∼= OX ⊕ End0(F),
where the second summand is the trace-free part, and setting R0

F := f∗End0(F), we obtain a direct
sum decomposition RF = OS ⊕R0

F , as in (2.4). Finally, using the argument of the first part of the
proof together with the isomorphisms (2.25) and (2.13), we see that

(RF )s ∼= Φ!
F(F)s ∼= Φ!

F0
X/S

(F0
X/S)s

∼=
(
f∗End(F0

X/S)
)
s
∼= C�0(q)s,

so RF is indeed a pointwise Clifford algebra.
Combining all the above, we see that F is a compact tilting generator of the category Ker(f∗)

over S; hence the functors ΦF and Φ!
F provide the required S-linear t-exact equivalences. Finally,

the isomorphism ΦF (RF ) ∼= F is obvious from (2.24). �
We will also need the following partial converse to Proposition 2.17.
Lemma 2.18. Assume F ∈ Ker(f∗) is a sheaf such that the functor Φ!

F : Ker(f∗) → Db(S) is
t-exact. Then F is locally free.

Proof. If the sheaf F is not locally free, then there exists a geometric point x ∈ X such that
RHom(F ,Ox) /∈ D(X)≤0. Let ix : Spec(k(x)) → X be the inclusion of x. Then

RHom(F ,Ox) ∼= ix∗RHom
(
i∗xF ,Ok(x)

)
, Φ!

F(Ox) ∼= f∗ix∗RHom
(
i∗xF ,Ok(x)

)
,

and since ix and f ◦ ix are closed embeddings, the functors ix∗ and f∗ ◦ ix∗ are t-exact and conser-
vative, so it follows that Φ!

F (Ox) /∈ D(S)≤0. We show below that this leads to a contradiction.
Let s = f(x), so that x ∈ Xs. Since Xs is a Gorenstein curve, Serre duality implies that

Ext•(Ox, ωXs)
∼= Ext1−•(OXs ,Ox)

∨ = k(x)[−1],

Ext•(OXs , ωXs)
∼= Ext1−•(OXs ,OXs)

∨ = k(x)[−1]

and shows that the pairing Ext•(OXs ,Ox) ⊗ Ext•(Ox, ωXs) → Ext•(OXs , ωXs) is perfect; hence
there is a unique extension

0 → ωXs → Kx → Ox → 0 (2.27)

such that Kx ∈ Ker(f∗) ∩Coh(Xs). Furthermore, Serre duality implies

Φ!
F (ωXs)

∼=RHom(F|Xs , ωXs)⊗Os
∼=RHom(OXs ,F|Xs [1])

∨⊗Os
∼=H•(Xs,F|Xs [1])

∨⊗Os =0;

hence, applying the functor Φ!
F to (2.27), we obtain Φ!

F (Ox) ∼= Φ!
F (Kx), and since Φ!

F is t-exact
on Ker(f∗), we conclude that Φ!

F (Ox)∈Coh(S), in contradiction to Φ!
F(Ox) /∈D(S)≤0. �

Now we are ready to give the proofs of our main results.
Proof of Theorem 1.2. By Proposition 2.17 the algebra RF := f∗End(F) is a pointwise

Clifford algebra; hence by Proposition 2.7 there is a quadratic form qF : det(R0
F ) → Sym2(R0

F )
such that RF ∼= C�0(qF ). Let XF/S be the corresponding conic bundle. Using the isomorphism
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RF ∼= C�0(qF ) and applying Proposition 2.17, we obtain a chain of S-linear t-exact Fourier–Mukai
equivalences of triangulated categories

Db(S, C�0(q))
ΦF0

X/S−−−−−→∼ Ker(X/S)
Φ!

F−−→∼ Db(S,RF ) −→∼ Db(S, C�0(qF ))
ΦF0

XF/S−−−−−−→∼ Ker(XF/S).

The composition of the last three equivalences proves property (ii). Moreover, we have

Φ!
F (F) ∼= RF ∼= C�0(qF ) and ΦF0

XF/S
(C�0(qF )) ∼= F0

XF/S

by Proposition 2.17 and Corollary 2.11; hence this equivalence takes F to F0
XF/S , as required.

On the other hand, the first three equivalences compose to an S-linear t-exact equivalence

Db(S, C�0(q)) � Db(S, C�0(qF )).

Therefore, we have an S-linear exact equivalence of the abelian categories of C�0(q)-modules and
C�0(qF )-modules on S and hence an S-linear Morita equivalence of the algebras C�0(q) and C�0(qF );
this proves property (i).

Now we prove the converse part of the theorem. So, let X ′/S be a conic bundle defined by a
quadratic form q′, and let Ψ: Ker(X ′/S) → Ker(X/S) be an S-linear t-exact equivalence. Set

F ′ := Ψ
(
F0
X′/S

)
∈ Ker(X/S).

Since Ψ is t-exact, F ′ is a pure sheaf. Furthermore, we have an isomorphism of functors

Φ!
F0

X′/S
(−) = f ′

∗RHom
(
F0
X′/S ,−

) ∼= f∗RHom
(
Ψ
(
F0
X′/S

)
,Ψ(−)

)

∼= f∗RHom(F ′,Ψ(−)) ∼= Φ!
F ′(Ψ(−)).

Since Φ!
F0

X′/S
(−) is t-exact and Ψ is a t-exact equivalence, Φ!

F ′ is t-exact; hence Lemma 2.18 proves

that F ′ is locally free. Moreover, since

R′ := f∗RHom(F ′,F ′) ∼= f∗RHom
(
Ψ
(
F0
X′/S

)
,Ψ

(
F0
X′/S

)) ∼= f ′
∗RHom

(
F0
X′/S ,F0

X′/S

) ∼= C�0(q′)

is a locally free algebra of rank 4, it follows that the Euler characteristic of the bundle End(F ′|Xs)
on Xs is 4; hence the rank of F ′ is 2. Finally, since Ψ is S-linear and F0

X′/S compactly generates
Ker(X ′/S) over S (Corollary 2.11), the bundle F ′ compactly generates Ker(X/S) over S. Applying
Corollary 2.14, we conclude that F ′ is an abstract spinor bundle. Finally, the isomorphism of
algebras R′ ∼= C�0(q′) observed above in combination with Proposition 2.7 shows that X ′ ∼= XF ′ . �

Remark 2.19. An abstract spinor bundle F ′ in the proof of the converse part of Theorem 1.2
is defined up to an S-linear t-exact autoequivalence of Ker(X/S). For instance, in the case where
X ′ = X (and f ′ = f), one can take F ′ = F i

X/S for any i ∈ Z or any twist of these sheaves.

Proof of Corollary 1.3. If X ′/S is a conic bundle hyperbolic equivalent to X/S, then its even
Clifford algebra C�0(q′) is Morita equivalent to C�0(q) (see [9, Proposition 1.1(3)]). Hence the converse
part of Theorem 1.2 applies and we conclude that X ′/S is a spinor modification of X/S. �

2.6. Corollaries. We briefly discuss some consequences of Theorem 1.2.

Corollary 2.20. The property of being a spinor modification is an equivalence relation ; i.e.,
if X ′/S is a spinor modification of X/S, then X/S is a spinor modification of X ′/S, and if
additionally X ′′/S is a spinor modification of X ′/S, then X ′′/S is a spinor modification of X/S.
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Moreover, spinor modifications are compatible with base changes; i.e., if X ′/S is a spinor mod-
ification of X/S and T → S is a morphism of schemes, then X ′

T /T is a spinor modification
of XT /T .

Proof. All claims are obvious because the S-linear Morita equivalence of even Clifford algebras
is an equivalence relation, and it is preserved under base changes. �

The following result supports Conjecture 1.4 (cf. [9, Proposition 1.1(5)]).

Lemma 2.21. If X ′/S is a spinor modification of X/S and the general fiber of X/S is
smooth, then X ′ is birational to X over S.

Proof. By Theorem 1.2 the even Clifford algebras C�0(q) and C�0(q′) are S-linear Morita
equivalent. After a base change to the function field k(S) of S, we obtain a Morita equivalence
C�0(qk(S)) ∼ C�0

(
q′
k(S)

)
of k(S)-algebras. If one of these algebras is Morita trivial, then so is the

other, and then both are isomorphic to the 2 × 2 matrix algebra over k(S). Otherwise, since the
algebras are four-dimensional, by the Wedderburn–Artin theorem both are division algebras; hence
the Morita equivalence implies an isomorphism C�0(qk(S)) ∼= C�0

(
q′
k(S)

)
. Finally, Proposition 2.7

gives an isomorphism Xk(S)
∼= X ′

k(S), and we conclude that the conic bundles X/S and X ′/S are
birational over S. �

In addition to the hyperbolic equivalence and spinor modification equivalence, there is yet an-
other equivalence relation for conic bundles. We say that conic bundles X/S and X ′/S have equiv-
alent discriminant data if the discriminant divisors of X/S and X ′/S coincide, i.e., ΔX/S = ΔX′/S

in S, and the double coverings Δ̃X/S → ΔX/S and Δ̃X′/S → ΔX′/S obtained from the Stein factor-
izations of the normalizations of X ×S ΔX/S → ΔX/S and X ′ ×S ΔX′/S → ΔX′/S are isomorphic.

In the case where S is a smooth rational surface, the argument in the proof of [2, Lemma 3.2]
relying on the Artin–Mumford exact sequence shows that an equivalence of discriminant data for
conic bundles X/S and X ′/S implies a Morita equivalence C�0(qk(S)) ∼ C�0

(
q′
k(S)

)
of the corre-

sponding even Clifford algebras over k(S) and hence, by the argument in the proof of Lemma 2.21,
a birational equivalence of X/S and X ′/S.

Note however that this does not imply that the conic bundles are isomorphic, so the claim of [2,
Lemma 3.2] is incorrect (although most of the results of [2] are correct, since they are only concerned
with birational properties of conic bundles).

To conclude this section, we prove the following useful result.

Proposition 2.22. Let X ′/S be a spinor modification of X/S.

(i) If S is regular and X is regular, then X ′ is regular.
(ii) If S is smooth over k and X is smooth over k, then X ′ is smooth over k.

Proof. (i) We will use the homological criterion for regularity [15, Theorem 3.27]: a scheme X
is regular if and only if the category Dperf(X) is regular (i.e., if it has a strong generator). We
will also use the following result: a triangulated category with a semiorthogonal decomposition is
regular if and only if its components are regular [15, Propositions 3.20 and 3.22].

Since S is regular, the category Dperf(S) is regular. Further, since X is regular, the cate-
gory Dperf(X) is regular, and using (2.14) we deduce that Kerperf(X/S) is regular. Since we have
Ker(X/S) � Ker(X ′/S) by Theorem 1.2 and the equivalence is given by a Fourier–Mukai functor,
it follows that Kerperf(X/S) � Kerperf(X ′/S); hence Kerperf(X ′/S) is regular. Thus, Dperf(S) and
Kerperf(X ′/S) are both regular; hence Dperf(X ′) is regular, and therefore X ′ is regular.

(ii) Let k be an algebraic closure of k. If S and X are smooth over k, the schemes S
k

and X
k

are regular. Furthermore, X ′
k

is a spinor modification of X
k

by Corollary 2.20; hence X ′
k

is regular
by (i), and therefore X ′ is smooth over k. �
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3. ALMOST FANO THREEFOLDS WITH A CONIC BUNDLE STRUCTURE

In this section we apply the technique of spinor modifications to describe the structure of the
kernel categories for conic bundles related to nonfactorial 1-nodal Fano threefolds. We also use the
obtained descriptions to construct a categorical absorption of singularities for the corresponding
nonfactorial 1-nodal Fano threefolds (see [12, 13]).

In this section we work over an algebraically closed field k of characteristic 0.

3.1. The conic bundles. Recall from [10, Table 2] that there are four deformation types of
nonfactorial 1-nodal prime Fano threefolds X with a small resolution π : Y → X such that Y has
a structure of a conic bundle over P

2 which is not a P
1-bundle; these are types 12nb, 10na, 8nb,

and 5n. We focus on the first three types, and type 5n will be discussed briefly in Subsection 3.5.
By [10, Proposition 6.5 and Remark 6.6] for each of the types 12nb, 10na, and 8nb the conic

bundle Y/P2 is defined by a quadratic form q : OP2(k) → Sym2 E∨, where

k =

⎧
⎨

⎩

3 for type 12nb,
2 for type 10na,
1 for type 8nb

(3.1)

and E is a vector bundle of rank 3 on P
2 whose dual fits into the following exact sequence:

0 → O⊕(k−1)
P2 → OP2(1)⊕(k+2) → E∨ → OL → 0, (3.2)

where L ⊂ P
2 is a line. Note that the discriminant divisor of Y/P2 has degree 6− k ∈ {3, 4, 5}; we

will show below that it does not contain the line L.
For the conic bundle f : Y → P

2, the semiorthogonal decomposition (2.7) takes the form

Db(Y ) = 〈Ker(f∗), f
∗(Db(P2))〉. (3.3)

We will construct an exceptional object in Ker(f∗) and describe its orthogonal complement. Note
that the canonical spinor bundles F i

Y/P2 are not exceptional; in fact,

Ext•
(
F i
Y/P2 ,F i

Y/P2

) ∼= H•(P2, C�0(q)) ∼= H•(
P
2,OP2 ⊕ ∧2E(k)

) ∼= k⊕H•(P2, E∨(−3))

by (2.13) and (1.1), and taking account of (3.2), we compute Ext•
(
F i
Y/P2 ,F i

Y/P2

) ∼= k⊕ k
⊕(k+1)[−1].

We denote by h the line class of P
2 (as well as its pullback to PP2(E) and Y ) and by H the

relative hyperplane class of PP2(E) (as well as its restriction to Y ). Note that

π∗KX = KY = −H and KY/P2 = 3h−H. (3.4)

The dual of the epimorphism E∨ � OL gives an embedding OL ↪→ E|L and, hence, a section

C ⊂ PL(E|L) ⊂ PP2(E) (3.5)

of the projection PL(E|L) → L such that

H · C = 0 and h · C = 1. (3.6)

In particular, (3.4) and (3.6) show that C is K-trivial, and since π : Y → X is a small resolution of
a Fano variety, we see that C is the exceptional curve of π, and since X is 1-nodal, we have

NC/Y
∼= OC(−1)⊕2. (3.7)

Note that since g(X) ≥ 7, it follows from [10, Proposition 5.2] that there are only finitely many
anticanonical lines on X through the node; hence there are only finitely many half-fibers of the conic
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bundle Y/P2 that intersect the curve C. Therefore, the line L is not contained in the discriminant
of Y/P2.

Further, since X is a prime Fano threefold, i.e., Pic(X) = Z ·KX , it follows from (3.6) that

Pic(Y ) = Z ·H ⊕ Z · h (3.8)

(alternatively, this follows from [10, Proposition 3.3]).
We denote by IC,Y the ideal of C on Y . Our main observation is the following lemma.
Lemma 3.1. There is a unique non-split extension

0 → OY (2h −H) → F → IC,Y → 0, (3.9)

and the sheaf F defined by (3.9) is an abstract spinor bundle on Y/P2 with c1(F) = 2h−H.
In particular, we have H•(Y,F(th)) = 0 for all t ∈ Z.
Proof. Since C ⊂ YL := f−1(L) and the ideal of YL is isomorphic to OY (−h), there is an

exact sequence
0 → OY (−h) → IC,Y → IC,YL

→ 0,

where IC,YL
is the ideal of C on YL, and since f |C : C → L is an isomorphism, we have f∗(IC,YL

) = 0.
Hence, by adjunction, we have Ext•(OY (2h),IC,YL

) = 0, and then, using (3.4) and Serre duality, we
deduce the vanishing Ext•(IC,YL

,OY (2h−H)) = 0. Now applying the functor Ext•(−,OY (2h−H))
to the above exact sequence, we conclude that

Ext•(IC,Y ,OY (2h−H)) ∼= Ext•(OY (−h),OY (2h −H)) ∼= H•(Y,OY (3h−H)) ∼= k[−1].

Therefore, we have a commutative diagram of unique non-split extensions

0 OY (2h−H) F0(−h) OY (−h) 0

0 OY (2h−H) F IC,Y 0

where the top row is obtained from (2.21) by a twist, and the middle arrow extends to an exact
sequence

0 → F0(−h) → F → IC,YL
→ 0.

As we noticed above, f∗(IC,YL
) = 0; hence f∗(F) ∼= f∗(F0(−h)) = 0, because F0 is an abstract

spinor bundle by Lemma 2.16. Further, the bottom row of the diagram implies that rk(F) = 2
and c1(F) = 2h − H = KY/P2 − h; hence, to prove that F is an abstract spinor bundle, we only
need to check that it is locally free. To this end we show that F is the vector bundle of rank 2
obtained from C ⊂ Y by Serre’s construction.

Indeed, using (3.6) and (3.7), we find OY (2h −H)|C ∼= OC(2) ∼= det(N∨
C/Y ), while

H•(Y,OY (2h −H)) = H•(Y, ωY/P2(−h)) = H•−1(P2,OP2(−1)) = 0.

Hence Serre’s construction is well defined and produces a vector bundle that can be represented as
the unique non-split extension (3.9); in particular, it coincides with F defined above.

The last statement follows from H•(Y,F(th)) = H•(P2, f∗F ⊗OP2(t)), because F ∈Ker(f∗). �
Restricting (3.9) to C, we obtain an epimorphism F|C � IC,Y /I2

C,Y
∼= N∨

C/Y ; therefore, (3.7)
implies

F|C ∼= OC(1)
⊕2. (3.10)

Later we will show that F is exceptional (see Corollary 3.4).
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3.2. The spinor modification of Y . In this subsection we describe the spinor modifica-
tion YF/P2 of the conic bundle Y/P2 with respect to the abstract spinor bundle F constructed in
Lemma 3.1. Before giving an explicit description of YF , we observe the following useful property.

Lemma 3.2. If YF/P2 is the F-modification of Y/P2, then the map YF → P
2 has no rational

sections.
Proof. If YF → P

2 has a rational section, then by Lemma 2.21 the conic bundle Y → P
2

also has a rational section P
2 ��� Y . Thus, Pic(Y ) contains a divisor class which has intersection

number 1 with the numerical class Υ of fibers of Y → P
2. This, however, contradicts (3.8), because

H ·Υ = 2 and h ·Υ = 0. �
Recall that End0(F) denotes the trace-free part of the endomorphism bundle End(F).
Proposition 3.3. Let Y be a conic bundle of type 12nb, 10na, or 8nb. If k is defined

by (3.1), then
f∗End0(F) ∼= OP2(−1)⊕k ⊕OP2(−2)⊕(3−k). (3.11)

In particular, the conic bundle YF → P
2 corresponds to a quadratic form qF : LF → Sym2 E∨

F , where
⎧
⎪⎨

⎪⎩

LF ∼= OP2(−1), EF ∼= OP2 ⊕OP2 ⊕OP2 for type 12nb,
LF ∼= OP2 , EF ∼= OP2(−1)⊕OP2(−1)⊕OP2 for type 10na,
LF ∼= OP2(−1), EF ∼= OP2(−1)⊕OP2 ⊕OP2 for type 8nb,

(3.12)

and the total space YF ⊂ PP2(EF ) of this conic bundle is smooth.
It is worth noting that these conic bundles are examples of conic bundles of types F2

3, F2
4,

and F2−
5 from [3, § 8].

Proof. We start by computing f∗(F∨) ∼= f∗(F(H − 2h)). To this end we twist (3.9)
by OY (H − 2h) and, pushing it forward to P

2, obtain a distinguished triangle

OP2 → f∗(F(H − 2h)) → f∗(IC,Y (H − 2h)).

Similarly, twisting the exact sequence 0 → IC,Y → OY → OC → 0 and pushing it forward, we
obtain

f∗(IC,Y (H − 2h)) → E∨(−2) → OL(−2).

By the definition (3.5) of the curve C ⊂ Y , the last arrow here coincides with a twist of the last
arrow in (3.2). In particular, it is surjective, and we obtain an exact sequence

0 → OP2 → f∗(F(H − 2h)) → K → 0, (3.13)

where K is the vector bundle of rank 3 on P
2 that fits into an exact sequence obtained from (3.2)

by truncation and twist:

0 → OP2(−2)⊕(k−1) → OP2(−1)⊕(k+2) → K → 0. (3.14)

The last sequence immediately implies the following cohomology vanishing:

H•(P2,K) = 0. (3.15)

Now we tensor (3.9) by F∨ ∼= F(H − 2h) and obtain an exact sequence

0 → F → End(F) → F(H − 2h) → F(H − 2h) ⊗OC → 0.

By Lemma 3.1 we have f∗F = 0; hence we obtain an exact sequence

0 → f∗End(F) → f∗(F(H − 2h)) → f∗(F(H − 2h)⊗OC) → 0.
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Since f |C : C → L is an isomorphism, it follows from (3.6) and (3.10) that the last term is OL(−1)⊕2.
On the other hand, the first term splits as f∗End(F) ∼= OP2 ⊕ f∗End0(F), and the second term is
the extension (3.13). Since H0(P2,K) = 0 by (3.15), we conclude that the first summand OP2

of f∗End(F) is mapped isomorphically onto the first term of (3.13); hence we obtain an exact
sequence

0 → f∗End0(F) → K → OL(−1)⊕2 → 0. (3.16)

Clearly, the composition OP2(−1)⊕(k+2) → K → OL(−1)⊕2 of the second arrows in (3.14) and (3.16)
is surjective and its kernel is isomorphic to OP2(−1)⊕k ⊕ OP2(−2)⊕2; hence we have an exact
sequence

0 → OP2(−2)⊕(k−1) → OP2(−1)⊕k ⊕OP2(−2)⊕2 → f∗End0(F) → 0. (3.17)

Consider the component OP2(−2)⊕(k−1) → OP2(−2)⊕2 of the first map. It is given by a constant
matrix; hence it has a constant rank r ≤ min{k − 1, 2} = k − 1 (see (3.1)); therefore, f∗End0(F) is
isomorphic to the direct sum of OP2(−2)⊕(2−r) and the cokernel of OP2(−2)⊕(k−1−r) → OP2(−1)⊕k.
Since f∗End0(F) is locally free, we conclude that k − 1− r ≤ max{k − 2, 0}.

First, consider the case where k − 1 − r = 0. Then (3.11) follows immediately from the above
arguments. Moreover, in this case Theorem 1.2 implies

LF ∼= det(f∗End0(F)) ∼= OP2(k − 6) and EF ∼= (f∗End0(F))∨ ∼= OP2(1)⊕k ⊕OP2(2)⊕(3−k).

Twisting by OP2(−1) if k = 3 and by OP2(−2) if k ∈ {1, 2}, we obtain (3.12). Finally, the smoothness
of YF follows from the smoothness of Y by Proposition 2.22.

It remains to exclude the case where k − 2 ≥ k − 1 − r > 0. Since k ≤ 3 by (3.1), it follows
that k = 3 and r = 1. In this case f∗End0(F) is the direct sum of OP2(−2) and the cokernel of a
morphism OP2(−2) → OP2(−1)⊕3. Since f∗End0(F) must be locally free, the morphism must be
isomorphic to a twist of the tautological embedding, and using Theorem 1.2 we conclude that

LF ∼= det(f∗End0(F)) ∼= OP2(−3) and EF ∼= (f∗End0(F))∨ ∼= OP2(2) ⊕ ΩP2(2).

But then the section of PP2(EF ) corresponding to the summand OP2(2) is contained in YF ; hence
the morphism YF → P

2 has a section in contradiction to Lemma 3.2. The contradiction shows that
this case is impossible and completes the proof of the proposition. �

Corollary 3.4. The abstract spinor bundle F constructed in Lemma 3.1 is exceptional, and
we have H•(Y,F∨) = k.

Proof. Indeed,

Ext•(F ,F) ∼= H•(P2, f∗End(F)) ∼= H•(
P
2,OP2 ⊕ f∗End0(F)

) ∼= k,

where we have used (3.11). Similarly, combining the exact sequence (3.13) and the cohomology
vanishing (3.15), we see that H•(Y,F∨) = H•(Y,F(H − 2h)) = k. �

Using the description of EF and LF in Proposition 3.3, we can also interpret YF geometrically.
Corollary 3.5. Let YF/P2 be the F-modification of Y/P2. Then

• YF ⊂ P
2 × P

2 is a hypersurface of bidegree (2, 1), and the morphism YF → P
2 is induced by

the projection to the second factor, for type 12nb;
• YF → P

1 × P
2 is a double covering with branch divisor of bidegree (2, 2), and the morphism

YF → P
2 is induced by the projection to the second factor, for type 10na;

• YF = Bl�(Y ) is the blowup of a smooth cubic threefold Y ⊂ P
4 in a line � ⊂ Y , and the

morphism YF → P
2 is induced by the linear projection with center at �, for type 8nb.

In particular, YF is a smooth Fano threefold of type (2-24), or (2-18), or (2-11), respectively.
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Proof. The smoothness of YF in all cases is explained in Proposition 3.3.
For type 12nb the description (3.12) shows that PP2(EF ) = P

2 × P
2 and YF is a divisor of

bidegree (2, 1).
Similarly, for type 10na the fourfold PP2(EF ) = PP2(OP2(−1) ⊕ OP2(−1) ⊕ OP2) is a small

resolution of the cone Cone(P1 × P
2) ⊂ P

6 and YF is the preimage of the intersection of this cone
with a quadric Q ⊂ P

6. If Q contains the vertex υ of the cone, the preimage of υ is a section of the
morphism YF → P

2, in contradiction to Lemma 3.2. Thus, υ /∈ Q, and therefore the linear projection
out of υ identifies YF with a double covering of P

1 × P
2 ramified over a divisor of bidegree (2, 2).

Finally, for type 8nb we have PP2(EF ) = PP2(OP2(−1)⊕OP2 ⊕OP2) ∼= Bl�(P
4), where � ⊂ P

4 is
a line, and YF is the strict transform of a cubic threefold Y ⊂ P

4 containing � with multiplicity 1.
Thus, we have YF ∼= Bl�(Y ). Let E ⊂ YF be the exceptional divisor. Obviously, E is a hypersurface
in the exceptional divisor �× P

2 of Bl�(P
4) of relative degree 1 over �. If a fiber of the projection

� × P
2 → � is contained in E, it provides a section of the projection YF → P

2, in contradiction to
Lemma 3.2. Therefore, E is a P

1-bundle over �; hence � ⊂ Y is a local complete intersection, and
the smoothness of YF implies the smoothness of Y . �

Remark 3.6. Conjecture 1.4 predicts that YF/P2 is hyperbolic equivalent to Y/P2. It would
be interesting to find the required hyperbolic equivalence. It is also interesting to find an abstract
spinor bundle on YF such that the corresponding spinor modification of YF is Y .

3.3. The orthogonal complement of F. Recall that by Corollary 3.4 the abstract spinor
bundle F ∈ Ker(Y/P2) constructed in Lemma 3.1 is exceptional; therefore, we have a semiorthogonal
decomposition

Ker(Y/P2) = 〈F⊥,F〉. (3.18)

In this subsection we describe the orthogonal complement F⊥ ⊂ Ker(Y/P2).
We start with the case of a conic bundle of type 12nb. We denote by

Qu3 = (• •)

the 3-Kronecker quiver, i.e., the quiver with two vertices and three arrows, and by Db(Qu3) the
bounded derived category of its representations. The following result can be deduced from the
computation of [2, Proposition 5.8]; we provide here an alternative argument.

Proposition 3.7. If Y/P2 is a conic bundle of type 12nb, F ∈ Ker(Y/P2) is the exceptional
abstract spinor bundle on Y constructed in Lemma 3.1, and F⊥ is defined by (3.18), then we have
an equivalence F⊥ � Db(Qu3).

Proof. By Theorem 1.2 there is an equivalence Ker(Y/P2) � Ker(YF/P2) that takes F
to F0

YF/P2 . Hence

F⊥ �
(
F0
YF/P2

)⊥ ⊂ Ker(YF/P
2).

To describe this category, we use the following observation. Recall that YF ⊂ P(V1) × P(V2) is
a divisor of bidegree (2, 1), where V1 and V2 are vector spaces of dimension 3. The equation
qF ∈ Sym2 V ∨

1 ⊗ V ∨
2 of YF induces a linear embedding V2 ↪→ Sym2 V ∨

1 , and YF by definition
coincides with the base change of the universal conic C ⊂ P(V1) × P(Sym2 V ∨

1 ) along the induced
map P(V2) → P(Sym2 V ∨

1 ). Since the intersection in P(V1) of the conics parameterized by P(V2) is
empty (because the morphism YF → P(V2) has no sections by Lemma 3.2), [5, Theorem 5.5] gives
a full exceptional collection

Db(P(V2), C�0(qF )) =
〈
C�−2(qF ), C�−1(qF ), C�0(qF )

〉
.
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Furthermore, applying the equivalence ΦF0
YF/P(V2)

: Db(P(V2), C�0(qF )) −→∼ Ker(qF ) from Theo-
rem 2.10 and using Corollary 2.11, we obtain a semiorthogonal decomposition

Ker(qF ) =
〈
F−2
YF/P(V2)

,F−1
YF/P(V2)

,F0
YF/P(V2)

〉
.

This shows that the category
(
F0
YF/P(V2)

)⊥ is generated by the exceptional pair F−2
YF/P(V2)

, F−1
YF/P(V2)

.
Finally, applying Corollary 2.11 and (2.8), we compute

Ext•
(
F−2
YF/P(V2)

,F−1
YF/P(V2)

) ∼= H•(P(V2), C�1(qF )) ∼= H•(
P(V2), V1 ⊗OP(V2) ⊕OP(V2)(−1)

) ∼= V1,

which shows that the category
(
F0
YF/P(V2)

)⊥ is equivalent to Db(Qu3). �
Remark 3.8. It would be interesting to identify the abstract spinor bundle on Y equal to the

image of F−1
YF/P2 under the equivalence Ker(YF/P2) � Ker(Y/P2).

Next, we consider the conic bundle of type 10na.
Proposition 3.9. If Y/P2 is a conic bundle of type 10na, F ∈ Ker(Y/P2) is the excep-

tional abstract spinor bundle on Y constructed in Lemma 3.1, and F⊥ is defined by (3.18), then
F⊥ � Db(Γ2), where the right-hand side is the derived category of a curve Γ2 of genus 2.

Proof. In the same way as in the proof of Proposition 3.7, it suffices to identify the orthogonal(
F0
YF/P2

)⊥ ⊂ Ker(YF/P2) with Db(Γ2). Recall from Corollary 3.5 that YF is a smooth double
covering of P

1 × P
2 with branch divisor of bidegree (2, 2). We will use the fact that the first

projection YF → P
1 is a quadric surface bundle. More precisely,

YF ⊂ PP1

(
OP1 ⊕OP1(−1)⊕3

)

corresponds to a quadratic form q′′ : OP1 → Sym2(OP1 ⊕OP1(1)⊕3). The discriminant divisor of q′′

has degree 2c1(OP1 ⊕OP1(1)⊕3) = 6, and since YF is smooth, the discriminant divisor is reduced.
Let Γ2 → P

1 be the double covering branched at the discriminant divisor of q′′; this is a smooth
curve of genus 2. A combination of [5, Theorem 4.2 and Proposition 3.13] and the vanishing of the
Brauer group Br(Γ2) = 0 (recall that in this section the base field is assumed to be algebraically
closed) implies that there is a semiorthogonal decomposition

Db(YF ) =
〈
Ψ(Db(Γ2)),OYF ,OYF (h1),OYF (h2),OYF (h1 + h2)

〉
,

where Ψ: Db(Γ2) → Db(YF ) is a fully faithful embedding, while h1 and h2 are the pullbacks to YF
of the hyperplane classes of P

1 and P
2, respectively. Now we apply a sequence of mutations.

First, we mutate OYF (h1 + h2) to the far left. Since KYF = −h1 − 2h2, we obtain

Db(YF ) =
〈
OYF (−h2),Ψ(Db(Γ2)),OYF ,OYF (h1),OYF (h2)

〉
.

Next, mutating Ψ(Db(Γ2)) to the left of OYF (−h2), we obtain

Db(YF ) =
〈
Ψ′(Db(Γ2)),OYF (−h2),OYF ,OYF (h1),OYF (h2)

〉
,

where Ψ′ is the composition of Ψ with the mutation functor.
Finally, we mutate OYF (h1) two steps to the left. Since OYF and OYF (h1) are pullbacks from P

1,
the first mutation is a pullback of the mutation of OP1(1) to the left of OP1 ; hence the result
is OYF (−h1). To compute the mutation of OYF (−h1) through OYF (−h2), we note the equality
KYF/P2 = h2 − h1; hence the mutation is realized by the exact sequence

0 → OYF (−h1) → F0(−h2) → OYF (−h2) → 0

obtained from (2.21) by a twist. Thus, we obtain a semiorthogonal decomposition

Db(YF ) =
〈
Ψ′(Db(Γ2)),F0(−h2),OYF (−h2),OYF ,OYF (h2)

〉
.

It follows that Ker(YF/P2) = 〈Ψ′(Db(Γ2)),F0(−h2)〉, so
(
F0
YF/P2

)⊥ � (F0(−h2))
⊥ � Db(Γ2). �
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Remark 3.10. It is not hard to see that the embedding Ψ′ : Db(Γ2) ↪→ Db(YF ) is given by
the universal bundle for the moduli space whose typical member is obtained up to twist by Serre’s
construction applied to a line � in the fiber of the first projection YF → P

1, and hence coincides
with the vector bundle F� defined by the sequence

0 → OYF (−h1 − h2) → F� → OYF (−h2) → O�(−1) → 0.

As F� are vector bundles of rank 2 in Ker(YF/P2) with c1(F�) = −h1 − 2h2 = KYF , they are abstract
spinor bundles. It would be interesting to identify the corresponding abstract spinor bundles on Y .

Remark 3.11. The semiorthogonal decomposition Db(P2, C�0(qF )) = 〈Db(Γ2), C�0(qF )〉 proved
by the mutation argument of Proposition 3.9 also follows from [17, Theorem 1.0.3].

Finally, we consider the conic bundle of type 8nb. Recall that the nontrivial component
BY ⊂ Db(Y ) in the derived category of a cubic threefold Y is defined by the semiorthogonal
decomposition

Db(Y ) =
〈
BY ,OY ,OY (H)

〉
, (3.19)

where H is the hyperplane class of Y ⊂ P
4.

Proposition 3.12. If Y/P2 is a conic bundle of type 8nb, F ∈ Ker(Y/P2) is the exceptional
abstract spinor bundle on Y constructed in Lemma 3.1, and F⊥ is defined by (3.18), then F⊥ � BY ,
where BY is the component of the derived category of a smooth cubic threefold Y defined by (3.19).

Proof. In the same way as in the proof of Proposition 3.7, it is enough to identify the orthogonal(
F0
YF/P2

)⊥ ⊂ Ker(YF/P2) with BY . Recall from Corollary 3.5 that YF ∼= Bl�(Y ) is the blowup of a
smooth cubic threefold Y along a line � ⊂ Y . Therefore, we have a semiorthogonal decomposition

Db(YF ) =
〈
BY ,OYF ,OYF (H),OE ,OE(H)

〉
,

where H is the pullback to YF of the hyperplane class of Y and E ⊂ YF is the exceptional divisor
of the blowup YF → Y . Note that h = H − E is the pullback of the line class with respect to the
conic bundle morphism YF → P

2. Now we apply a sequence of mutations.
First, we mutate OE to the left of OYF and OE(H) to the left of OYF (H). Since

Ext•
(
OYF (H),OE

) ∼= H•(E,OE(−H)) ∼= H•(�,O�(−1)) = 0

and
Ext•

(
OYF (H),OE(H)

) ∼= Ext•(OYF ,OE) ∼= H•(E,OE) ∼= H•(�,O�) = k,

the results of the mutations (up to shift) are the line bundles OYF (−E) and OYF (H − E) ∼= OYF (h),
respectively, and we obtain a semiorthogonal decomposition

Db(YF ) =
〈
BY ,OYF (−E),OYF ,OYF (h),OYF (H)

〉
.

Next, we mutate OYF (H) to the far left. Since KYF = −2H + E and H +KYF = −H +E = −h,
we obtain

Db(YF ) =
〈
OYF (−h),BY ,OYF (−E),OYF ,OYF (h)

〉
.

Finally, we mutate BY and OYF (−E) to the left of OYF (−h). Since KYF/P2 = h − E, the
mutation of OYF (−E) is realized by the exact sequence

0 → OYF (−E) → F0(−h) → OYF (−h) → 0

obtained from (2.21) by a twist. Thus, we obtain a semiorthogonal decomposition

Db(YF ) =
〈
BY ,F

0(−h),OYF (−h),OYF ,OYF (h)
〉
.

It follows that Ker(YF/P2) = 〈BY ,F0(−h)〉; hence
(
F0
YF/P2

)⊥ � (F0(−h))⊥ � BY . �
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3.4. Categorical absorption for Fano threefolds. In this subsection we show that the
abstract spinor bundle F on Y constructed in Lemma 3.1 gives rise to a Mukai bundle on the
corresponding 1-nodal Fano threefold X, and using this, we construct a categorical absorption of
singularities for X.

Proposition 3.13. Let X be a nonfactorial 1-nodal Fano threefold of type 12nb, 10na,
or 8nb; let π : Y → X be a small resolution of singularities that has a structure of a conic bundle;
and let F be the exceptional abstract spinor bundle on Y constructed in Lemma 3.1. Then

UX := π∗(F(−h)) (3.20)

is a (−KX)-stable exceptional vector bundle on X such that

rk(UX) = 2, c1(UX) = KX , H•(X,UX ) = 0, and F ∼= π∗UX(h).

Finally, U∨
X is globally generated with H0(X,U∨

X) = k
⊕(k+5) and H>0(X,U∨

X ) = 0.
Proof. Recall the exceptional curve C ⊂ Y (see (3.5)) of the contraction π : Y → X. The

isomorphism (3.10) implies that F(−h)|C ∼= O⊕2
C ; hence (3.20) defines a vector bundle of rank 2

such that π∗UX
∼= F(−h).

The bundle UX is exceptional because F is (see Corollary 3.4) and π∗ is fully faithful. Using
Lemma 3.1 and (3.4) we find π∗(c1(UX)) = c1(F(−h)) = −H = π∗KX ; hence c1(UX) = KX .
Moreover, Lemma 3.1 also implies the vanishing H•(Y,F(−h)) = 0; hence H•(X,UX ) = 0, i.e., UX

is acyclic.
Next, we check global generation. Dualizing (3.9) and twisting it by OY (h), we obtain an exact

sequence
0 → OY (h) → π∗U∨

X → IC,Y (H − h) → 0. (3.21)

We claim that π∗OY (h) and π∗IC,Y (H − h) are pure globally generated sheaves. Indeed, note that

π∗OY (h) ∼= π̂∗ÔY (h) and π∗IC,Y (H − h) ∼= π̂∗ÔY (H − h− E),

where Ŷ := BlC(Y ) ∼= Blx0(X)
π̂−→ X is the blowup of the node x0 = π(C) ∈ X and E ⊂ Ŷ is its

exceptional divisor; hence E ∼= P
1 × P

1 and OE(−E) ∼= OE(1, 1). It follows that OE(h) ∼= OE(1, 0)
and OE(H − h− E) ∼= OE(0, 1); hence [12, Lemma 6.3] implies that

R>0π∗OY (h) = R>0π̂∗ÔY (h) = 0 and R>0π∗IC,Y (H − h) = R>0π̂∗ÔY (H − h− E) = 0.

Therefore, π∗OY (h) and π∗IC,Y (H − h) are pure sheaves.
To prove that the first of them is globally generated, consider the pullback along the morphism

f : Y → P
2 of the (twisted) Koszul complex of P

2:

0 → OY (−2h) → OY (−h)⊕3 → O⊕3
Y → OY (h) → 0.

Since R>0π∗OY (−h) = R>0π̂∗ÔY (−h) = 0 (again by [12, Lemma 6.3]) and the dimension of any
fiber of π is less than 2, we conclude that the morphism O⊕3

X
∼= π∗O⊕3

Y → π∗OY (h) is surjective;
hence π∗OY (h) is globally generated.

Similarly, using the fact that h+ := H − h − E is base point free on Ŷ (indeed, by [10,
Proposition 3.3] it is isomorphic to the pullback of the ample generator of the Picard group of
a quadric Q3, or P

3, or P
2) and R>0π̂∗OY (−h+) = 0 by [12, Lemma 6.3], we conclude that the

sheaf π̂∗OY (h+) ∼= π∗IC,Y (H − h) is also globally generated.
Now, pushing forward (3.21) and using the global generation of OY (h) and IC,Y (H − h) proved

above together with the cohomology vanishing H1(Y,OY (h)) = H1(P2,OP2(1)) = 0, we see that U∨
X

is globally generated. Since H0(Y,OY (h))∼= k
3 and H0(Y,IC,Y (H − h))∼=H0(P2, E∨(−1))∼= k

⊕(k+2)
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by (3.2), we conclude that H0(X,U∨
X) ∼= k

⊕(k+5). The vanishing of H>0(X,U∨
X) is verified analo-

gously.
Finally, we prove the (−KX)-stability of U∨

X . By the argument of [13, Lemma 2.12] it is enough
to show that there are no nontrivial morphisms from π∗U∨

X to movable line bundles of smaller slope
with respect to π∗(−KX) = H. But the movable cone of Y is generated by the classes h and H − h
by [10, Lemma 3.2], and it is easy to compute

H2 · h = k + 6 and H2 · (H − h) = (4k + 10) − (k + 6) = 3k + 4.

For k ∈ {1, 2, 3} these pairs of integers are (7, 7), (8, 10), and (9, 13), respectively. Since π∗U∨
X is an

extension (3.21), it follows easily that the only way to destabilize π∗U∨
X is by having a morphism

from it to OY (h). But such a morphism would split the sequence (3.21), in contradiction to its
definition. �

Remark 3.14. The properties of the bundle UX proved in Proposition 3.13 mean that it is
a Mukai bundle on X in the sense of [1, Definition 5.1] (see also [13, Definition 1.2]).

In the next theorem we construct a categorical absorption for nonfactorial 1-nodal Fano three-
folds of types 12nb, 10na, and 8nb, using the terminology and techniques developed in [12].

Theorem 3.15. Let X be a nonfactorial 1-nodal Fano threefold of type 12nb, 10na, or 8nb,
and let π : Y → X be a small resolution of singularities that has a structure of a conic bundle
f : Y → P

2. Then there is a semiorthogonal decomposition

Db(X) = 〈PX ,AX ,UX ,OX〉, (3.22)

where PX is a P
∞,2-object providing a universal deformation absorption of singularities of X, UX is

the Mukai bundle defined in (3.20), and AX ⊂ Db(X) is a smooth and proper admissible subcategory
such that

AX �

⎧
⎪⎨

⎪⎩

Db(Qu3) for type 12nb,

Db(Γ2) for type 10na,
BY for type 8nb,

(3.23)

where, recall, Qu3 is the 3-Kronecker quiver with two vertices and three arrows, Γ2 is a curve of
genus 2, Y is a smooth cubic threefold, and BY is the component of Db(Y ) defined by (3.19).

Proof. Recall that the exceptional curve of the contraction π is the curve C defined by (3.5);
hence the kernel of the pushforward functor π∗ : Db(Y ) → Db(X) is generated by the spherical
object OC(−1) (see [12, Theorem 5.8 and Corollary 5.10]). Moreover, using (3.6) we compute

Ext•
(
OY (h−H),OC(−1)

) ∼= H•(C,OY (H − h)⊗OC(−1)
) ∼= H•(C,OC (−2)) ∼= k[−1];

hence the line bundle OY (h −H) is adherent to OC(−1) in the sense of [12, Definition 3.9]. Ap-
plying [12, Theorem 6.17 and Corollary 6.18], we obtain semiorthogonal decompositions

Db(Y ) =
〈
OY (h−H),TOC(−1)(OY (h−H)), π∗(D)

〉
and Db(X) = 〈PX ,D〉, (3.24)

where TOC(−1) is the spherical twist with respect to OC(−1) and PX = π∗OY (h−H) is a P
∞,2-ob-

ject which provides a universal deformation absorption of singularities for X. It remains to de-
scribe D.

First, note that Ext•(OC(−1),OY (h−H)) ∼= k[−2] by the above computation and Serre duality;
hence the spherical twist TOC(−1)(OY (h−H)) is defined by the distinguished triangle

OC(−1)[−2] → OY (h−H) → TOC(−1)(OY (h−H)). (3.25)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 329 2025



SPINOR MODIFICATIONS OF CONIC BUNDLES 113

We have OC(−1),OY (h−H)∈O⊥
Y (the first inclusion is obvious, and the second follows from (3.4));

hence OX ∈ D.
Similarly, we have OC(−1) ∈ (π∗UX)⊥ (because π∗(OC(−1)) = 0) and

Ext•(π∗UX ,OY (h−H)) ∼= Ext3−•(OY (h), π
∗UX)∨

∼= H3−•(Y, π∗UX(−h))∨ ∼= H3−•(Y,F(−2h))∨ = 0,

where the first isomorphism is Serre duality, the second is obvious, the third follows from the
definition of UX (see Proposition 3.13), and the fourth is proved in Lemma 3.1. Thus, UX ∈ D, and
since UX is exceptional and acyclic, we obtain (3.22).

It remains to identify the component AX ⊂ Db(X) defined by (3.22) (or, equivalently, the
subcategory π∗(AX) ⊂ Db(Y )). To this end we consider the decompositions (3.3), which we
rewrite as

Db(Y ) =
〈
(F(−h))⊥,F(−h),OY (−h),OY ,OY (h)

〉
,

where (F(−h))⊥ is the orthogonal to F(−h) in Ker(Y/P2). Now we apply a sequence of mutations.
First, we mutate OY (h) to the far left. Since KY = −H, we obtain

Db(Y ) =
〈
OY (h−H), (F(−h))⊥,F(−h),OY (−h),OY

〉
. (3.26)

Next, we mutate OY (−h) to the left of F(−h). Since by Corollary 3.4 we have

Ext•(F(−h),OY (−h)) ∼= H•(Y,F∨) = k,

it follows that the mutation is isomorphic (up to shift) to the cone of the unique nontrivial morphism
F(−h) → OY (−h). Then the exact sequence

0 → OY (h−H) → F(−h) → OY (−h) → OC(−1) → 0 (3.27)

obtained from (3.9) by a twist identifies the cone of F(−h) → OY (−h) with the shifted cone of the
morphism OC(−1)[−2] → OY (h−H), and now (3.25) shows that the result is TOC(−1)(OY (h−H)).
Thus, we obtain

Db(Y ) =
〈
OY (h−H), (F(−h))⊥,TOC(−1)(OY (h−H)),F(−h),OY

〉
.

Now we recall that F(−h) ∼= π∗UX by Proposition 3.13, and comparing the above decomposition
with the definition of AX in (3.22) and (3.24), we obtain an equivalence

AX � (F(−h))⊥

given by the mutation functors with respect to TOC(−1)(OY (h − H)). Finally, combining this
equivalence with the description of (F(−h))⊥ � F⊥ given in Propositions 3.7, 3.9, and 3.12, we
deduce (3.23). �

Applying [12, Theorem 1.8] and the argument in the proof of [13, Theorem 3.6], we obtain
Corollary 3.16. If X → B is a smoothing of a nonfactorial 1-nodal Fano threefold X of

type 12nb, 10na, or 8nb over a smooth punctured curve (B, o), then there is a smooth and proper
family of triangulated categories A over B such that Ao � AX and for every point b �= o in B
there is an equivalence Ab � AXb

, where AXb
= 〈UXb

,OXb
〉⊥ ⊂ Db(Xb) is the nontrivial component

of the derived category of the smooth prime Fano threefold Xb of genus 12, 10, or 8, respectively.
Recall from [6, Theorems 4.1, 4.5, 4.7] that

AXb
�

⎧
⎪⎪⎨

⎪⎪⎩

Db(Qu3) if g(Xb) = 12,

Db(Γ2,b) if g(Xb) = 10,

BYb
if g(Xb) = 8,
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where Γ2,b and Yb is the curve of genus 2 and the smooth cubic threefold associated with the smooth
prime Fano threefold Xb of genus 10 or 8, respectively. In particular, the family of categories A is
isotrivial for type 12nb. We expect that for types 10na and 8nb the smoothing X can also be
chosen in such a way that A is isotrivial.

3.5. Conic bundles of type 5n. In this final subsection we discuss conic bundles f : Y → P
2

that provide small resolutions of singularities for nonfactorial 1-nodal Fano threefolds X of type 5n
in the notation of [10]. It follows from [10, Remark 6.6] that the corresponding quadratic forms can
be written as q : L → Sym2 E∨, where

L ∼= OP2(−1) and E ∼= OP2 ⊕OP2(−1)⊕OP2(−1). (3.28)

In particular, the section of PP2(E) → P
2 corresponding to the summand OP2 ⊂ E intersects Y along

a curve C ⊂ Y such that f |C is an isomorphism C → L onto a line L ⊂ P
2. Moreover, (3.4) and (3.6)

still hold, the curve C is the exceptional locus of the small contraction π : Y → X, and (3.7) holds.
The discriminant divisor of the conic bundle Y/P2 has degree 7, and it contains the line L if

and only if X has a one-dimensional family of anticanonical lines through the node; this happens
in the situation described in [10, Remark 1.5].

For conic bundles of type 5n, the construction of Lemma 3.1 also produces an abstract spinor
bundle F . However, the computation of Proposition 3.3 shows that in this case

f∗End0(F) ∼= OP2(−3)⊕OP2(−2)⊕OP2(−2);

hence Ext•(F ,F) ∼= k⊕ k[−2], and so F is not exceptional. It also follows that if qF : LF → Sym2 E∨
F

is the quadratic form of the spinor modification YF/P2, then

LF ∼= OP2(−1) and EF ∼= OP2 ⊕OP2(−1)⊕OP2(−1).

In particular, qF has the same form as q. In fact, the quadratic form qF coincides with q.
Lemma 3.17. If Y/P2 is a conic bundle of type 5n, then the abstract spinor bundle F defined

in Lemma 3.1 coincides with the canonical spinor bundle F−1 defined in (2.22). In particular, in
this case YF ∼= Y .

Proof. The description of the curve C given above implies that C ⊂ Y coincides with the
intersection of the zero loci of the two global sections of the line bundle OY (H − h). Therefore, the
ideal sheaf IC,Y has a Koszul resolution

0 → OY (2h− 2H) → OY (h−H)⊕2 → IC,Y → 0.

It is easy to check that (3.9) is obtained from this by a pushout; hence there is an exact sequence

0 → OY (2h − 2H) → OY (h−H)⊕2 ⊕OY (2h−H) → F → 0.

Note that the middle term of this exact sequence can be rewritten as f∗E(2h − H). Therefore,
dualizing and twisting this sequence by OY (2h −H) and using an isomorphism F∨(2h −H) ∼= F ,
which follows from c1(F) = 2h−H, we obtain an exact sequence

0 → F → f∗E∨ → OY (H) → 0.

Since F is an abstract spinor bundle, comparing this sequence with (2.22) and using the uniqueness
claim of Lemma 2.16, we conclude that F ∼= F−1, as required. �

Furthermore, the argument in the proof of Proposition 3.13 shows that UX := π∗(F(−h)) is
still an acyclic vector bundle of rank 2 on X with c1(UX) = KX ; however, it is neither exceptional
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(because F is not) nor (−KX)-stable (it is destabilized by the sequence (3.21)). On the other hand,
U∨
X is still globally generated and induces an embedding

X ↪→ Cone(P1 × P
2) ⊂ Gr(2, 5)

whose image is a Weil divisor in a codimension 2 Schubert subvariety of Gr(2, 5).
Moreover, the argument of Theorem 3.15 shows that there is a semiorthogonal decomposition

Db(X) = 〈PX ,AX ,OX〉,

where PX is a P
∞,2-object providing a universal deformation absorption of X and AX ⊂ Db(X) is

a smooth and proper admissible subcategory. The relation of AX to the kernel category Ker(Y/P2)
of the original conic bundle is not that clear. The semiorthogonal decompositions

Db(Y ) =
〈
OY (h−H),TOC(−1)(OY (h−H)), π∗(AX),OY

〉
,

Db(Y ) =
〈
OY (h−H),Ker(Y/P2),OY (−h),OY

〉

obtained similarly to (3.24) and (3.26) imply that AX and Ker(Y/P2) are Krull–Schmidt partners
in the sense of [14]. However, it is not clear whether they are equivalent or not.

Finally, the analog of Corollary 3.16 shows that the category AX deforms into the compo-
nent AXb

of the derived category of a smooth prime Fano threefold Xb of genus 5. The latter
threefold is isomorphic to the intersection of three quadrics in P

6, which gives an equivalence

AXb
� Ker(Qb/P

2),

where Qb → P
2 is a conic bundle obtained from the family of five-dimensional quadrics in P

6

through X by the hyperbolic reduction with respect to a line in X (cf. the construction in [11,
Sect. 3.2]). The conic bundles Y → P

2 and Qb → P
2 both have discriminant curves of degree 7;

however, while the latter conic bundle is produced from a nondegenerate (even) theta-characteristic
on such a curve, the former corresponds to a degenerate even theta-characteristic.
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