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Abstract

We construct a semiorthogonal decomposition of the derived category of coherent sheaves on a quadric
fibration consisting of several copies of the derived category of the base of the fibration and the derived
category of coherent sheaves of modules over the sheaf of even parts of the Clifford algebras on the base
corresponding to this quadric fibration generalizing the Kapranov’s description of the derived category of
a single quadric. As an application we verify that the noncommutative algebraic variety (P(S2W∗),B0),
where B0 is the universal sheaf of even parts of Clifford algebras, is Homologically Projectively Dual to
the projective space P(W) in the double Veronese embedding P(W) → P(S2W). Using the properties of
the Homological Projective Duality we obtain a description of the derived category of coherent sheaves on
a complete intersection of any number of quadrics.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Derived categories of coherent sheaves on algebraic varieties recently came into focus of
renewed mathematical investigation. One of the reasons for this is their role in the Homological
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Mirror Symmetry Conjecture of M. Kontsevich [13] predicting an equivalence of the derived
category of coherent sheaves on an algebraic variety with the Fukaya category of its mirror.

An important tool of investigation of the derived categories of coherent sheaves is given by
a notion of a semiorthogonal decomposition introduced in [4,5]. Semiorthogonal decomposition
is a way to split a derived category into simpler triangulated categories. On the other side of the
mirror it corresponds to a decomposition of the Fukaya category of a Landau–Ginzburg model
with respect to the singular fibers of a potential.

The first example of a nontrivial semiorthogonal decomposition was discovered in [7]. It
was shown there that the derived category of a smooth complete intersection of two even-
dimensional quadrics contains the derived category of a hyperelliptic curve as a full subcategory
and the orthogonal is generated by an exceptional collection. Further, in [6] Bondal and Orlov
suggested a general description of the derived category of coherent sheaves on a complete in-
tersection of any number of quadrics in terms of the sheaf of Clifford algebras on the space of
quadrics.

Other examples of semiorthogonal decompositions for some Fano threefolds appeared in
[14–16], and a general method of constructing such decompositions was given in [17]. This
method is based on a notion of a Homological Projective Duality (HP-duality for short). Alge-
braic varieties X and Y equipped with morphisms into dual projective spaces f : X → P(V ) and
g : Y → P(V ∗) are HP-dual if the derived category of Y can be embedded fully and faithfully into
the derived category of the universal hyperplane section X ⊂ X × P(V ∗) of X in a certain way.
Properties of HP-dual varieties were thoroughly investigated in [17]. In particular, it was shown
there that for HP-dual varieties X and Y , if XL = X ×P(V ) P(L⊥) and YL = Y ×P(V ∗) P(L) are
orthogonal linear sections of X and Y of expected dimensions (L is a linear subspace in V ∗ and
L⊥ ⊂ V is its orthogonal), then there exist semiorthogonal decompositions of the derived cate-
gories of XL and YL with equivalent nontrivial terms. The goal of this paper is to give a proof of
the result of Bondal and Orlov using the approach of HP-duality.

Explicitly, we take X = P(W), a projective space, V = S2W and f : X = P(W) → P(V ),
the double Veronese embedding. Then the universal hyperplane section of P(W) with respect to
the embedding f is the universal quadric X ⊂ P(W) × P(S2W ∗), and XL is the intersection of
quadrics parameterized by the space L ⊂ S2W ∗. Further, we consider the sheaf of even parts of
Clifford algebras on P(S2W ∗)

B0 = OP(S2W ∗) ⊕ Λ2W ⊗OP(S2W ∗)(−1) ⊕ Λ4W ⊗OP(S2W ∗)(−2) ⊕ · · · ,

and prove that the noncommutative algebraic variety Y = (P(S2W ∗),B0) is HP-dual to X.

Theorem 5.4. The noncommutative algebraic variety Y = (P(S2W ∗),B0) is Homologically Pro-
jectively Dual to P(W) in the double Veronese embedding.

Finally, we note that the semiorthogonal decompositions of the intersection of quadrics XL

and of YL = (P(L),B0) provided by the theory of HP-duality coincide with those predicted by
Bondal and Orlov.

Theorem 5.5. For any vector subspace L ⊂ S2W ∗ such that the corresponding intersection of
quadrics XL is complete (i.e. has expected dimension dim P(W) − dimL) there exists a semi-
orthogonal decomposition
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Db(XL) = 〈
Db

(
P(L),B0

)
,OXL

(1), . . . ,OXL
(n − 2r)

〉
, if r = dimL � n/2,

Db
(
P(L),B0

) = 〈
Bn−2r , . . . ,B−2,B−1,Db(XL)

〉
, if r = dimL � n/2,

and an equivalence

Db(XL) ∼= Db
(
P(L),B0

)
, if dimL = n/2,

where Db(P(L),B0) is the derived category of sheaves of B0-modules on P(L),

B1 = W ⊗OP(S2W ∗) ⊕ Λ3W ⊗OP(S2W ∗)(−1) ⊕ Λ5W ⊗OP(S2W ∗)(−2) ⊕ · · ·

is the sheaf of odd parts of Clifford algebras on P(S2W ∗), and Bk−2 = Bk ⊗OP(S2W ∗)(−1) for
all k.

Actually, in order to establish the HP-duality of X = P(W) and Y = (P(S2W ∗),B0) we need
to check that the universal quadric X ⊂ P(W) × P(S2W ∗) admits a certain semiorthogonal de-
composition. We consider X as a quadric fibration over P(S2W ∗) and instead of this particular
case consider the general situation of any algebraic variety X equipped with a structure of a flat
quadric fibration p : X → S over any smooth base scheme S. With such a fibration we associate a
sheaf of algebras (the sheaf of even parts of Clifford algebras) B0 on S and show that the derived
category of coherent sheaves of B0-modules on S gives a nontrivial semiorthogonal component
in Db(X ).

Theorem 4.2. If p :X → S is a flat quadric fibration of relative dimension n−2 then there exists
a semiorthogonal decomposition

Db(X ) = 〈
Db(S,B0),p

∗(Db(S)
) ⊗OX /S(1),p∗(Db(S)

) ⊗OX /S(2), . . . ,

p∗(Db(S)
) ⊗OX /S(n − 2)

〉
,

where Db(S,B0) is the derived category of coherent sheaves of B0-modules on S.

The proof is based on the Koszul duality between the coordinate algebra of X over S and
the homogeneous Clifford algebra and follows closely the Kapranov’s description of the derived
category of a single quadric [10].

We also should mention that some ideas of the present paper appeared in another Kapranov’s
paper [11], where a description of the derived category of an intersection of quadrics is given
in terms of a version of a homogeneous Clifford algebra, the Koszul dual of the coordinate
algebra of the intersection of quadrics. The twofold covering of the space of quadrics discussed
in Section 3.5 already appeared in [11] as well as the notion of “simple degenerations.” The
relation of HP-duality and Koszul duality which is not yet completely understood should clarify
the connection between the results of [11] and the present paper.

The paper is organized as follows. In Section 2 we recall the necessary background. In Sec-
tion 3 we discuss the Koszul duality between the coordinate algebra of a quadric fibration and
the homogeneous Clifford algebra, and give its geometric interpretation involving the sheaf of
even parts of the Clifford algebras. In Section 4 we give a description of the derived category
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of coherent sheaves of a quadric fibration. In Section 5 we check that the noncommutative alge-
braic variety (P(S2W ∗),B0) is Homologically Projectively Dual to the projective space P(W) in
the double Veronese embedding P(W) → P(S2W) and deduce from this theorem of Bondal and
Orlov.

2. Preliminaries

Throughout the paper we assume the base field k to be algebraically closed of characteristic 0.
We start this section with a brief overview of what noncommutative algebraic geometry is. The

modern approach to the noncommutative algebraic geometry is the following: we consider some
abelian (or triangulated) category of noncommutative origin and consider it as the category of
coherent sheaves (or the derived category of coherent sheaves) on the would-be noncommutative
variety. Certainly the category must be “sufficiently nice.” There are several sources of nice
abelian categories. Let us briefly remind some of them.

2.1. A sheaf of finite algebras

Let Y be a usual algebraic variety, B a sheaf of OY -algebras which is coherent as a sheaf of
OY -modules, and consider the category modY -B of coherent sheaves of right B-modules on Y .
This category is sufficiently nice at least when B is locally free over OY . We consider it as the
category of coherent sheaves on a noncommutative algebraic variety Y = (Y ,B):

Coh(Y ,B) = modY -B.

Besides the coherent category it is sometimes convenient to consider also the quasicoherent cate-
gory QCoh(Y ,B) = ModY -B (we remove the condition of finite generatedness). As usual (cf. [3])
the derived category of coherent sheaves D−(Coh(Y ,BY )) can be identified with the full subcat-
egory of D−(QCoh(Y ,BY )) consisting of objects with coherent cohomologies. As we already
mentioned above noncommutative varieties of the form (Y ,B) with B being locally free over OY

form a nice category. Let us briefly sketch some of the related definitions and constructions.
A morphism f : (Y ,BY ) → (Z,BZ) is a pair (f◦, fB), where f◦ : Y → Z is a morphism

of algebraic varieties, and fB : f ∗◦ BZ → BY is a homomorphism of f ∗◦ OZ
∼= OY -algebras.

With every morphism f : (Y ,BY ) → (Z,BZ) we can associate the pushforward functor R0f∗ :
QCoh(Y ,BY ) → QCoh(Z,BZ) and the pullback functor L0f

∗ : QCoh(Z,BZ) → QCoh(Y ,BY ),
where QCoh stands for the category quasicoherent sheaves as follows:

R0f∗(F ) = R0f◦∗F, and L0f
∗(G) = L0f

∗◦ G ⊗f ∗◦ BZ
BY

(the structures of a B-module on the RHS are evident). It is clear that R0f∗ is left exact and L0f
∗

is right exact. On the other hand, the categories QCoh(Y ,BY ) and QCoh(Z,BZ) have enough
injective and enough locally free objects respectively, hence there exist the derived functors

f∗ : D+(
QCoh(Y ,BY )

) → D+(
QCoh(Z,BZ)

)
and

f ∗ : D−(
QCoh(Z,B )

) → D−(
QCoh(Y ,B )

)
.
Z Y
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The pullback functor always takes D−(Coh(Z,BZ)) to D−(Coh(Y ,BY )) and when morphism f

is projective the pushforward functor takes Db(Coh(Y ,BY )) to Db(Coh(Z,BZ)).
In a contrast with commutative case one has to distinguish between the categories Coh(Y ,BY )

and Coh(Y ,Bopp

Y
) of right and left BY -modules. There are local RHom and tensor product func-

tors

RHomBY
:D−(

Coh(Y ,BY )
) ×D+(

Coh(Y ,BY )
) → D+(Y ,OY ),

⊗BY
: D−(

Coh(Y ,BY )
) ×D−(

Coh
(
Y ,Bopp

Y

)) → D−(Y ,OY ).

Also sometimes it is useful to consider the category Coh(Y ,BY ⊗ Bopp

Y
) of BY -bimodules. The

functors RHomBY
and ⊗BY

can be defined on the bimodule categories and take values in the
appropriate module categories (e.g. the tensor product over BY of two BY -bimodules is again a
BY -bimodule).

Finally we should mention the twisted pullback functor

f ! : D+(
Coh(Z,BZ)

) →D+(
Coh(Y ,BY )

)
.

It can be defined for embeddable morphisms along the lines of [9]. When f◦ is smooth and
BY = f ∗◦ BZ we put f !(G) = f ∗G ⊗ ωY/Z[dimY/Z] and when f◦ is finite we put

f !G = RHomBZ
(f◦∗BY ,G) ∈D+(

Coh(Z,f◦∗BY )
) = D+(

Coh(Y ,BY )
)
.

Finally, arbitrary embeddable morphism can be decomposed into a composition of a finite map
and a smooth map and the twisted pullback can be defined by functoriality. Standard verification
shows that all usual relations between functors still hold (see [9,16]).

2.2. A sheaf of graded algebras

Let S be a usual algebraic variety, and B = ⊕∞
k=0 Bk a sheaf of graded OS -algebras (with

sheaves Bk being locally free over OS of finite rank). Consider the abelian category qgrS-B,
the quotient category of the category grS-B of finitely generated over OS sheaves of graded
right B-modules on S by the subcategory of sheaves of graded B-modules coherent over OS .
We consider qgrS-B as the category of coherent sheaves on a noncommutative algebraic variety
ProjS(B):

Coh
(
ProjS(B)

) = qgrS-B.

This kind of categories was considered in [1] in case S = Spec k. It was shown there that they
are sufficiently nice if the algebra B is strongly noetherian and satisfies so-called χ -condition.
A situation is quite similar for sheaves of graded algebras over any S. Let us briefly sketch some
of the related definitions and constructions.

Let π : grS-B → qgrS-B be the factorization functor. First of all, there exists a projection
from the noncommutative variety ProjS(B) to the base S, q : ProjS(B) → S. The corresponding
pullback functor q∗ : Coh(S) → qgrS-B is given by a simple formula

q∗(F ) = π(F ⊗O B).

S
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Note that in our assumptions on B the functor q∗ is exact, so we can consider the projection q

to be flat.
The pushforward functor q∗ : qgrS-B → Coh(S) is given by the formula

Γ
(
U,q∗

(
π(M)

)) = HomqgrU -BU
(BU ,MU),

where U is an affine open subset of S, M is a sheaf of graded B-modules on S, and BU , MU

denote the restrictions of B, M to U .
Similarly, we define the S-local Hom-functor HomS : (qgrS-B)opp × qgrS-B → Coh(S) as

follows

Γ
(
U,HomS

(
π(M),π(N)

)) = HomqgrU -BU
(MU,NU).

Then

HomqgrS -B(−,−) = Γ
(
S,HomS(−,−)

)
.

Definition 2.1. (Cf. [1].) A sheaf of OS -algebras B is called strongly noetherian if for any base
change T → S the sheaf of OT -algebras BT (the pullback of B) is noetherian.

A sheaf of OS -algebras B is said to satisfy the relative χ -condition if Extimod-BU
(OU ,MU) is

a finitely generated OU -module for all affine U ⊂ S, all i � 0, and all M ∈ mod-B.

It is straightforward to check that all arguments of [1] work for the category qgrS-B if the
sheaf of algebras B is strongly noetherian and satisfies the relative χ -condition.

It is worth mentioning that if a sheaf of algebras is commutative and generated by its first
component (linearly generated) then the category qgrS-B is equivalent to the category of co-
herent sheaves on the usual (commutative) ProjS(B) scheme (this is the famous Theorem of
Serre). However, even for commutative but not linearly generated sheaf of algebras we can get
an interesting example of a noncommutative variety.

Example 2.2. Let L and M be line bundles on S and d a global section of the bundle M∗2 ⊗L∗n.
Let

B = S•(L∗) ⊗ (OS ⊕M)

with the structure of an algebra given by the map d : M2 → L∗n and with the grading induced
by degL∗ = 2, degM = n. It is easy to check that locally (over S) the category qgrS-B can
be identified with the category of coherent sheaves on the double covering of S ramified in the
zero locus Z of d Z/2Z-equivariant with respect to the involution of the double covering (note
that when n is odd this covering in general does not exist globally). Thus qgrS-B is equivalent
locally to the category of coherent sheaves on the quotient stack of the double covering by the
involution. We will call this noncommutative variety “S with a Z/2Z-stack structure along Z.”

Finally we have to say some words about the double version of the category qgr. Let B

be a sheaf of bigraded OS -algebras. Consider the category gr2 -B of right bigraded sheaves of
S
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B-modules and its subcategory tor2S -B consisting of all sheaves of bigraded B-modules M such
that Mk,l = 0 for k � k0, l � l0 where k0 and l0 are sufficiently large. Let (cf. [2])

qgr2S-B := gr2S-B/tor2S-B

be the quotient category. It is shown in [2] that under appropriate conditions category qgr2

behaves analogously to qgr. Moreover, it is shown there that there exists an equivalence of cate-
gories

qgr2S-B ∼= qgrS-
(
Δ(B)

)
,

where Δ(B) = ⊕∞
k=0 Bk,k is the diagonal subalgebra of B.

2.3. Koszul duality for sheaves of graded algebras

Let S be a scheme and A = A0 ⊕ A1 ⊕ A2 ⊕ · · · be a sheaf of graded OS -algebras. The sheaf
of algebras A is called

• flat of finite type if all components Ak of A are locally free of finite rank as OS -modules;
• connected if A0 = OS ;
• linearly generated if it is connected and the canonical homomorphism of algebras

T •
OS

(A1) → A from the tensor algebra of A1 over OS to A is surjective;
• quadratic if it is connected, linearly generated, and the kernel of the canonical homomor-

phism T •
OS

(A1) → A is generated by its degree 2 component

I2
A = T 2

OS
(A1) ∩ Ker

(
T •
OS

(A1) → A
) = Ker(A1 ⊗OS

A1 → A2) ⊂ A1 ⊗OS
A1.

Let A be a quadratic flat sheaf of OS -algebras of finite type. The quadratic dual sheaf of OS -
algebras A! of A is defined as the quotient of the tensor algebra of A∗

1 by the ideal generated by
the subbundle

(
I2

A

)⊥ := Ker
(
(A1 ⊗OS

A1)
∗ → (

I2
A

)∗) = A∗
2 ⊂ (A1 ⊗OS

A1)
∗ ∼= A∗

1 ⊗OS
A∗

1.

Thus

A! := T •
OS

(
A∗

1

)
/
〈(
I2

A

)⊥〉
.

Let A be a quadratic flat sheaf of OS -algebras of finite type and let A! be its quadratic dual.
The multiplications in algebras A! and A give maps A!

k ⊗ A∗
1 → A!

k+1 and Ak ⊗ A!∗
1 → Ak+1.

Dualizing, we obtain maps A!∗
k+1 → (A!

k)
∗ ⊗A1 and A∗

k+1 → A∗
k ⊗A!

1, which induce morphisms

of graded modules A!∗
k+1 ⊗ A → A!∗

k ⊗ A〈1〉 and A∗
k+1 ⊗ A! → A∗

k ⊗ A!〈1〉, where 〈k〉 denotes

the shift of grading by k. On the other hand, we have the augmentation maps A!∗
0 ⊗ A ∼= A →

A0 = OS and A∗
0 ⊗ A! ∼= A! → A!

0 = OS which are morphisms of graded modules as well.
Obtained in this way sequences of A-modules and of A!-modules
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· · · → A!∗
3 ⊗ A〈−3〉 → A!∗

2 ⊗ A〈−2〉 → A!∗
1 ⊗ A〈−1〉 → A!∗

0 ⊗ A → OS → 0,

· · · → A∗
3 ⊗ A!〈−3〉 → A∗

2 ⊗ A!〈−2〉 → A∗
1 ⊗ A!〈−1〉 → A∗

0 ⊗ A! →OS → 0, (1)

are complexes, called the Koszul complexes of A and A! respectively.

Definition 2.3. (Cf. [20].) A quadratic flat sheaf of OS -algebras of finite type A is called Koszul
if the Koszul complexes (1) are acyclic.

Denote by Rk
A

the cohomologies of the truncated in degree k and shifted Koszul complexes
of A

Rk
A = Ker

(
A!∗

k ⊗ A → A!∗
k−1 ⊗ A〈1〉) = Coker

(
A!∗

k+2 ⊗ A〈−2〉 → A!∗
k+1 ⊗ A〈−1〉).

Then we have the following left and right resolutions

· · · → A!∗
k+3 ⊗ A〈−3〉 → A!∗

k+2 ⊗ A〈−2〉 → A!∗
k+1 ⊗ A〈−1〉 → Rk

A → 0, (2)

0 → Rk
A → A!∗

k ⊗ A → A!∗
k−1 ⊗ A〈1〉 → · · · → A!∗

0 ⊗ A〈k〉 → OS〈k〉 → 0. (3)

The importance of modules Rk
A

is demonstrated by the following relative generalization of
the result of [12]. Consider the category of bigraded A-bimodules on S. Consider the diagonal
object

AΔ =
⊕

p,q�0

Ap+q

in this category. As we will see below the diagonal object plays the role of the structure sheaf
of the diagonal on the square of a variety and the resolution of the following theorem gives a
resolution of the diagonal.

Theorem 2.4. The diagonal object AΔ admits the following resolution in the category of bi-
graded A-bimodules on S:

· · · → R2
A ⊗ A〈−2〉 → R1

A ⊗ A〈−1〉 → R0
A ⊗ A → AΔ → 0. (4)

Proof. This is proved in [12, Propositions 4.7 and 4.9] for Koszul algebras over a field. The same
arguments work as well for sheaves of algebras which are flat of finite type and Koszul. �
2.4. Clifford algebras

Let V be a k-vector space and q ∈ S2V ∗, a quadratic form on V . The Clifford algebra of q is
defined as follows (see [8])

Bq = T •(V )/
〈
v ⊗ v′ + v′ ⊗ v − 2q(v, v′) · 1

〉
v,v′∈V

,

where T •(V ) is a free associative algebras generated by V and 1 is the unit of T •(V ). The
Clifford algebra Bq is a finite dimensional associative k-algebra (if v1, . . . , vn is a basis of V
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then the monomials vi1vi2 . . . vir , 1 � i1 < i2 < · · · < ir � n, form a basis of Bq over k). The
Clifford algebra is naturally Z/2Z-graded: its even component Bq0 is spanned by monomials
vi1vi2 . . . vir of even degree, and its odd component Bq1 is spanned by monomials of odd degree.

If the quadratic form q is nondegenerate then both the Clifford algebra Bq and its even part
Bq0 are semisimple [8]. If n = 2m then Bq is isomorphic to a matrix algebra of rank 2m and
Bq0 is isomorphic to the product of two matrix algebras of rank 2m−1. Similarly, if n = 2m + 1
then Bq is isomorphic to a product of two matrix algebras of rank 2m and Bq0 is isomorphic to a
matrix algebra of rank 2m.

On a contrary, if q = 0 is a zero quadratic form, then it is clear that the Clifford algebra is
isomorphic to the exterior algebra Λ•(V ), so has infinite homological dimension.

Lemma 2.5. Let v ∈ V and consider (either left or right) multiplication by v maps Bq0
v−→ Bq1

and Bq1
v−→ Bq0. If q(v) �= 0 then both are isomorphisms and if q(v) = 0 then both have rank

2n−2.

Proof. The square of these maps is equal to the multiplication by q(v), hence for q(v) �= 0 the
maps are isomorphisms. Now assume that q(v) = 0 and consider for instance the left multi-
plication by v. Choose a basis v1, . . . , vn of V such that v1 = v. Then it is clear that both the
kernel and the image of the multiplication maps are spanned by monomials v1vi2 . . . vir with
2 � i2 < · · · < ir � n, hence are 2n−2-dimensional. �

Now let q be any quadratic form. Let v1, . . . , vn be an orthogonal for q basis of V , so that we
have

vivj = −vjvi, for i �= j and v2
i = q(vi) in Bq.

Let

d := v1v2 . . . vn ∈ Bq.

Then it is easy to see that vid = (−1)n−1dvi . Therefore d is central in Bq for odd n and central
in Bq0 for even n. Moreover, it is easy to check that d (up to a scalar) does not depend on a
choice of the orthogonal basis. Note also that d2 = (−1)n(n−1)/2 detq .

Lemma 2.6. Assume that q has 1-dimensional kernel. Then for n = 2m the quotient algebra
Bq0/Bq0d is isomorphic to a matrix algebra of rank 2m−1 and for n = 2m + 1 the quotient
algebra Bq/Bqd is isomorphic to a matrix algebra of rank 2m.

Proof. Choose an orthogonal basis v1, . . . , vn in V such that vn generates the kernel of q .
It is clear that the ideal Bq0d (resp. Bqd) is spanned by monomials vi1vi2 . . . vir−1vn with
1 � i1 < i2 < · · · < ir−1 < n. Therefore the quotient algebra Bq0/Bq0d (resp. Bq/Bqd) is
spanned by monomials vi1vi2 . . . vir with 1 � i1 < i2 < · · · < ir � n − 1, hence isomorphic to
(the even part of) the Clifford algebra of the restriction of q to the vector subspace of V spanned
by v1, . . . , vn−1. But the restriction of q to this vector subspace is nondegenerate, hence the
corresponding algebra is indeed a matrix algebra. �
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3. Clifford algebra of a quadric fibration

We need to introduce some notation. Let

• S be a smooth algebraic variety;
• E be a vector bundle of rank n on S;
• π : PS(E) → S be the projectivization of E on S;
• OPS(E)/S(1) be the Grothendieck line bundle on PS(E);
• L be a line bundle on S;
• σ : L→ S2E∗ be an embedding of vector bundles

(in the other words σ ∈ Γ (S,S2E∗ ⊗L∗) = Γ (PS(E),OPS(E)/S(2) ⊗L∗));
• X ⊂ PS(E) be the zero locus of σ on PS(E); and
• p : X → S be the restriction of π to X .

The projection p : X → S is a quadric fibration. Note that p is a flat morphism since σ : L →
S2E∗ has no zeroes. The relative dimension of p equals n − 2.

3.1. Koszul duality for the coordinate algebra of X over S

Consider the sheaf of graded algebras

Aσ =
∞⊕

k=0

Aσk =
∞⊕

k=0

p∗
(
OX /S(k)

) ∼=
∞⊕

k=0

SkE∗/(
Sk−2E∗ ⊗ σ(L)

) ∼= T •E∗/〈
Λ2E∗ ⊕ σ(L)

〉
,

where T •E∗ = ⊕∞
k=0 E∗⊗k is the sheaf of free associative algebras generated over OS by E∗.

It is clear that Aσ is a quadratic flat sheaf of OS -algebras of finite type. Consider the sheaf of its
quadratic dual algebras

Bσ = A!
σ = T •E/

〈
Ker

(
σ ∗ : S2E → L∗)〉.

We call Bσ the sheaf of homogeneous Clifford algebras of σ (cf. [10]). Note that as a sheaf of
OS -modules Bσk takes the form

Bσk
∼= ΛkE ⊕ Λk−2E ⊗L∗ ⊕ Λk−4E ⊗L∗2 ⊕ · · · , (5)

so that

Bσ
∼= OS ⊕ E ⊕ (

Λ2E ⊕L∗) ⊕ (
Λ3E ⊕ E ⊗L∗) ⊕ (

Λ4E ⊕ Λ2E ⊗L∗ ⊕L∗2) ⊕ · · · (6)

with a Clifford multiplication.

Lemma 3.1. The sheaves of OS -algebras Aσ and Bσ on S are Koszul.

Proof. See e.g. [20, II.6]. �
Further we will sometimes omit the index σ to unburden the notation.
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Lemma 3.2. The algebras A and B are strongly noetherian and satisfy the relative χ -condition.

Proof. Under any change of base T → S the algebras A and B go to the algebras of the same
type corresponding to the quadric fibration XT → T , so it suffices to check the usual noetherian
property for A and B. For this we note that the algebra A is commutative and finitely generated
(over OS ), hence noetherian. On the other hand, the algebra B is finitely generated as a module
over its central subalgebra S•(L∗) ⊂ B. The algebra S•(L∗) is noetherian by the same reasons
as A is, hence B is noetherian as well. To check the relative χ -condition we just use the Koszul
complexes for computing Ext’s in the category of B = A!-modules, considering them as free
resolutions of OS . �

Consider the global section δ of the vector bundle E∗ ⊗ E = A1 ⊗ B1 on S corresponding
to the identity endomorphism of E. Consider a structure of an algebra on S•(E∗) ⊗ B in which
S•(E∗) and B commute.

Lemma 3.3. We have δ · δ = σ ∈ S2E∗ ⊗L∗ ⊂ S2E∗ ⊗ B2.

Proof. Let ei be a basis of E and let xi be the dual basis of E∗. Then we have

δ · δ =
(∑

i

xi ⊗ ei

)(∑
j

xj ⊗ ej

)
=

∑
i,j

xixj ⊗ eiej = 1

2

∑
i,j

xixj ⊗ (eiej + ej ei)

=
∑
i,j

σ (ei, ej )x
ixj = σ,

since xixj = xjxi and eiej + ej ei = σ(ei, ej ). �
Let δ and δ′ denote the multiplication by δ from the left and from the right in the algebra

S•(E∗) ⊗ B as homomorphisms of right (resp. left) bigraded S•(E∗) ⊗ B-modules on S:

δ, δ′ : S•(E∗) ⊗ B → S•(E∗) ⊗ B〈1,1〉.

It follows from the above lemma that

δ ◦ δ = σ, δ′ ◦ δ′ = σ. (7)

Note also that σ is central in S•(E∗) ⊗ B (see Lemma 3.6 below).
Now we are going to give a geometric meaning to the categories of graded A and B-modules

and to the corresponding Koszul complexes. For a start consider the category of A-modules.

3.2. Geometric interpretation for A

The Theorem of Serre for the sheaf of algebras A takes the following form:

Proposition 3.4. There is an equivalence of abelian categories

qgrS-A ∼= Coh(X )
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taking a sheaf F on X to the graded A-module
⊕∞

k=0 p∗(F ⊗OX /S(k)). In particular, the line
bundles OX /S(k) correspond to the shifted free module A〈k〉, and moreover, the twist func-
tor F �→ F ⊗ OX /S(k) in the category Coh(X ) corresponds to the shift of grading functor
M �→ M〈k〉 in the category qgrS-A.

Similarly, we can consider the category of bigraded A-bimodules.

Proposition 3.5. There is an equivalence of abelian categories

qgr2S-
(
Aopp ⊗OS

A
) ∼= Coh(X ×S X )

taking a sheaf F on X ×S X to the bigraded A-bimodule
⊕∞

k,l=0(p ×p)∗(F ⊗OX×SX /S(k, l)).
In particular, the exterior product F � G of sheaves F,G ∈ Coh(X ) corresponds to the tensor
product (over OS ) of the corresponding A-modules, and the structure sheaf of the diagonal
Δ∗OX corresponds to the diagonal object AΔ defined in Section 2.3.

Let Rk
A

denote the sheaf on X corresponding to the graded A-module Rk
A

defined by (2)
or (3). Applying the equivalences of the above propositions to the exact sequences (2), (3) and (4)
we obtain the following exact sequences on X

· · · → B∗
k+3 ⊗OX /S(−3) → B∗

k+2 ⊗OX /S(−2) → B∗
k+1 ⊗OX /S(−1) →Rk

A → 0, (8)

0 → Rk
A → B∗

k ⊗OX → B∗
k−1 ⊗OX /S(1) → ·· · → B∗

0 ⊗OX /S(k) → 0, (9)

and on X ×S X

· · · →R2
A �OX /S(−2) →R1

A �OX /S(−1) →R0
A �OX → Δ∗OX → 0. (10)

3.3. Geometric interpretation for B

We start with the following important observation

Lemma 3.6. The subalgebra S•(L∗) = OS ⊕L∗ ⊕L∗2 ⊕ · · · ⊂ B is central.

Proof. A direct calculation in the homogeneous Clifford algebra. �
Now we can consider B as an S•(L∗)-module. It turns out that B is finitely generated over

S•(L∗). Geometrically this means that noncommutative variety ProjS(B) is a finite covering of
ProjS(S•(L∗)) = S. Thus, the category qgrS-B can be identified with the category of coherent
sheaves of modules over a certain sheaf of algebras on S.

Explicitly, consider the pushforward functor q∗ : qgrS-B → Coh(S). It is isomorphic
to the composition of the restriction functor qgrS-B → qgrS-S•(L∗) with the equivalence
qgr-S•(L∗) → Coh(S), and can be written as

M =
⊕

Mk �→ lim
(
M2k ⊗Lk

)
, (11)
−→
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where the inductive limit is considered with respect to the maps M2k ⊗ Lk → M2(k+1) ⊗ Lk+1

induced by the S•(L∗)-module structure on M (note that L∗ ⊂ B sits in the degree 2). Under
this functor the free module B goes to lim−→(B2k ⊗Lk) which according to (5) is isomorphic to

B0 := OS ⊕ (
Λ2E ⊗L

) ⊕ (
Λ4E ⊗L2) ⊕ · · · , (12)

the even part of the Clifford algebra of σ . It is clear that the pushforward of any graded B-
module has a structure of a B0-module on S, so we can consider the functor q∗ as a functor
q∗ : qgrS-B → modS-B0.

Proposition 3.7. The functor q∗ : qgrS-B → modS -B0, M �→ lim−→(M2k ⊗Lk) is an equivalence
of abelian categories. Furthermore, we have

q∗
(
M〈2l〉) ∼= q∗(M) ⊗L∗l for all M ∈ qgrS-B, l ∈ Z,

HomS(M,N) ∼= HomB0(q∗M,q∗N), for all M,N ∈ qgrS-B. (13)

Proof. It is convenient to decompose the functor q∗ as a composition of the functor

qgrS-B → qgrS-B(2),
⊕

Mk �→
⊕

M2k,

where B(2) = ⊕∞
k=0 B2k is the double Veronese subalgebra of B, with the functor

α : qgrS-B(2) → mod-B0,
⊕

Mk �→ lim−→
(
Mk ⊗Lk

)
.

The first functor is an equivalence by [19], so it remains to consider the second. To this end we
consider also the functor

β : mod-B0 → qgrS-B(2), M �→
∞⊕

k=0

(
M⊗L∗k

)
.

The structure of a graded module over the Veronese subalgebra B(2) = ⊕∞
k=0 B2k on⊕∞

k=0(M⊗L∗k) is defined by the maps(
M⊗L∗k

) ⊗ B2l
∼= (

M⊗L∗(k+l)
) ⊗ (

B2l ⊗Ll
) → (

M⊗L∗(k+l)
) ⊗B0 → M⊗L∗(k+l),

where the second map is the canonical morphism B2l ⊗Ll → lim−→(B2k ⊗Lk) = B0 (in our case
it is just an embedding OS ⊕ (Λ2E ⊗ L) ⊕ · · · ⊕ (Λ2kE ⊗ Lk) ⊂ OS ⊕ (Λ2E ⊗ L) ⊕ · · · ⊕
(Λ2kE ⊗Lk) ⊕ · · ·), and the third morphism is given by the action of B0 on M.

It is clear that α(β(M)) = lim−→(M⊗L∗k ⊗Lk) = lim−→M = M, so

α ◦ β ∼= id.

It remains to check that β ◦ α ∼= id. To this end we note that the canonical maps Mk ⊗ Lk →
lim−→(Ml ⊗Ll) induce maps Mk → (lim−→(Ml ⊗Ll ))⊗L∗k for all k which together give a morphism
of graded B(2)-modules φM : M → β(α(M)). Applying the functor α to the exact sequence

0 → KerφM → M → β
(
α(M)

) → CokerφM → 0
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we deduce that α(KerφM) = α(CokerφM) = 0 since α is exact and α ◦ β ∼= id as we have
noticed above. Thus it remains to check that α(M) = 0 implies M = 0. Indeed, if α(M) =
lim−→(Mk ⊗ Lk) = 0 then the finite generatedness of M implies that Mk = 0 for k � 0, hence
M = 0 in qgrS-B(2).

Further, we have

q∗
(
M〈2l〉) := lim−→

(
M2k+2l ⊗Lk

) ∼= (
lim−→

(
M2k+2l ⊗Lk+l

)) ⊗L∗l ∼= q∗(M) ⊗L∗l .

Finally, for affine U ⊂ S the above arguments show that the functor q∗ : qgrU -BU →
modU -B0U is an equivalence of categories. In particular, it gives an isomorphism

HomqgrU -BU
(MU,NU) ∼= HomB0U

(
q∗(MU), q∗(NU)

)
.

It is evident that these isomorphisms for different U are compatible and give rise to an isomor-
phism HomS(M,N) ∼= HomB0(q∗(M), q∗(N)) as required. �

Consider the graded B-module B〈s〉 (where 〈s〉 is the shift of grading by s). Under the functor
q∗ it goes to the B0-module

Bs := q∗
(
B〈s〉) = lim−→

(
B2k+s ⊗Lk

)
.

For s = 1 it is easy to deduce from (5) that

B1 ∼= E ⊕ (
Λ3E ⊗L

) ⊕ (
Λ5E ⊗L2) ⊕ · · · , (14)

the odd part of the Clifford algebra of σ . It follows from (13) that

Bk
∼=

{
B0 ⊗L∗l , if k = 2l,

B1 ⊗L∗l , if k = 2l + 1.
(15)

Note that each Bk carries a natural structure of a B0-bimodule.

Lemma 3.8. All sheaves Bk on S are locally projective over B0 and we have

RHomB0(Bk,Bl ) ∼= Bl−k for all k, l ∈ Z.

Proof. We have HomB0(Bk, q∗(−)) ∼= HomS(B〈k〉,−) by Proposition 3.7. On the other hand,
from the definition of HomS it is clear that HomS(B〈k〉,F ) ∼= F 〈−k〉, so it is an exact functor.
Thus HomB0(Bk,−) is an exact functor, hence Bk is locally projective over B0. Using Proposi-
tion 3.7 again we deduce

RHomB0(Bk,Bl) ∼= HomS

(
B〈k〉,B〈l〉) ∼= q∗

(
B〈l − k〉) ∼= Bl−k

for all k, l ∈ Z. �
Corollary 3.9. All sheaves Bk on S are flat over B0 and we have

Bk ⊗B0 Bl
∼= Bk+l for all k, l ∈ Z.
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Proof. We have Bk ⊗B0 F ∼= RHomB0(B−k,B0) ⊗B0 F ∼= RHomB0(B−k,F ) since B−k is lo-
cally projective. The RHS functor is exact hence Bk is flat over B0. Moreover, for F = Bl the
RHS equals Bk+l by the above lemma. �

Similarly, we can consider the category of bigraded B-bimodules.

Proposition 3.10. There is an equivalence of abelian categories

qgr2S-
(
Bopp ⊗ B

) ∼= mod-
(
Bopp

0 ⊗B0
)

taking a bigraded bimodule M = ⊕
Mi,j to the sheaf (q × q)∗(M) = lim−→(M2k,2k ⊗L2k) which

is naturally a B0-bimodule on S. In particular, the exterior tensor product F � G of B0-modules
F ∈ mod-Bopp

0 , corresponds to the tensor product (over OS ) of the corresponding B-modules,
and the diagonal bimodule B0 corresponds to the diagonal object BΔ.

Proof. Similarly. �
Let Rk

B
denote the B0-module on S corresponding to the graded B-module Rk

B
defined

by (2) or (3). Applying the equivalences of the above propositions to the exact sequences (2), (3)
and (4) we obtain the following exact sequences of B0-modules

· · · → A∗
k+3 ⊗B−3 → A∗

k+2 ⊗B−2 → A∗
k+1 ⊗B−1 →Rk

B → 0, (16)

0 →Rk
B → A∗

k ⊗B0 → A∗
k−1 ⊗B1 → ·· · → A∗

0 ⊗Bk → 0, (17)

and of B0-bimodules

· · · →R2
B �B−2 → R1

B �B−1 → R0
B �B0 → B0 → 0. (18)

3.4. Geometric interpretation for A ⊗ B

Finally, we consider the categories of bigraded S•(E∗) ⊗ B-modules and A ⊗ B-modules
on S.

Proposition 3.11. There are equivalences of abelian categories

qgr2S-
(
S•(E∗) ⊗ B

) ∼= Coh
(
PS(E),B0

)
, such that S•(E∗) ⊗ B〈k, l〉 �→OPS(E)/S(k) ⊗Bl ,

qgr2S-(A ⊗ B) ∼= Coh(X ,B0), such that A ⊗ B〈k, l〉 �→ OX /S(k) ⊗Bl .

Proof. Similarly to Proposition 3.7. �
Recall the morphisms δ, δ′ : S•(E∗) ⊗ B → S•(E∗) ⊗ B〈1,1〉 constructed in Section 3.1.

They give rise to morphisms δk,l, δ
′
k,l : OPS(E)/S(k − 1)⊗Bl−1 → OPS(E)/S(k)⊗Bl of right and

left B0-modules on PS(E). Then Lemma 3.3 implies the following
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Corollary 3.12. We have morphisms δk,l, δ
′
k,l : OPS(E)/S(k − 1) ⊗ Bl−1 → OPS(E)/S(k) ⊗ Bl of

right and left B0-modules on PS(E) such that the compositions

δk+1,l+1 ◦ δk,l, δ
′
k+1,l+1 ◦ δ′

k,l :OPS(E)/S(k − 1) ⊗Bl−1 →OPS(E)/S(k + 1) ⊗Bl+1

coincide with the map given by σ ∈ Γ (PS(E),OPS(E)/S(2) ⊗L∗).

3.5. Additional central reduction: even-dimensional case

Let us describe more explicitly the noncommutative algebraic variety (S,B0) in some special
cases. Let Sk ⊂ S denote the kth degeneration locus of σ . This is a closed subscheme of S defined
by the sheaf of ideals

Jk = Im
(
Λn+1−kE ⊗ Λn+1−kE ⊗Ln+1−k Λn+1−kσ−−−−−→OS

)
.

In particular, S1 is the zero locus of detσ ∈ Γ (S,L∗n ⊗ (detE∗)2).
Assume that n = rankE = 2m is even. Then it is easy to see that the sheaf of algebras

B0 = OS ⊕ Λ2E ⊗L⊕ Λ4E ⊗L2 ⊕ · · · ⊕ Λ2mE ⊗Lm

has a central subalgebra Z = OS ⊕ detE ⊗ Lm (locally it is generated by 1 and the element d

defined in Section 2.4). Therefore, we can identify B0 with a pushforward of a certain sheaf
of algebras B̃0 on the double covering φ : S̃ = SpecS(Z) → S ramified over S1 (note that
d2 = (−1)n(n−1)/2 detσ ). In particular, the category Coh(S,B0) identifies with the category
Coh(S̃, B̃0).

Let S̃2 ⊂ S̃ be the preimage of the locus of quadrics of corank � 2 under the double covering
φ : S̃ → S, S̃2 = φ−1(S2).

Proposition 3.13. The restriction of the sheaf of algebras B̃0 to S̃ \ S̃2 is a sheaf of Azumaya
algebras.

Proof. By [18] it suffices to check that the fiber of the sheaf B̃0 at any point x ∈ S̃ \ S̃2 is a
matrix algebra of rank 2m−1. Let s = φ(x) ∈ S \ S2. First, assume that s /∈ S1, i.e. that σ(s) ∈
S2E∗

s is a nondegenerate quadric. Then as it was mentioned in Section 2.4 the even part of the
corresponding Clifford algebra Bσ(s)0 is a product of two matrix algebras of rank 2m−1. It is
clear that the fiber of B̃0 at x is just one of these matrix algebras. On the other hand, assume that
s ∈ S1 \ S2, i.e. that σ(s) ∈ S2E∗

s is a quadric of corank 1. Since the fiber of the sheaf Z over s

is spanned by 1 and d , the fiber of the algebra B̃0 at x is the quotient Bσ(s)0/Bσ(s)0d which by
Lemma 2.6 is also isomorphic to a matrix algebra of rank 2m−1. �

Let us say that a quadric fibration X → S has only simple degenerations if all fibers are
quadrics of corank � 1 and the zero locus of detσ is smooth (so that S̃ is also smooth).

If p : X → S has only simple degenerations then B̃0 is a sheaf of Azumaya algebras on a
smooth algebraic variety S̃. If B̃0 splits then we have Coh(S̃, B̃0) ∼= Coh(S̃). This is true for
example when dimS = 1 [18].

Corollary 3.14. Assume that S is smooth, dimS = 1 and the quadric fibration X → S has only
simple degenerations. Then Coh(S,B0) ∼= Coh(S̃, B̃0) ∼= Coh(S̃).
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3.6. Additional central reduction: odd-dimensional case

Assume that n = rankE = 2m + 1 is odd. Then it is easy to see that the center of the homo-
geneous Clifford algebra B contains a subalgebra

Z = S•(L∗) ⊗ (OS ⊕ detE).

The corresponding category qgrS-Z can be considered as a category of coherent sheaves on S

with a Z/2Z-stack structure along S1 (see Example 2.2). Let Ŝ denote the corresponding non-
commutative variety (so that Coh(Ŝ) = qgrS-Z) and let ψ : Ŝ → S be the projection. The sheaf
of algebras B considered as a Z-module gives rise to a sheaf of algebras B̂0 on Ŝ such that
ψ∗(B̂0) = B0. In particular, the category Coh(S,B0) identifies with the category Coh(Ŝ, B̂0).
Let Ŝ2 ⊂ Ŝ be the preimage of the locus of quadrics of corank � 2 under the map ψ : Ŝ → S,
Ŝ2 = ψ−1(S2).

Proposition 3.15. The restriction of the sheaf of algebras B̂0 to Ŝ \ Ŝ2 is a sheaf of Azumaya
algebras.

Proof. The claim is local in S so we may assume that S is affine. Then there exists a double
covering φ : S̃ → S ramified in S1 and Ŝ is just the quotient stack of S̃ with respect to the action
of the group Z/2Z generated by the involution of S̃ over S. In particular, the projection φ factors

as S̃
η−→ Ŝ

ψ−→ S, where η is étale. Consider the sheaf of algebras η∗B̂0 on S̃. It suffices to check
that η∗B̂0 is a sheaf of Azumaya algebras.

Note that the category Coh(Ŝ) is the category of Z/2Z-equivariant sheaves on S̃, the functor
ψ∗ boils down to the taking of invariants with respect to the Z/2Z action, and the functor η∗ is
the forgetting of the Z/2Z-action.

Trivializing the sheaf L on S (and shrinking S if necessarily) we can consider the whole
sheaf of Clifford algebras Bσ of σ on S. It has a central subalgebra Z = OS ⊕ detE (locally it
is generated by 1 and the element d defined in Section 2.4) and it is clear that SpecS(Z) = S̃.
Therefore, we can identify Bσ with a pushforward of a certain sheaf of algebras B̃σ on S̃. This
sheaf is naturally Z/2Z-graded, hence carries a Z/2Z-action and can be considered as a sheaf
of algebras on Ŝ. Its pushforward to S (the invariants of Bσ with respect to the Z/2Z-action)
coincides with the even part Bσ0 of the sheaf of Clifford algebras. This shows that B̂0 coincides
with B̃σ considered as a Z/2Z-equivariant sheaf of algebras on S̃. Hence η∗B̂0 = B̃σ and it
remains to check that B̃σ is a sheaf of Azumaya algebras on S̃. This is done completely analogous
with the even-dimensional case.

By [18] it suffices to check that the fiber of the sheaf Bσ at any point x ∈ S̃ \ S̃2 is a matrix
algebra of rank 2m. Let s = φ(x) ∈ S \ S2. First, assume that s /∈ S1, i.e. that σ(s) ∈ S2E∗

s is
a nondegenerate quadric. Then as it was mentioned in Section 2.4 the corresponding Clifford
algebra Bσ(s) is a product of two matrix algebras of rank 2m. It is clear that the fiber of B̃σ at x is
just one of these matrix algebras. On the other hand, assume that s ∈ S1 \S2, i.e. that σ(s) ∈ S2E∗

s

is a quadric of corank 1. Since the fiber of the sheaf Z over s is spanned by 1 and d , the fiber
of the algebra B̃σ at x is the quotient Bσ(s)/Bσ(s)d which by Lemma 2.6 is also isomorphic to a
matrix algebra of rank 2m. �

Similarly to Corollary 3.14 we deduce
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Corollary 3.16. Assume that S is smooth, dimS = 1 and the quadric fibration X → S has only
simple degenerations. Then Coh(S,B0) ∼= Coh(Ŝ).

4. Derived category of a quadric fibration

Recall the notation. Assume that S is a smooth algebraic variety; E is a vector bundle of rank
n on S; π : PS(E) → S is the projectivization of E on S; OPS(E)/S(1) is the Grothendieck line
bundle on PS(E); L is a line bundle on S; σ : L → S2E∗ is an embedding of vector bundles;
X ⊂ PS(E) is the zero locus of σ on PS(E); and p :X → S is the restriction of π to X . We also
denote by

• i :X → PS(E) the embedding.

Then we have p = π ◦ i.
The goal of this section is to describe a semiorthogonal decomposition of the derived category

Db(X ) of coherent sheaves on X .

Definition 4.1. (See [4,5].) A semiorthogonal decomposition of a triangulated category T is a
sequence of full subcategories A1, . . . ,An in T such that HomT (Ai ,Aj ) = 0 for i > j and for
every object T ∈ T there exists a chain of morphisms 0 = Tn → Tn−1 → ·· · → T1 → T0 = T

such that the cone of the morphism Tk → Tk−1 is contained in Ak for each k = 1,2, . . . , n.

If a sequence A1, . . . ,An forms a semiorthogonal decomposition of T we write T =
〈A1,A2, . . . ,An〉.

Recall the sheaf of Clifford algebras B0 on S constructed in the previous section.

Theorem 4.2. If p : X → S is a flat quadric fibration of relative dimension n−2 then there exists
a semiorthogonal decomposition

Db(X ) = 〈
Db(S,B0),p

∗(Db(S)
) ⊗OX /S(1),p∗(Db(S)

) ⊗OX /S(2), . . . ,

p∗(Db(S)
) ⊗OX /S(n − 2)

〉
,

where Db(S,B0) is the derived category of coherent sheaves of B0-modules on S.

The proof of the theorem takes the rest of the section. We start with the following.

Lemma 4.3. We have

p∗
(
OX /S(m)

) =
⎧⎨
⎩

Am, for m � 0,

0, for 3 − n � m � −1,

A∗
2−m−n ⊗ detE ⊗L[2 − n], for m � 2 − n.

Proof. We apply the functor π∗ to the exact sequence

0 → OP (E)/S(m − 2) ⊗L→OP (E)/S(m) → i∗OX /S(m) → 0

S S
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and take into account an isomorphism p∗OX /S(m) ∼= π∗i∗OX /S(m). For m � 0 we get a distin-
guished triangle

Sm−2E∗ ⊗L→ SmE∗ → p∗
(
OX /S(m)

)
which gives the first line in the formula; for 3 − n � m � −1 we got the second line of the
formula; and for m � 2 − n we get a distinguished triangle

S2−m−nE ⊗ detE ⊗L[1 − n] → S−m−nE ⊗ detE[1 − n] → p∗
(
OX /S(m)

)
,

which gives the third line of the formula. �
Lemma 4.4. The functor Db(S) →Db(X ), F �→ p∗F ⊗OX /S(k), is fully faithful for any k ∈ Z

and the collection of subcategories

〈
p∗(Db(S)

) ⊗OX /S(k + 1),p∗(Db(S)
) ⊗OX /S(k + 2), . . . , p∗(Db(S)

) ⊗OX /S(k + n − 2)
〉

(19)

is semiorthogonal in Db(X ).

Proof. Note that

HomX
(
p∗F ⊗OX /S(k),p∗G ⊗OX /S(l)

) ∼= HomX
(
p∗F,p∗G ⊗OX /S(l − k)

)
∼= HomS

(
F,p∗

(
p∗G ⊗OX /S(l − k)

))
.

By projection formula we have p∗(p∗G ⊗ OX /S(l − k)) ∼= G ⊗ p∗(OX /S(l − k)). Since by
Lemma 4.3 we have p∗(OX /S(l − k)) = 0 for k − n + 2 < l < k, the semiorthogonality fol-
lows; and since p∗(OX ) = OS we deduce that HomX (p∗F ⊗ OX /S(k),p∗G ⊗ OX /S(k)) ∼=
HomS(F,G), i.e. that the functor F �→ p∗F ⊗OX /S(k) is full and faithful. �

Now we are going to construct a fully faithful functor Db(S,B0) → Db(X ). Recall the mor-
phisms of right and left B0-modules on PS(E) constructed in Section 3.4:

δk,l, δ
′
k,l : OPS(E)/S(k − 1) ⊗Bl−1 → OPS(E)/S(k) ⊗Bl .

Lemma 4.5. We have Ker δk,l = Ker δ′
k,l = 0, and the sheaves Coker δk,l and Coker δ′

k,l are sup-
ported scheme-theoretically on the hypersurface X ⊂ PS(E),

Coker δk,l
∼= i∗Ek,l , Coker δ′

k,l
∼= i∗E ′

k,l ,

where Ek,l is a sheaf of right B0-modules on X , and E ′
k,l is a sheaf of left B0-modules on X .

Moreover on X there exist exact sequences of B0-modules

0 → Ek−1,l−1 → OX /S(k) ⊗Bl → Ek,l → 0, 0 → E ′ → OX /S(k) ⊗Bl → E ′ → 0
k−1,l−1 k,l
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and the periodicity isomorphisms

Ek,l ⊗ (
OX /S(s) ⊗Lt

) ∼= Ek+s,l−2t , E ′
k,l ⊗ (

OX /S(s) ⊗Lt
) ∼= E ′

k+s,l−2t . (20)

Proof. By Corollary 3.12 we have the following commutative diagram

0 → Ker δk,l

σ

OPS(E)/S(k − 1) ⊗Bl−1
δk,l

σ

OPS (E)/S(k) ⊗Bl

σ

δk+1,l+1

Coker δk,l → 0

σ

0 → Ker δk+2,l+2 OPS(E)/S(k + 1) ⊗Bl+1
δk+2,l+2

OPS(E)/S(k + 2) ⊗Bl+2 Coker δk+2,l+2 → 0.

It follows from the diagram that σ vanishes on Ker δk,l and Coker δk,l , hence both are supported
on X ⊂ PS(E), the zero locus of σ . On the other hand, the sheaf OPS(E)/S(k − 1) ⊗ Bl−1 is
locally free, hence has no torsion, thus Ker δk,l = 0.

Further, restricting this diagram to X we deduce the desired exact sequences. Finally, the
periodicity isomorphisms follow immediately from the definition of sheaves Ek,l and E ′

k,l . �
Gluing the short exact sequences of the lemma we obtain the following long exact sequences

of left and right B0-modules on X :

· · · → OX /S(k − 2) ⊗Bl−2 →OX /S(k − 1) ⊗Bl−1 → OX /S(k) ⊗Bl → Ek,l → 0, (21)

· · · → OX /S(k − 2) ⊗Bl−2 →OX /S(k − 1) ⊗Bl−1 → OX /S(k) ⊗Bl → E ′
k,l → 0. (22)

On the other hand, we have the following resolutions of i∗Ek,l and i∗E ′
k,l on PS(E):

0 → OPS(E)/S(k − 1) ⊗Bl−1
δk,l

OPS(E)/S(k) ⊗Bl → i∗Ek,l → 0,

0 → OPS(E)/S(k − 1) ⊗Bl−1

δ′
k,l

OPS(E)/S(k) ⊗Bl → i∗E ′
k,l → 0.

(23)

Lemma 4.6. The sheaves Ek,l and E ′
k,l on (X ,B0) and (X ,Bopp

0 ) are locally projective over

(S,B0) and flat over (S,Bopp
0 ) respectively. Moreover, there is an isomorphism of functors

Db(S,B0) →Db(X ).

RHomB0(Ek,l , p
∗F) ∼= p∗F ⊗B0 E ′−k−1,−l−1.

Proof. Let F be a sheaf of B0-modules on S. Since p :X → S is flat, p∗F is a pure sheaf of B0-
modules on X . Further, using periodicity isomorphism (20), the formula for the twisted pullback
functor of a regular closed embedding

i!(−) ∼= i∗(−) ⊗NX /PS(E)[−1] ∼= i∗(−) ⊗ (
OX /S(2) ⊗L∗)[−1],

and the duality theorem (see [9]), we deduce
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i∗ RHomB0

(
Ek,l , p

∗F
) ∼= i∗ RHomB0

(
Ek+2,l+2,p

∗F ⊗ (
OX /S(2) ⊗L∗))

∼= i∗ RHomB0

(
Ek+2,l+2, i

!π∗F [1]) ∼= RHomB0

(
i∗Ek+2,l+2,π

∗F
)[1].

Applying the functor RHomB0(−,π∗F) to the resolution (23) of i∗Ek+2,l+2 and taking into
account Lemma 3.8 we obtain the following distinguished triangle

π∗F ⊗B0

(
OPS(E)/S(−k − 2) ⊗B−l−2

)
δ′−→ π∗F ⊗B0

(
OPS(E)/S(−k − 1) ⊗B−l−1

)
→ RHomB0

(
i∗Ek+2,l+2,π

∗F
)[1].

On the other hand, the arguments of Lemma 4.5 show that the map δ′ here is an embedding,
because the sheaf π∗F has no torsion on X . Since i∗ is exact and conservative, it follows that
RHomB0(Ek,l , p

∗F) is a pure sheaf. Since this is true for any F ∈ Coh(S,B0), the sheaf Ek,l is
locally projective over (S,B0).

Similarly, we have

i∗
(
p∗F ⊗B0 E ′

s,t

) ∼= i∗
(
i∗π∗F ⊗B0 E ′

s,t

) ∼= π∗F ⊗B0 i∗E ′
s,t .

Applying the functor π∗F ⊗B0 − to the resolution (23) of i∗E ′
s,t we deduce the following distin-

guished triangle

π∗F ⊗B0

(
OPS(E)/S(s − 1) ⊗Bt−1

)
δ′−→ π∗F ⊗B0

(
OPS(E)/S(s) ⊗Bt

) → π∗F ⊗B0 i∗E ′
s,t .

By the same arguments as above we deduce that p∗F ⊗B0 E ′
s,t is a pure sheaf, hence E ′

s,t is flat
over (S,Bopp

0 ).
Further, comparing the above resolutions of i∗ RHomB0(Ek,l , p

∗F) and i∗(p∗F ⊗B0 E ′
s,t ) it

is easy to see that they coincide for (s, t) = (−k − 1,−l − 1). Therefore, we have a functor-
ial isomorphism of resolutions which gives a functorial isomorphism i∗ RHomB0(Ek,l , p

∗F) ∼=
i∗(p∗F ⊗B0 E ′

s,t ), (we use here the vanishing Hom(π∗F ⊗B0 (OPS(E)/S(−k − 1) ⊗ B−l−1),

π∗F ⊗B0 (OPS(E)/S(−k − 2) ⊗B−l−2)) = 0 which follows easily from Lemma 4.4). Since i∗ is
conservative and F is a sheaf we obtain a functorial in F isomorphism

RHomB0

(
Ek,l , p

∗F
) ∼= p∗F ⊗B0 E ′

s,t ,

for any F ∈ Coh(S,B0). A standard argument then shows that the above functorial isomorphism
holds for any F ∈ Db(S,B0). �
Lemma 4.7. The sheaves Ek,l and E ′

k,l are locally free over OX of rank 2n−2.

Proof. Let x ∈ X be a point and s = p(x). Let V be the fiber of E at s and v ∈ V a vector
corresponding to the point i(x) ∈ P(V ). Let q = σs ∈ S2V ∗ and consider the Clifford algebra Bq .
It follows from exact sequences (21) and (22) and from the definition of δ that the fibers of Ek,l

and E ′
k,l at a point x ∈ X coincide with the cokernel of the left and right multiplication maps

Bq0
v−→ Bq1 (if l is odd) or Bq1

v−→ Bq0 (if l is even). But the rank of these maps equals 2n−2 by
Lemma 2.5 since q(v) = 0. �

Now we consider the following functors
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Φk,l : Db(S,B0) → Db(X ), F �→ p∗F ⊗B0 E ′
k,l ,

Ψk,l : Db(X ) → Db(S,B0), G �→ p∗
(
G ⊗OX Ek,l ⊗OX detE∗[n − 2]).

Note that both functors preserve the bounded derived category by Lemmas 4.6 and 4.7.

Remark 4.8. Actually, the functors Φk,l and Ψk,l are kernel functors whose kernels are given by
the sheaves E ′

k,l and Ek,l ⊗OX detE∗[n − 2] on (X ,B0) = (S,B0) ×S X respectively.

Proposition 4.9. For any k, l the functor Φk,l :Db(S,B0) →Db(X ) is fully faithful.

To prove the proposition we will check that the functor Ψ1−k−n,1−l is left adjoint to Φk,l

(Lemma 4.10), show that the composition Ψ1−k−n,1−l ◦ Φk,l : Db(S,B0) → Db(S,B0) is given
by tensoring with a B0-bimodule p∗(E ′

k,l ⊗OX E1−k−n,1−l ⊗OX detE∗[n − 2]) (Lemma 4.11)
and check that this bimodule is isomorphic to B0 (Lemma 4.13).

Lemma 4.10. For any k, l the functor Ψ1−k−n,1−l : Db(X ) → Db(S,B0) is left adjoint to the
functor Φk,l : Db(S,B0) → Db(X ).

Proof. Take F ∈Db(S,B0), G ∈Db(X ). Note that

Φk,l(F ) = p∗F ⊗B0 E ′
k,l

∼= RHomB0(E−k−1,−l−1,p
∗F)

by Lemma 4.6. Therefore Hom(G,Φk,l(F )) ∼= Hom(G,RHomB0(E−k−1,−l−1,p
∗F)). Now we

are going to use the duality theorem to rewrite this. For this we replace the pullback func-
tor p∗ with the twisted pullback functor p! using p!F ∼= p∗F ⊗ ωX /S[n − 2] and ωX /S

∼=
ωPS(E)/S ⊗ OX /S(2) ⊗ L∗ ∼= OX /S(2 − n) ⊗ detE∗ ⊗ L∗. Taking also into account the peri-
odicity isomorphisms (20) we get

RHomB0(E−k−1,−l−1,p
∗F)

∼= RHomB0

(
E−k−1,−l−1 ⊗OX /S(2 − n) ⊗ detE∗ ⊗L∗[n − 2],p!F

)
∼= RHomB0

(
E1−k−n,1−l ⊗ detE∗[n − 2],p!F

)
.

Finally, applying the duality theorem we deduce

Hom
(
G,RHomB0

(
E1−k−n,1−l ⊗ detE∗[n − 2],p!F

))
∼= HomB0

(
G ⊗ E1−k−n,1−l ⊗ detE∗[n − 2],p!F

)
∼= HomB0

(
p∗

(
G ⊗ E1−k−n,1−l ⊗ detE∗[n − 2]),F )

,

and an isomorphism Hom(G,Φk,l(F )) ∼= Hom(Ψ1−k−n,1−l (G),F ) follows. �
Lemma 4.11. The composition of functors Ψ1−k−n,1−l ◦ Φk,l : Db(S,B0) → Db(S,B0) is
given by tensoring over B0 by the complex of B0-bimodules p∗(E ′

k,l ⊗OX E1−k−n,1−l ⊗OX
detE∗[n − 2]).
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Proof. We have

Ψ1−k−n,1−l ◦ Φk,l(F ) = p∗
((

p∗F ⊗B0 E ′
k,l

) ⊗OX
E1−k−n,1−l ⊗OX

detE∗[n − 2])
∼= p∗

(
p∗F ⊗B0

(
E ′

k,l ⊗OX
E1−k−n,1−l ⊗OX

detE∗[n − 2]))
∼= F ⊗B0 p∗

(
E ′

k,l ⊗OX
E1−k−n,1−l ⊗OX

detE∗[n − 2])
by associativity of the tensor product and the projection formula. �
Lemma 4.12. We have

Ψ1−k−n,1−l

(
OX /S(k − t)

) ∼= Rt
B ⊗B0 B−l for all t � 2 − n.

In particular, Ψ1−k−n,1−l (OX /S(k − t)) = 0 for 2 − n � t � −1.

Proof. Note that

Ψ1−k−n,1−l

(
OX /S(k − t)

) = p∗
(
OX /S(k − t) ⊗OX E1−k−n,1−l ⊗OX detE∗[n − 2])

by definition of Ψ1−k−n,1−l . Tensoring resolution (21) by OX /S(k − t) ⊗OX detE∗ and taking
into account Lemma 4.3 we obtain the following resolution

· · · → A∗
t+3 ⊗B−3−l → A∗

t+2 ⊗B−2−l → A∗
t+1 ⊗B−1−l

→ p∗
(
OX /S(k − t) ⊗OX E1−k−n,1−l ⊗OX detE∗[n − 2])

which coincides with the resolution (16) tensored over B0 by B−l . �
Lemma 4.13. We have p∗(E ′

k,l ⊗OX E1−k−n,1−l ⊗OX detE∗[n − 2]) ∼= B0.

Proof. Using the resolution (22) and Lemma 4.12 above we deduce that the LHS is quasiiso-
morphic to the complex of sheaves of B-bimodules

· · · → Bl−2 ⊗OX

(
R2

B ⊗B0 B−l

) → Bl−1 ⊗OX

(
R1

B ⊗B0 B−l

)
→ Bl ⊗OX

(
R0

B ⊗B0 B−l

) → 0

which by (18) is quasiisomorphic to the B0-bimodule Bl ⊗B0 B0 ⊗B0 B−l , which is isomorphic
to B0. �

Combining Lemmas 4.11 and 4.13 we see that Ψ1−k−n,1−l (Φk,l(F )) ∼= F ⊗B0 B0 ∼= F , hence
the composition Ψ1−k−n,1−l ◦ Φk,l is isomorphic to the identity functor. On the other hand, we
have shown in Lemma 4.10 that Ψ1−k−n,1−l is left adjoint to Φk,l , hence Φk,l is fully faithful
indeed.

To conclude the proof of Theorem 4.2 it remains to check that the category Φk,l(Db(S,B0))

is right orthogonal to the collection (19) and that together they generate Db(X ).

Lemma 4.14. The subcategory Φk,l(D
b(S,B0)) is right orthogonal to the subcategory (19).
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Proof. Recalling the definition of the functor Ψ1−k−n,1−l and using the projection formula we
deduce that

Ψ1−k−n,1−l

(
OX /S(k − t) ⊗ p∗F

) ∼= Ψ1−k−n,1−l

(
OX /S(k − t)

) ⊗ F.

But Ψ1−k−n,1−l (OX /S(k − t)) = 0 for 2 − n � t � −1 by Lemma 4.12. Therefore

Ψ1−k−n,1−l

(〈
OX /S(k + 1), . . . ,OX /S(k + n − 2)

〉
�Db(S)

) = 0.

Recalling Lemma 4.10 we deduce by adjunction that Φk,l(Db(S,B0)) is right orthogonal
to (19). �
Lemma 4.15. The composition of functors Φk,l ◦ Ψ1−k−n,1−l : Db(X ) → Db(X ) is isomorphic
to the functor G �→ p2∗(p∗

1G⊗O (p∗
1(E1−k−n,1−l ⊗O detE∗[n−2])⊗B0 p∗

2E ′
k,l)), where p1,p2 :

X ×S X →X are the projections to the factors

X ×S X
p1

p2
X

p

X
p

S.

Proof. Indeed, Φk,l ◦ Ψ1−k−n,1−l (G) = p∗p∗(G ⊗O E1−k−n,1−l ⊗O detE∗[n − 2]) ⊗B0 E ′
k,l .

By the flat base change we have p∗p∗ ∼= p2∗p∗
1 , and applying the projection formula for p2 we

deduce the claim. �
Let us denote by K the truncation of the resolution of the diagonal (10) on X ×S X in degree

n − 3, so that we get the following right and left resolutions for K :

K = {
0 →Rn−3

A
�OX /S(3 − n) → ·· · →R1

A �OX /S(−1) →R0
A �OX → Δ∗OX → 0

}
,

(24)

K = {· · · → Rn
A �OX /S(−n) → Rn−1

A
�OX /S(1 − n) → Rn−2

A
�OX /S(2 − n) → 0

}
. (25)

Lemma 4.16. We have

p∗
1

(
E1−k−n,1−l ⊗O detE∗[n − 2]) ⊗B0 p∗

2E ′
k,l

∼= K ⊗ (
OX (2 − k − n) �OX (k + n − 2)

)
.
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Proof. Tensoring over B0 the pullback via p1 of the resolution (21) of E1−k−n,1−l twisted by
detE∗ and the pullback via p2 of the resolution (22) of E ′

k,l we deduce that p∗
1(E1−k−n,1−l ⊗O

detE∗[n − 2]) ⊗B0 p∗
2E ′

k,l is quasiisomorphic to the total complex of the following bicomplex:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. . . B−1(−1 − k − n, k) B0(−k − n, k) B1(1 − k − n, k)

. . . B−2(−1 − k − n, k − 1) B−1(−k − n, k − 1) B0(1 − k − n, k − 1)

. . . B−3(−1 − k − n, k − 2) B−2(−k − n, k − 2) B−1(1 − k − n, k − 2)

...
...

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊗ detE∗.

But comparing (15) with formulas (12), (14) and (5) it is easy to see that

Bk ⊗ detE∗ ∼= B∗
n−k for all k � 1.

Therefore, this bicomplex can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. . . B∗
n+1(−1 − k − n, k) B∗

n(−k − n, k) B∗
n−1(1 − k − n, k)

. . . B∗
n+2(−1 − k − n, k − 1) B∗

n+1(−k − n, k − 1) B∗
n(1 − k − n, k − 1)

. . . B∗
n+3(−1 − k − n, k − 2) B∗

n+2(−k − n, k − 2) B∗
n+1(1 − k − n, k − 2)

...
...

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Comparing rows of this bicomplex with resolutions (8) we see that its total complex is quasiiso-
morphic to

{· · · →Rn
A(2 − k − n) �OX (k − 2) →Rn−1

A
(2 − k − n) �OX (k − 1)

→ Rn−2
A

(2 − k − n) �OX (k) → 0
}
.

But looking at (25) we see that this complex coincides with

K ⊗ (
OX (2 − k − n) �OX (k + n − 2)

)
. �
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Now we can give a proof of theorem.

Proof. By Proposition 4.9 the functor Φk,l is fully faithful and by Lemmas 4.4 and 4.14 the
collection〈
Db(S,B0),p

∗(Db(S)
) ⊗OX /S(1),p∗(Db(S)

) ⊗OX /S(2), . . . , p∗(Db(S)
) ⊗OX /S(n − 2)

〉
is semiorthogonal in Db(X ). It remains to check that Db(X ) is generated by this collection.
Tensoring the right resolution (24) of K with (OX (2 − k − n)⊗OX (k + n− 2)) and taking into
account Lemma 4.16 we see that

p∗
1(E1−k−n,1−l ⊗O detE∗[n − 2]) ⊗B0 p∗

2E ′
k,l

∼= {
0 →Rn−3

A
(2 − k − n) �OX (k + 1) → ·· · →R0

A(2 − k − n) �OX (k + n − 2)

→ Δ∗OX → 0
}
.

Take any G ∈Db(X ). Note that

p2∗
(
p∗

1G ⊗ Δ∗OX
) ∼= G,

p2∗
(
p∗

1G ⊗Rs
A(2 − k − n) �OX (k + n − 2 − s)

)
∼= p∗p∗

(
G ⊗Rs

A(2 − k − n)
) ⊗OX (k + n − 2 − s),

and on the other hand, by Lemma 4.15 we have

p2∗
(
p∗

1G ⊗ p∗
1

(
E1−k−n,1−l ⊗O detE∗[n − 2]) ⊗B0 p∗

2E ′
k,l

) ∼= Φk,l ◦ Ψ1−k−n,1−l (G).

It follows that G admits a filtration with quotients of the form

p∗p∗
(
G ⊗Rs

A(2 − k − n)
) ⊗OX (k + n − 2 − s) ∈ p∗(Db(S)

) ⊗OX (k + n − 2 − s),

s = 0, . . . , n − 3,

and Φk,l(Ψ1−k−n,1−l (G)) ∈ Φk,l(Db(S,B0)). Therefore Db(X ) is indeed generated by the de-
sired collection. �
5. Homological Projective Duality for the double Veronese variety

We start this section with a brief reminder of the notion of the Homological Projective Duality.
The general reference for this is [17]. Assume that X is an algebraic variety with a line bundle
OX(1) on X.

Definition 5.1. (See [17].) A Lefschetz decomposition of the derived category Db(X) is a semi-
orthogonal decomposition of Db(X) of the form

Db(X) = 〈
A0,A1(1), . . . ,Ai−1(i − 1)

〉
, 0 ⊂ Ai−1 ⊂ Ai−2 ⊂ · · · ⊂ A1 ⊂ A0 ⊂ Db(X),

(26)
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where 0 ⊂ Ai−1 ⊂ Ai−2 ⊂ · · · ⊂ A1 ⊂ A0 ⊂ Db(X) is a chain of admissible subcategories of
Db(X).

Let ak denote the right orthogonal to Ak+1 in Ak , so that we have a semiorthogonal decom-
position

Ak = 〈ak,ak+1, . . . ,ai−1〉.
The categories a0,a1, . . . ,ai−1 are called primitive categories of the Lefschetz decomposi-
tion (26).

Let f : X → P(V ) be a morphism into a projective space such that f ∗(OP(V )(1)) ∼= OX(1)

and let X ⊂ X × P(V ∗) be the universal hyperplane section of X (i.e. the canonical divisor of
bidegree (1,1) in X × P(V ∗)).

Definition 5.2. (See [17].) An algebraic variety Y with a projective morphism g : Y → P(V ∗)
is called Homologically Projectively Dual to f : X → P(V ) with respect to a Lefschetz de-
composition (26), if there exists an object E ∈ Db(X ×P(V ∗) Y ) such that the kernel functor
Φ = ΦE : Db(Y ) → Db(X ) is fully faithful and gives the following semiorthogonal decomposi-
tion

Db(X ) = 〈
Φ

(
Db(Y )

)
,A1(1) �Db

(
P(V ∗)

)
, . . . ,Ai−1(i − 1) �Db

(
P(V ∗)

)〉
. (27)

For every linear subspace L ⊂ V ∗ we consider the corresponding linear sections of X and Y :

XL = X ×P(V ) P
(
L⊥)

, YL = Y ×P(V ∗) P(L),

where L⊥ ⊂ V is the orthogonal subspace to L ⊂ V ∗. Let N = dimV .
The main property of Homologically Projectively Dual varieties is the following

Theorem 5.3. (See [17].) If Y is Homologically Projectively Dual to X then

(i) Y is smooth and Db(Y ) admits a dual Lefschetz decomposition

Db(Y ) = 〈
Bj−1(1 − j), . . . ,B1(−1),B0

〉
, 0 ⊂ Bj−1 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ Db(Y )

with the same set of primitive subcategories: Bk = 〈a0, . . . ,aN−k−2〉;
(ii) for any linear subspace L ⊂ V ∗, dimL = r , such that we have dimXL = dimX − dimL,

and dimYL = dimY +dimL−N there exist a triangulated category CL and semiorthogonal
decompositions

Db(XL) = 〈
CL,Ar (1), . . . ,Ai−1(i − r)

〉
,

Db(YL) = 〈
Bj−1(N − r − j), . . . ,BN−r (−1),CL

〉
.

Now we are going to apply Theorem 5.3 in the following situation. Let W be a vector space,
dimW = n, and X = P(W). Consider the standard exceptional collection

Db(X) = 〈
OX(−1),OX,OX(1), . . . ,OX(n − 2)

〉
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on the projective space X = P(W) ∼= P
n−1 and put

A0 = A1 = · · · =Ai−2 := 〈
OX(−1),OX

〉
, Ai−1 :=

{ 〈OX(−1),OX〉, if n = 2i is even,

〈OX(−1)〉, if n = 2i − 1 is odd

where i = �n/2�. Then

Db(X) = 〈
A0,A1 ⊗OP(S2W)(1), . . . ,Ai−1 ⊗OP(S2W)(i − 1)

〉
(28)

is a Lefschetz decomposition of P(W) with respect to the double Veronese embedding f :
P(W) → P(S2W) (note that f ∗(OP(S2W)(1)) ∼= OP(W)(2)).

Let X ⊂ P(W) × P(S2W ∗) be the universal hyperplane section of P(W) with respect to the
double Veronese embedding f : P(W) → P(S2W). In other words, X is the universal quadric
(the fiber of X over a point of the space P(S2W ∗) is the corresponding quadric in P(W)). Thus
X → P(S2W ∗) is a quadric fibration. Consider the corresponding sheaf of even parts of Clifford
algebras on P(S2W ∗)

B0 = OP(S2W ∗) ⊕ Λ2W ⊗OP(S2W ∗)(−1) ⊕ Λ4W ⊗OP(S2W ∗)(−2) ⊕ · · · ,

constructed in Section 3.3.

Theorem 5.4. The noncommutative algebraic variety Y = (P(S2W ∗),B0) is Homologically Pro-
jectively Dual to P(W) with respect to the Lefschetz decomposition (28).

Proof. Rewriting the semiorthogonal decomposition of Db(X ) given by Theorem 4.2 in our case
we get

Db(X ) = 〈
Φ0,0

(
Db(Y )

)
,A1(1) �Db

(
P
(
S2W ∗)), . . . ,Ai−1(i − 1) �Db

(
P
(
S2W ∗))〉.

It remains to note that the functor Φ0,0 is a kernel functor with kernel supported on the fiber
product X ×P(S2W ∗) Y = (X ,B0) by Remark 4.8. �

A direct computation shows that the dual Lefschetz decomposition of Db(P(S2W ∗),B0) in
this case takes form

Db
(
P
(
S2W ∗),B0

) = 〈B−n2 ,B1−n2, . . . ,B−1,B0,B1〉,

where

B1 = W ⊗OP(S2W ∗) ⊕ Λ3W ⊗OP(S2W ∗)(−1) ⊕ Λ5W ⊗OP(S2W ∗)(−2) ⊕ · · · ,
Bk+2 = Bk ⊗OP(S2W ∗)(1).

is the sequence of B0-modules constructed in Section 3.3.
Now we are going to apply Theorem 5.3 to the Homologically Projectively Dual varieties

X = P(W) and Y = (P(S2W ∗),B0). Then for each vector subspace L ⊂ S2W ∗ the corre-
sponding linear section XL := P(W) ×P(S2W ∗) P(L⊥) is the intersection of quadrics in P(W)
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parameterized by the space L, and YL := (P(S2W ∗),B0) ×P(S2W ∗) P(L) = (P(L),B0). The sub-
space L satisfies the assumptions of part (ii) of Theorem 5.3 if and only if the intersection of
quadrics XL is complete. Thus we deduce the following description of the derived category of a
complete intersection of quadrics:

Theorem 5.5. For any vector subspace L ⊂ S2W ∗ such that the corresponding intersection of
quadrics XL is complete there exists a semiorthogonal decomposition

Db(XL) = 〈
Db

(
P(L),B0

)
,OXL

(1), . . . ,OXL
(n − 2r)

〉
, if r = dimL � n/2,

Db
(
P(L),B0

) = 〈
Bn−2r , . . . ,B−2,B−1,Db(XL)

〉
, if r = dimL � n/2

and an equivalence

Db(XL) ∼= Db
(
P(L),B0

)
if dimL = n/2,

where Db(P(L),B0) is the derived category of sheaves of B0-modules on P(L).

In the case when r = dimL = 1 the space X1 = XL is a single quadric and Db(P(L),B0)

is the derived category of B0-modules where B0 is the even part of the Clifford algebra of the
quadric. If the quadric is smooth then the algebra B0 is semisimple and we recover the Kapra-
nov’s description of the derived category of a smooth quadric.

Corollary 5.6. If X1 is a quadric in P
n−1 then we have a semiorthogonal decomposition

Db(X1) = 〈
Db(B0),OX1(1), . . . ,OX1(n − 2)

〉
,

where B0 is the even part of the Clifford algebra of the quadric, and Db(B0) is the derived
category of B0-modules. If X1 is smooth then Db(B0) is generated by one (for odd n) or two (for
even n) exceptional objects.

In the case when r = dimL = 2 the space X2 = XL is an intersection of two quadrics. If the
intersection is complete and smooth we apply Corollaries 3.14 and 3.16 and obtain the following
description of the derived category Db(XL):

Corollary 5.7. If X2 is a smooth complete intersection of two quadrics in P
n−1 then we have a

semiorthogonal decomposition

Db(X1) = 〈
Db(C),OX1(1), . . . ,OX1(n − 4)

〉
,

where C is either a twofold covering of P
1 ramified at the critical values of p (for even n), or P

1

with Z/2Z-stack structure at the critical values of p (for odd n).
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