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Abstract. We discuss various results on Hilbert schemes of lines and conics and automorphism
groups of smooth Fano threefolds of Picard rank 1. Besides a general review of facts well known
to experts, the paper contains some new results, for instance, we give a description of the Hilbert
scheme of conics on any smooth Fano threefold of index 1 and genus 10. We also show that
the action of the automorphism group of a Fano threefold X of index 2 (respectively, 1) on
an irreducible component of its Hilbert scheme of lines (respectively, conics) is faithful if the
anticanonical class of X is very ample except for some explicit cases.

We use these faithfulness results to prove finiteness of the automorphism groups of most
Fano threefolds and classify explicitly all Fano threefolds with infinite automorphism group. We
also discuss a derived category point of view on the Hilbert schemes of lines and conics, and use
it to identify some of them.
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1. Introduction

1.1. Setup and main results

We work over an algebraically closed field � of characteristic 0.
The purpose of this paper is to survey the results on Hilbert schemes of

lines and conics and automorphism groups of Fano threefolds of Picard rank 1.
These are usually known to experts, but sometimes are scattered in the literature
or even in the mathematical folklore.

Let X be a Fano threefold with at worst canonical Gorenstein singularities.
In this case, the number

g.X/ D �1

2
K3

X C 1

is called the genus of X . By Riemann–Roch theorem and Kawamata–Viehweg
vanishing one has

dimj�KX j D g.X/ C 1

(see e.g. [IP99, 2.1.14]). In particular, g.X/ is an integer, and g.X/ > 2. Recall
that Pic.X/ is a finitely generated torsion free abelian group, so that

Pic.X/ Š Z�.X/

(this holds even for Fano varieties with log terminal singularities, see e.g. [IP99,
Proposition 2.1.2]). The integer �.X/ is called the Picard rank of X . The max-
imal number � D �.X/ such that �KX is divisible by � in Pic.X/ is called the
Fano index, or just index, of X . Let H be a divisor class such that

�KX � �.X/H:

The class H is unique since Pic.X/ is torsion free. Define the degree of X as

d.X/ D H 3:

In this paper we concentrate on smooth Fano threefolds of Picard rank 1.
Their classification can be found in [IP99, §12.2] (see also [Muk89]). We recall
it in Tables 1 and 2 which contain the lists of Fanos with index at least two and
index one, respectively. For our purposes it will be important to know for each
type of Fano threefolds the minimal integer m0 such that m0H is very ample.
We list these m0 in the last columns of the tables.

Note that although in some cases (for � D � D 1 and g D 3 or g D 6) there
are two types of Fano threefolds, they belong to the same deformation family.

The first main result of this paper is an explicit description of the Hilbert
schemes of lines †.Y / on Fano threefolds Y of Picard rank 1, index 2 and
degree d.Y / > 3 and the Hilbert schemes of conics S.X/ on Fano threefolds X

of Picard rank 1, index 1 and genus g.X/ > 7 (by lines and conics we mean
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Table 1. Smooth Fano threefolds with � D 1 and � > 2

� d h1;2 Brief description m0

4 1 0 P3 1

3 2 0 quadric hypersurface in P4 1

2 1 21 hypersurface in P.1; 1; 1; 2; 3/ of degree 6 3

2 2 10 double cover of P3 branched in a quartic surface 2

2 3 5 cubic hypersurface in P4 1

2 4 2 complete intersection of two quadrics in P5 1

2 5 0 section of Gr.2; 5/ � P9 by a linear subspace of codimension 3 1

Table 2. Smooth Fano threefolds with � D 1 and � D 1

g d h1;2 Brief description m0

2 2 52 double cover of P3 branched in a sextic surface 3

3 4 30 (a) quartic hypersurface in P4, or 1

(b) double cover of a smooth quadric in P4 branched in an intersec-
tion with a quartic

2

4 6 20 complete intersection of a quadric and a cubic in P5 1

5 8 14 complete intersection of three quadrics P6 1

6 10 10 (a) section of Gr.2; 5/ � P9 by a linear subspace of codimension 2

and a quadric, or
(b) double cover of the Fano threefold Y with �.Y / D 1; �.Y / D 2

and d.Y / D 5 branched in an anticanonical divisor

1

7 12 7 section of a connected component of the orthogonal Lagrangian
Grassmannian OGrC.5; 10/ � P15 by a linear subspace of codi-
mension 7

1

8 14 5 section of Gr.2; 6/ � P14 by a linear subspace of codimension 5 1

9 16 3 section of the symplectic Lagrangian Grassmannian
LGr.3; 6/ � P13 by a linear subspace of codimension 3

1

10 18 2 section of the homogeneous space G2=P � P13 by a linear sub-
space of codimension 2

1

12 22 0 zero locus of three sections of the rank 3 vector bundle ƒ2U_,
where U is the universal subbundle on Gr.3; 7/

1

lines and conics in the embedding given by the linear system jH j). We collect
the results we have in the following theorem. We label the items in it by the
index and degree/genus of the corresponding variety; thus item (2.4) is related
to � D 2 and d D 4, while item (1.9) is related to � D 1 and g D 9.

Theorem 1.1.1. Let Y be a smooth Fano threefold with �.Y / D 1, �.Y / D 2,
and d.Y / > 3. Then the Hilbert scheme of lines †.Y / is a smooth irreducible
surface and moreover:
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(2.3) if d.Y / D 3, then †.Y / is a minimal surface of general type with irregu-
larity 5, geometric genus 10 and canonical degree K2

†.Y /
D 45;

(2.4) if d.Y / D 4, then †.Y / is an abelian surface;
(2.5) if d.Y / D 5, then †.Y / Š P2.

Let X be a smooth Fano threefold �.X/ D 1, �.X/ D 1, and g.X/ > 7.
Then the Hilbert scheme of conics S.X/ is a smooth irreducible surface and
moreover:

(1.7) if g.X/ D 7, then S.X/ is the symmetric square of a smooth curve of
genus 7;

(1.8) if g.X/ D 8, then S.X/ is a minimal surface of general type with irreg-
ularity 5, geometric genus 10 and canonical degree K2

S.X/
D 45;

(1.9) if g.X/ D 9, then S.X/ is a ruled surface isomorphic to the projectiviza-
tion of a simple rank 2 vector bundle on a smooth curve of genus 3;

(1.10) if g.X/ D 10, then S.X/ is an abelian surface;
(1.12) if g.X/ D 12, then S.X/ Š P2.

To be honest, most of the information provided by Theorem 1.1.1 can be
found in the literature (see [AK77], [DR76], [FN89], [Ten74], [Isk80], [Put82],
[Mar81], [Ili03], [IM07], [BF13], etc). Our goal was, in a sense, in collecting
all the results together, and cleaning things a bit. One new improvement here is
the case �.X/ D 1 and g.X/ D 10, where originally in [IM07, Proposition 3]
a description of S.X/ was known for general X only. Another improvement is
the case �.X/ D 1 and g.X/ D 9 where it was previously known that S.X/ is
a projectivization of a vector bundle over a curve of genus 3, but simplicity of
the vector bundle was known only for a general threefold X (see [BF13, §3]).
Also, our proof for the even genus cases, i.e., �.X/ D 1 and g.X/ 2 f8; 10; 12g,
emphasizes the relation between Fano threefolds of index 1 and 2. We show that
if Y is a Fano threefold of index 2 and degree

d.Y / D g.X/

2
� 1

associated to X by [Kuz09] (see also Appendix B) then S.X/ Š †.Y /.
For small degrees and genera the situation with the Hilbert schemes of

lines and conics is much more complicated. For instance, in the case
�.Y / D 2 and d.Y / D 2 the scheme †.Y / may be singular and in the case
�.X/ D 1 and g.X/ D 6 the scheme S.X/ may be even reducible. Furthermore,
for small values of g.X/ it is quite hard to get a satisfactory explicit description
of S.X/. Say, for g.X/ D 2 the only more or less explicit description of S.X/

we are aware of is as a 240-to-1 branched cover of P2, which is not very much
useful. So, it seems that our result is a kind of optimal in that direction.

A description of the Hilbert schemes of lines and conics allows to produce
some results on the automorphism groups of the corresponding varieties. The
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automorphism groups act on the Hilbert schemes and we prove that the action
is faithful in all cases listed in Theorem 1.1.1. In fact, we deduce faithfulness
from a more general result (Theorem 4.1.1). In particular, it applies to all X

with g.X/ > 4 and to some X with g.X/ D 3, and shows that the action on an
irreducible component of a Hilbert scheme is faithful unless X is a double cover
of a smooth Fano threefold Y with �.Y / D 1, �.Y / D 2, and d.Y / D g.X/ � 1,
in which case there is an irreducible component of the Hilbert scheme of conics
on X on which the Galois involution of the double cover acts trivially.

We note that in most of the cases listed in Theorem 1.1.1, the maximal linear
algebraic subgroup of the automorphism group of the surface †.Y / and S.X/

is finite; the only exceptions are cases .2:5/ and .1:12/. Due to the faithful-
ness result, this proves that the automorphism groups of the threefolds listed in
Theorem 1.1.1, except the threefolds .2:5/ and .1:12/, are finite as well.

Our second main result is an extension of this observation to the following
general statement describing all possible infinite automorphism groups of Fano
threefolds of Picard rank 1.

Theorem 1.1.2. Let X be a smooth Fano threefold with �.X/ D 1. Then the
group Aut.X/ is finite unless one of the following cases occurs:

� �.X/ D 4 so that X Š P3; then Aut.X/ Š PGL4.�/;
� �.X/ D 3 so that X is a quadric in P4; then Aut.X/ Š PSO5.�/;
� �.X/ D 2, d.X/ D 5; then Aut.X/ Š PGL2.�/;
� �.X/ D 1, g.X/ D 12, and X is one of the following:

(1) X D XMU
22 is the Mukai–Umemura threefold; then Aut.X/ Š PGL2.�/;

(2) X D X a
22 is the threefold of Example 5.3.2; then Aut.X/ Š Ga Ì �4;

(3) X D Xm
22.u/ is a threefold from the one-dimensional family of Exam-

ple 5.3.4; then Aut.X/ Š Gm Ì �2.

Note that a Fano threefold with �.X/ D 1, �.X/ D 2, and d.X/ D 5 is
unique (up to isomorphism), see [Isk80, Theorem II.1.1] or [IP99, 3.3.1–3.3.2].

Again, we should say that almost all results of Theorem 1.1.2 were al-
ready known, see [Pro90a]. The new results here is the explicit description
of Aut.X a

22/ and Aut.Xm
22.u//.

Using the classification of Fano threefolds of Picard rank 1 (see [IP99, §12.2],
or Tables 1 and 2) we conclude that Theorem 1.1.2 implies the following.

Corollary 1.1.3. Let X be a smooth Fano threefold with �.X/ D 1. If the group
Aut.X/ is infinite, then h1;2.X/ D 0.

Our proof of Theorem 1.1.2 relies on a classification of smooth Fano three-
folds. It would be interesting to find a proof of Corollary 1.1.3 that does not
depend on a classification, and use it to obtain an alternative proof of Theo-
rem 1.1.2. Note that [Tol10, Theorem 1] can be considered as a symplectic
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counterpart of Corollary 1.1.3, and to some extent can be used to recover it;
namely, the results of [Tol10] imply that an automorphism group of a smooth
Fano threefold X of Picard rank 1 can contain a subgroup isomorphic to Gm
only if h1;2.X/ D 0.

1.2. Applications and future directions

One of the motivations for writing this paper was the problem of classifica-
tion of finite subgroups of the Cremona group of rank 3 (cf. [Pro12], [Pro11],
[Pro14], [PS16b]). This classification problem reduces to investigation of finite
automorphism groups of Fano threefolds of Picard number 1 with terminal sin-
gularities and Mori fiber spaces. In particular, it includes classification of finite
group of automorphisms of smooth Fano threefolds of Picard number 1. Notice
that here it is important to consider all possible Fano threefolds in their defor-
mation classes, while restricting to general Fano threefolds (as it is practiced by
many authors) does not work. This is why we try to push our arguments forward
in full generality.

Our results allow to give explicit upper bounds on some parameters of auto-
morphism groups, which may be useful for further applications to studying bira-
tional automorphisms (see [PS17], and cf. [PS14], [PS16a], [PS16c], [Yas17]).

It would be interesting to understand which results of this paper can be gen-
eralized to the case of singular Fano threefolds, and what kind of conclusions
one can make about their automorphism groups (cf. [Pro15], [Pro16], [Pro17],
[PrzS16]).

It would be also nice to extend the results of this paper to higher dimen-
sions. Naturally, the questions we discuss here become much more complicated.
Besides other things, no classification of higher-dimensional Fano varieties is
available (though, there are some partial results, see, e.g. [Ku95], [Kuz15],
[Kuz16], [Kuz18]).

1.3. Outline of the paper

The plan of our paper is as follows.
In Sect. 2 we collect the necessary results about Hilbert schemes of lines

and conics on Fano threefolds. In Subsect. 2.1 we discuss general properties
of Hilbert schemes, while in Subsect. 2.2 and Subsect. 2.3 we concentrate on
Hilbert scheme of lines and conics respectively on Fano threefolds. Some rather
technical parts of the material were moved to Appendix A for the readers conve-
nience. Another part of the arguments that uses derived categories perspective
and technique is collected in Appendix B. The main result of this section is a
proof of Theorem 1.1.1.
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In Sect. 3 we recall various general results about automorphism groups of
algebraic varieties, including actions on invariant linear systems and some well-
known finiteness assertions.

In Sect. 4 we prove finiteness of automorphism groups for all Fano threefolds
of Picard rank 1 except those listed in Theorem 1.1.2. We start in Subsect. 4.1
by proving a general faithfulness result (Theorem 4.1.1) for an algebraic group
action on irreducible components of Hilbert schemes of (anticanonical) conics
on Fano varieties of arbitrary dimension. In Subsect. 4.2 we apply it to the action
of the automorphism group of a Fano threefold of index 2 and degree at least 3

on (an irreducible component of) the Hilbert scheme of lines, and in Subsect. 4.3
we apply it to the action of the automorphism group of a Fano threefold of index 1

and genus at least 3 on (an irreducible component of) the Hilbert scheme of
conics. For d > 3 and g > 7 we prove faithfulness of these actions and com-
bining it with the description of Hilbert schemes provided by Theorem 1.1.1,
deduce finiteness of the automorphism group. Finally, in Subsect. 4.4 we prove
finiteness of the automorphism groups in the remaining (easy) cases in a more
straightforward way.

In Sect. 5 we study Fano threefolds of index 1 and genus 12 with infinite
automorphism groups via a double projection method and complete our proof
of Theorem 1.1.2. In Subsect. 5.1 we discuss geometry of the Fano threefold Y

of index 2 and degree 5 and give an explicit description of its Hilbert scheme
of lines. In Subsect. 5.2 we explain the double projection method and describe
the relation between the Hilbert scheme of lines on a Fano threefold X of in-
dex 1 and genus 12 and the Hilbert scheme of lines on Y . In Subsect. 5.3 we
explain the construction of threefolds with infinite automorphism groups, and in
Subsect. 5.4 we describe explicitly their Hilbert schemes of lines and automor-
phisms groups.

In Appendix A we collect some well-known facts about conics. First, we
remind a classification of surfaces whose Hilbert scheme of conics is at least
two-dimensional. After that we remind a description of normal bundles of re-
ducible and non-reduced conics.

In Appendix B we prove Theorem 2.3.5 relating the Hilbert schemes of con-
ics on Fano threefolds of index 1 and genera 8, 10, and 12 to the Hilbert schemes
of lines on Fano threefolds of index 2 and degrees 3, 4, and 5, respectively. The
proof is based on the relation between derived categories of these threefolds
established in [Kuz09]. We remind this approach, discuss some details of the
relation, and then prove Theorem 2.3.5. We also write down proofs for some
well-known results of Mukai concerning vector bundles on Fano threefolds that
we could not find in the literature.
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Notation and conventions

As we already mentioned, we work over an algebraically closed field � of char-
acteristic 0. We assume that the Fano varieties appearing in the paper are smooth
unless the converse is mentioned explicitly. We remind about the smoothness
assumption only at the most important points of our exposition.

We use the following notation throughout the paper. By Pic.X/ and Cl.X/

we denote the Picard group and the class group of Weil divisors on the variety X ,
respectively. Linear equivalence of divisors is denoted by �.

For a Fano threefold X we keep the notation �.X/, �.X/, d.X/, and g.X/

for the Picard rank, the Fano index, the degree, and the genus of X , respectively.
If �.X/ D 1, we always denote by H or HX the ample generator of Pic.X/ Š Z.

If Z is a subscheme in X , we denote by ŒZ� the point corresponding to Z in
the appropriate Hilbert scheme, and by Aut.X I Z/ the group of automorphisms
of X that preserve Z. Similarly, if ŒD� is a divisor class in Pic.X/ or Cl.X/,
we denote by Aut.X I ŒD�/ the group of automorphisms of X that preserve the
class ŒD�.

By Gr.k; n/ we denote the Grassmannian of vector subspaces of dimension k

in a vector space of dimension n; similarly, by Gr.k; W / we denote the Grass-
mannian of vector subspaces of dimension k in a vector space W . By a linear
section of a Grassmannian we always mean its linear section in the Plücker
embedding, i.e., in the embedding defined by the ample generator of its Picard
group. By v2 W P.V / ! P.Sym2V / we denote the second Veronese embedding.
We denote by �m the group of m-th roots of unity (isomorphic to a cyclic group
of order m).

2. Hilbert schemes of lines and conics

In this section we discuss general properties of Hilbert schemes of lines and
conics on Fano threefolds and give an explicit description for some of them.

2.1. General properties of Hilbert schemes

Let X be a projective variety with a fixed ample divisor class H . Recall that a
line (or an H -line to be more precise) on X is a subscheme L � X with Hilbert
polynomial

pL.t/ D 1 C t:

Similarly, a conic (or an H -conic) on X is a subscheme C � X with Hilbert
polynomial

pC .t/ D 1 C 2t:
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We denote by
†.X/ D Hilbp.t/D1Ct .X I H/

the Hilbert scheme of lines on X , and by

S.X/ D Hilbp.t/D1C2t .X I H/

the Hilbert scheme of conics on X .

Lemma 2.1.1. Let X be a projective variety with an ample divisor class H .

(i) If 2H is very ample and L � X is an H -line then L Š P1 and OX .H/jL
Š OL.1/.

(ii) If H is very ample and C � X is an H -conic then C is purely one-
dimensional and

� either C is a smooth conic, i.e., C Š P1 and OX .H/jC Š OC .2/,
� or C is a reducible conic, i.e., C D L1 [ L2 for two distinct lines L1

and L2 on X intersecting transversally at a point,
� or C is a non-reduced conic, i.e., a non-reduced subscheme C � X

such that Cred D L is a line and IL=IC Š OL.�1/.

Proof. First, assume that H is very ample. Then we may assume that X D Pn,
and H is the class of a hyperplane.

If pL.t/ D 1 C t then all irreducible components of L have dimension at
most 1, and the sum of the degrees (with multiplicities) of all one-dimensional
components is 1. Let L0 be the purely one-dimensional part of L and let ` be
the sum of the lengths of all zero-dimensional components (including embed-
ded ones). Then by the above observation L0 is integral of degree 1, hence
L0 is P1 linearly embedded into Pn. In particular, one has pL0

.t/ D 1 C t ,
hence pL.t/ D 1 C ` C t , which means ` D 0 and so L D L0.

Analogously, let pC .t/ D 1 C 2t . Then all irreducible components of C

have dimension at most 1, and the sum of the degrees (with multiplicities) of all
one-dimensional components is 2. Let C0 be the purely one-dimensional part
of C and let ` be the sum of the lengths of all zero-dimensional components
(including embedded ones). If C0 is integral, then it is contained in the linear
span of any triple of its points. Thus C0 is a divisor of degree 2 on P2, so
C0 Š P1 and OX .H/jC0

Š OC0
.2/. Furthermore, we have pC0

.t/ D 1 C 2t ,
hence pC .t/ D 1 C ` C 2t which means ` D 0 and C D C0.

If C0 is not integral, then either it has two different irreducible components
L1 and L2 of degree 1, or one irreducible component L of degree 1 with mul-
tiplicity 2. In the first case, L1 and L2 are lines, hence their scheme-theoretic
intersection has length ı D 0 or ı D 1. It follows that

pC .t/ D ` C .1 C t/ C .1 C t/ � ı;
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which means that ` D 0 and ı D 1. In other words, L1 and L2 meet at a point
and C D L1 [ L2.

In the second case we have a canonical epimorphism OC0
! OL and its

kernel is a line bundle on L, hence is isomorphic to OL.k/ for some k 2 Z.
Then

pC .t/ D ` C .1 C t/ C .1 C k C t/;

which implies k D �.1 C `/. On the other hand, it is easy to see that OL.k/

is a quotient of IL=I 2
L which is the conormal bundle of L in Pn, hence is iso-

morphic to OL.�1/˚.n�1/. Therefore k > �1, so comparing with the previ-
ous observation, we see that k D �1 and ` D 0. In other words, Cred D L

and IL=IC Š OL.�1/.
Finally, assume that H is not ample, but 2H is very ample and L is an

H -line such that pL.t/ D 1Ct . Then with respect to 2H the Hilbert polynomial
of L is 1 C 2t , hence in the embedding of X given by the linear system 2H

it is a conic. But it can be neither reducible, nor non-reduced conic, since X

contains no curves which have degree 1 with respect to 2H . Thus L Š P1

and OX .2H/jL Š OL.2/, which implies the claim. �

Remark 2.1.2. If for a line L � X there is a non-reduced conic C such that
Cred D L, we will say that L admits a structure of a non-reduced conic. It is
worth noting that in contrast to the case of a projective space, not every line
admits such a structure. Indeed, as we have seen in the proof of Lemma 2.1.1
above, a line L admits a structure of a non-reduced conic if and only if there is
an epimorphism N_

L D IL=I 2
L ! OL.�1/. In Remark 2.1.7 below we discuss

for which lines on Fano threefolds this holds.

Remark 2.1.3. It is easy to see that one cannot have the same results as in
Lemma 2.1.1 under weaker assumptions. Indeed, assume we consider †.X/

and only the divisor 3H , but not 2H , is very ample. Then we can
realize †.X/ as a subscheme in Hilbp.t/D1C3t .PnIOPn.1//. The latter, how-
ever, has two irreducible components: one parameterizing normal rational cubic
curves, and the other parameterizing plane cubics plus a point (possibly an em-
bedded one). Therefore the same is true in general for †.X/. Similarly, assume
we consider S.X/ and only 2H , but not H , is very ample. Then we can re-
alize S.X/ as a subscheme in Hilbp.t/D1C4t .PnIOPn.1//. The latter Hilbert
scheme also has several irreducible components, some of which parameterize
curves of other types than those listed in Lemma 2.1.1 (ii).

From now on we consider the Hilbert schemes of lines and conics on Fano
threefolds of Picard rank 1 and index 1 or 2 (with respect to the ample generator H

of the Picard group). We note that the Hilbert schemes †.X/ and S.X/ are
non-empty by [Sho79] (see also [Rei80]). As it was explained above to avoid
pathologies when considering †.X/ we should restrict to the case when 2H is
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very ample, i.e., to Fano threefolds of index 1 and genus g > 3, as well as Fano
threefolds of index 2 with d > 2. Similarly, when considering S.X/ we should
restrict to the case when H is very ample: in the index 1 case this means that
either g > 4, or g D 3 and X is a quartic threefold, while in the index 2 case
this means d > 3.

Under our assumptions, by Lemma 2.1.1 both lines and conics are locally
complete intersections, hence their conormal and normal sheaves are locally
free. We will need some facts about them. The first is quite standard.

Lemma 2.1.4 ([Isk80, Propositions III.1.3 (ii) and III.2.1 (i), Lemma III.3.2]).
If L is a line and C is a smooth conic on a Fano threefold X of index 1 then

NL=X Š OL.a/ ˚ OL.�1 � a/ and NC=X Š OC .a/ ˚ OC .�a/

for some a > 0.
If L is a line and C is a smooth conic on a Fano threefold Y of index 2 then

NL=Y Š OL.a/ ˚ OL.�a/ and NC=Y Š OC .1 C a/ ˚ OC .1 � a/

for some a > 0.

It is a bit harder to deal with the normal bundle of a reducible or non-reduced
conic C (see, however, Subsect. A.2).

Recall that by [Gro62] or [Kol96, Theorem I.2.8] the tangent space to the
Hilbert scheme at a point corresponding to a locally complete intersection sub-
scheme Z � X is H 0.Z;NZ=X / and the obstruction space is H 1.Z;NZ=X /.
Therefore, the dimension of any irreducible component of the Hilbert scheme
is bounded from below by the Euler characteristic �.NZ=X / of the normal bun-
dle. By Lemma 2.1.4 and Corollaries A.2.3, and A.2.5 in the cases that are most
relevant for us this gives.

Corollary 2.1.5. The following assertions hold.

(i) If Y is a Fano threefold of index 2, then the dimension of any component
of †.Y / is at least 2.

(ii) If X is a Fano threefold of index 1, then the dimension of any component
of †.X/ is at least 1.

(iii) If X is a Fano threefold of index 1, then the dimension of any component
of S.X/ is at least 2.

A bit later we will see that in all the cases listed in Corollary 2.1.5, the
Hilbert schemes are equidimensional of dimensions 2, 1, and 2 respectively (see
Lemmas 2.2.3, 2.2.6, 2.3.3, and 2.3.4).

In what follows we will say that a line or a smooth conic is ordinary, if in the
notation of Lemma 2.1.4 we have a D 0, and special, if a > 1. Furthermore,
if a D 1 we will say that the corresponding line (or conic) is 1-special, and
if a > 2 we will say that it is 2-special.
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Corollary 2.1.6. The following assertions hold.

(i) If Y is a Fano threefold of index 2, then the Hilbert scheme †.Y / is smooth
of dimension 2 at points corresponding to ordinary lines or 1-special lines
and singular at points corresponding to 2-special lines.

(ii) If X is a Fano threefold of index 1, then the Hilbert scheme †.X/ is smooth
of dimension 1 at points corresponding to ordinary lines, and singular at
points corresponding to special lines.

(iii) If X is a Fano threefold of index 1, then the Hilbert scheme S.X/ is smooth of
dimension 2 at points corresponding to smooth ordinary or smooth 1-special
conics, and singular at points corresponding to smooth 2-special conics.

Proof. By Lemma 2.1.4 in the cases claimed to be corresponding to smooth
points the obstruction space H 1.Z;NZ=X / vanishes, and in the cases claimed
to be corresponding to singular points the tangent space H 0.Z;NZ=X / jumps.

�

Remark 2.1.7. Note that according to Remark 2.1.2, only 1-special lines on Fano
threefolds (both of index 1 and 2) admit a structure of a non-reduced conic, and
this structure is unique. In particular, if X is a Fano threefold of index 1 such
that †.X/ is smooth, then X has no non-reduced conics.

As we will see below, it is useful to know that Fano threefolds do not contain
some special surfaces. We check this in the next lemma.

Lemma 2.1.8. Let X be a Fano threefold with �.X/ D 1 and �.X/ D 1, and
suppose that H D �KX is very ample. Then the following assertions hold.

(i) The threefold X contains neither the Veronese surface v2.P2/, nor any of
its linear projections.

(ii) If X contains a two-dimensional cone Z then X is a quartic in P4 and the
base of Z is a smooth plane quartic curve.

Proof. Assume that Z � X is one of the surfaces listed in assertion (i), so that
in particular H 2 � Z 6 4. Since �.X/ D 1, we have Z � rH for some positive
integer r , hence

4 > H 2 � Z D rH 3 D r.2 g.X/ � 2/:

Since �KX is very ample, we have g.X/ > 3. Hence the only possible case
is when X is a quartic in P4, r D 1, and H 2 � Z D 4, so that Z is a regular
projection of the Veronese surface. Moreover, we see that Z is a hyperplane
section of the smooth hypersurface X � P4, so that Z has at worst isolated
singularities, and Z is contained in P3. But the latter is impossible for a regular
projection of a Veronese surface. This gives assertion (i).
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If Z � X is a two-dimensional cone with vertex at a point P 2 Z

then Z is contained in the embedded tangent space to X at P . Since X is
smooth, the embedded tangent space to X at P is P3, so Z is an irreducible
component of a hyperplane section of X . But since Pic.X/ D Z � H , it follows
that Z is a hyperplane section, so g.X/ D 3 and hence X is a quartic threefold.
The base of Z is a quartic curve; it is smooth since Z, being a hyperplane sec-
tion of a smooth hypersurface X � P4, can have at worst isolated singularities.
This gives assertion (ii). �

An easy parameter count shows that a general quartic threefold in P4 does
not contain cones. However, there are examples of quartic threefolds with cones.

Example 2.1.9 (see [Ten74]). Consider the Fermat quartic threefold

X D fx4
0 C x4

1 C x4
2 C x4

3 C x4
4 D 0g � P4:

Let P 2 X be a point with the last three coordinates equal to zero (there are
four such points) and consider the plane … D fx0 D x1 D 0g. Consider the
hyperplane H.P; …/ � P4 spanned by the point P and the plane …. Then the
intersection X \H.P; …/ is the cone with vertex P and the base being the plane
Fermat quartic … \ X . Using the action of the automorphism group [Shi88]

Aut.X/ Š .�4/4 Ì S5;

we can construct 4 � 10 D 40 such cones.

2.2. Hilbert schemes of lines

Let X be a smooth Fano threefold. Let †0 be an irreducible component of
the Hilbert scheme of lines †.X/, and consider the reduced scheme structure
on †0. Restricting to †0 the universal family of lines, we obtain a diagram

(2.2.1)

L0.X/
q

����
��
��
�� p

���
��

��
��

��

†0 X:

The map q W L0.X/ ! †0 is a P1-bundle. Let L � X be a line corresponding
to a point ŒL� in the component †0 of the Hilbert scheme. The fiber q�1.ŒL�/

is identified by the map p with the line L. Note that the normal bundle of L

in L0.X/ is the trivial bundle of rank equal to the dimension of the tangent
space to †0 at ŒL�. So, the differential of p is the map

(2.2.2)
dp W NL=L0.X/ D TŒL�†0 ˝ OL ,�! TŒL�†.X/ ˝ OL

D H 0.L;NL=X / ˝ OL �! NL=X
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with the last map being given by evaluation. This is very useful for understand-
ing the infinitesimal structure of the map p along L.

Lemma 2.2.3. If X is a Fano threefold with �.X/ D 1, �.X/ D 1, and very
ample �KX , then every irreducible component of the Hilbert scheme †.X/ of
lines on X is one-dimensional.

Proof. Let †0 � †.X/ be an irreducible component of dimension k > 2,
and consider the reduced scheme structure on †0. Consider the map (2.2.2). Its
source is a trivial vector bundle, and by Lemma 2.1.4 its target is

NL=X Š OL.a/ ˚ OL.�1 � a/

with a > 0. Since the second summand has no global sections, the image
of dp is contained in the first summand, hence the rank of dp does not ex-
ceed 1. Moreover, since †0 is reduced, so is L0.X/, and hence so is the general
fiber of the map p. This means that the map

p W L0.X/ �! X

has fibers of dimension at least k � 1, hence the image Z D p.L0.X// has
dimension at most k C 1 � .k � 1/ D 2. Therefore, Z � X is a surface
with dim †.Z/ > k > 2. By Corollary A.1.3 the surface Z is a plane, but
by Lemma 2.1.8 (i) the threefold X contains no planes, which is a contradic-
tion. �

Remark 2.2.4. On most Fano threefolds X with �.X/ D 1 and �.X/ D 1 a
general point of every irreducible component of †.X/ is an ordinary line. How-
ever, there are some exceptions. First, if X is the Mukai–Umemura threefold
of genus 12 (see [MU83, §6] or Theorem 5.2.1 below) then all lines on X are
special, and in fact †.X/ is everywhere non-reduced with †.X/red Š P1 (see
Proposition 5.4.4). In the opposite direction not that much is known. What we
know is that the Mukai–Umemura threefold is the only one with everywhere
non-reduced †.X/ in genus 12, and that in genus 10 and 9 there are no three-
folds with †.X/ everywhere non-reduced [Pro90b], [GLN06].

Another interesting example is a quartic X in P4 containing a cone (see
Example 2.1.9) so that g.X/ D 3. In this case each line L on the cone has
a structure of a non-reduced conic (obtained by intersecting the cone with its
tangent plane along L), hence by Remark 2.1.7 each such L is 1-special, hence
the corresponding irreducible component of †.X/ is everywhere non-reduced
with the underlying reduced scheme being a smooth plane quartic. For instance,
if X is the Fermat quartic of Example 2.1.9, then †.X/ is the union of 40 such
non-reduced components, (see [Ten74, Example in §2]).



A.G. Kuznetsov, Yu.G. Prokhorov, C.A. Shramov

Remark 2.2.5. Suppose that X is a Fano threefold with �.X/ D 1 and �.X/ D 1.
If X is general in the corresponding deformation family, then †.X/ is a smooth
curve, and its genus can be computed in every case, see [IP99, Theorem 4.2.7].

Now consider the Hilbert scheme of lines on threefolds Y of index 2.

Lemma 2.2.6. Let Y be a Fano threefold with �.Y / D 1 and �.Y / D 2. Suppose
that the divisor 2H is very ample, i.e., that d.Y / > 2. Then every irreducible
component of the Hilbert scheme †.Y / of lines on Y is two-dimensional and its
general point corresponds to an ordinary line. In particular, every irreducible
component of †.Y / is generically smooth. Moreover, the map p W L0.Y / ! Y

is surjective, generically finite, does not contract divisors, and is not birational.

Proof. Let †0 � †.Y / be an irreducible component, and consider the reduced
scheme structure on †0. Assume that a line corresponding to a general point
of †0 is special. By the argument of Lemma 2.2.3 the rank of the map dp does
not exceed 1, and the map

p W L0.Y / �! Y

has fibers of dimension at least k � 1, where k D dim †0. Therefore, the image
Z D p.L0.Y // has dimension at most k C 1 � .k � 1/ D 2. Thus Z � Y

is a surface, and by Corollary 2.1.5 one has dim †.Z/ > dim †0 D k > 2.
By our assumption the divisor 2H is very ample, hence by Corollary A.1.3 the
surface Z is a plane. But Y cannot contain a plane by adjunction, which gives a
contradiction.

Therefore a general point of †0 corresponds to an ordinary line L, hence
dim †0 D 2 by Corollary 2.1.6. Moreover, for such L all the maps in (2.2.2)
are isomorphisms, so the map dp is an isomorphism on L, hence the map p

is dominant and unramified along L. Since p is also proper, it is surjective.
Moreover, since dimL0.Y / D 3 D dim Y , the map p is generically finite.

Now consider the ramification locus R.p/ � L0.Y / of the map p. Let L be
a line corresponding to an arbitrary point of †0. If L is an ordinary line then
we have already seen that p is unramified along L. If, however, L is special,
the map dp is degenerate at all points of L. Therefore the ramification locus
R.p/ � L0.Y / is just the preimage under q of the locus of special lines in †0.

Assume that D � L0.Y / is an irreducible divisor contracted by p. Then
D � R.p/, hence D is a union of fibers of q. Therefore, p.D/ is a union of
lines. Since D is irreducible and dim p.D/ < dim D D 2, it is just one line L.
But then D � q�1.ŒL�/ is not a divisor.

Assume that p is birational. Since �.L0.Y // > 2 and �.Y / D 1, the mor-
phism p cannot be an isomorphism. Since Y is smooth, the exceptional locus
of p should be a divisor contracted by p (see [Sha94, §2.3, Theorem 2]), which
contradicts the above conclusions. �
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Remark 2.2.7. If Y is a Fano threefold with �.Y / D 1, �.Y / D 2 and d.Y / D 4

or 5 then the map p is finite of degree 4 and 3, respectively. This is no longer true
in the cases d.Y / D 3 and d.Y / D 2. For a cubic threefold Y � P4 the map p

has one-dimensional fibers exactly when Y contains generalized Eckardt points,
i.e., points P such that the embedded tangent space at P cuts out a cone on Y .
For example, the Fermat cubic contains 30 generalized Eckardt points. Simi-
larly, there are examples of double covers of P3 branched in quartic surfaces
(for example, over Fermat quartic surfaces) that contain points over which p is
not finite.

The following result is well known (see e.g. [Isk80, Proposition III.1.3 (iii)]).

Proposition 2.2.8. Let Y be a Fano threefold with �.Y / D 1, �.Y / D 2, and
d.Y / > 3. Then the Hilbert scheme of lines †.Y / is a smooth surface.

Proof. By Corollary 2.1.6 it is enough to show that there are no 2-special lines.
Since d.Y / > 3, the class H is very ample and defines an embedding Y ,! Pn.
Consider the standard exact sequence

0 �! NL=Y �! NL=Pn �! NY=Pn jL �! 0:

Note that NL=Pn Š OL.1/˚.n�1/. Thus NL=Y is a subbundle in the direct
sum of n � 1 copies of OL.1/. This means that NL=Y cannot have a summand
isomorphic to OL.a/ with a > 2. Hence L cannot be 2-special. �

Remark 2.2.9. If d.Y / D 2, so that f W Y ! P3 is a double cover of P3

branched in a smooth quartic surface S , the Hilbert scheme of lines †.Y / is,
in fact, a double cover of the subscheme of Gr.2; 4/ parameterizing bitangent
lines to the surface S , branched in a finite number of points corresponding to
lines contained in S . Moreover, if L0 � S is such a line, and L D f �1.L0/red,
then L is a 2-special line on Y and hence †.Y / is singular at L (cf. [Isk80,
Remark to Proposition III.1.3]).

For Fano threefolds of index 2 and degree at least 3 one can describe †.Y /

explicitly.

Proposition 2.2.10. Let Y be a (smooth) Fano threefold such that �.Y / D 1,
�.Y / D 2, and d.Y / > 3. Then †.Y / is smooth and irreducible. Moreover

(i) if d.Y / D 3, then †.Y / is a minimal surface of general type with irregu-
larity 5, geometric genus 10, and canonical degree K2

†.Y /
D 45;

(ii) if d.Y / D 4, then †.Y / is an abelian surface;
(iii) if d.Y / D 5, then †.Y / Š P2.
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Proof. If d.Y / D 3, then Y is a cubic hypersurface in P4, and the assertion holds
by [AK77, §1]. If d.Y / D 4, then Y is a complete intersection of two quadrics
in P5, and the assertion holds by [NR69, Theorem 5] (see also [Rei72, Theorem 4.8],
[DR76, Theorem 2], [GH78, §6.3]). If d.Y / D 5, then Y is isomorphic to a
linear section Gr.2; 5/ \ P6 of the Grassmannian Gr.2; 5/ � P9, and the asser-
tion holds by [Isk80, Proposition III.1.6] or [FN89] (see also §5.1 for an explicit
description of lines and Proposition B.4.1 for an alternative approach). �

Remark 2.2.11. The abelian surface †.Y / associated to a Fano threefold Y

with �.Y / D 1, �.Y / D 2, and d.Y / D 4 can be described as follows. Re-
call that such Y is an intersection of two quadrics in P5. The corresponding
pencil contains precisely 6 degenerate quadrics ([Rei72, Proposition 2.1]), so
one can consider the double cover B.Y / ! P1 branched in these six points.
This is a curve of genus 2. It can be regarded as a curve parameterizing the
families of planes in the quadrics of our pencil. One can show that †.Y / is iso-
morphic to the Jacobian of the curve B.Y /, see [NR69, Theorem 5]. Moreover,
the surface †.Y / is isomorphic to the intermediate Jacobian of Y (as an abstract
variety), see [GH78, §6.4].

2.3. Hilbert schemes of conics

In this section we restrict to the case of smooth Fano threefolds X such that
�.X/ D 1 and �.X/ D 1 and their Hilbert schemes of conics S.X/. Let S0 be
an irreducible component of S.X/, and consider the reduced scheme structure
on S0. Restricting to S0 the universal family of conics, we obtain a diagram

(2.3.1)

C0.X/
q

����
��
��
�� p

���
��

��
��

�

S0 X:

The map q W C0.X/ ! S0 is a conic bundle. Let C � X be a conic cor-
responding to a point ŒC � in the component S0 of the Hilbert scheme. The
fiber q�1.ŒC �/ is identified by the map p with the conic C . The normal bun-
dle of C in C0.X/ is the trivial bundle of rank equal to the dimension of the
tangent space to ŒC � at S0. Like in (2.2.2), the differential of p is the map

(2.3.2)
dp W NC=C0.X/ D TŒC �S0 ˝ OC ,�! TŒC �S.X/ ˝ OC

D H 0.C;NC=X / ˝ OC �! NC=X

with the last map being given by evaluation.
We will call an irreducible component of S.X/ exotic if it does not contain

smooth conics. The next lemma shows that exotic components appear only for
quartics with cones and describes them explicitly.
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Lemma 2.3.3. Let X be a Fano threefold with �.X/ D 1 and �.X/ D 1, and
suppose that �KX is very ample. Let S0 � S.X/ be an exotic component.
Then X is a quartic with a cone, and S0 Š Hilb2.B/, where B is a smooth curve,
which is the base of the cone. In particular, one has dim S0 D 2. Moreover, the
irreducible component of S.X/ underlying S0 is everywhere non-reduced.

Proof. By Corollary 2.1.5 we have dim S0 > 2. On the other hand, by Lemma 2.2.3
every irreducible component of †.X/ is one-dimensional. Since a line L

on X admits at most one structure of a non-reduced conic (see Remark 2.1.7),
it follows that a conic corresponding to a general point of S0 is a union of two
distinct lines. Since X does not contain projections of the Veronese surface by
Lemma 2.1.8 (i) (in particular, X does not contain smooth quadric surfaces), we
deduce from Lemma A.1.1 that X contains a two-dimensional cone with base B

such that S0 is the set of conics formed by unions of rulings of the cone. In other
words, one has

S0 D fLb1
[ Lb2

j .b1; b2/ 2 Sym2.B/g:
Moreover, X is a quartic threefold and B is a smooth curve by Lemma 2.1.8 (ii).
In particular, one has Sym2.B/ Š Hilb2.B/.

As we already mentioned in Remark 2.2.4 the component of †.X/ under-
lying B is everywhere non-reduced. A similar argument shows that the com-
ponent of S.X/ underlying Hilb2.B/ is also everywhere non-reduced. Indeed,
if C D Lb1

\ Lb2
spans a plane …, the corresponding double plane provides

the curve C with a non-reduced structure corresponding to a surjective map
N_

C=X
! OX .�1/jC . By duality this gives an embedding OX .1/jC ! NC=X ,

hence dim H 0.C;NC=X / > dim H 0.C;OX .1/jC / D 3. �

Lemma 2.3.4. If X is a Fano threefold with �.X/ D 1, �.X/ D 1 and �KX very
ample then every irreducible component S0 of the Hilbert scheme S.X/ of con-
ics on X is two-dimensional. If S0 is not exotic, then the map p W C0.X/ ! X

is surjective, generically finite, does not contract divisors, and is not birational;
moreover, the natural scheme structure on S0 is generically reduced. If S0 is
exotic, then X is a quartic and p.C0.X// is a cone over a smooth curve.

Proof. First, we note that p is surjective unless S0 is exotic. Indeed, if the image
of p is a surface Z � X then dim S.Z/ > dim S0 > 2 by Corollary 2.1.5, hence
by Lemma A.1.2 the surface Z is a linear projection of the Veronese surface,
which contradicts Lemma 2.1.8 (i), or Z is a cone. In the latter case clearly S0

is an exotic component.
Assume that dim S0 D k > 3. By Lemma 2.3.3 the component S0 is not

exotic, and by Corollary 2.1.6 a general point of S0 corresponds to a smooth
special (and even 2-special) conic. The differential dp on such a conic has rank
at most 1 everywhere, therefore the fibers of the map p have dimension k � 1,
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hence the image p.C0.X// has dimension k C 1 � .k � 1/ D 2. In particular,
the map p is not surjective, which contradicts the above conclusions. Thus we
have dim S0 D 2.

Assume that S0 is not exotic and dim S0 D 2. Then p is surjective, and
since dim C0.X/ D 3 D dim X , the morphism p is generically finite. Con-
sider the ramification locus R.p/ of the map p. Let C be a conic corresponding
to a smooth point of S0. Then both NC=C0.X/ and NC=X are vector bundles
on C of rank 2 and Euler characteristic 2, see Lemma 2.1.4 and Corollar-
ies A.2.3, and A.2.5. Hence the kernel and the cokernel of the map dp have
the same rank and Euler characteristic. If the rank of the cokernel is 0, then so
is the rank of the kernel. Since NC=C0.X/ is a trivial vector bundle, it is torsion
free, so it follows that the kernel is zero. But then the cokernel is zero as well.
This means that either the cokernel of the map dp is zero, hence the map p is un-
ramified along C , or the support of the cokernel is either C , or if C D L1 [ L2

is reducible, one of the lines Li . This shows that away of the q-preimage of the
singular locus of S.X/ the ramification locus R.p/ is the union of (irreducible
components of) fibers of q. Arguing as in Lemma 2.2.6 (with obvious modifica-
tions), we conclude that p cannot contract divisors and cannot be birational.

The above arguments also show that a generic point of S0 corresponds to
a smooth ordinary conic C . Therefore, the tangent space to S.X/ at C is 2-
dimensional, hence S.X/ is generically reduced along S0.

Finally, if S0 is an exotic component, a description of Lemma 2.3.3 shows
that X is a quartic, and p.C0.X// is a cone over a smooth curve B . �

Our next goal, as before, is a proof of smoothness of S.X/ and its explicit
description for some X . The direct proof of smoothness is very complicated,
since there are three types of conics and it is much more difficult to analyze the
tangent space to the Hilbert scheme at a point corresponding to a reducible or
non-reduced conic, and the corresponding obstruction space (see Appendix A.2,
or [IM11, §3.2]). Typically such considerations work only for general Fano
threefolds.

So, instead of using the above straightforward approach, we use the ideas
of [Kuz09], where it was argued that the geometry of Fano threefolds of
index 1 and even genus g is related to the geometry of Fano threefolds of in-
dex 2 and degree d D g =2 � 1. The reason for this is a similarity between the
structure of their derived categories. Using this idea we will prove the following
result.

Theorem 2.3.5. Let X be a (smooth) Fano threefold with �.X/ D 1, �.X/ D 1,
and

g.X/ 2 f8; 10; 12g:
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Then there is a smooth Fano threefold Y with �.Y / D 1, �.Y / D 2, and

d.Y / D g.X/

2
� 1

such that S.X/ Š †.Y /.

Since the proof of this result uses a completely different technique, we moved
it to Appendix B. Actually, for g.X/ D 10 and g.X/ D 12 we identify the
Hilbert schemes explicitly and show that these identifications match up, while
for g.X/ D 8 we construct a direct isomorphism of S.X/ and †.Y /.

Combining Theorem 2.3.5 with a description of Hilbert schemes of lines of
index 2 threefolds and with some other results, we can state now the following
proposition. Recall that a vector bundle E is called simple, if Hom.E ; E/ D �.

Proposition 2.3.6. Let X be a (smooth) Fano threefold of index 1 and
genus g.X/ > 7. Then S.X/ is a smooth irreducible surface and

(i) if g.X/ D 7, then S.X/ is the symmetric square of a smooth curve of genus 7;
(ii) if g.X/ D 8, then S.X/ is a minimal surface of general type with irregu-

larity 5, geometric genus 10, and canonical degree K2
S.X/

D 45;
(iii) if g.X/ D 9, then S.X/ is a ruled surface that is a projectivization of a

simple rank 2 vector bundle on a smooth curve of genus 3;
(iv) if g.X/ D 10, then S.X/ is an abelian surface;
(v) if g.X/ D 12, then S.X/ Š P2.

Proof. If g.X/ D 7, the assertion holds by [Kuz05, Theorem 6.3]. If g.X/ D 8,
the assertion holds by Theorem 2.3.5 and Proposition 2.2.10 (i). If g.X/ D 9,
the surface S.X/ is ruled by [BF13, Proposition 3.10], and the simplicity of the
corresponding vector bundle is proved in Lemma B.3.8. If g.X/ D 10, the asser-
tion holds by Proposition B.5.5, or equivalently by Theorem 2.3.5 and Propo-
sition 2.2.10 (ii). If g.X/ D 12, the assertion holds by [KS04, Theorem 2.4]
(alternatively, one can apply Proposition B.4.1, or equivalently Theorem 2.3.5
and Proposition 2.2.10 (iii)). Smoothness of S.X/ is clear from the above case-
by-case analysis. �

Propositions 2.2.10 and 2.3.6 together give Theorem 1.1.1.

Remark 2.3.7. Note that if X is a Fano threefold of genus g.X/ 6 6, then the
surface S.X/ may be singular and even reducible. For example, let � W X ! Y

be a double cover of a smooth Fano variety Y with �.Y / D 1 and �.Y / D 2

branched in a smooth anticanonical divisor. Then X is a smooth Fano threefold
with �.X/ D 1, �.X/ D 1, and g.X/ D d.Y / C 1 (see Lemma 4.3.1 below),
and S.X/ is a union of two irreducible components; one of them is identified
with the Hilbert scheme of lines in Y , and the other is a double cover of the
subvariety of the Hilbert scheme of conics S.Y / bitangent to the branch divisor
(see [Ili94, Proposition 2.1.2] for the case g.X/ D 6).
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For the sake of completeness, we conclude this section by a discussion of
Hilbert schemes of conics on some Fano threefolds of Picard rank 1 and in-
dex 2. These results, of course, are well known to experts, however, we do not
know a good reference for them except for the case d.Y / D 5. According to our
conventions, we consider Hilbert schemes of conics only on those Fano three-
folds whose ample generator of the Picard group is very ample. In the case of
index 2 this means that d.Y / > 3. Recall the description of the Hilbert scheme
of lines †.Y / for these threefolds from Proposition 2.2.10. Also, recall that
there is a curve B.Y / of genus 2 associated to a Fano threefold Y of index 2 and
degree 4, see Remark 2.2.11.

Proposition 2.3.8. Let Y be a (smooth) Fano threefold such that �.Y / D 1,
�.Y / D 2, and d.Y / > 3. Then S.Y / is a smooth fourfold, and

(i) if d.Y / D 3, then S.Y / is a P2-bundle over the surface †.Y /.
(ii) if d.Y / D 4, then S.Y / is a P3-bundle over the curve B.Y /.

(iii) if d.Y / D 5, then S.Y / Š P4.

Proof. Let us start with assertion (i). Let Y � P4 be a smooth cubic hyper-
surface. The linear span of a conic C � Y is a plane hC i Š P2. This plane is
not contained in Y , because the Picard group of Y is generated by a hyperplane
section by Lefschetz theorem. Hence the intersection hC i \ Y is a plane cubic
curve, containing the conic C . This means that

hC i \ Y D C [ L.C /;

where L.C / is a line (usually called the residual line of C ). It is easy to see that
the association C 7! L.C / defines a regular map S.Y / ! †.Y /.

The fiber of the map over a point ŒL� 2 †.Y / is the space of all planes
in P4 containing L (hence is isomorphic to P2). Indeed, if … is such a plane
then … \ Y D L [ C.…/ with C.…/ a conic, and conversely, every conic
whose residual line is L spans a plane containing L. Altogether, this shows that

S.Y / Š †.Y / �Gr.2;5/ Fl.2; 3I 5/;

where Fl.2; 3I 5/ is the flag variety. Thus, we proved assertion (i).
The idea of the proof of assertion (ii) is similar to that for assertion (i). Let

Y � P5 be a complete intersection of two quadrics. Given a conic C � Y ,
we consider its linear span hC i � P5. The restriction to hC i of the pencil of
quadrics defining Y is a pencil of conics containing C . This means that there is a
unique quadric Q.C / in the pencil defining Y that contains hC i (again, because
the plane hC i Š P2 is not contained in Y ). In other words, the association
C 7! .Q.C /; hC i/ defines a regular map

S.Y / �! Hilbp.t/D.1Ct/.2Ct/=2.Q=P1/
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into the relative Hilbert scheme of planes in the divisor Q � P5 � P1 (defined
by the pencil of quadrics) over P1. For a smooth quadric Q � P5 the Hilbert
scheme of planes Hilbp.t/D.1Ct/.2Ct/=2.Q/ is isomorphic to a union of two
copies of P3, while for a cone over a smooth quadric in P4, it is isomorphic
to a single P3. Altogether, this means that the Stein factorization for the canon-
ical map Hilbp.t/D.1Ct/.2Ct/=2.Q=P1/ ! P1 is a composition of a P3-bundle
with a double cover B.Y / ! P1, branched in the points of P1 corresponding to
singular quadrics in the pencil. This proves assertion (ii).

For assertion (iii) see [San14, Proposition 2.32] or [Ili94, Proposition 1.2.2].
�

3. Automorphism groups

In this section we remind some general results on automorphism groups of pro-
jective varieties, in particular showing that under appropriate conditions they are
linear algebraic groups. We also discuss some general approaches to finiteness
of automorphism groups. Throughout the section we work under rather general
assumptions.

3.1. Actions on linear systems

Let X be a normal projective variety and let A be a Weil divisor on X . If the
linear system jAj is not empty, we denote by

'jAj W X Ü P.H 0.X;OX .A//_/

the corresponding rational map. If the class ŒA� of A in Cl.X/ is invariant
with respect to a subgroup � � Aut.X/, then there is a natural action of �

on P.H 0.X;OX .A//_/ and the map 'jAj is �-equivariant. Note also that the
�-action on P.H 0.X;OX .A//_/ is induced by an action on H 0.X;OX .A//_
of a central extension

1 �! �m �! e� �! � �! 1;

where m D dim H 0.X;OX .A//. Indeed, the above exact sequence is the pull-
back of

1 �! �m �! SL.H 0.X;OX .A//_/ �! PGL.H 0.X;OX .A//_/ �! 1

via the map � ! Aut.P.H 0.X;OX .A//_// Š PGL.H 0.X;OX .A//_/. The
induced map e� ! SL.H 0.X;OX .A//_/ gives a e�-action on H 0.X;OX .A//_.
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Remark 3.1.1. Note that the action of � on P.H 0.X;OX .A//_/ may not be induced
by the action on H 0.X;OX .A//_ of � itself, i.e., passing to a central extension
above is indeed necessary. On the other hand, if the sheaf OX .A/ admits a �-
linearization (that is, if the action of � on X lifts to its action on OX .A/), then
the map � ! PGL.H 0.X;OX .A//_/ lifts to a map � ! GL.H 0.X;OX .A//_/.

The following lemma is easy and well known.

Lemma 3.1.2. Let X be a normal projective variety and A be a Weil divisor
on X . Let Aut.X I ŒA�/ be the stabilizer of the class ŒA� 2 Cl.X/ in Aut.X/.
If the map 'jAj is birational onto its image then the action of Aut.X I ŒA�/

on P.H 0.X;OX .A//_/ is faithful. In particular, in this case Aut.X I ŒA�/ is a
linear algebraic group.

Proof. If some element g 2 Aut.X I ŒA�/ acts trivially on P.H 0.X;OX .A//_/,
then by assumption it also acts trivially on an open dense subset of X , hence
on the whole X . �

Note that any multiple of the canonical class is invariant under the automor-
phism group Aut.X/ and, moreover, has a natural Aut.X/-linearization. Apply-
ing Lemma 3.1.2 and taking into account Remark 3.1.1, we obtain the following
result.

Corollary 3.1.3. Let X be a normal projective variety. Suppose that for some
integer m 2 Z (either positive or negative) the map 'jmKX j is birational onto
its image. Then the action of the group Aut.X/ on P.H 0.X;OX .mKX //_/ is
faithful and lifts to an embedding

Aut.X/ ,�! GL.H 0.X;OX .mKX //_/:

In particular, Aut.X/ is a linear algebraic group.

Corollary 3.1.4. Let X � PN be a normal complete intersection of dimen-
sion dim X > 3 that is not contained in a hyperplane in PN . Then there is a
natural embedding Aut.X/ ,! PGLN C1.�/.

Proof. By Lefschetz theorem one has Pic.X/ D Z � H , where H is the class of
a hyperplane section (see e.g. [Har70, Corollary IV.3.2]). Thus, the embedding
X ,! PN is given by an invariant linear system jH j, so the assertion follows
from Lemma 3.1.2. �

3.2. Finiteness results

Let us recall several easy finiteness results for automorphism groups of algebraic
varieties.
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Lemma 3.2.1. If a linear algebraic group G acts faithfully on a variety X which
is not ruled, then G is finite.

Proof. If G is not finite, it contains a subgroup isomorphic to Gm or Ga. An
open subset of X is covered by one-dimensional orbits of this subgroup,
hence X is ruled, which is a contradiction. �

Corollary 3.2.2. Let X be a variety of Kodaira dimension �.X/ > 0. Suppose
that a linear algebraic group G acts faithfully on X . Then G is finite.

Proof. Since the linear system jnKX j is not empty for some n > 0, the variety X

is not uniruled (see [MM86, Theorem 1]). Thus we can apply Lemma 3.2.1.
�

Corollary 3.2.3. Let X be a variety of general type. Then the group Aut.X/ is
finite.

Proof. Apply Corollaries 3.1.3 and 3.2.2. �

Remark 3.2.4. Actually, even the group of birational selfmaps of a variety of
general type is finite, since it coincides with the automorphism group of its
canonical model.

Another collection of finiteness results concerns hypersurfaces and complete
intersections.

Theorem 3.2.5 (see [MM64]). Let X be a smooth hypersurface of degree d > 3

in PN , where N > 2. Then the automorphism group of X is finite unless
either N D 2 and d D 3, or N D 3 and d D 4.

There are many classification results on automorphism groups of hypersur-
faces of small degree, in particular, cubic hypersurfaces (see [Hos97], [Hos02],
[Dol12, §9.5], [Adl78], [GAL11], [OY15]). Also, Theorem 3.2.5 has the fol-
lowing recent generalization.

Theorem 3.2.6 ([Ben13, Theorem 3.1], see also [CPZ15]). If X � PN is
a smooth complete intersection of dimension dim X > 3 and codimension
codim.X/ > 2 not contained in a hyperplane in PN , then Aut.X/ is finite.

Another well-known finiteness result that we will need is as follows. Recall
that for any morphism 	 W Y ! X there is a subgroup Aut.Y=X/ � Aut.Y /

that consists of all automorphisms whose action is fiberwise with respect to 	;
we will refer to this group as the group of automorphisms of Y over X .

Lemma 3.2.7. Let E be a simple vector bundle on a projective scheme X . Then
the group Aut.PX .E/=X/ of the automorphisms of the projectivization PX .E/

over X is finite.
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Proof. This is Corollary to Proposition 2 in [Gro58] (note also that the group
denoted by � in [Gro58] is a subgroup in the 2-torsion subgroup of Pic.X/,
hence is finite). �

Corollary 3.2.8. If E is a simple vector bundle on a smooth curve C of
genus g > 1, then the group Aut.PC .E// is finite.

Proof. Indeed, the morphism PC .E/ ! C is canonical, hence there is an exact
sequence

1 �! Aut.PC .E/=C / �! Aut.PC .E// �! Aut.C /:

The term on the left is finite by Lemma 3.2.7, and the term on the right is finite
since g > 1, see Corollary 3.2.3. Therefore Aut.PC .E// is finite. �

4. Finiteness for Fano threefolds

In this section we prove finiteness of automorphism groups for most of smooth
Fano threefolds of Picard rank 1.

4.1. Faithfulness of action on a family of curves

In this subsection we prove a general result on faithfulness of an automorphism
group action on a Hilbert scheme of curves of degree 2 with respect to the anti-
canonical class. In the next subsections we apply it to Hilbert schemes of lines
on Fano threefolds of index 2 and Hilbert schemes of conics on Fano threefolds
of index 1.

Let X be a smooth projective variety (of any dimension). Let S be an irre-
ducible and reduced projective subscheme in a Hilbert scheme of curves on X ,
let C � S � X be the corresponding family of curves, and let

C
q

����
��
��
�� p

���
��

��
��

S X

be the corresponding diagram of projections.

Theorem 4.1.1. Assume that X is a smooth Fano variety of any dimension
greater than 1 with Pic.X/ Š Z and �KX very ample. Assume that

� for general s 2 S the fiber Cs of the morphism q is a smooth rational curve
and Cs � .�KX / D 2;

� the morphism p is dominant, not birational, and does not contract divisors.
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Let G � Aut.X/ be a non-trivial algebraic subgroup that acts trivially on S .
Then the group G is cyclic of order 2, and a curve C corresponding to a general
point of S is the preimage of a curve C 0 � X 0 D X=G under the quotient
map � W X ! X 0.

Furthermore, if dim X is odd then X 0 is smooth, and if dim X is even,
then X 0 is either smooth or has one singular point of type 1

2
.1; : : : ; 1/. In both

cases the branch locus of � in X 0 is the union of a smooth anticanonical
divisor B and Sing .X 0/.

Finally, X 0 is a Fano variety with Pic.X 0/ Š Z, and the divisor KX 0 is
divisible by 2 in the class group Cl.X 0/.
Proof. First let us show that G is finite. Since G is an algebraic group, it is
enough to show that the connected component G0 of identity in G is trivial.
Since Cs is smooth for general s 2 S and p is generically finite, a general point
x 2 X does not lie on a reducible curve from the family. Since p is dominant
and not birational, the fiber p�1.x/ over a general point x 2 X consists of
more than one point. Thus for a general x 2 X there are two distinct irreducible
curves C1 and C2 in the family C that pass through x. Since the action of G0

on S is trivial, both curves Ci are G0-invariant. Hence G0 � x � C1 \ C2. Since C1

and C2 are distinct and irreducible, it follows that G0 �x is finite. But G0 is con-
nected, hence G0 � x D x. Thus, a general point of X is fixed by the subgroup
G0 � Aut.X/, hence G0 is trivial. This means that the group G is finite.

Now let G0 � G be a cyclic subgroup of order n > 1. The action of G0

on C is fiberwise over S . Therefore, it has two fixed points on a general smooth
fiber of q, so the fixed locus of G0 in C contains a divisor which intersects a
general smooth fiber of q at two distinct points. Since the morphism p W C ! X

contracts no divisors, the fixed locus of G0 in X contains a divisor F which
intersects a general smooth curve from C at two points. Since Pic.X/ Š Z, this
means that F � �KX . Put

V D H 0.X;O.�KX //_;

so that X � P.V / is the anticanonical embedding. The action of G0 on X

induces an action on V by Corollary 3.1.3. The fixed divisor F generates a
hyperplane V0 � V and we have a direct sum decomposition

V D V0 ˚ V1;

where V0 and V1 are eigenspaces for (a generator of) G0 Š �n, and V1 is one-
dimensional. It follows that the fixed locus of G0 on P.V / is P.V0/tP.V1/, and
its fixed locus on X is either F D X \ P.V0/, or the union of F with the point
P D P.V1/ 2 P.V / corresponding to the one-dimensional eigenspace V1 � V

(if the point P lies on X).
Let X 0 D X=G0 be the quotient with � W X ! X 0 being the projection.

If P 2 X then P 0 D �.P / is a quotient singularity of type 1
n

.1; : : : ; 1/ on X 0



A.G. Kuznetsov, Yu.G. Prokhorov, C.A. Shramov

and X 0
0 D X 0 n P 0 is smooth; otherwise X 0 is smooth and we set X 0

0 D X 0.
Put X0 D ��1.X 0

0/ and �0 D �jX0
. Since � is a finite morphism, for any Weil

divisor R on X 0 the pull-back ��R is a well-defined G0-invariant Weil divisor
(the closure of ��1

0 .RjX 0

0
/). Furthermore, one has (see, e.g. [Ful84, 1.7.5])

(4.1.2) Cl.X 0/ D Cl.X 0
0/ D Pic.X 0

0/; Cl.X 0/ ˝ Q D .Cl.X/ ˝ Q/G0 :

Since �0 W X0 ! X 0
0 is a cyclic degree n cover with ramification divisor F ,

the class of the branch divisor B D �0.F / � X 0
0 is divisible by n in Pic.X 0

0/,
see e.g. [Wav68, Theorem 1.2], so that B � nD for some D 2 Pic.X 0

0/

with F � ��
0 D.

Let C be a smooth curve corresponding to a general point of S . Then C does
not pass through P , since otherwise p�1.P / � C would be a divisor contracted
by p. Thus C D ��

0 .�0.C // and hence

(4.1.3) 2 D C � .�KX / D C � F D ��
0 .�0.C // � ��

0 .D/ D n�0.C / � D;

so n divides 2. Since n > 1 by our assumption, we have n D 2 and G0 Š �2.
Furthermore, since n D 2 by Hurwitz formula we have

��
0 KX 0

0
� KX0

� F � �2F:

Applying �0� we obtain

(4.1.4) KX 0

0
� �2D:

Thus the divisor KX 0 is divisible by 2 in Cl.X 0/.
If dim X is odd and P 2 X , the image of KX 0 in the local class group

Cl.X 0; P 0/ Š Z=2Z is the generator. This gives a contradiction with (4.1.4)
and thus shows that P 62 X when dim X is odd, and hence X 0 D X 0

0 is smooth.
Since � W X ! X 0 is a double cover and ��KX 0 � 2KX , it follows

that �KX 0 is ample, i.e., X 0 is a Fano variety. By (4.1.2) we have �.X 0/ D 1.
Finally, it remains to show that G D G0 Š �2. We have already shown

that any non-trivial element in G0 has order 2 and acts on V as an involu-
tion with eigenspaces of dimension 1 and dim V � 1. It follows that G Š �r

2

for some r , and it remains to show that r D 1. Suppose that r > 1. Take
two different involutions 
1; 
2 2 G. The action of the abelian group G

on V D H 0.X;O.�KX //_ is diagonalizable. Thus we may assume that the
action of 
1 (respectively, 
2) on V is given by diag.�1; 1; : : : ; 1/

(respectively, diag.1; �1; 1; : : : ; 1/). Then the action of 
1 ı 
2 is given by
diag.�1; �1; 1; : : : ; 1/. If dim V > 3 the dimension of both eigenspaces is
greater than 1, which contradicts the above observation. On the other hand, the
case dim V D 3 is impossible, since then X Š P2 and has no curves of degree
2 with respect to the anticanonical class. �
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4.2. Action on lines

We start with studying an action of the automorphism group of a smooth Fano
threefold Y of Picard rank 1 and index 2 on its Hilbert scheme of lines. Re-
call the notation introduced in §2.1. In particular, for an irreducible compo-
nent †0 � †.Y / of the Hilbert scheme of lines on Y we denote by L0.Y /

the corresponding component of the universal line, so that we have the dia-
gram (2.2.1). Note that every component of †.Y / is generically reduced by
Lemma 2.2.6.

As we explained earlier, we are interested in proving faithfulness of the ac-
tion of the automorphism group Aut.Y / on the Hilbert scheme †.Y /. In the
next lemma we consider an irreducible component †0 of †.Y / and the sub-
group Aut†0

.Y / � Aut.Y / stabilizing it. Although for d.Y / > 3 the Hilbert
scheme †.Y / is irreducible by Proposition 2.2.10, for d.Y / D 2 the Hilbert
scheme †.Y / might a priori have several components. This is why we formu-
late the lemma in this form.

Lemma 4.2.1. Let Y be a Fano threefold with �.Y / D 1, �.Y / D 2, and assume
that �KY is very ample, i.e., 2 6 d.Y / 6 5. Then the action of Aut†0

.Y / on
an irreducible component †0 of the Hilbert scheme of lines on Y is faithful. In
particular, the action of Aut.Y / on †.Y / is faithful.

Proof. Let G � Aut†0
.Y / be the kernel of the action of the group Aut†0

.Y /

on †0. Suppose that G is non-trivial. Since �KY is ample, the group G is a
linear algebraic group by Corollary 3.1.3. By Lemma 2.2.6 the conditions of
Theorem 4.1.1 are satisfied. Since dim Y D 3 is odd, we conclude that there is a
double cover � W Y ! Y 0 over a smooth Fano variety Y 0 with �.Y 0/ D 1. Since
the branch divisor B � Y 0 is anticanonical, it follows that KY � 1

2
��KY 0 ,

hence
K3

Y D 1

8
� 2 � K3

Y 0 D 1

4
K3

Y 0 :

In particular, one has

�K3
Y 0 D �4K3

Y D 32 d.Y / > 64:

This is only possible if Y 0 Š P3 (see Table 1). On the other hand, by Theo-
rem 4.1.1 for a line L corresponding to a general point of †0 we have L D ��L0
for a curve L0 � Y 0, hence

(4.2.2) 2 D �KY � L D �1

2
��KY 0 � ��L0 D �KY 0 � L0:

The right side of (4.2.2) is divisible by �.Y 0/ D �.P3/ D 4. This contradiction
shows that G is trivial, hence the action of Aut†0

.Y / on †0 is faithful. �
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Corollary 4.2.3. Let Y be a (smooth) Fano threefold with �.Y / D 1, �.Y / D 2,
and d.Y / > 3. The following assertions hold:

(i) if d.Y / D 3 then Aut.Y / � Aut.S/ for a smooth minimal surface S of
general type with irregularity 5, geometric genus 10, and canonical de-
gree K2

†.Y /
D 45;

(ii) if d.Y / D 4 then Aut.Y / � Aut.S/ for an abelian surface S;
(iii) if d.Y / D 5 then Aut.Y / � Aut.P2/ Š PGL3.�/.

In particular, for d.Y / D 3 and d.Y / D 4, the group Aut.Y / is finite.

Proof. Assertions (i), (ii) and (iii) follow from Proposition 2.2.10 and Lemma 4.2.1.
Finiteness for d.Y / D 3 follows from assertion (i) and Corollary 3.2.3, while
finiteness for d.Y / D 4 follows from assertion (ii) and Corollaries 3.1.3
and 3.2.2. �

An alternative proof of finiteness of the automorphism group Aut.Y /

for d.Y / D 3 and d.Y / D 4 is by applying Theorems 3.2.5 and 3.2.6. For d.Y / D 5

one actually has
Aut.Y / Š PGL2.�/;

see Theorem 5.1.1 below.

Remark 4.2.4. Besides its action on †.Y /, the automorphism group Aut.Y / also
acts on the intermediate Jacobian J.Y / of Y . For d.Y / D 3 one can check that
this action is faithful. Indeed, by [Bea82, §5] the intermediate Jacobian J.Y /

contains an Aut.Y /-invariant theta divisor ‚ � J.Y / which is equal to the
image of the canonical Abel–Jacobi map

†.Y / � †.Y / �! J.Y /; .L1; L2/ 7�! ŒL1� � ŒL2�:

Moreover, ‚ has a unique singular point P 2 ‚ (the image of the diagonal in
†.Y / � †.Y /) and the exceptional divisor of the blow up of ‚ at P is Aut.Y /-
equivariantly isomorphic to Y . The faithfulness of the action on J.Y / follows
immediately.

For d.Y / D 4 one can show that the group Aut.Y / contains a subgroup �

of order 32 that acts trivially on the corresponding pencil of quadrics, and � con-
tains a subgroup �0 of order 16 that acts trivially on the associated
curve B.Y / of genus 2 mentioned in Remark 2.2.11, and also on the intermedi-
ate Jacobian of Y .

Finally, for d.Y / D 5 the intermediate Jacobian of Y is zero (see for in-
stance [IP99, §12.2]).
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4.3. Action on conics

Now we will analyze the action of the automorphism group of a smooth Fano
threefold X of Picard rank 1 and index 1 on the Hilbert scheme S.X/ of conics
on X . We will assume that H � �KX is very ample; in particular, this means
that g.X/ > 3.

As in the case of lines, we are interested in proving faithfulness of the action
of the automorphism group Aut.X/ on S.X/, but by the same reason as in
Subsect. 4.2 we consider the action of the subgroup AutS0

.X/ stabilizing an
irreducible component S0 of S.X/. Note that we know irreducibility of S.X/

for g.X/ > 7 (see Proposition 2.3.6), but already for g.X/ D 6 the scheme
S.X/ can be reducible (see Remark 2.3.7).

We start by discussing some cases when the action of the subgroup AutS0
.X/

of Aut.X/ on an irreducible component S0 of S.X/ is not faithful.

Lemma 4.3.1. Let Y be a Fano threefold such that �.Y / D 1, �.Y / D 2, and
d.Y / > 2. Let � W X ! Y be a double cover branched in a smooth anticanon-
ical divisor B � Y . Then X is a smooth Fano threefold with �.X/ D 1,
�.X/ D 1, g.X/ D d.Y / C 1, and S.X/ has an irreducible component S0 such
that the action of AutS0

.X/ on it is not faithful.

Proof. By the Hurwitz formula one has

(4.3.2) �KX � ��HY ;

where HY is the ample generator of the Picard group of Y (so that one has
�KY � 2HY ). Hence X is a (smooth) Fano threefold. Furthermore, by [Cor81]
the pullback morphism �� W H 2.Y;Z/ ! H 2.X;Z/ is an isomorphism, hence
�.X/ D 1 and Pic.X/ is generated by KX , i.e., �.X/ D 1. It follows easily that
g.X/ D d.Y / C 1.

For every line L � Y its preimage ��1.L/ � X is a conic. This defines a
morphism †.Y / ! S.X/, whose image is a union of components of S.X/.
The Galois involution of the double cover is an automorphism of X which acts
trivially on any such component S0 of S.X/, hence is contained in the kernel of
AutS0

.X/-action on S0. �

Example 4.3.3. Assume that X is a quartic threefold with cones and S0 � S.X/

is an exotic component (see Lemma 2.3.3). Then there may be a non-trivial sub-
group in Aut.X/ acting trivially on S0. For example, assume that X � P4 is the
Fermat quartic, consider a cone on X described in Example 2.1.9 and consider
the action of the group �4 on P4 by the primitive character on the first two coor-
dinates, and trivial on the last three coordinates. The equation of X is preserved
by this action, hence �4 acts (faithfully) on X . On the other hand, its action on
the base B of the cone is trivial, hence so is its action on S0 D Hilb2.B/.
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However, it may act non-trivially on nilpotents (recall that the scheme structure
on the component of S.X/ underlying S0 is everywhere non-reduced).

In the next lemma we show that the situations of Lemma 4.3.1 and Ex-
ample 4.3.3 are the only ones when the action of the automorphism group
AutS0

.X/ on an irreducible component S0 of S.X/ is not faithful, at least in
the case of a very ample �KX .

Lemma 4.3.4. Let X be a Fano threefold with �.X/ D 1 and �.X/ D 1 such
that �KX is very ample, i.e., either g.X/ > 4, or X is a quartic threefold.
If the action of AutS0

.X/ on a non-exotic irreducible component S0 of S.X/

is not faithful, then X is a double cover of a smooth Fano threefold Y with
�.Y / D 1, �.Y / D 2, and d.Y / D g.X/ � 1 > 2, the irreducible component S0

comes from †.Y / as in Lemma 4.3.1, and the kernel of the action of AutS0
.X/

on S0 is generated by the Galois involution of the double cover.
In particular, for g.X/ > 7 the action of Aut.X/ on S.X/ is faithful.

Proof. Let G � AutS0
.X/ be the kernel of the action of the group AutS0

.X/

on S0. Suppose that G is non-trivial. The group G is a linear algebraic group by
Corollary 3.1.3.

If S0 is not exotic then by Lemma 2.3.4 the conditions of Theorem 4.1.1
are satisfied. Since dim X D 3 is odd, we conclude that there is a double cover
� W X ! Y over a smooth Fano variety Y with �.Y / D 1 (which corresponds
to the variety X 0 of Theorem 4.1.1). The index of Y is even and Y 6Š P3 (by the
same reason as in the proof of Lemma 4.2.1, where we had a similar situation
with the threefold Y 0 instead of Y ), hence �.Y / D 2. Since the branch divisor
B � Y is anticanonical, it follows that �KX � ��HY , where HY is the ample
generator of the Picard group of Y (so that �KY � 2HY ). Hence

K3
X D 1

8
� 2 � K3

Y D 1

4
K3

Y ; d.Y / D �1

8
K3

Y D �1

2
K3

X D g.X/ � 1:

Since g.X/ > 3 it follows that d.Y / > 2. On the other hand, since d.Y / 6 5,
we have g.X/ 6 6, so for g.X/ > 7 the action is faithful. �

We think that for g.X/ 6 6 the action of Aut.X/ on S.X/ is still faithful.

Corollary 4.3.5. Let X be a (smooth) Fano threefold with �.X/ D 1, �.X/ D 1,
and genus g.X/ > 7. The following assertions hold:

(i) if g.X/ D 7 then Aut.X/ � Aut.C / for a smooth irreducible curve C of
genus 7;

(ii) if g.X/ D 8 then Aut.X/ � Aut.S/ for a minimal surface of general type
with irregularity 5, geometric genus 10, and canonical degree K2

S.X/
D 45;
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(iii) if g.X/ D 9 then Aut.X/ � Aut.S/ for a surface S isomorphic to a
projectivization of a simple rank 2 vector bundle on a smooth irreducible
curve of genus 3;

(iv) if g.X/ D 10 then Aut.X/ � Aut.S/ for an abelian surface S;
(v) if g.X/ D 12 then Aut.X/ � Aut.P2/ Š PGL3.�/.

In particular, if 7 6 g.X/ 6 10, then Aut.X/ is finite.

Proof. By Lemma 4.3.4 the action of Aut.X/ on the Hilbert scheme S.X/ of
conics on X is faithful. Thus assertions (ii), (iii), (iv) and (v) are implied by
assertions (ii), (iii), (iv) and (v) of Proposition 2.3.6, respectively. In case of as-
sertion (i) we also take into account an isomorphism Aut.Sym2.C // Š Aut.C /,
see [Ran86].

Keeping in mind Corollary 3.2.3, we see that finiteness for g.X/ D 7 and 8 is
implied by assertions (i) and (ii) respectively. If g.X/ D 9, finiteness is implied
by Lemma 3.2.7 and assertion (iii). Finally, keeping in mind Corollary 3.1.3 and
Lemma 3.2.1 we see that finiteness for g.X/ D 10 is implied by assertion (iv).

�

As we will see in Sect. 5 some Fano threefolds of index 1 with g.X/ D 12

actually have an infinite automorphism group.

4.4. Small degree and genus

As we have shown in Corollaries 4.2.3 and 4.3.5, for Fano threefolds of in-
dex 2 and degree 3 6 d.Y / 6 4, and for Fano threefolds of index 1 and
genus 7 6 g.X/ 6 10 the automorphism groups are always finite. In this sub-
section we show the same for smaller values of degree and genus.

We start with the cases when H is not very ample.

Lemma 4.4.1. Let X be a Fano threefold of index 1 or 2 with �.X/ D 1. If the
ample generator H of Pic.X/ is not very ample then the group Aut.X/ is finite.

Proof. According to Tables 1 and 2 all such varieties are double covers

' W X �! X 0;

where X 0 is a Fano threefold with Cl.X 0/ D Z � H 0 for some ample divisor H 0
on X 0. In Table 3 we list all possible situations. The first column of Table 3 lists
the invariants of X . The second column describes X 0; here P.1; 1; 1; 2/ is the
weighted projective space and Q is a smooth three-dimensional quadric. The
third column specifies the class in Pic.X 0/ of the branch divisor B � X 0 of the
double cover ' W X ! X 0 (note that in the case X 0 D P.1; 1; 1; 2/ the double
cover is also branched over the singular point of X 0).
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Table 3. Double covers

invariants of X X 0 B

�.X/ D 2; d.X/ D 1 P.1; 1; 1; 2/ 6H 0

�.X/ D 2; d.X/ D 2 P3 4H 0

�.X/ D 1; g.X/ D 2 P3 6H 0

�.X/ D 1; g.X/ D 3 Q 4H 0

The morphism ' is anticanonical in all cases except when �.X/ D 2 and
d.X/ D 2; in the latter case it is defined by the complete linear system of the
divisor H such that 2H � �KX . In particular, ' is equivariant with respect to
the whole automorphism group Aut.X/, hence we have a natural map

(4.4.2) Aut.X/ �! Aut.X 0I B/

into the group of automorphisms of X 0 preserving B . Moreover, we have

X Š SpecX 0

�
OX 0 ˚ OX 0

�
� 1

2
B

��
;

where OX 0.�1
2
B/ is the reflexive sheaf corresponding to the Weil divisor class

�1
2
B , and the algebra structure is determined by the composition

OX 0

�
� 1

2
B

�
˝ OX 0

�
� 1

2
B

�
�! OX 0.�B/

B��! OX 0

with the canonical first map and with the second map given by the divisor B .
In particular, every automorphism of X 0 that fixes B induces an automorphism
of X , hence the map (4.4.2) is surjective. Its kernel is clearly generated by the
Galois involution of the double cover ', hence is isomorphic to �2.

On the other hand, it is clear from Table 3 that the divisor 2H 0 on X 0 is very
ample in all cases, so that X 0 � P.V /, where V D H 0.X;OX 0.2H 0//_, and
Aut.X 0/ � PGL.V /. Furthermore, B is not contained in a hyperplane in P.V /,
hence the natural map

Aut.X 0I B/ �! Aut.BI Œ2H 0�/

into the group of automorphisms of B preserving (the class in Pic.B/ of) the
restriction of 2H 0 to B is injective. Thus we have an exact sequence

1 �! �2 �! Aut.X/ �! Aut.BI Œ2H 0�/:

It remains to notice that B is smooth (as the fixed locus of an involution on a
smooth variety X) and its canonical bundle is nef by adjunction formula, hence
Aut.BI Œ2H 0�/ is finite by Lemma 3.1.2 and Corollary 3.2.2. �
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Now we will combine the above results with Theorems 3.2.5 and Theo-
rem 3.2.6.

Proposition 4.4.3. If Y is a (smooth) Fano threefold with �.Y / D 1, �.Y / D 2,
and d.Y / 6 4 then the group Aut.Y / is finite. If X is a (smooth) Fano threefold
with �.X/ D 1, �.X/ D 1, and g.X/ 6 10 then the group Aut.X/ is finite.

Proof. First, let Y be a Fano threefold such that �.Y / D 1 and �.Y / D 2.
If d.Y / 2 f1; 2g, then the ample generator of Pic.Y / is not very ample, and we
apply Lemma 4.4.1. If d.Y / 2 f3; 4g, then we apply Corollary 4.2.3.

Second, let X be a Fano threefold with �.X/ D 1 and �.X/ D 1. If g.X/ D 2

or g.X/ D 3 and �KX is not very ample, we apply Lemma 4.4.1. If g.X/ D 3

and �KX is very ample then X is a quartic in P4 and we apply Theorem 3.2.5.
If g.X/ D 4 or g.X/ D 5, then X is a complete intersection in a projective space
of multidegree .2; 3/ and .2; 2; 2/ respectively, and we apply Theorem 3.2.6. If
g.X/ D 6 we refer to [DK15, Proposition 3.21 (c)]. Finally, if 7 6 g.X/ 6 10,
we apply Corollary 4.3.5. �

To complete the proof of Theorem 1.1.2, we need to describe the automor-
phism groups of Fano threefolds of index 2 and degree 5, and of index 1 and
genus 12. This is done in the next section.

5. Infinite automorphism groups

We already know from Proposition 4.4.3 that the only Fano threefolds of Picard
rank 1 and index 1 or 2 which can have infinite automorphism groups are the
threefold Y with �.Y / D 2 and d.Y / D 5 (such threefold is actually unique up
to isomorphism, see [Isk80, Theorem II.1.1] or [IP99, 3.3.1–3.3.2]), and some
of the threefolds X with �.X/ D 1 and g.X/ D 12.

5.1. Fano threefolds of index 2 and degree 5

We start with a detailed description of the Fano threefold Y with �.Y / D 2

and d.Y / D 5. From the classification it is known that Y is isomorphic to a
linear section of the Grassmannian Gr.2; 5/ � P9 by a subspace P6 � P9 (see
Table 1). For our purposes, however, the description of Y suggested by Mukai
and Umemura [MU83] is more convenient.

Let
Md D Symd .�2/_

be the space of binary forms of degree d . We denote by x and y the elements
of the standard basis of the vector space .�2/_, so that elements of Md are
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polynomials of degree d in x and y. The group GL2.�/ acts naturally on the
space Md by the rule�

a b

c d

�
W x 7�! ax C cy; y 7�! bx C dy;

and induces an action of PGL2.�/ on the projective space P.Md /. Consider the
form

	6.x; y/ D xy.x4 � y4/ 2 M6

and the corresponding point Œ	6� 2 P.M6/ Š P6.

Theorem 5.1.1 ([MU83], see also [CS16, Proposition 7.1.10]). The stabilizer
of Œ	6� is the octahedral group

Oct Š S4 � PGL2.�/;

and the closure of its orbit

Y D PGL2.�/ � Œ	6� � P6

is the smooth Fano threefold with �.Y / D 1, �.Y / D 2, and d.Y / D 5 embedded
by the ample generator of Pic.Y /. The automorphism group of Y is

Aut.Y / Š PGL2.�/:

We will need a description of the PGL2.�/-orbits on Y (see [MU83, Lemma 1.5]).
For this we need to introduce notation for the standard connected subgroups
in PGL2.�/. We denote by

� B2 � PGL2.�/ the standard Borel subgroup (upper triangular matrices),
� U2 � PGL2.�/ the standard unipotent subgroup (upper triangular matrices

with units on the diagonal), and
� T2 � PGL2.�/ the standard torus (diagonal matrices).

The orbit decomposition of Y is

Y D Orb3.Y / t Orb2.Y / t Orb1.Y /

with Orbk.Y / standing for the unique PGL2.�/-orbit of dimension k; explicitly

Orb3.Y / D PGL2.�/ � Œ	6� Š PGL2.�/=Oct;

Orb2.Y / D PGL2.�/ � Œxy5� Š PGL2.�/=T2;

Orb1.Y / D PGL2.�/ � Œx6� Š PGL2.�/=B2:

It is clear from this description that Orb1.Y / is a normal rational sextic curve,
and that

Orb2.Y / D Orb2.Y / t Orb1.Y /
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is the image of P1 � P1 D P.M1/ � P.M1/ under the map

� W P.M1/ � P.M1/ �! P.M6/; .f; g/ 7�! f 5g:

Geometrically, Orb2.Y / is the tangential scroll of Orb1.Y /, i.e., the surface
swept by tangent lines to the twisted sextic curve Orb1.Y /, and � is its normal-
ization morphism (for more details, see for instance [CS16, Lemma 7.2.2]).

Remark 5.1.2. It follows from the above description that any irreducible curve
of degree at most 5 contained in Orb2.Y / is either a line �.ff g � P.M1// (as
we show below these are special lines on Y , as defined in Subsect. 2.1), or is the
image of the normal rational quintic

(5.1.3) ZMU D �.P.M1/ � fxg/ D B2 � Œxy5� � Y

under the PGL2.�/-action. The reason for the notation in (5.1.3) will become
clear later. And meanwhile, just note that ZMU is preserved by the Borel sub-
group B2 � PGL2.�/.

Recall that by Proposition 2.2.10 (iii) the Hilbert scheme of lines †.Y / is
isomorphic to P2. In fact, we have a PGL2.�/-equivariant isomorphism

†.Y / Š P.M2/

see [FN89, Theorem I] or [San14, Proposition 2.20]. Below we describe ex-
plicitly lines on Y corresponding to points of P.M2/. Note that any pair of
points f; g 2 P.M1/ gives a point fg 2 P.M2/, and, if f ¤ g, a point
fg.f 4 � g4/ 2 Orb3.Y / � Y .

Lemma 5.1.4. Every line on Y can be written in one of the following two forms:

Lfg D ffg.s1f 4 � s2g4/ 2 Y g.s1Ws2/2P1 ; for f; g 2 P.M1/, f ¤ g;

Lf 2 D ff 5.s1x C s2y/g.s1Ws2/2P1 ; for f 2 P.M1/:

Proof. It is clear that both Lfg and Lf 2 are lines on Y . The first intersects
Orb2.Y / at two points fg5 and f 5g, while the second is contained in Orb2.Y /.
Thus, they correspond to points of different PGL2.�/-orbits in †.Y /. It remains
to recall that †.Y / Š P.M2/ contains just two PGL2.�/-orbits, and to notice
that the images of the lines Lfg and Lf 2 under the action of PGL2.�/ are lines
of the same form. �

From the description of Lemma 5.1.4 it is easy to obtain the following re-
sult. Recall that L.Y / denotes the universal line on Y , and q W L.Y / ! †.Y /,
p W L.Y / ! Y denote its natural projections.
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Corollary 5.1.5 (cf. [Ili94, 1.2.1 (3)] and [San14, Corollary 2.24]). The set
q.p�1.Œ'�// � P.M2/ of lines on Y passing through a point Œ'� 2 Y can be
described as follows:

q.p�1.Œ'�// D
8<
:

fŒfg�; Œf 2 � g2�; Œf 2 C g2�g; if ' D fg.f 4 � g4/ 2 Orb3.Y /,
fŒfg�; Œf 2�g; if ' D f 5g 2 Orb2.Y /,
fŒf 2�g; if ' D f 6 2 Orb1.Y /:

The ramification divisor of the map p W L.Y / ! Y is the union of lines Lf 2

for f 2 P.M1/. In other words, any line Lfg with f ¤ g is ordinary and any
line Lf 2 is special.

The three points Œfg�, Œf 2 � g2�, and Œf 2 C g2� parameterizing three lines
through a general point of Y correspond to the three axes of an octahedron.

5.2. Fano threefolds of index 1 and genus 12

There is a similar example of a Fano threefold X with �.X/ D 1, �.X/ D 1,
and g.X/ D 12, that was also found by Mukai and Umemura. Consider the form

	12.x; y/ D xy.x10 C 11x5y5 C y10/ 2 M12

and the point
� D .	12; 1/ 2 P.M12 ˚ M0/ Š P13:

Theorem 5.2.1 ([MU83]). The stabilizer of Œ�� is the icosahedral group

Icos Š A5 � PGL2.�/;

and the closure of its orbit

XMU D PGL2.�/ � Œ�� � P13

is a smooth anticanonically embedded Fano threefold XMU with �.XMU/ D 1,
�.XMU/ D 1, and g.XMU/ D 12. The automorphism group of XMU is

Aut.XMU/ Š PGL2.�/:

Note, however, that XMU is just a single variety from a six-dimensional fam-
ily of Fano threefolds of this type. One of descriptions of other Fano threefolds
of index 1 and genus 12 is based on the double projection method.

Theorem 5.2.2 ([Isk89], [Pro92], [IP99, Theorem 4.3.7]). The following as-
sertions hold:



Hilbert schemes of lines and conics and automorphism groups of Fano threefolds

(i) Let X be a smooth Fano threefold such that �.X/ D 1, �.X/ D 1, and
g.X/ D 12, and let L � X be a line. Then the linear system jHX � 2Lj,
where HX is the ample generator of Pic.X/, defines a birational map of X

onto the smooth Fano threefold Y with �.Y / D 1, �.Y / D 2, and d.Y / D 5.
(ii) Let Y be the smooth Fano threefold such that �.Y / D 1, �.Y / D 2, and

d.Y / D 5, and let Z � Y � P6 be a normal rational quintic curve.
Then the linear system j3HY � 2Zj, where HY is the ample generator of
Pic.Y /, defines a birational map of Y onto a smooth Fano threefold X with
�.X/ D 1, �.X/ D 1, and g.X/ D 12.

The constructions of (i) and (ii) are mutually inverse, and the corresponding
birational transformation between X and Y can be described by a diagram

(5.2.3)

Y
�

Z,

�

�
X 0 Y 0

XL

X �Y

where the morphism X is the blow up of L, the morphism Y is the blow up
of Z, and the upper dashed arrow � is a flop.

Remark 5.2.4. In the above diagram, the map � W X Ü Y contracts a divisor
which is a unique member of the linear system jHX � 3Lj. Similarly, the map
��1 W Y Ü X contracts a divisor which is a unique member of the linear sys-
tem jHY � Zj.

We denote by EL � X 0 and EZ � Y 0 the exceptional divisors of the
blowups X and Y .

Lemma 5.2.5. The flopping locus of the map � is the union of strict transforms
of lines on X intersecting L, and of the exceptional section of the divisor EL

if the line L is special. The flopping locus of the map ��1 is the union of strict
transforms of bisecants of Z on Y .

Proof. The first assertion can be found in [IP99, Proposition 4.3.1]. For the
second assume that C � Y 0 is a flopping curve of ��1 and let CX � X 0 be the
corresponding flopped curve. Then either X .CX / is a line meeting L or CX is
the exceptional section of EL. Therefore, one has

.�
XHX � 2EL/ � CX D �1:

By the construction of flops [Kol89] we have �
Y HY �C D 1. Therefore, Y .C /

is a line on Y . Since KY 0 � C D 0, it is a bisecant of Z. �



A.G. Kuznetsov, Yu.G. Prokhorov, C.A. Shramov

One can also show that the flopping curves of the map � are disjoint and
have normal bundles of the form OP1.�1/ ˚ OP1.�1/ or OP1 ˚ OP1.�2/, see
[Cut89], and therefore, near each flopping curve, the flop � is given by Reid’s
pagoda [Rei83].

Remark 5.2.6. The construction of Theorem 5.2.2 is functorial: an isomorphism
between pairs .X1; L1/ and .X2; L2/ induces an isomorphism of the associated
diagrams (5.2.3), and hence an isomorphism of the corresponding pairs .Y; Z1/

and .Y; Z2/. Conversely, an isomorphism of pairs .Y; Z1/ and .Y; Z2/ induces
in the same way an isomorphism of pairs .X1; L1/ and .X2; L2/ associated with
them. In particular, if the pair .Y; Z/ corresponds to a pair .X; L/ then

(5.2.7) Aut.X I L/ Š Aut.Y I Z/;

where Aut.X I L/ � Aut.X/ and Aut.Y I Z/ � Aut.Y / are the subgroups pre-
serving L and Z respectively. In particular, if G � Aut.X/ and L is G-invariant,
then G � PGL2.�/ and Z is G-invariant. Conversely, if Z is stabilized by a
subgroup G � PGL2.�/ then G acts faithfully on X and preserves the line L.

Denote by †0
L.X/ � †.X/ the open subscheme of the Hilbert scheme of

lines on X that parameterizes lines which intersect neither L, nor any other line
intersecting L. Similarly, denote by

†Z.Y / D q.p�1.Z// � †.Y /

the closed subscheme of †.Y / parameterizing lines intersecting a normal ratio-
nal quintic Z, and let †0

Z.Y / � †Z.Y / be its open subscheme that parameter-
izes lines which are neither bisecants of Z, nor intersect any bisecant of Z.

Lemma 5.2.8. The scheme †0
L.X/ is an open dense subscheme of †.X/, and

the map L0 7! �.L0/ is a rational map †.X/ Ü †Z.Y / inducing an isomor-
phism †0

L.X/ Š †0
Z.Y /.

Proof. By Lemma 5.2.5 any line intersecting a given line L0 on X is a flopping
line for the double projection from L0, hence the number of such lines is finite.
Since any component of †.X/ is one-dimensional (see Lemma 2.2.3), it follows
that †0

L.X/ � †.X/ is dense.
If L0 corresponds to a point of †0

L.X/, the map � is regular on L0. Since

HY ��.L0/ D .HX �2EL/ �L0 D 1 and EZ ��.L0/ D .HX �3EL/ �L0 D 1;

it follows that �.L0/ is a line, and intersects Z at one point. Moreover, �.L0/
does not intersect bisecants of Z, since L0 does not intersect flopping lines.
Hence �.L0/ corresponds to a point of †0

Z.Y /. Thus, the map � is well defined
on an open subscheme †0

L.X/ as a map †0
L.X/ ! †0

Z.Y /.
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Conversely, if L0 corresponds to a point of †0
Z.Y /, the map ��1 is regular

on L0, and a computation similar to the above shows that ��1.L0/ is a line on X .
This defines a morphism †0

Z.Y / ! †0
L.X/. The two morphisms are evidently

mutually inverse. �

In the above lemma we do not claim that †0
Z.Y / is dense in †Z.Y /. In fact,

†Z.Y / can have a component consisting of lines meeting both Z and a bisecant
of Z (cf. Lemma 5.4.1) and then †0

Z.Y / is contained in the complement of this
component.

Corollary 5.2.9. The Hilbert scheme of lines †.X/ is a Gorenstein curve.

Proof. As it was mentioned in the proof of Lemma 5.2.8, the number of lines
in X intersecting a given line L is finite. This means that the open subschemes
†0

L.X/ form an open covering of †.X/. So, by Lemma 5.2.8 it is enough to
prove that †0

Z.Y / is Gorenstein.
Since Z is a smooth curve, it is a locally complete intersection in Y . Since

the map p W L.Y / ! Y is finite, the scheme p�1.Z/ � L.Y / is also a locally
complete intersection, and since L.Y / is smooth, we conclude that p�1.Z/ is a
Gorenstein curve. It remains to notice that the map q W p�1.Z/ ! †Z.Y / is an
isomorphism over †0

Z.Y /, hence the latter is also Gorenstein. �

The above argument also shows that the curve †.X/ has only planar singu-
larities.

5.3. Special Fano threefolds of genus 12

In this section we construct some examples of Fano threefolds X of genus 12
with infinite automorphism groups, and after that we show that all X with infi-
nite automorphism groups are covered be these examples.

By Remark 5.2.6 to produce an example of such X , it is enough to find a nor-
mal rational quintic Z stabilized by an infinite subgroup of Aut.Y / Š PGL2.�/.
Recall the notation for subgroups B2, U2, and T2 of PGL2.�/ introduced in
Subsect. 5.1.

Example 5.3.1. Let Z D ZMU � Y be the quintic of Remark 5.1.2. The corre-
sponding Fano threefold of index 1 and genus 12 has a faithful action of the sub-
group B2 � PGL2.�/. In Theorem 5.3.10 we prove it is the Mukai–Umemura
threefold XMU of Theorem 5.2.1.

Example 5.3.2 ([Pro90a]). The curve

(5.3.3) Za D U2 � Œ	6� � Y � P.M6/
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is a normal rational quintic curve preserved by the subgroup U2 � PGL2.�/.
We have

Za\Orb3.Y / D U2�Œ	6� Š A1; Za\Orb2.Y / D ¿; Za\Orb1.Y / D Œx6�:

We denote by X a the Fano threefold of index 1 and genus 12 corresponding to
the quintic Za via the construction of Theorem 5.2.2.

Example 5.3.4 ([Pro90a]). For every parameter u 2 � put

(5.3.5) 	6;u.x; y/ D
�

1 u

0 1

�
� 	6 D x.ux C y/.x4 � .ux C y/4/:

Clearly, one has
Œ	6;u� 2 U2 � Œ	6� � Orb3.Y / � Y:

Expanding the right side of (5.3.5) we get

	6;u.x; y/ D u.1 � u4/x6 C .1 � 5u4/x5y � 10u3x4y2 � 10u2x3y3

� 5ux2y4 � xy5:

If all the coefficients of this polynomial are non-zero, i.e., if

(5.3.6) u.u4 � 1/.5u4 � 1/ ¤ 0;

the closure of the T2-orbit of 	6;u

(5.3.7) Zm.u/ D T2 � Œ	6;u�

is a normal rational quintic curve preserved by the subgroup T2 � PGL2.�/.
If the condition (5.3.6) fails the orbit closure is either the line Lxy (if u D 0), or
a normal rational quartic curve (if u4 D 1), or a singular rational quintic curve
(if u4 D 1=5).

We have

Zm.u/ \ Orb3.Y / D T2 � Œ	6;u� Š A1 n f0g;
Zm.u/ \ Orb2.Y / D Œxy5�;

Zm.u/ \ Orb1.Y / D Œx6�:

We denote by Xm.u/ the Fano threefold of index 1 and genus 12 corresponding
to the quintic Zm.u/ via the construction of Theorem 5.2.2.

In what follows we refer to varieties XMU, X a, and Xm.u/ defined in Theo-
rem 5.2.1 and Examples 5.3.2 and 5.3.4 as special Fano threefolds of
genus 12. According to Remark 5.2.6 and in view of the construction of the
curves ZMU, Za, and Zm.u/ we have inclusions of groups B2 � Aut.XMU/,
U2 � Aut.X a/, and T2 � Aut.Xm.u//. We already know that Aut.XMU/ is
actually much bigger. In Subsect. 5.4 we will show that the other two groups are
slightly bigger as well.
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Remark 5.3.8. The construction of varieties XMU and X a does not depend on
any parameter, so these are single varieties. On the contrary, the construction
of Xm depends on the parameter u. In fact, this is not quite precise. Indeed,
let � be a primitive fourth root of unity. It is easy to see that the polynomi-
als 	6;u.x; y/ and 	6;�u.x; �y/ are proportional, hence the T2-orbits of Œ	6;u�

and Œ	6;�u� coincide. Thus Zm.u/ D Zm.�u/ and Xm.u/ Š Xm.�u/. So the
space of parameters for the family of varieties Xm.u/ is

.P1
u n f0;

4
p

1; 4
p

1=5; 1g/=�4 D P1
u4 n f0; 1; 1=5; 1g;

with u4 being a coordinate. See [KP17] for another description of this family.

The next lemma shows that the quintics ZMU, Za, and Zm.u/ exhaust all
rational normal quintic curves in Y with an infinite stabilizer inside PGL2.�/.

Lemma 5.3.9. Assume that Z � Y is a rational normal quintic curve, invariant
with respect to a non-trivial connected solvable algebraic group B � PGL2.�/.
Then Z is conjugate under the action of Aut.Y / D PGL2.�/ to one of the
curves ZMU, Za, and Zm.u/ described by (5.1.3), (5.3.3), or (5.3.7).

Proof. Since the subgroup B � PGL2.�/ is conjugate to one of the subgroups
B2, T2, or U2 discussed in Subsect. 5.1, we can assume without loss of gener-
ality that B is one of these subgroups. Let us consider these cases one-by-one.

First, assume that B D B2. Since Z Š P1, every point of Z has a non-
trivial one-dimensional stabilizer in B , hence Z � Orb2.Y /. By Remark 5.1.2
the curve Z is conjugate to ZMU.

Moreover, the quintics conjugate to ZMU are the only smooth rational quin-
tics contained in Orb2.Y /, so from now on we may assume that Z 6� Orb2.Y /.

An arbitrary point of the open orbit Orb3.U / can be written as Œ'�, where

' D fg.f 4 � g4/;

and f , g are linear forms, so we may assume that Z is the closure of the B-orbit
of Œ'�.

Now, assume that B D U2. For general f and g the closure of the U2-orbit
of Œ'� is a curve of degree 6. For it to have degree 5, it is necessary for ' to be
divisible by x. Conjugating by an element of Aut.Y /' Š Oct, we may assume
that f D x (up to a scalar multiple). But then (again up to a scalar multiple) '

should be equal to

	6;u;v.x; y/ D x.uxCvy/.x4 �.uxCvy/4/ D
�

1 u

0 v

�
�	6; u 2 �; v 2 �

�:

Such point is obtained from Œ	6� by a B2-action. But the group B2 normalizes
the subgroup U2 � PGL2.�/, hence Z is conjugate to the closure of the U2-
orbit of Œ	6�, i.e., to Za.
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Finally, assume that B D T2. Again, for general f and g the closure of the
T2-orbit of Œ'� has degree 6, and the degree is smaller if and only if ' is divisible
by x or y. Conjugating by an element of Aut.Y /' Š Oct we again may assume
that f D x, i.e., ' D 	6;u;v . But this point is in the T2-orbit of Œ	6;u�, hence Z

is conjugate to Zm.u/. �

Now finally, we can classify all Fano threefolds of index 1 and genus 12 with
infinite automorphism groups, which is the first main result of this section.

Theorem 5.3.10 (see [Pro90a]). Let X be a (smooth) Fano threefold such that
�.X/ D 1, �.X/ D 1, and g.X/ D 12. Then the automorphism group of X is
finite unless X is a special Fano threefold of genus 12. More precisely, if X ad-
mits a faithful action of the group B2, then X Š XMU is the Mukai–Umemura
threefold described in Theorem 5.2.1 and mentioned in Example 5.3.1. Other-
wise, either X Š X a or X Š Xm.u/, see Examples 5.3.2 and 5.3.4.

Proof. Let B denote a maximal solvable (Borel) subgroup of the connected
component Aut0.X/ of identity in the group Aut.X/. The group Aut.X/ is finite
if and only if B is trivial. The group B acts on the Hilbert scheme †.X/ of
lines on X , and by the fixed-point theorem [Hum75, Theorem VIII.21.2] there
exists a B-invariant line L � X . Then by Remark 5.2.6 the associated curve Z

is B-invariant and by Lemma 5.3.9 the curve Z is Aut.Y /-conjugate to one of
the curves ZMU, Za, or Zm.u/, hence X is isomorphic to one of the special
threefolds of Examples 5.3.1, 5.3.2, or 5.3.4.

Moreover, if X is the Mukai–Umemura threefold of Theorem 5.2.1
then B D B2, hence the corresponding quintic is B2-invariant, hence is conju-
gate to ZMU. Therefore, the threefold of Example 5.3.1 is the Mukai–Umemura
threefold. �

To complete the proof of Theorem 1.1.2 it remains to describe explicitly the
automorphism groups of the threefolds X a and Xm.u/. We do this in the next
subsection.

Remark 5.3.11. One can also use the approach of Theorem 5.3.10 to establish
finiteness of the automorphism group of an arbitrary smooth Fano threefold X

with �.X/ D 1, �.X/ D 1, and 7 6 g.X/ 6 10, see [Pro90a] for details.

5.4. Explicit automorphisms groups

The main ingredient in the explicit description of the automorphisms groups
of X D X a and X D Xm.u/ is the description of the Hilbert scheme †.X/ of
lines on X . For this we use Lemma 5.2.8 relating it to †Z.Y /, where Z is the
corresponding quintic curve. Accordingly, we start by describing †Z.Y /. We
include the case Z D ZMU for completeness.
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Lemma 5.4.1. If Z D ZMU, Z D Za, or Z D Zm.u/, then the curve †Z.Y /

is a plane quintic curve which can be described by the following picture:

P
`

†ZMU
.Y /

P
`

†Za
.Y /

P
`

†Zm.u/.Y /

In other words, †Z.Y / is the union of a line ` and two conics (or a double
conic, in the Mukai–Umemura case) tangent to ` at a certain point P 2 †.Y /.

Proof. To describe †Z.Y / we use consecutively Corollary 5.1.5.
First, put Z D Za D U2 � Œ	6�. Clearly, one has

q.p�1.Œ	6�// D fŒxy�; Œx2 � y2�; Œx2 C y2�g:
Hence

q.p�1.U2 � Œ	6�// D .U2 � Œxy�/ [ .U2 � Œx2 � y2�/ [ .U2 � Œx2 C y2�/

D fx.sx C y/g [ fx2 � .sx C y/2g [ fx2 C .sx C y/2g;
where s 2 �. The point at the boundary of Za is Œx6� and q.p�1.Œx6�// D Œx2�.
We see that †Za.Y / D q.p�1.Za// is the union of a line

` D fx.s1x C s2y/g;
and two conics

� 0
a D f.s2

1 �s2
2/x2�2s1s2xy�s2

1y2g; � 00
a D f.s2

1 Cs2
2/x2C2s1s2xyCs2

1y2g;
also tangent to it (and tangent to each other with multiplicity 4) at the point
P D Œx2�.

If Z D Zm.u/ D T2 � Œ	6;u�, then

q.p�1.Œ	6;u�// D fŒx.ux C y/�; Œx2 � .ux C y/2�; Œx2 C .ux C y/2�g;
hence

q.p�1.T2 � Œ	6;u�//

D .T2 � Œx.ux C y/�/ [ .T2 � Œx2 � .ux C y/2�/ [ .T2 � Œx2 C .ux C y/2�/

D fx.ux C ty/g [ fx2 � .ux C ty/2g [ fx2 C .ux C ty/2g;
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where t 2 �
�. The points at the boundary of Zm.u/ are Œx6� and Œxy5�, and we

have q.p�1.Œx6�// D Œx2� and q.p�1.Œxy5�// D fŒxy�; Œy2�g. Thus, the scheme
†Zm.Y / D q.p�1.Zm.u/// is the union of the line ` (the same line as in the
case of Z D Za) and two conics

� 0
m.u/ D fs2

1.1 � u2/x2 � 2s1s2uxy � s2
2y2g;

� 00
m.u/ D fs2

1.1 C u2/x2 C 2s1s2uxy C s2
2y2g;

tangent to ` at the point P D Œx2�, and also tangent to each other with multi-
plicity 2 at the points Œx2� and Œy2� respectively.

Finally, if Z D ZMU D fx.s1x C s2y/5g.s1Ws2/2P1 , then

†ZMU.Y / D q.p�1.ZMU// D fx.s1x C s2y/g [ f.s1x C s2y/2g:
Thus, †ZMU.Y / is the union of the line ` (the same line again) and of the conic

�MU D f.s1x C s2y/2g
tangent to ` at the point P D Œx2�. Since the lines parameterized by this conic
are special, its preimage q�1.�MU/ is the ramification divisor of p W L.Y / ! Y ,
hence the component of †ZMU.Y / underlying the conic �MU is everywhere non-
reduced.

Summarizing, we can write

†Z.Y / D
8<
:

` [ 2�MU; if Z D ZMU;

` [ � 0
a [ � 00

a ; if Z D Za;

` [ � 0
m.u/ [ � 00

m.u/; if Z D Zm.u/:

This completes the proof of the lemma. �

Another observation that we need is the following. Denote by hZi the linear
span of the quintic Z. It is a hyperplane in P.M6/ D P6.

Lemma 5.4.2. Let Z D ZMU, Z D Za, or Z D Zm.u/ and

F D Y \ hZi:
Then F is a non-normal quintic surface whose normalization is the Hirzebruch
surface F3. The normalization map F3 ! F glues the exceptional section with
one fiber of F3 into the line Lx2 D Sing .F /. The line Lx2 is the unique bisecant
of Z and corresponds to the distinguished point P 2 †Z.Y /. Any line on Y

intersecting both Z and Lx2 is the image of the fiber of F3; these lines are
parameterized by the component ` � †Z.Y /.
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Proof. In all three cases the linear span hZi is the hyperplane

hx6; x5y; x4y2; x3y3; x2y4; xy5i � P.M6/;

so F is the corresponding hyperplane section of Y . In particular, it is a quintic
surface. The line Lx2 is contained in the hyperplane, hence also in F , and the
same is true for any line Lx.s1xCs2y/ parameterized by ` � †Z.Y /. The lines
Lx2 and Lx.s1xCx2y/ meet at the point Œx5.s1x C s2y/�, so the surface F is
swept out by secants of Lx2 . Therefore, applying the main result of [FT89] we
conclude that F is non-normal and its normalization is a Hirzebruch surface.
Moreover, since the line Lx2 is special (see Corollary 5.1.5), the normalization
of F is F3 and the normalization map glues the exceptional section of F3 with a
fiber.

Let s denote the class of the exceptional section of F3, and f the class of a
fiber. Since the fibers of F3 are mapped to lines on Y , and since the image of F3

is a quintic surface, the map F3 ! F ! hZi Š P5 is given by an incomplete
linear subsystem in js C 4f j. Let us check that the curve Z is also the image of
a member of the same linear system. Indeed, Z is a smooth quintic curve, and
js C 4f j is the only linear system that contains integral curves of degree 5 with
respect to s C 4f .

Now, we can check the last two assertions of the lemma. Any bisecant of Z

is contained in the linear span hZi, hence in the surface F . Therefore, it is the
image of a fiber of F3. Since .s C 4f / � f D 1, the image of a fiber intersects Z

in a single point and the intersection is transversal, unless this is the fiber that is
glued with the exceptional section. This shows that Lx2 is the unique bisecant
of Z. Finally, any line intersecting both Z and Lx2 is also contained in hZi,
hence lies on F , hence is the image of a fiber of F3. And as we have seen above,
these lines are parameterized by `. �

Lemma 5.4.2 allows to describe the flopping locus of the birational transfor-
mation � in the diagram (5.2.3).

Proposition 5.4.3. Let X D XMU, X D X a, or X D Xm.u/ and Z � Y is the
corresponding quintic curve. The flopping loci of the birational transformation �

and ��1 in the diagram (5.2.3) is the exceptional section of the exceptional
divisor EL � X 0, and the strict transform of the unique bisecant Lx2 of Z

in Y 0 respectively. In particular, the line L � X is special and does not intersect
any other line on X .

Proof. By Lemma 5.2.5 the flopping locus in Y 0 consists of strict transforms of
bisecants of Z. So, by Lemma 5.4.2 there is a unique flopping curve for ��1.
Consequently, the same is true for the map �.

On the other hand, the surface F is the image of the exceptional divisor EL.
Since its normalization is isomorphic to F3, it follows that L is a special line
on X . Indeed, otherwise EL Š F1 and the map Y ı � is regular near a general
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fiber of EL. Then the image of fibers must be irreducible conics on F . On
the other hand, F does not contain irreducible conics. Hence, the exceptional
section of the exceptional divisor is in the flopping locus. But as we have already
shown, the flopping locus consists of a single curve. This means that no other
line on X intersects L. �

Combining the above assertions we obtain the following:

Proposition 5.4.4. The Hilbert scheme of lines on a special Fano threefold X

of genus 12 has the following description:

� If X D XMU then †.X/ is a smooth rational curve with an non-reduced
scheme structure.

� If X D X a then †.X/ is the union of two rational curves glued at a point P ,
such that Sing .†.X// D P .

� If X D Xm.u/ then †.X/ is the union of two smooth rational curves glued
at two simple tangency points P and P 0.

Warning 5.4.5. One can actually prove that in the case X D X a the compo-
nents of †.X/ are smooth and the point P is their tangency point of multiplic-
ity 4. Moreover, in fact in all cases considered in Proposition 5.4.4 the Hilbert
scheme †.X/ has a natural structure of a plane quartic (see also Remark 5.4.8),
which is either a double conic, or a union of two conics with a single common
point, or a union of two conics with two tangency points, so the picture below
is adequate. However, we do not need all these facts, and the proof that we have
in mind requires going in too much details, so we skip it.

The next picture shows how †.X/ looks:

†
MU

.X     /

P

P ′

P

†
a

.X  /

P

P ′

†
m

.X   .u//

Proof. Let L be the line on X obtained from the pair .Y; Z/ by the construction
of Theorem 5.2.2 (ii). By Proposition 5.4.3 and Lemmas 5.2.8 and 5.4.2 we have
an isomorphism

†.X/ n fŒL�g D †0
L.X/ Š †0

Z.Y / D †Z.Y / n `:
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Thus, †.X/ is a one-point compactification of †Z.Y / n `. Using the descrip-
tion of †Z.Y / given in Lemma 5.4.1 we deduce all assertions of the proposi-
tion, except for the local description of †.X/ at the point P (corresponding to
the line L) in the Mukai–Umemura and multiplicative cases. For this we can
argue as follows. First, replace the line L with the line L0 corresponding to the
point P 0 (any other point in the Mukai–Umemura case, and the other singular
point in the multiplicative case) and consider the quintic curve Z0 � Y associ-
ated with the pair .X; L0/. By Lemma 5.3.9 we conclude that Z0 is conjugate
to ZMU or Zm.u0/, for some u0 possibly different from u, with respect to the
Aut.Y /-action, so it follows that the local behavior of †.X/ at P is the same as
at P 0. �

Now we are ready to prove the second main result of this section.

Proposition 5.4.6. The automorphism groups of special Fano threefolds of genus 12

are the following:

Aut.XMU/ Š PGL2.�/; Aut.X a/ Š Ga Ì �4; Aut.Xm.u// Š Gm Ì �2:

Proof. The first isomorphism is given by Theorem 5.2.1, so we concentrate on
the other two. The group Aut.X/ acts on the Hilbert scheme †.X/, and as
a consequence on the set Sing .†.X//, which by Proposition 5.4.4 is a sin-
gle point in the case X D X a and a two-point set in the case X D Xm.u/.
Let L � X be the line corresponding to the singular point P of †.X/, and
let Aut.X I L/ � Aut.X/ be the subgroup that preserves L. Then we have an
equality

Aut.X a/ D Aut.X aI L/;

and an exact sequence

(5.4.7) 1 �! Aut.Xm.u/I L/ �! Aut.Xm.u// �! �2;

where the group �2 is considered as the group of permutations of the set fP; P 0g.
On the other hand, we have an isomorphism (5.2.7). A simple computation

shows that

Aut.X aI L/ Š Aut.Y I Za/ D U2 Ì �4 Š Ga Ì �4:

Indeed, if g 2 Aut.Y / preserves Za D U2 � Œ	6�, then g.Œ	6�/ D Œ	6;u� for
some u 2 U2, hence u�1g is an element of the stabilizer Oct of the point Œ	6�

that preserves U2. Therefore, we have u�1g 2 �4, where �4 is the subgroup
of the octahedral group fixing one of the octahedron axes. It is generated by the
element


 D
�

� 0

0 1

�
2 PGL2.�/;
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where � is a fourth root of unity, and we finally get the required description
of Aut.X a/.

Similarly,

Aut.Xm.u/I L/ Š Aut.Y I Zm.u// D T2 Š Gm:

Indeed, if g 2 Aut.Y / preserves Zm.u/ D T2 � Œ	6;u�, then g.Œ	6;u�/ D t.Œ	6;u�/

for some t 2 T2, hence t�1g is an element of the stabilizer u � Oct � u�1 of the
point Œ	6;u� (where we consider u as an element of U2) that preserves T2. In
other words,

t�1g 2 .u � Oct � u�1/ \ .T2 [ w.T2//;

where w is the non-trivial element of the Weyl group S2 of PGL2.�/. But
for u satisfying the inequality of Example 5.3.4 the intersection on the right
hand side is trivial, and we finally see that g 2 T2.

To conclude we note that by [DKK17, Proposition 5.1] the group Aut.Xm.u//

contains an extra involution hence Aut.Xm.u// ¤ Aut.Xm.u/I L/, so the sec-
ond map in (5.4.7) is surjective, and we get the required description of Aut.Xm.u//.

�

Remark 5.4.8. According to S. Mukai [Muk89] (see also [Muk92], [Sch01]) any
Fano threefold X with �.X/ D 1, �.X/ D 1, and g.X/ D 12 can be realized as
a variety of sums of powers that parameterizes polar hexagons of a plane quartic
curve C (see [Muk92, §5] for a definition and [DKK17] for some details), and
the Hilbert scheme †.X/ is the Scorza transform of C, (see [DK93, §7] for a
definition). Unfortunately, a complete proof of these facts is not yet published,
while the construction of the extra involution in [DKK17] relies on them.

To establish the existence of an involution in Aut.Xm.u// n Gm, indepen-
dent of the above Mukai’s results, one can use another equivariant Sarkisov link
similar to (5.2.3), see [KP17] for details.

Propositions 4.4.3 and 5.4.6 together with Theorem 5.3.10 (and a classifica-
tion of smooth Fano threefolds of Picard rank 1, see [IP99, §12.2]) give a proof
of Theorem 1.1.2.

A. Some standard results on conics

In this section we collect some well-known results about conics. We refer to
Subsect. 2.1 for our notation and conventions.

A.1. Conics on surfaces

For any variety Z � PN we denote by †.Z/ and S.Z/ the Hilbert schemes of
lines and conics contained in Z, respectively, see Subsect. 2.1.
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Lemma A.1.1. Let Z � PN be an integral variety such that dim †.Z/ 6 1.
Suppose that there is an irreducible two-dimensional closed subset S0 � S.Z/

such that a general point of S0 corresponds to a reducible (reduced) conic. Then
either Z contains a cone over a curve B and S0 Š Sym2.B/, or Z contains a
smooth quadric surface.

Proof. Since a general point of S0 corresponds to a reducible conic, one of the
two possibilities occur: either †.Z/ has a one-dimensional irreducible compo-
nent †0 such that any two lines corresponding to its points meet each other,
or †.Z/ has two one-dimensional irreducible components †1 and †2 such that
every line corresponding to a point of †1 meets every line corresponding to a
point of †2.

Suppose that the first possibility occurs. Take two different lines L0
0 and L00

0

corresponding to the points of †0. They intersect at a point, say P , and span a
plane, say …. A general line corresponding to a point of †0 intersects both L0

0

and L00
0. Therefore either it passes through P (hence these lines sweep a cone

that gives the first option listed in the assertion of the lemma with B D †0), or
it is contained in … (hence these lines sweep the plane …, in which case †.Z/

is two-dimensional, which is a contradiction).
Now suppose that the second possibility occurs. Take two general lines L0

1

and L00
1 corresponding to points of †1. We may assume that they do not intersect

each other (otherwise we are in the situation considered above). Lines in PN that
intersect both L0

1 and L00
1 are then parameterized by L0

1 �L00
1, so we can consider

the curve †2 as a curve in L0
1 � L00

1. But since as before we may assume that the
lines parameterized by †2 do not intersect each other, therefore the projections
of the curve †2 to the factors of L0

1 � L00
1 are bijective, hence lines in †2 sweep

a smooth quadric surface. �

The following classically known result whose proof can be obtained by com-
bining the results of [Cas94] and [Seg21] is very useful.

Lemma A.1.2. Let Z � PN be an integral surface. Assume that dim S.Z/ > 2

and Z is not a cone. Then Z is the Veronese surface

v2.P2/ � P5;

or its linear (regular or rational) projection. In particular, one has deg Z 6 4.
Moreover, if dim †.Z/ > 1 then Z is a cubic scroll

PP1.O.�1/ ˚ O.�2// � P4;

or its linear projection, so that deg Z 6 3.

Proof. We use the ideas and methods from the proofs of [Rus16, Theorem 3.4.1]
and [Rus16, Theorem 3.4.4].



A.G. Kuznetsov, Yu.G. Prokhorov, C.A. Shramov

First, consider the Hilbert scheme of lines †.Z/ and the diagram (2.2.1).
Note that the map p W L.Z/ ! Z cannot have fibers of positive dimension,
since otherwise the surface Z would be a cone. In particular, this implies that
dim †.Z/ 6 1.

Let S0 be an irreducible component of S.Z/ such that dim S0 > 2. Note that
a smooth quadric can be represented as a linear projection of a cubic scroll, and
thus also as a projection of the Veronese surface. Therefore, by Lemma A.1.1
we can assume that a general point of S0 corresponds to a smooth conic.

Suppose that dim †.Z/ D 1. Let †0 � †.Z/ be a one-dimensional irre-
ducible component and let q W L0.Z/ ! †0 be the corresponding family of
lines. Thus we have a finite surjective morphism

p W L0.Z/ �! Z � PN :

If p is not birational then there is a two-dimensional family of pairs of inter-
secting lines in †0, which means that general lines L1 and L2 corresponding
to points of †0 meet each other. This gives on Z a two-dimensional family of
reducible conics and by Lemma A.1.1 implies that Z is a smooth quadric. So,
we may assume that p is birational.

Let B be the normalization of †0 and Z0 D B �†0
L0.Z/ the pullback

to B of the universal family over †0. Then Z0 is a ruled surface over B . Since
p is birational, the preimage in Z0 of a general conic in Z is a rational curve
that projects non-trivially to B . Hence B is rational and so

Z0 Š PP1.O ˚ O.�e//;

for some e > 0. Denote by s the class of the exceptional section of Z0 and by f

the class of the fiber. The map Z0 ! Z ,! PN is given by a subsystem of the
linear system js C nf j for some integer n. Note that n > e (otherwise the linear
system has base points on the exceptional section), and if n D e then the image
of Z0 is a cone. Thus one has n > e. Assume further that (the preimage on Z0

of) the class of a non-degenerate conic C � Z corresponding to a general point
of S0 is as C bf for some a; b 2 Z. Then we have

2 D .as C bf /.s C nf / D �ae C b C an D b C .n � e/a:

On the other hand, since C is irreducible and movable, we see that b > ea > 0.
Moreover, we have a ¤ 0 and b ¤ 0 because dim S.Z/ > 2. Taking all this
into account we get

a D b D 1; 0 6 e 6 1; n D e C 1:

If e D 0 we conclude that Z is a linear projection of a quadric P1 � P1 � P3,
and if e D 1 we conclude that Z is a linear projection of the cubic scroll, i.e.,
of the surface

PP1.O ˚ O.�1// Š PP1.O.�1/ ˚ O.�2//
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embedded into P4 via the linear system js C 2f j. Both can also be represented
as linear projections of the Veronese surface. This finishes the proof in the case
when dim †.Z/ > 1.

From now on we assume that †.Z/ is at most finite. Choose a sufficiently
general point z 2 Z. Then z is a smooth point of Z that does not lie on a line.
Therefore, all conics passing through z are irreducible, and in particular smooth
at z.

Let Sz be the subscheme of S.Z/ parameterizing the conics that pass through
the point z, and qz W Cz ! Sz be the corresponding universal family. Since
all conics of Sz are smooth at z, the point z defines a section … � Cz of the
fibration qz .

Let pz W Cz ! Z be the tautological morphism. By [Kol96, Proposition V.3.7.5]
this morphism is birational. Clearly, … is the scheme-theoretical preimage
of z. Since … is a Cartier divisor on Cz , the map pz lifts to a map Qpz W Cz ! QZ,
where  W QZ ! Z is the blow up of the point z. Thus we have a commutative
diagram

Qpz

pzqz

Cz

Sz Z

QZ

cf. the proof of [Fus15, Theorem 2.1].
Since the morphism Qpz is birational, and the surface QZ is normal (and even

smooth) in a neighborhood of the exceptional divisor E of  , the morphism

Qpzj… W … �! E

is birational as well. Since E Š P1 is a smooth curve, this implies that Qpzj…
is actually an isomorphism, which means that a conic contained in Z and pass-
ing through z is uniquely defined by its tangent direction. Now [Fus15, Theo-
rem 2.5] implies that there is a birational (possibly biregular) map

� W P2 Ü Z � PN

defined by a linear subsystem of jOP2.2/j. This means that Z is a Veronese
surface or its linear projection. �
Corollary A.1.3. Let Z be an integral surface and let H be a Cartier divisor
on Z such that 2H is very ample. Let †.Z/ be the Hilbert scheme of H -lines.
Suppose that dim †.Z/ > 2. Then Z Š P2 and H is the class of a line.

Proof. Clearly, one has †.Z/ � S.v2.Z//, where v2 is the embedding of Z

given by the linear system j2H j, hence dim S.v2.Z// > 2. Moreover, v2.Z/

contains no lines, hence is not a cone. Therefore, by Lemma A.1.2 it is an iso-
morphic projection of v2.P2/. This means that Z Š P2 and H is the class of a
line. �
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A.2. Normal bundles of degenerate conics

Below we describe a relation between a normal bundle of a reducible or non-
reduced conic C on a smooth projective variety X , and normal bundles of the
irreducible components of C , or the normal bundle of Cred, respectively. Then
we apply this description to conics on Fano threefolds of index 1.

Lemma A.2.1. Assume that C D L1 [ L2 is a reducible conic on X , i.e., L1

and L2 are two distinct lines intersecting at a point P . Then there are exact
sequences

0 �! NC=X �! NC=X jL1
˚ NC=X jL2

�! NC=X jP �! 0;

and
0 �! NLi =X �! NC=X jLi

�! OP �! 0; i D 1; 2:

Proof. The first exact sequence can be written for any vector bundle on C ;
it is obtained by taking the tensor product (over OC ) of this bundle with the
canonical exact sequence

0 �! OC �! OL1
˚ OL2

�! OP �! 0;

where all maps are just restrictions.
To establish the second sequence recall that

Coker.IC �! IL1
/ Š Ker.OC �! OL1

/ Š OL2
.�P /

by the Snake Lemma. Thus the embedding of the ideal sheaves IC � IL1
ex-

tends to an exact sequence

(A.2.2) 0 �! IC �! IL1
�! OL2

.�P / �! 0:

Note that

IC ˝ OL1
Š .IC ˝ OC / ˝OC

OL1
Š N_

C=X jL1
; OL1

˝ OL2
.�P / Š OP ;

and Tor1.OL1
;OL2

.�P // is a torsion sheaf on L1. Therefore, tensoring the
exact sequence (A.2.2) with OL1

, we deduce an exact sequence

� � � �! Tor1.OL1
;OL2

.�P // �! N_
C=X jL1

�! N_
L1=X �! OP �! 0:

The sheaf N_
C=X

as well as its restriction to L1 is locally free, hence any mor-
phism to it from a torsion sheaf Tor1.OL1

;OL2
.�P // is zero. Thus we have an

exact triple
0 �! N_

C=X jL1
�! N_

L1=X �! OP �! 0:

Dualizing it, we obtain the required exact sequence for L1. The sequence
for L2 can be obtained in a similar way. �
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Corollary A.2.3. If X is a Fano threefold of index 1 and C � X is a reducible
conic, the Euler characteristic of the normal bundle equals �.NC=X / D 2.

Proof. We use the sequences of Lemma A.2.1. By Lemma 2.1.4 the Euler char-
acteristic of NLi =X equals 1. Since the Euler characteristic of OP is also 1,
and that of NC=X jP Š O˚2

P equals 2, we deduce that the Euler characteristic
of NC=X equals .1 C 1/ C .1 C 1/ � 2 D 2. �

The case of a non-reduced conic is a bit more complicated.

Lemma A.2.4. Assume that C is a non-reduced conic on a smooth projective
variety X and Cred D L. Then there are exact sequences

0 �! NC=X jL.�1/ �! NC=X �! NC=X jL �! 0;

and
0 �! OL.1/ �! NL=X �! NC=X jL �! OL.2/ �! 0:

Proof. Again, the first exact sequence can be written for any vector bundle
on C : it is obtained by taking the tensor product (over OC ) of this bundle with
the canonical exact sequence

0 �! OL.�1/ �! OC �! OL �! 0:

To establish the second sequence note that analogously to the reducible case the
natural embedding of the ideal sheaves IC � IL extends to an exact sequence

0 �! IC �! IL �! OL.�1/ �! 0:

Tensoring it with OL and taking into account that

Torp.IC ;OL/ Š ƒpC1N_
C=X jL; Torp.IL;OL/ Š ƒpC1N_

L=X ;

Torp.OL.�1/;OL/ Š ƒpN_
L=X .�1/

for all p, we deduce an exact sequence

0 �! ƒn�1N_
L=X .�1/ �! ƒn�1N_

C=X jL �! ƒn�1N_
L=X �! � � �

� � � �! ƒ2N_
L=X �! N_

L=X .�1/ �! N_
C=X jL �! N_

L=X �! OL.�1/

�! 0;

where n D dim X . Since all conormal sheaves are locally free of rank n � 1, it
follows that the first map in the sequence is an isomorphism, hence

det.N_
C=X jL/ Š det.N_

L=X /.�1/:
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Therefore, the kernel of the map N_
C=X

jL ! N_
L=X

, which is a line bundle
on L, is isomorphic to

det.N_
C=X jL/ ˝ det.NL=X / ˝ OL.�1/ Š OL.�2/:

As a result we get an exact sequence

0 �! OL.�2/ �! N_
C=X jL �! N_

L=X �! OL.�1/ �! 0:

The required exact sequence is obtained by dualization. �

Corollary A.2.5. If X is a Fano threefold of index 1 and C � X is a non-
reduced conic, the Euler characteristic of the normal bundle equals

�.NC=X / D 2:

Proof. We use the sequences of Lemma A.2.4. By Lemma 2.1.4 the Euler char-
acteristic of NL=X equals 1. Since the Euler characteristic of OL.1/ and OL.2/

equals 2 and 3 respectively, it follows that �.NC=X jL/ D 1 � 2 C 3 D 2. Since
NC=X jL is a vector bundle of rank 2, we have

�.NC=X jL.�1// D �.NC=X jL/ � 2 D 0:

Therefore, the Euler characteristic of NC=X equals 2 C 0 D 2. �

B. Lines and conics on Fano threefolds

Throughout this section X is a Fano threefold of index 1 and Y is a Fano three-
fold of index 2 (both with Picard rank 1). We denote by HX the ample generator
of Pic.X/, and by LX and PX the classes of a line and a point on X in the
corresponding Chow or cohomology groups. The bounded derived category of
coherent sheaves on X is denoted by Db.X/, see [Kuz14] for a recent survey.

The main goal of this section is to prove Theorem 2.3.5. Besides, we give
more detailed proofs of some facts, used in [Kuz09]. As before, we use notation
and conventions of §2.1.

We start by recalling Mukai’s results that describe Fano threefolds of index 1
and genus g > 6 as complete intersections in homogeneous varieties. Then we
discuss the structure of derived categories of some Fano threefolds, and define
subcategories AX � Db.X/ and BY � Db.Y / that contain the most essential
geometric information about X and Y . In particular, we show that the Hilbert
schemes of lines †.Y / and conics S.X/ can be identified with certain moduli
spaces of objects in these categories. Finally, we show that this identification
gives an isomorphism S.X/ Š †.Y / for appropriate pairs .X; Y /.
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B.1. Fano threefolds as complete intersections in homogeneous varieties

For each smooth Fano threefold X with �.X/ D 1, �.X/ D 1, and even
genus g.X/ > 6 Mukai constructed in [Muk89] a stable vector bundle E

on X of rank 2 with the following properties.

Theorem B.1.1 ([Muk89], [Muk92]). Let X be a Fano threefold with �.X/ D 1,
�.X/ D 1, and even genus g > 6. Then there is a stable globally generated
vector bundle E of rank 2 on X with

c1.E/ D HX ; c2.E/ D
�
1 C g

2

�
LX ;

and
(B.1.2)

dim H 0.X; E/ D 2 C g
2

; H 1.X; E/ D H 2.X; E/ D H 3.X; E/ D 0:

Moreover, if S � X is a very general anticanonical divisor, then the restric-
tion ES D EjS is stable and globally generated with

(B.1.3) dim H 0.S; ES / D 2 C g
2

; H 1.S; ES / D H 2.S; ES / D 0:

Proof. Let S � X be a very general hyperplane section of X in the anticanon-
ical embedding. Then S is smooth and Pic.S/ is generated by the restriction
HS of HX to S by Noether–Lefschetz theorem (see [Voi07, Theorem 3.33]).
In [Muk89, Theorem 3] a stable globally generated vector bundle ES of rank 2
with c1.ES / D HS and c2.ES / D 1 C g =2 is constructed such that (B.1.3)
holds, and at the end of [Muk89, §2] it is explained that it extends to a vector
bundle E on X . In [Muk92] it is shown that E is globally generated and (B.1.2)
holds. Stability of E easily follows from the stability of ES (a destabilizing
subsheaf in E would restrict to a destabilizing subsheaf of ES ). �

We call a bundle with the properties described in Theorem B.1.1 a Mukai
bundle. It induces a map into the Grassmannian

X �! Gr
�
2;

g
2

C 2
�

such that E is isomorphic to the pullback of the dual tautological bundle. In [Muk92]
Mukai shows that

� for g D 6 the map X ! Gr.2; 5/ is either a closed embedding and the image
is a complete intersection of two hyperplanes and a quadric, or a double
cover onto a linear section of codimension 3 branched in an intersection
with a quadric (see [DK15, Theorem 2.16] for an alternative proof);

� for g D 8 the map X ! Gr.2; 6/ is a closed embedding whose image is a
transverse linear section of codimension 5;
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� for g D 10 the map X ! Gr.2; 7/ is a closed embedding into the homo-
geneous space G2=P � Gr.2; 7/ of the group G2 (i.e., the simple algebraic
group with Dynkin diagram of type G2) by a maximal parabolic subgroup
P � G2, and the image is a transverse linear section of G2=P of codimen-
sion 2.

For g D 12 one can show that the map X ! Gr.2; 8/ is a closed embedding,
but a description of the image is not known. For us in this case, only existence
and properties of this vector bundle are essential.

Remark B.1.4. In fact, Mukai proves that for any factorization g D r � s of
the genus there is a nice stable vector bundle of rank r on X . In this way he
also constructs an embedding of the genus 9 threefold into the symplectic La-
grangian Grassmannian LGr.3; 6/, and with an additional trick an embedding of
the genus 7 threefold into the orthogonal Lagrangian Grassmannian OGr.5; 10/.
For us it is important that the factorization 12 D 3 � 4 allows to construct a pair
of vector bundles of rank 3 and 4 on a threefold of genus 12. They correspond
to the embedding of such threefold into Gr.3; 7/ studied by Mukai.

We restrict to the case of even genus and factorization g D 2 � .g =2/ as
described in Theorem B.1.1. We prove some additional properties of Mukai
bundles in this case. First, we show that a Mukai bundle is unique.

Proposition B.1.5. Let X be a Fano threefold with �.X/ D 1, �.X/ D 1, and
even genus g.X/ > 6. Let E1, E2 be two globally generated stable vector bun-
dles on X of rank 2 with c1 D HX and c2 D .1 C g.X/=2/ LX . Then E1 Š E2

and

(B.1.6) Ext1.Ei ; Ej .�1// D 0:

Proof. Let S � X be a very general hyperplane section of X in the anticanon-
ical embedding. Then S is a smooth K3 surface with Pic.S/ D Z � HX jS by
Noether–Lefschetz theorem (see [Voi07, Theorem 3.33]). By Riemann–Roch
theorem one has �.E1jS ; E2jS / D 2. It follows that either there is a non-trivial
map E1jS ! E2jS , or by Serre duality a map in the opposite direction. But
by Maruyama Theorem [MC81] the restrictions E1jS and E2jS are stable for
general S , hence such a map has to be an isomorphism. It follows that in both
cases we have E1jS Š E2jS for a very general S . Now applying Hom.E1; �/

to the exact sequence

0 �! E2.�HX / �! E2 �! E2jS �! 0

we deduce that either Hom.E1; E2/ ¤ 0, and then E1 Š E2 by stability, or

Ext1.E1; E2.�HX // ¤ 0:
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So, it remains to check that the latter is impossible (this will also prove (B.1.6)).
Assume on the contrary that there is a non-trivial extension

(B.1.7) 0 �! E2.�HX / �! F �! E1 �! 0:

Let us show that F is semistable. Since

c1.F / D c1.E1/ C c1.E2/ � 2HX D 0;

by Hoppe’s criterion ([Hop84]) it is enough to check that

Hom.O.HX /; F / D 0; Hom.O.HX /; ƒ2F / D 0;

Hom.O.HX /; ƒ3F / D 0:

Since ƒ3F Š F _, the first and the last of these vanishings are clear by (B.1.7)
and stability of E1 and E2. For the second vanishing note that ƒ2F has a three
step filtration with factors being

ƒ2.E2.�HX // Š O.�HX /; E2.�HX / ˝ E1 Š E_
2 ˝ E1;

ƒ2E1 Š O.HX /:

Again, by stability there are no maps from O.HX / to the first two factors, hence
any map

O.HX / �! ƒ2F

splits off the last factor ƒ2E1 Š O.HX /. Then the composition

F _.HX / �! F _ ˝ ƒ2F �! F

of the embedding O.HX / ! ƒ2F tensored with F _ and the canonical con-
traction morphism gives a morphism F _.HX / ! F such that the composition

E_
1 .HX / �! F _.HX / �! F �! E1

is an isomorphism. So, it splits off E1 in the extension (B.1.7). This proves
that F is semistable.

On the other hand, the discriminant �.F / of F is

�.F / D 8c2.F / D 8
�
2
�
1 C g.X/

2

�
� .2 g.X/ � 2/

�
LX D �8.g.X/ � 4/LX ;

so semistability of F contradicts Bogomolov’s inequality [HL10, Theorem 3.4.1].
�
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Remark B.1.8. For g.X/ D 4 there may be two non-isomorphic Mukai bundles.
Indeed a Fano threefold X of genus g D 4 is a complete intersection of a quadric
and a cubic in P5, see Table 2. If the quadric is smooth then it is isomorphic
to Gr.2; 4/ and thus carries two tautological subbundles. Their restrictions to X

give two non-isomorphic bundles of the type discussed in Proposition B.1.5.
Note that the vector bundle F defined as an extension (B.1.7) is trivial in this
case.

Another fact that is useful for the discussion of derived categories is acyclic-
ity of the Mukai bundle.

Lemma B.1.9. Let X be a Fano threefold with �.X/ D 1, �.X/ D 1, and even
genus g.X/ > 6. If E is the Mukai bundle on X then H

�

.X; E.�HX // D 0

and Ext
�

.E; E/ D �.

Proof. Let S be a very general hyperplane section of X in the anticanonical
embedding. We have an exact sequence

0 �! E.�HX / �! E �! ES �! 0:

Since the bundle E is stable by Theorem B.1.1 and c1.E.�HX // D �HX , we
have

H 0.X; EX .�HX // D 0:

Therefore the restriction map H 0.X; E/ ! H 0.S; ES / is injective. But
by (B.1.2) and (B.1.3) the dimensions of H 0.X; E/ and H 0.S; ES / are equal,
hence the latter map is an isomorphism. Since H >0.X; E/ D H >0.S; ES / D 0

(again by (B.1.2) and (B.1.3)), we conclude that

H
�

.X; EX .�HX // D 0:

For the second assertion, note that by Serre duality Ext3.E; E/ is dual to
Hom.E; E.�HX // which is zero by stability of E. Similarly, Ext2.E; E/ is dual
to Ext1.E; E.�HX // which is zero by (B.1.6). Furthermore, one has
dim Hom.E; E/ D 1 by stability of E. So, it remains to note that �.E; E/ D 1

by Riemann–Roch theorem, hence Ext1.E; E/ D 0. �

B.2. A correspondence between Fano threefolds of index 1 and 2

Let X be a Fano threefold with �.X/ D 1, �.X/ D 1, and even genus g.X/ > 6.
We consider the Mukai bundle E of rank 2 on X , and from now on denote its
dual by

UX D E_:



Hilbert schemes of lines and conics and automorphism groups of Fano threefolds

It follows from Lemma B.1.9 (see also [Kuz09]) that the pair of vector bun-
dles .OX ;U_

X / is exceptional and gives a semiorthogonal decomposition of the
derived category of coherent sheaves

Db.X/ D hAX ;OX ;U_
X i

with the subcategory AX defined by

(B.2.1)
AX D hOX ;U_

X i?

D fF 2 Db.X/ j H
�

.X; F / D H
�

.X; F ˝ UX / D 0g:
On the other hand, if Y is a Fano threefold with �.Y / D 1, �.Y / D 2, and

arbitrary degree d.Y /, there is a semiorthogonal decomposition

Db.Y / D hBY ;OY ;OY .1/i;
with the subcategory BY defined by

(B.2.2)
BY D hOY ;OY .1/i?

D fF 2 Db.Y / j H
�

.Y; F / D H
�

.Y; F.�1// D 0g:
In the next lemma we show that the subcategories AX and BY are preserved

by all automorphisms of X and Y .

Lemma B.2.3. The vector bundles OX and UX on a Fano threefold X

with �.X/ D 1, �.X/ D 1, and even genus g.X/ > 6 are Aut.X/-invariant.
In particular, the action of the group Aut.X/ on Db.X/ preserves the subcate-
gory AX , so there is a morphism

Aut.X/ �! Aut.AX /

to the group of autoequivalences of AX . Similarly, the line bundles OY

and OY .1/ on a Fano threefold with �.Y / D 1 and �.Y / D 2 are Aut.Y /-
invariant, so Aut.Y / acts on BY and there is a morphism

Aut.Y / �! Aut.BY /:

In both cases the image is contained in the subgroup of autoequivalences acting
trivially on the numerical Grothendieck group.

Proof. The invariance of OX , OY and OY .1/ under automorphisms is clear, and
invariance of UX follows from Proposition B.1.5. The categories AX and BY

are preserved by automorphisms of X and Y by (B.2.1) and (B.2.2), hence the
required morphisms. Finally, the automorphisms of Fano threefolds of Picard
rank 1 act trivially on their Chow groups, hence by [Kuz09] on the numerical
Grothendieck groups. Therefore, the numerical classes of objects in AX and BY

are preserved by automorphisms of X and Y , respectively. �
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We will use the following result:

Theorem B.2.4 ([Kuz09]). For each smooth Fano threefold X with �.X/ D 1,
�.X/ D 1, and g.X/ 2 f8; 10; 12g there is a smooth Fano threefold Y with
�.Y / D 1, �.Y / D 2 and

d.Y / D g.X/

2
� 1;

and an equivalence of categories AX Š BY .

In the rest of the section we give a proof of Theorem 2.3.5, by considering
consecutively all three values of g.X/ and using the above equivalence of cat-
egories (explicitly in the first two cases, and implicitly in the third). The proof
consists of Propositions B.4.1, B.5.1, and B.6.1 which will be established in the
next subsections. In the course of proof we will remind the construction of the
threefold Y associated to a threefold X .

B.3. Lines, conics, and derived categories

In this subsection we show that the Hilbert scheme S.X/ of conics on X can be
thought of as a moduli space of objects in the category AX , defined by (B.2.1),
and the Hilbert scheme †.Y / of lines on Y can be thought of as a moduli space
of objects in the category BY , defined by (B.2.2).

We start with lines on a threefold Y of index 2.

Lemma B.3.1. For any line L � Y on a Fano threefold Y with �.Y / D 1 and
�.Y / D 2 the ideal sheaf IL is an object of the category BY defined by (B.2.2).

Proof. We have to check that

H
�

.Y; IL/ D H
�

.Y; IL.�1// D 0:

The first follows immediately from the exact sequence

(B.3.2) 0 �! IL �! OY �! OL �! 0:

For the second we twist the sequence (B.3.2) by OY .�1/ and note that one has
H

�

.Y;OY .�1// D 0 by Kodaira vanishing, and H
�

.L;OL.�1// D 0 since L Š P1.
�

An analogous statement for conics on X is a bit more complicated.

Lemma B.3.3. For any conic C � X on a Fano threefold X with �.X/ D 1,
�.X/ D 1, and even genus g.X/ > 6 one has

(B.3.4) H
�

.C;UX jC / D 0:

As a consequence, the ideal sheaf IC is an object of the category AX defined
by (B.2.1).
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Proof. First, let us show (B.3.4). Since C is one-dimensional, we could only
have non-vanishing cohomology groups H 0 and H 1. On the other hand, the
Hilbert polynomial computation shows that

(B.3.5) dim H 0.C;UX jC / D dim H 1.C;UX jC /:

For this computation it is enough to assume that C Š P1 is smooth; in that case
UX jC is a rank 2 vector bundle of degree �HX � C D �2 on P1, hence its Euler
characteristic is zero. By (B.3.5) it is enough to check that H 0.X;UX jC / D 0.

Put W D H 0.X;U_
X /_ and let X ! Gr.2; W / be the map given by UX .

The pullback to C of the tautological sequence on the Grassmannian

0 �! UX jC �! W ˝ OC �! .W=UX /jC �! 0

shows that

H 0.C;UX jC / D Ker.H 0.C; W ˝ OC / D W �! H 0.C; .W=UX /jC //:

Therefore H 0.C;UX jC / ¤ 0 would imply that C is contained in the zero locus
of some w 2 W considered as a global section of the quotient bundle W=UX .
The zero locus of this global section on the Grassmannian Gr.2; W / is nothing
but the linearly embedded projective space

P.W=w/ � Gr.2; W /:

On the other hand, by [Muk89] the map X ! Gr.2; W / is an embedding and
its image is a linear section of the Grassmannian (which is not dimensionally
transverse), i.e., there is a vector subspace V � ƒ2W such that

X D Gr.2; W / \ P.V / � P.ƒ2W /:

Thus the zero locus of w on X is the intersection

P.W=w/ \ P.V / � P.ƒ2W /;

so it is a projective space itself. In particular, if it contains a conic then it also
contains its linear hull P2. But X cannot contain a plane by Lefschetz theorem.
This contradiction shows that actually H 0.X;UX jC / D 0 as it was claimed
above, and thus proves (B.3.4).

It remains to check that

H
�

.X; IC / D H
�

.X; IC ˝ UX / D 0:

The first follows from the exact sequence

(B.3.6) 0 �! IC �! OX �! OC �! 0
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analogously to the case of lines. For the second we tensor the sequence (B.3.6)
by UX to obtain

0 �! IC ˝ UX �! UX �! OC ˝ UX �! 0:

By Lemma B.1.9 we have H
�

.X;UX / D 0 and by (B.3.4)

H
�

.X;OC ˝ UX / D H
�

.C;UX jC / D 0:

This completes the proof. �

Remark B.3.7. The same argument applied to Fano threefolds of genus 9 (re-
spectively, 7) and the natural vector bundle UX of rank 3 (respectively, 5) shows
that there is a canonical morphism U?

X ! IC , where IC is the ideal sheaf of the
conic C , and its kernel is in AX . So, in these cases one should consider these
kernels instead of IC and identify them as objects of Db.�/, where � is the
associated curve of genus 3 (respectively, 7), see [Kuz06b, §6.2 and §6.3] for
details.

The approach outlined in the Remark B.3.7 was used in [Kuz05] and [BF13]
to describe the Hilbert scheme of conics on Fano threefolds of index 1 and
genus 7 and 9. In the first case it was shown that S.X/ Š Sym2.�/, where
� is the associated curve of genus 7, and in the second that S.X/ Š P�.V/,
where V is a rank 2 vector bundle on the associated curve of genus 3 (see also
Proposition 2.3.6). Below we show that the vector bundle V is simple; this was
claimed in Proposition 2.3.6 and used in Corollary 4.3.5 for the proof of finite-
ness of Aut.X/.

Lemma B.3.8. Let X be a Fano threefold with �.X/ D 1, �.X/ D 1, and
g.X/ D 9. Let � be the curve of genus 3 and V a rank 2 vector bundle on � ,
such that S.X/ Š P�.V/. Then V is simple.

Proof. By [BF13, Proposition 3.10] we have

V_ Š ˆ�.U_
X /;

where UX is the restriction of the tautological bundle from LGr.3; 6/ to X (see
also Remark B.1.4), ˆ W Db.�/ ! Db.X/ is the fully faithful functor con-
structed in [Kuz06b], and ˆ� is its left adjoint functor (see [BF13] for details).
Thus we have

Hom.V;V/ Š Hom.V_;V_/ Š Hom.ˆ�.U_
X /; ˆ�.U_

X //

Š Hom.U_
X ; ˆ.ˆ�.U_

X ///:

On the other hand, by [BF13, (3.14)] there is a distinguished triangle

UX .1/Œ�2� �! U_
X �! ˆ.ˆ�.U_

X // �! UX .1/Œ�1�:
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Applying the functor Hom.U_
X ; �/ to it we get an exact sequence

Ext�2.U_
X ;UX .1// �! Hom.U_

X ;U_
X / �! Hom.U_

X ; ˆ.ˆ�.U_
X ///

�! Ext�1.U_
X ;UX .1//:

Since both U_
X and UX .1/ are pure sheaves, the Ext�1 and Ext�2 groups are

zero, hence finally we have isomorphisms

Hom.V;V/ Š Hom.U_
X ; ˆ.ˆ�.U_

X /// Š Hom.U_
X ;U_

X /:

It remains to notice that Hom.U_
X ;U_

X / Š �, since the sheaf U_
X is simple (it is

even exceptional), see Remark B.1.4. �

B.4. Conics on a Fano threefold of index 1 and genus 12

Let X be any smooth Fano threefold with �.X/ D 1, �.X/ D 1, and g.X/ D 12,
and let Y be the smooth Fano threefold such that �.Y / D 1, �.Y / D 2, and
d.Y / D 5. In this subsection we will show that S.X/ Š †.Y /. In fact, this
result is well known (see [KS04, Theorem 2.4], [Isk80, Proposition III.1.6],
[FN89]), but we will reprove it from the perspective of derived categories.

Proposition B.4.1. There are isomorphisms S.X/ Š P2 Š †.Y /.

Proof. Let us first consider the threefold Y . Recall that Y is a linear section
of the Grassmannian Gr.2; 5/ Š Gr.3; 5/, see Table 1. Let UY 2 and UY 3 be
the corresponding tautological bundles of rank 2 and 3 respectively. By [Orl91]
there is a semiorthogonal decomposition

Db.Y / D hUY 2;UY 3;OY ;OY .1/i:
Moreover, Hom.UY 2;UY 3/ is a three-dimensional vector space, and so

BY D hUY 2;UY 3i Š Db.Q3/;

where Q3 is the Kronecker quiver

with 3 arrows. As it was explained in [Kuz12], this equivalence gives an iso-
morphism

†.Y / Š P.Hom.UY 2;UY 3// Š P2:

Indeed, the ideal sheaf of every line can be written as the cokernel of a unique
map UY 2 ! UY 3, and each such map has the ideal sheaf of a line as the coker-
nel.
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Now consider a threefold X of Picard rank 1, index 1, and genus 12. Besides
the vector bundle UX of rank 2, there are stable vector bundles UX3 and UX4

on X of ranks 3 and 4 respectively, see Remark B.1.4. These bundles are also
exceptional and in [Kuz96] it was proved that together with the rank 2 bundle U_

X
they form a semiorthogonal decomposition

Db.X/ D hUX3;UX4;OX ;U_
X i:

Moreover, Hom.UX3;UX4/ is again a three-dimensional vector space, and so

(B.4.2) AX D hUX3;UX4i Š Db.Q3/:

Now one can use the same arguments as in the case of Y to establish an isomor-
phism S.X/ Š P2. For completeness we sketch the arguments here.

First, the argument of Remark B.3.7 shows that Hom
�

.UX4; IC / D �, hence
the decomposition of the ideal sheaf IC with respect to the exceptional
pair .UX3;UX4/ in AX takes form of a short exact sequence

0 �! UX3 �! UX4 �! IC �! 0:

Conversely, by stability of UX3 and UX4 any morphism UX3 ! UX4 is injective
and its cokernel is an ideal sheaf of a conic. Indeed, if F denotes the cokernel
then the dual sequence

(B.4.3) 0 �! Hom .F;OX / �! U_
X4 �! U_

X3 �! Ext 1.F;OX / �! 0

shows that Hom .F;OX / is a rank 1 reflexive sheaf with c1 D 0, hence is a
line bundle isomorphic to OX . Thus F 0 D Ext 1.F;OX / is a torsion sheaf
with c1.F 0/ D 0. Dualizing the sequence (B.4.3) again one finds an exact se-
quence

0 �! UX3 �! UX4 �! OX �! Ext 2.F 0;OX / �! 0:

The last sheaf thus is the structure sheaf of a subscheme Z � X , and the Hilbert
polynomial computation shows that pZ.t/ D 1 C 2t , hence Z is a conic. Alto-
gether, we deduce that the equivalence (B.4.2) induces an isomorphism

S.X/ Š P.Hom.UX3;UX4// Š P2:

The combination of the obtained isomorphisms proves the claim. �

The composition of equivalences AX Š Db.Q3/ Š BY mentioned in the
proof takes the bundles UX3 and UX4 to the bundles UY 2 and UY 3 respectively.
Therefore, it takes ideal sheaves of conics on X to ideal sheaves of lines on Y .
Thus the isomorphism S.X/ Š †.Y / constructed in the proof is carried out by
an equivalence AX Š BY .
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B.5. Conics on a Fano threefold of index 1 and genus 10

In this subsection we prove the following:

Proposition B.5.1. For every smooth Fano threefold X such that �.X/ D 1,
�.X/ D 1, and g.X/ D 10 there is a Fano threefold Y with �.Y / D 1, �.Y / D 2,
and d.Y / D 4 such that S.X/ Š †.Y /.

The proof of Proposition B.5.1 takes the rest of the subsection. We explain
the construction of Y from X in the course of proof.

Recall that X is a codimension 2 linear section of a homogeneous space of
the simple algebraic group G2, see Table 2. The pencil of hyperplanes passing
through X contains 6 singular elements (because the projectively dual variety is
a sextic hypersurface), so one can consider the double cover Z ! P1 branched
over the corresponding 6 points. Thus, Z is a smooth curve of genus 2. We will
show that S.X/ Š Pic0.Z/.

It was proved in [Kuz06b, §6.4 and §8] that there is a semiorthogonal de-
composition

Db.X/ D hDb.Z/;OX ;U_
X i:

In other words, we have AX Š Db.Z/. Moreover, an explicit fully faithful
Fourier–Mukai functor

ˆ D ˆE W Db.Z/ �! Db.X/

giving this equivalence was constructed. Its kernel E was shown to be a vector
bundle on X � Z fitting into an exact sequence

0 �! E �! OX � F6 �! U_
X � F3 �! E.HX C HZ/ �! 0

for certain vector bundles F3 and F6 of ranks 3 and 6 on Z; here HX is as usual
the ample generator of Pic.X/ and HZ is the canonical class of Z. In particular,
for each point z 2 Z there is an exact sequence

(B.5.2) 0 �! Ez �! O˚6
X �! U_

X
˚3 �! Ez.HX / �! 0:

It follows that r.Ez/ D 3 and c1.Ez/ D �HX .

Remark B.5.3. In fact, one can check that all bundles Ez are stable and that the
family E identifies the curve Z with the moduli space MX .3I �HX ; 9LX ; �2PX /

of stable sheaves of rank 3 on X with c1 D �HX , c2 D 9LX and c3 D �2PX .
Note also that the bundle E is well defined only modulo a twist by a line bundle
on Z. We will discuss a normalization of E later.
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We proved in Lemma B.3.3 that for each conic C on X the ideal sheaf IC

is an object of the subcategory AX D ˆ.Db.Z// � Db.X/, hence there is an
object of Db.Z/ which maps to IC under ˆ. This object can be reconstructed
by applying to IC the left adjoint functor ˆ� of ˆ. We compute the result in the
next lemma. For convenience we use shifts IC Œ�1� of the ideal sheaves.

Lemma B.5.4. The left adjoint functor ˆ� of ˆ takes the shift IC Œ�1� of an
ideal sheaf of a conic to a line bundle on Z.

Proof. Let z 2 Z be an arbitrary point. Then by adjunction one has

Hom
�

.ˆ�.IC Œ�1�/;Oz/ D Hom
�

.IC Œ�1�; ˆ.Oz//

D Hom
�

.IC Œ�1�; Ez/

D Hom
�

.OC Œ�2�; Ez/

D H
�

.C; EzjC /:

The third equality above follows from the fact that Ez 2 O?
X and from exact

sequence (B.3.6), and the fourth equality follows from the Grothendieck du-
ality because !C=X D OC . Since Ez is a vector bundle and C is a curve, the
latter graded vector space a priori lives only in degrees 0 and 1 and its Euler
characteristic is

�.EzjC / D r.Ez/ C c1.Ez/ � C D 3 � 2 D 1:

So, if we show that H 1.C; EzjC / D 0 it would follow that

Hom
�

.ˆ�.IC Œ�1�/;Oz/ D �

for any point z 2 Z and hence ˆ�.IC Œ�1�/ is a line bundle.
For the vanishing we note that by Serre duality we have

H 1.C; EzjC /_ D H 0.C; E_
z .�HX /jC /

and by the dual of (B.5.2) the latter space embeds into H 0.C;UX j˚3
C / which is

zero by (B.3.4). �

If we twist E with the pullback of a line bundle from Z, the functor ˆ gets
composed with the functor of tensor product by this line bundle, and the adjoint ˆ�
gets composed with the functor of tensor product by the dual line bundle. Con-
sequently, choosing this line bundle appropriately, we can ensure that the image
of the shifted ideal sheaf of a chosen conic is the trivial line bundle. So, we
choose one conic C0 on X and normalize the bundle E and the functor ˆ D ˆE
by requiring that

ˆ�.IC0
Œ�1�/ D OZ ;

or equivalently
ˆ.OZ/ D IC0

Œ�1�:
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Proposition B.5.5. The normalized functor

ˆ W Db.Z/ �! Db.X/

gives an isomorphism Pic0.Z/ Š S.X/.

Proof. By Lemma B.5.4 we know that ˆ�.IC Œ�1�/ is a line bundle on Z. By
Grothendieck–Riemann–Roch theorem the class of ˆ�.IC Œ�1�/ in the numer-
ical Grothendieck group is independent of C and thus coincides with the class
of ˆ�.IC0

Œ�1�/ D OZ , hence all these line bundles have degree zero. So, we
can define a map

S.X/ �! Pic0.Z/; C 7�! ˆ�.IC Œ�1�/:

The map is well defined for families of conics, hence is a regular morphism. To
show that it is an isomorphism we will check that it is étale and surjective, and
then will construct the inverse map.

To check that the map is étale we note that its differential at point C can be
written as the composition

Hom.IC ;OC / �! Ext1.IC ; IC /
ˆ�

���! Ext1 .ˆ�.IC Œ�1�/; ˆ�.IC Œ�1�//:

The first map here is the isomorphism of Lemma B.5.6 (see below) and the
second is an isomorphism because IC 2 AX by Lemma B.3.3, and the functor
ˆ� when restricted to AX is quasiinverse to the equivalence ˆ W Db.Z/ ! AX

and hence is full and faithful.
Since the map ˆ� W S.X/ ! Pic0.Z/ is étale and S.X/ is proper, it follows

that ˆ� is surjective. Hence for any line bundle L of degree 0 on Z there is a
conic C � X such that

ˆ�.IC Œ�1�/ D L:

Since ˆ� on AX is quasiinverse to ˆ it follows that ˆ.L/ D IC Œ�1�, hence

L 7�! ˆ.L/Œ1�

is a well-defined map Pic0.Z/ ! S.X/. This map is inverse to the map consid-
ered before since ˆ and ˆ� are quasiinverse to each other. �

The isomorphism we used in the proof of Proposition B.5.5 is a special case
of the following general result.

Lemma B.5.6. Let X be a smooth projective variety of dimension n such that
Pic0.X/ D 0 and let p.t/ be an integer valued polynomial of degree at most n � 2.
Let Hilbp.X/ be the Hilbert scheme of subschemes in X with Hilbert
polynomial p, and let MX .1I 0; �p/ be the moduli space of Gieseker semistable
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sheaves on X of rank 1 with c1 D 0 and with Hilbert polynomial pOX
� p. Then

the canonical morphism

(B.5.7) Hilbp.X/ �! MX .1I 0; �p/; .Z � X/ 7�! IZ ;

where IZ is the ideal sheaf of Z, is an isomorphism. In particular, for any
subscheme Z � X of codimension at least 2 there is an isomorphism

(B.5.8) Hom.IZ ;OZ/ Š Ext1.IZ ; IZ/:

Proof. To construct the inverse morphism we take an arbitrary scheme S and
consider a sheaf F on X � S which is Gieseker semistable with the prescribed
Hilbert polynomial on fibers over S and consider its reflexive hull F__. By
[Kol90, Lemma 6.13] the sheaf F__ is locally free and the canonical morphism
F ! F__ is an isomorphism in codimension 1. Therefore, one has

F__
s Š det.Fs/ Š OX ;

for any point s 2 S . Therefore, up to a twist by a line bundle on S , we have
an isomorphism F__ Š OX�S , and the canonical map F ! F__ identifies F
with a sheaf of ideals of a subscheme in X � S . It also follows from the proof
of [Kol90, Lemma 6.13] that this subscheme is flat over S , and thus defines a
map S ! Hilbp.X/. This map is clearly inverse to the map Z 7! IZ , hence the
first claim.

The second claim follows from the first, just because the left and the right
hand sides of (B.5.8) are the tangent spaces to the Hilbert scheme and to the
moduli space of semistable sheaves, respectively, and the required isomorphism
is the differential of the isomorphism (B.5.7). �

Now starting from X (or rather from the curve Z) we are going to construct
a threefold Y of index 2 and degree 4 such that †.Y / Š Pic0.Z/. This con-
struction, inverse to the construction of Remark 2.2.11, is well known.

Let �0; : : : ; �5 2 P1 be the branch points of the double cover Z ! P1.
Choose an embedding A1 � P1 so that the latter six points are contained in A1,
and denote their coordinates in A1 also by �i . Let Y be the intersection of two
quadrics given in P5 with homogeneous coordinates x0; : : : ; x5 by equations

x2
0 C � � � C x2

5 D �0x2
0 C � � � C �nx2

5 D 0;

so that the curve B.Y / defined in Remark 2.2.11 is isomorphic to Z. By [BO95],
[Kuz08] we have a semiorthogonal decomposition

Db.Y / D hDb.Z/;OY ;OY .1/i;
i.e., an equivalence ‰ W Db.Z/ ! BY . Similarly to the case of the variety X , this
equivalence induces an isomorphism †.Y / Š Pic0.Z/ (see [DR76] or [Kuz12, §5.3]
for detailed explanation, and [FK16] for a generalization). Combining the two
constructed isomorphisms we deduce Proposition B.5.1.
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B.6. Conics on a Fano threefold of index 1 and genus 8

Let X be a smooth Fano threefold with �.X/ D 1, �.X/ D 1, and g.X/ D 8.
In this subsection we discuss the associated Fano threefold of index 2, which in
this case is just a cubic threefold, and construct an isomorphism S.X/ Š †.Y /.

Proposition B.6.1. For every smooth Fano threefold X such that �.X/ D 1,
�.X/ D 1, and genus g.X/ D 8 there is a smooth Fano threefold Y such that
�.Y / D 1, �.Y / D 2, and degree d.Y / D 3 such that S.X/ Š †.Y /.

The proof of Proposition B.6.1 takes the rest of the subsection. Recall that X

is a linear section of the Grassmannian Gr.2; 6/ of codimension 5, see Table 2.
Let W be a six-dimensional vector space and

A � ƒ2W _

be the five-dimensional space of linear equations of X � Gr.2; W /. Then the
associated cubic threefold Y is defined as

(B.6.2) Y D P.A/ \ Pf.W / � P.ƒ2W _/;

where Pf.W / � P.ƒ2W _/ is the Pfaffian cubic hypersurface.
In this case we construct an isomorphism S.X/ Š †.Y / geometrically.

Denote by
R � Gr.2; A/ � Gr.4; W /

the locus of pairs .A2; W4/ consisting of a two-dimensional subspace A2 � A

and a four-dimensional subspace W4 � W such that the composition

A2 ,�! A ,�! ƒ2W _ �! ƒ2W _
4

is the zero map. In other words, R � Gr.2; A/�Gr.4; W / is the zero locus of the
natural section of the vector bundle U_

A � ƒ2U_
W , where UA is the tautological

bundle on Gr.2; A/ and UW is the tautological bundle on Gr.4; W /.

Proposition B.6.3. There are isomorphisms S.X/ Š R Š †.Y /.

Proof. Given a point .A2; W4/ 2 R we associate to it a conic in X as follows.
Since the space A2 maps to zero in ƒ2W _

4 , the image of A in ƒ2W _
4 is at most

three-dimensional, hence the intersection

(B.6.4) X \ Gr.2; W4/ � Gr.2; W /

is a linear section of Gr.2; W4/ of codimension at most 3. Since Gr.2; W4/ is a
four-dimensional quadric, this intersection is either a conic, or a plane, or a two-
dimensional quadric, or has dimension larger than 2. But by Lefschetz theorem
X contains neither planes, nor two-dimensional quadrics, and is not contained
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in Gr.2; W4/. Hence the intersection (B.6.4) is a conic. Therefore, we have a
map

s W R �! S.X/; .A2; W4/ 7�! X \ Gr.2; W4/:

For the inverse map consider the tautological sequence

0 �! U?
X �! W _ ˝ OX �! U_

X �! 0

and restrict it to a conic C � X :

0 �! U?
X jC �! W _ ˝ OC �! U_

X jC �! 0:

Since H 1.C;OC / D 0, it follows that H 1.C;U_
X jC / D 0, and so by Riemann–

Roch theorem one has dim H 0.C;U_
X jC / D 4. Therefore the subspace

H 0.C;U?
X jC / � H 0.C; W _ ˝ OC / D W _

is at least two-dimensional. Clearly, any linear function from this space van-
ishes on any two-dimensional subspace U � W parameterized by a point
of the conic C . So, if this space is at least three-dimensional then C is con-
tained in the linear section X \ Gr.2; 3/ of Gr.2; 3/ Š P2, hence this linear
section is P2, which gives a contradiction since X cannot contain a plane by
Lefschetz theorem. This means that H 0.C;U?

X jC / is a two-dimensional sub-
space in W _ and its annihilator is a four-dimensional subspace W4 � W .
Since a conic in a four-dimensional quadric Gr.2; W4/ � P.ƒ2W 4/ is a linear
section of codimension 3, it follows that at least a two-dimensional subspace
of linear equations of X restricts trivially to ƒ2W4. Conversely, if a three-
dimensional space of equations would restrict trivially to ƒ2W4, then the in-
tersection (B.6.4) would contain a two-dimensional quadric which is again for-
bidden by Lefschetz theorem. Thus, the space of equations restricting trivially
to ƒ2W4 is a two-dimensional subspace A2 � A, the pair .A2; W4/ is a point
of R, and C 7! .A2; W4/ is a morphism S.X/ ! R inverse to the morphism s

above.
On the other hand, given a point .A2; W4/ 2 R we can associate with it the

line
L D P.A2/ � P.A/:

Note that by definition of R each skew form in A2 has a four-dimensional
isotropic subspace W4 and hence is degenerate. Thus L � Pf.W /, therefore
L � Y , so that the map

 W R �! †.Y /; .A2; W4/ 7�! P.A2/ � Y

is well defined. To construct the inverse map we note that by [KMM10, Ap-
pendix A] for each line

L D P.A2/ � Y



Hilbert schemes of lines and conics and automorphism groups of Fano threefolds

there is a unique four-dimensional subspace W4 � W isotropic for all skew
forms in L. Thus L 7! .A2; W4/ is a morphism †.Y / ! R which is clearly
inverse to the morphism  above. �

Remark B.6.5. One can also describe the isomorphism of Proposition B.6.3 via
derived categories. For this note that by [Kuz04], [Kuz06a] there is an equiv-
alence AX Š BY . Moreover, the equivalence is given by the Fourier–Mukai
functor

ˆ D ˆIZ.HY / W Db.X/ �! Db.Y /

with the kernel being the OY .HY /-twist of the ideal sheaf IZ of an irreducible
four-dimensional subvariety

Z � X � Y

of all points .U; a/ such that the kernel of the skew form a 2 A intersects the
two-dimensional subspace U � W . One can check that under this functor the
ideal sheaf of a conic on C goes to the ideal sheaf of the corresponding line
on Y . However, this verification is more complicated than the direct geometric
proof given above, so we skip it.
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