
CAMBRIDGE STUDIES IN ADVANCED
MATHEMATICS 36

Editorial Board

DJ.H. Garling, T. Tom Dieck, P. Walters

Representation Theory of Artin Algebras

https://doi.org/10.1017/CBO9780511623608

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


Already published

1 W.M.L. Holcombe Algebraic automata theory

2 K. Petersen Ergodic theory

3 RT. Johnstone Stone spaces

4 W.H. Schikhof Ultrametric calculus

5 J.-P. Kahane Some random series of functions, 2nd edition

6 H. Cohn Introduction to the construction of class fields

I J. Lambek & PJ. Scott Introduction to higher-order categorical logic

8 H. Matsumura Commutative ring theory

9 C.B. Thomas Characteristic classes and the cohomology of finite groups

10 M. Aschbacher Finite group theory

II J.L. Alperin Local representation theory

12 P. Koosis The logarithmic integral I

13 A. Pietsch Eigenvalues and s-numbers

14 SJ. Patterson An introduction to the theory of the Riemann zeta-function

15 HJ. Baues Algebraic homotopy

16 V.S. Varadarajan Introduction to harmonic analysis on semisimple Lie groups

17 W. Dicks & M. Dunwoody Groups acting on graphs

18 LJ. Corwin & F.R Greenleaf Representations of nilpotent Lie groups and
their applications

19 R. Fritsch & R. Piccinini Cellular structures in topology

20 H Klingen Introductory lectures on Siegel modular forms

22 M.J. Collins Representations and characters of finite groups

24 H. Kunita Stochastic flows and stochastic differential equations

25 P. Wojtaszczyk Banach spaces for analysts

26 J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in
harmonic analysis

27 A. Frohlich & M J. Taylor Algebraic number theory

28 K. Goebel & W.A. Kirk Topics in metric fixed point theory

29 J.F. Humphreys Reflection groups and Coxeter groups

30 DJ. Benson Representations and cohomology I

31 DJ. Benson Representations and cohomology II

32 C. Allday & V. Puppe Cohomological methods in transformation groups

33 C. Soule et al Lectures on Arakelov geometry

34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis

35 J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic
bifurcations

37 Y. Meyer Wavelets and operators

38 C. Weibel An introduction to homological algebra

39 W. Bruns & J. Herzog Cohen-Macaulay rings

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


Representation Theory of Artin
Algebras

Maurice Auslander
Professor of Mathematics, Brandeis University

Idun Reiten and Sverre O. Smalo
Professors of Mathematics, University of Trondheim

CAMBRIDGE
UNIVERSITY PRESS

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521411349

© Cambridge University Press 1995

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1995
First paperback edition, with corrections, 1997

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Auslander, Maurice
Representation theory of Artin algebras / Maurice Auslander, Idun

Reiten, Sverre O. Smalo.
p. cm. - (Cambridge studies in advanced mathematics: 36)

Includes bibliographical references.
ISBN 0 521 41134 3

1. Artin rings. 2. Artin algebras. 3. Representation of algebras.
I. Reiten, Idun, 1942- . II. Smalo. Sverre O.

III. Title. IV. Series.
QA251.5.A87 1994

512'.4-dc20 93-43326 CIP

ISBN-13 978-0-521-59923-8 paperback
ISBN-10 0-521-59923-7 paperback

Transferred to digital printing 2006

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


To our parents

Charles and Ida

Ivar and Alma

Olaf and Svanhild

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


Contents

Introduction
I
1
2
3
4
5

Artin rings
Finite length modules
Right and left minimal morphisms
Radical of rings and modules
Structure of projective modules
Some homological facts

Exercises
Notes
II
1
2
3
4
5

Artin algebras
Artin algebras and categories
Projectivization
Duality
Structure of injective modules
Blocks

Exercises
Notes
III
1
2
3
4

Examples of algebras and modules
Quivers and their representations
Triangular matrix rings
Group algebras
Skew group algebras

Excercises
Notes
IV
1
2
3

The transpose and the dual
The transpose
Nakayama algebras
Selfinjective algebras

page xi
1
1
6
8
12
16
23
25
26
26
32
37
39
43
45
47
49
49
70
79
83
94
99
100
100
111
122

vu

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


viii Contents

4 Defect of exact sequences 128
Exercises 133
Notes 135
V Almost split sequences 136
1 Almost split sequences and morphisms 136
2 Interpretation and examples 147
3 Projective or injective middle terms 153
4 Group algebras 158
5 Irreducible morphisms 166
6 The middle term 173
7 The radical 178
Exercises 185
Notes 189
VI Finite representation type 191
1 A criterion 191
2 Nakayama algebras 197
3 Group algebras 200
4 Grothendieck groups 206
5 Auslander algebras 209
Exercises 219
Notes 221
VII The Auslander-Reiten-quiver 224
1 The Auslander-Reiten-quiver 224
2 Auslander-Reiten-quivers and finite type 232
3 Cartan matrices 241
4 Translation quivers 248
Exercises 253
Notes 256
VIII Hereditary algebras 257
1 Preprojective and preinjective modules 258
2 The Coxeter transformation 269
3 The homological quadratic form 272
4 Regular components 277
5 Finite representation type 288
6 Quadratic forms and roots 294
7 Kronecker algebras 302
Exercises 309
Notes 311
IX Short chains and cycles 313
1 Short cycles 313

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


Contents ix

2 Modules determined by composition factors 320
3 Sincere modules and short cycles 323
4 Modules determined by their top and socle 326
Exercises 332
Notes 333
X Stable equivalence 335
1 Stable equivalence and almost split sequences 335
2 Artin algebras with radical square zero 344
3 Symmetric Nakayama algebras 352
Exercises 362
Notes 364
XI Modules determining morphisms 365
1 Morphisms determined by a module 365
2 Modules determining a morphism 370
3 Classification of morphisms 379
4 Rigid exact sequences 385
5 Indecomposable middle terms 389
Exercises 399
Notes 405
Notation 406
Conjectures 409
Open problems 411
Bibliography 413
Relevant conference proceedings 421
Index 423

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608
https://www.cambridge.org/core


Introduction

A major concern of elementary linear algebra is the description of how
one linear transformation can act on a finite dimensional vector space
over a field. Stated in simplest terms, the central problem of this book
is to describe how a finite number of linear transformations can act
simultaneously on a finite dimensional vector space. While the language
of linear algebra suffices in dealing with one transformation on a vector
space, it is inadequate to the more general task of dealing with several
linear transformations acting simultaneously. As so often happens, when
straightforward approaches to seemingly simple problems fail, one adopts
a more devious strategy, usually involving a more abstract approach
to the problem. In our case, this more abstract approach is called
the representation theory of finite dimensional algebras, which in its
broadest terms is the study of modules over finite dimensional algebras.
One of the advantages of the module theoretic approach is that the
language and machinery of both category theory and homological algebra
become available. While these theories play a central role in this book,
no extensive knowledge of these subjects is required, since only the
most elementary concepts and results, as contained in most introductory
courses or books on homological algebra, are assumed.

Although many of the concepts and results presented here are of recent
origin, having been developed for the most part over the past twenty-five
years, the subject itself dates from the middle part of the nineteenth
century with the discovery of the quaternions, the first noncommutative
field, and the subsequent development, during the first part of this
century, of the theory of semisimple finite dimensional algebras over
fields. This well developed theory has played an important role in such
classical subjects as the representation theory of finite groups over the
complex numbers and the Brauer groups of fields, the first of which has

XI
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xii Introduction

proven to be a powerful tool in finite group theory and algebraic number
theory, while the second is an object of deep significance also in algebraic
number theory as well as in algebraic geometry and abstract field theory.
However, since the theory of semisimple finite dimensional algebras
is not only well developed but also easily accessible either through
elementary algebra courses or textbooks, we assume the reader is familiar
with this theory which we use freely in discussing non-semisimple finite
dimensional algebras, the algebras of primary concern to us in this book.

While the interest in nonsemisimple finite dimensional algebras goes
back to the latter part of the nineteenth century, the development of a
general theory of these algebras has been much slower and more sporadic
than the semisimple theory. Until recently much of the work has been
concentrated on studying specific types of algebras such as modular group
algebras, the Kronecker algebra and Nakayama algebras, to name a few.
This tradition continues to this day. For instance, algebras of finite
representation types have been studied extensively, as have hereditary
algebras of finite and tame representation type. But there is at least one
respect in which the more recent work differs sharply from the earlier
work. There is now a much more highly developed theoretical framework,
which has made a more systematic, less ad hoc approach to the subject
possible. It is our purpose in this book to give an introduction to the part
of the theory built around almost split sequences. While this necessitates
discussing other aspects of the general theory such as categories of
modules modulo various subcategories and the dual of the transpose,
other important topics such as coverings, tilting, bocses, vector space
categories, posets, derived categories, homologically finite subcategories
and finitely presented functors are not dealt with. We do not discuss
tame algebras, except for one example, and we do not deal with quantum
groups, perverse sheaves or quasihereditary algebras. Some of the topics
which are omitted are basic to representation theory, and our original
plan, and even first manuscript, included many of them. Since we wanted
to include enough preliminary material to make the book accessible to
graduate students, space requirements made it necessary to modify our
original ambition and leave out many developments, including some of
our own favorite ones, from this volume. In particular we postponed the
treatment of finitely presented functors since we felt there would not be
enough space in the present volume to illustrate their use. It is hoped
that there will be a forthcoming volume dealing with other aspects of
the subject. Also some other aspects are dealt with in the books [GaRo],
[Hap2], [JL], [Pr], [Rin3], [Si].
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Introduction xiii

Besides personal taste, our reason for concentrating on the theory
centered around almost split sequences is that these invariants of inde-
composable modules appear either explicitly or implicitly in much of the
recent work on the subject. We illustrate this point by giving applications
to Grothendieck groups, criteria for finite representation type, hereditary
algebras of finite representation type and the Kronecker algebra, which
is of tame but not finite representation type.

Our proof of the existence theorem for almost split sequences has not
appeared before in the literature. It is based on an easily derived, but
remarkably useful, relationship between the dimensions of vector spaces
of homomorphisms between modules. Amongst other things, this formula
comes up naturally in studying cycles of morphisms and their impact
on the question of when modules are determined by their composition
factors, as well as in the theory of morphisms determined by modules,
which is in essence a method for classifying homomorphisms. In fact,
one of the important features of the present day representation theory
of finite dimensional algebras is this concern with morphisms between
modules in addition to the modules themselves.

Although we have been pretending that this book is about finite di-
mensional algebras over fields, it is for the most part concerned with
the slightly more general class of rings called artin algebras which are
algebras A over commutative artin rings R with A a finitely generated
/^-module. The reason for this is that while the added generality con-
siderably widens the applicability of the theory, there is little added
complication in developing the theory once one has established the du-
ality theory for finitely generated modules over commutative artin rings.
Of course, we have not hesitated to specialize to fields or algebraically
closed fields when this is necessary or convenient.

The book is divided into eleven chapters, each of which is subdivided
into sections. The first two chapters contain relevant background material
on artin rings and algebras. Chapter III provides a large source of ex-
amples of artin algebras and their module categories, especially through
the discussion of quivers and their representations. The next four chap-
ters contain basic material centered around almost split sequences and
Auslander-Reiten quivers. The first seven chapters together with Chap-
ter VIII on hereditary algebras form the core of the book. The last four
chapters are more or less independent of each other. Following each
chapter is a set of exercises of various degrees of depth and complexity.
Some are superficial "finger exercises" while others are outlines of proofs
of significant theories not covered in the text. These exercises are followed
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xiv Introduction

by notes containing brief historical and bibliographical comments as well
as suggested further readings. There has been no attempt made to give a
comprehensive list of references. Many important papers related to the
material presented in this book do not appear in our reference list. The
reader can consult the books and papers quoted for further references.
We provide no historical comments or specific references on standard
facts on ring theory and homological algebra, but give references to
appropriate textbooks.

At the end of the book we list conjectures and open problems, some of
which are well known questions in the area. We give some background
and references for what is already known.

Finally we would like to thank various people for making help-
ful comments on parts of the book, especially Dieter Happel and
Svein Arne Sikko, and also 0yvind Bakke, Bill Crawley-Boevey, Wei
Du, Otto Kerner, Henning Krause, Shiping Liu, Brit Rohnes, Claus
Michael Ringel, 0yvind Solberg, Gordana Todorov, Stig Venas and
Dan Zacharia. In addition we are grateful to students at Brandeis,
Dusseldorf, Syracuse and Trondheim for trying out various versions of
the book.

Our thanks go especially to Jo Torsmyr for the excellent typing of the
manuscript.

Finally, we thank the Cambridge University Press, in particular David
Tranah, for their help and patience in the preparation of this book.

Some minor corrections are made in the paperback edition. We would
like to thank the people who sent us comments, in addition to our own
local students Aslak Bakke Buan, Ole Enge, Dag Madsen and Inger
Heidi Slungard.

Maurice Auslander died on November 18, 1994. We deeply regret that
he did not live to see the book in print.
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I
Artin rings

While we are assuming that the reader is familiar with general concepts
of ring theory, such as the radical of a ring, and of module theory, such
as projective, injective and simple modules, we are not assuming that the
reader, except for semisimple modules and semisimple rings, is necessarily
familiar with the special features of the structure of artin algebras and
their finitely generated modules. This chapter is devoted to presenting
background material valid for left artin rings, and the next chapter deals
with special features of artin algebras. All rings considered in this book
will be assumed to have an identity and all modules are unitary, and
unless otherwise stated all modules are left modules.

We start with a discussion of finite length modules over arbitrary rings.
After proving the Jordan-Holder theorem, we introduce the notions of
right minimal morphisms and left minimal morphisms and show their
relationship to arbitrary morphisms between finite length modules. When
applied to finitely generated modules over left artin rings, these results
give the existence of projective covers which in turn gives the structure
theorem for projective modules as well as the theory of idempotents in
left artin rings. We also include some results from homological algebra
which we will need in this book.

1 Finite length modules

In this section we introduce the composition series and composition
factors for modules of finite length. We prove the Jordan-Holder theorem
and give an interpretation of it in terms of Grothendieck groups.

Let A be an arbitrary ring. Given a family of A-modules {Ai}ieI we
denote by ]JieI At the sum of the At in the category of A-modules. The
reader should note that direct sum is another commonly used terminology

1
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2 Artin rings

for what we call sum, and another notation is ©lG/^i- We recall that a
A-module A is semisimple if A is a sum of simple A-modules and that A
is a semisimple ring if A is a semisimple A-module.

A basic characterization of such modules is that A is semisimple if and
only if every submodule of A is a summand of A. As a consequence,
every submodule and every factor module of a semisimple module are
again semisimple. But in general the category of semisimple modules,
or finitely generated semisimple modules, is not closed under extensions.
This leads to the study of modules of finite length, which is the smallest
category closed under extensions which contains the simple modules.

A module A is said to be of finite length if there is a finite filtration
of submodules A = Ao => A\ => • • • => An = 0 such that Ai/Ai+\ is either
zero or simple for i = 0, . . . , n — 1. We call such a filtration F of A a
generalized composition series, and the nonzero factor modules Ai/Ai+\
the composition factors of the filtration F. If no factor module Ai/Ai+i is
zero for i = 0 , . . . , n— 1, then F is a composition series for A. For a simple
A-module S we then define m^(A) to be the number of composition
factors of F which are isomorphic to S, and we define the length h(A) to
be J2 ms (A\ where the sum is taken over all the simple A-modules. We
define the length l(A) of A to be the minimum of IF(A) for composition
series F of A, and ms(A) to be the minimum of the m^(A). Note that
1(0) = 0. Our aim is to prove that the numbers mF

s(A) and IF(A) are
independent of the choice of composition series F.

f g
Let 0 —• ,4 —• £ —• C —• 0 be an exact sequence, and let F be a

generalized composition series B = Bo => B\ 3 • • • => Bn = 0 of B. This
filtration induces filtrations Fr of A given by A = f~l(B) 3 f~l(B\) =>
. . . =) f-\Bn) = 0 and F" of C given by C = g(B) => g(£i) 3 • • • z>
g(£n) = 0. We write f~l(Bt) = At and g(Bf) = Q. Then we have the
following preliminary result.

Proposition 1.1 Let the notation be as above.

(a) The filtrations F! of A and F" of C are generalized composition series.

(b) For each simple module S we have

(c) lP(A)

Proof For each i = 0, . . . , n we have an exact sequence 0 —> At —> Bt
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I.I Finite length modules 3

Q -* 0 and for each i = 0, . . . , n — 1 an exact commutative diagram

0 0 0

1 i i
0 -»• Ai+1 — • Bi+l —> C|+i -> 0

I I I
0 -> A,- — • Bt — • d -* 0

„ ̂  J , , _ B/i+, _ c /i+1 - o
V+ V+ Y+

0 0 0
Hence we have that if Bi/Bi+1 = 0, then At/Ai+i = 0 = Ci/CM. If
Bi/Bi+\ is simple, then either ^4i/^4I+i ~ Bi/Bi+\ and C,-/C,-+i = 0, or
Bi/Bi+i ^ Cj/Cf+i and Ai/Ai+\ = 0. Parts (a), (b) and (c) now follow
easily. •

We can now prove the Jordan-Holder theorem.

Theorem 1.2 Let B be a A-module of finite length, and F and G two com-
position series for B. Then for each simple A-module S we have mF(B) =

mG(B) = ms(B), and hence lF(B) = lG(B) = l(B).

Proof We prove this by induction on l(B). Our claim clearly holds if
l(B) < 1. Assume now that l(B) > 1. Then B contains a nonzero submod-
ule A ± B. Since it follows by Proposition 1.1 that l(A) + l(B/A) < 1{B\
we have l(A) < l(B) and l(B/A) < l(B), using that l(A) and l(B/A) are
nonzero. Let F and G be two composition series for B and let Ff and
G' denote the induced filtrations on A and F" and G" the induced ones
on C = B/A. For each simple A-module S we have by induction that
n$(A) = mf(A) and mF

s'{C) = mf(C). Since mF
s(B) = mF

s{A) + mF
s'{C)

and mf (B) = mf (,4) + m f (C) by Proposition 1.1, we get mF
s(B) = mf(B),

and hence also IF(B) = IG(B). •

Let 0—»;4—•£—•£?—•() be an exact sequence. If Fr is a generalized
composition series A — 4̂o => A\ =>...=> A, = 0 of A and F" is a
generalized composition series C = Co => C\ => ... => Ct = 0 of C,
then it follows as above that we get a generalized composition series
£ = Bo 3 g-i(Ci) ^ ... 3 g - ^ C U ) =3 /(A) 3 / ( . 40 . . . 3 /(,4S) = 0 of B.
Using Proposition 1.1 and Theorem 1.2 we then have the following.
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4 Artin rings

f gCorollary 1.3 Let 0->A-+B^>C-+0bean exact sequence of A-
modules where A and C have finite length. Then B has finite length and

•
A semisimple module of finite length is clearly uniquely determined by

its composition factors, but this does not hold in general for modules
with composition series. For example if B has finite length, then B
and Y[ms(B)S, where the sum is taken over all nonisomorphic simple
A-modules S, have the same composition factors. Hence all finitely
generated A-modules are determined by their composition factors if and
only if A is a semisimple ring. It is however an interesting question when
indecomposable modules are determined by their composition factors,
and this will be discussed in Chapters VIII and IX.

Before giving the following useful consequence of Corollary 1.3 we
recall that a morphism of modules is called a monomorphism if it is a
one to one map and an epimorphism if it is an onto map.

Proposit ion 1.4 Let A be a A-module of finite length and f:A—>Aa
A-homomorphism. Then the following are equivalent.

(a) / is an isomorphism.
(b) / is a monomorphism.
(c) f is an epimorphism.

Proof This follows directly from the fact that l(f(A)) + l(A/f(A)) = l(A).
D

For a ring A we denote by Mod A the category of left A-modules. A
subcategory ^ of Mod A is closed under extensions if B is in <$ for any
exact sequence 0—>;4—•£—>C—> 0 with A and C in c€.

The following characterization of the category of finite length modules
which we denote by f .1. A is useful.

Proposition 1.5

(a) The category f .1. A is the smallest subcategory of Mod A closed under
extensions and containing the simple modules.

(b) A A-module A is of finite length if and only if A is both artin and
noetherian.

Proof (a) The category f .1. A contains the simple modules, and is closed
under extensions by Corollary 1.3. It is also clear that any subcategory of
Mod A closed under extensions and containing the simple modules must
contain f .1. A.

https://www.cambridge.org/core/terms
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LI Finite length modules 5

(b) Since artin and noetherian modules are closed under extensions
and simple modules are both artin and noetherian, we have that any
module of finite length is artin and noetherian.

Suppose now that a module B is both noetherian and artin. Clearly
every submodule and every factor module of B have these properties.
Since B is noetherian, there exists a submodule A of B maximal with
respect to being of finite length. If A =f= B, then B/A has a simple
submodule C since B/A is artin. Let A' be the submodule of B containing
A such that A! IA ~ C. Then A! is of finite length, which contradicts the
maximality of A. Hence we get A = B and so B is of finite length. •

For semisimple modules it is easy to see that any one of the chain
conditions implies the other one. Hence we have the following.

Proposition 1.6 For a semisimple A-module B the following are equivalent.

(a) B has finite length.
(b) B is noetherian.
(c) B is artin. •

A useful point of view concerning the composition factors of a module
of finite length is to study a special group associated with the finite
length modules. Since the finite length modules are finitely generated by
Proposition 1.5, the collection of isomorphism classes of modules of finite
length is a set. Hence we can associate with the category of finite length
modules f .1. A the free abelian group F(f .1. A) with basis the isomorphism
classes [A] of finite length modules A. Denote by R(f.l. A) the subgroup of
F(f .1. A) generated by expressions [A] + [C] — [B] for each exact sequence
0 - > v 4 - > # - > C - > 0 i n f.l. A. Then the Grothendieck group K0(f.l.A)
of f.l. A is defined to be the factor group F(f!A)/R(f.l.A). Associated
with a finite length module A is the coset of the isomorphism class [A] in
the Grothendieck group Ko(f! A), which we also denote by [A]. It turns
out that this element [A] in Ko(f.l.A) contains all information on the
composition factors of A. It follows directly that Ko(f .1. A) is generated
by elements [S] where S is a simple A-module. Using the Jordan-Holder
theorem we get the following stronger result.

Theorem 1.7 Ko(f.l.A) is a free abelian group with basis {[SJ}j€/, where
the Si are the simple A-modules and for each finite length module A we
have that [A] = J2iei ^( i4)[SJ in X0(f.l. A).

Proof Let F(s.s. A) be the subgroup of F(f.l. A) generated by the [SJ,
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6 Artin rings

where the S,- are a complete set of simple A-modules up to isomorphism.
Define a:F(s.s.A) -> K0(f.l.A) by a([SJ) = [$] in X0(f.l.A). We have
seen that i f O — » ; 4 — • £ — • C - ^ O i s a n exact sequence in f .1. A, then
ms(B) = ms(A) + ms(C) for all simple A-modules S. Therefore if for each
A in f.l.A we let ft ([A]) be the element Yltei mSi(A)[si\ i n ^(s.s.A), we
obtain a morphism j8:Ko(f.l. A) —• F(s.s. A). It is now not difficult to see
that fix = 1F(S.S.A)

 a n d a/? = lK0(f.i.A)- Hence a:F(s.s. A) —• Ko(f.l. A) is an
isomorphism, giving our desired result. •

2 Right and left minimal morphisms

In this section we introduce the concepts of right minimal and left mini-
mal morphisms between modules. These notions are especially interesting
for modules of finite length, and they also specialize to the concepts of
projective covers and injective envelopes.

Let A be an arbitrary ring. For a fixed A-module C, consider the cate-
gory Mod A/C whose objects are the A-morphisms f:B-+C, and where
a morphism g : / — • / ' from / : B —• C to / ' : B' —> C is a A-morphism
g:B - • Bf such that

B -U C

Br

commutes. It follows that g:f —• f is an isomorphism in Mod A/C
if and only if the associated morphism g: B —> Br is an isomorphism
in Mod A. We say that / : B —• C is right minimal if every morphism
g : / —• / is an automorphism. We introduce an equivalence relation
on the objects of Mod A/C by defining / ~ / ' if Hom(/, / ' ) ^ 0 and
Hom(/ ' , / ) ^ 0. We now show that for modules of finite length, each
equivalence class contains a right minimal morphism.

Proposition 2.1 Let Abe a ring and C a A-module. Every equivalence class
in Mod A/C containing some f:B^>C with B of finite length contains a
right minimal morphism, which is unique up to isomorphism.

Proof Choose / : B —> C in the given equivalence class with l(B) smallest
possible, and let g:f —• / be a morphism in Mod A/C. We then have a
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1.2 Right and left minimal morphisms 1

commutative diagram

B -U C

Vlg(B) '

g(B) <-> B

which shows that g(B) = B by minimality of l(B). Then g:f —• / must
be an isomorphism, so that / : J? —• C is right minimal.

Assume that f: £ ' —• C is a right minimal morphism which is equiv-
alent to f:B —> C. We then have morphisms g : / — » / ' and /*:/' —• / .
Using that both / and / ' are right minimal, we get that hg and g/z are
isomorphisms. Hence h and g are isomorphisms. •

Let f:B —• C be a morphism with B of finite length. Then the
unique, up to isomorphism in Mod A/C, right minimal morphisms in the
equivalence class in Mod A/C of/ are called right minimal versions of/.

Whenever there is a morphism of A-modules f:M—>N and M' is a
submodule of M then f\M>'.M' —• N denotes the restriction of / to M'.
The next result gives a reduction to right minimal morphisms.

Theorem 2.2 Let A be a ring and C a A-module. Let g:X —> C be an
object in Mod A/C with X of finite length. Then there is a decomposition
X = X']\X" such that g\x>'.Xr - • C is right minimal and g\x» = 0.
Moreover, the morphism g\xr is a right minimal version of g.

Proof Choose f:B^>C minimal and equivalent to g:X —• C, as is

possible by Proposition 2.1. We then have a commutative diagram

B - ^ C

I-
X

I'
B -U C.

Then / = fts, so that ts is an isomorphism. Letting Ims denote the
image of 5 and Kert the kernel of t, we get X = Ims[jKert, and g|ims

is right minimal and glKert = 0. It is easy to see that g|ims is in the same
equivalence class as g in Mod A/C. •
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8 Artin rings

We state the following easy consequence.

Corollary 2.3 The following are equivalent for a morphism f:B—>C with
B of finite length.

(a) / is right minimal.
(b) If B1 is a nonzero summand of B, then f\s> ^ 0. •

For a fixed A-module A consider the category Mod A \ A whose objects
are the A-morphisms f:A-*B and where a morphism g:f - • f from
f:A -> B to f\A - • B' is a A-morphism g:B - • £ ' such that g / = / ' .
Dual to the notion of right minimal morphism we define a morphism
/ : A —• B of A-modules to be left minimal if whenever g:B —• B has
the property that gf = / , then g is an automorphism. We also have the
following dual version of Proposition 2.1. In each equivalence class in
Mod A \A of a morphism ft: .4 —> Y with 7 of finite length there are
unique, up to isomorphism in Mod A\A, left minimal morphisms called
the left minimal versions of h. For the convenience of the reader we state
the following dual result.

Theorem 2.4 Let A be a ring and A a A-module. Let f:A^>Ybean

object in Mod A \ A with Y of finite length. Then there is a decomposition

Y = Yf]\Y" such that rff:A-* Y' is left minimal and p"f\A -> Y" is

zero, where p'\Y —> Y' and p":Y —• Y" are the projections according to

the decomposition Y = Y'JJ Y". Moreover, p'f is a left minimal version

off. u

3 Radical of rings and modules

In this section we give the definition and basic properties of the radical
of rings and modules for left artin rings. We are mainly interested in
rings A where all finitely generated A-modules have finite length. This
clearly holds for semisimple rings. Actually, we prove that A has this
property if and only if the A-module A has finite length, or equivalently,
A is both left noetherian and left artin. We show that it is superfluous to
assume left noetherian.

First we recall that the radical of a ring A, which we denote by tA, or
simply r, is the intersection of the maximal left ideals of A, as well as
the intersection of the maximal right ideals of A, and is hence an ideal,
where an ideal of A always means a two-sided ideal. The radical plays a
central role in the theory of left artin rings. We recall Nakayama's lemma
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1.3 Radical of rings and modules 9

which states that a left ideal a is contained in r if and only if aM = M
implies M = 0 when M is a finitely generated A-module.

We now prove that left artin rings are left noetherian.

Proposition 3.1 Assume that A is a left artin ring. Then we have the
following.

(a) The radical x of A is nilpotent.
(b) A/r is a semisimple ring.
(c) A A-module A is semisimple if and only if xA = 0.
(d) There is only a finite number of nonisomorphic simple A-modules.
(e) A is left noetherian.

Proof (a) Since A is left artin and A => r => r2 => • • • => xn => • • • is a
descending sequence of left ideals, there is some n such that xn = xn+1.
Suppose r" j* 0. Then rn+1 = r"r = xn =/= 0, so the class & of all left ideals
a with r"a ^= 0 is nonempty. Choose a left ideal a in A which is minimal
in 3F. Then there is some x in a with xnx =£ 0 and therefore rn(Ax) ^ 0.
By the minimality of a we have a = Ax, so a is a finitely generated left
ideal. Now 0 ^ r"a = rn+1a = rnra, so xa is also in ^ and therefore
a = xa. This is a contradiction by Nakayama's lemma, and hence xn = 0.

(b) Let / be an ideal in A containing r such that I/x is nilpotent in
A/r. Then there is an integer t with / f c r . Since xn = 0, we have /5 = 0
for s = nt. Let rrt be a maximal left ideal in A, and consider the natural
map p: A —> A/m. If / ^ m, then p(l) =£ 0, and hence p(I) = A/m since
A/m is a simple A-module. Then we get p(I2) = Ip(I) = /(A/m) = A/m,
and further 0 = p(Is) = A/m, a contradiction. This shows that / c m ,
and hence / a r, so that I/x is 0 in A/r. Since A/r has no nonzero
nilpotent ideals, and is left artin since A is left artin, we conclude that
A/r is a semisimple ring.

(c) If for a A-module A we have that xA = 0, then A is a (A/r)-module
and hence a semisimple (A/r)-module. Hence A is also a semisimple
A-module.

Conversely it is clear by the definition of r that if A is a semisimple
A-module, then xA = 0.

(d) Since there is only a finite number of nonisomorphic simple
(A/r)-modules and every simple A-module is a (A/r)-module, there is
only a finite number of nonisomorphic simple A-modules.

(e) It follows from (a) that A has a finite filtration A => r => r2 =>•••=>
xn = 0. We write A = r°. Each r1'/*1'4"1 is a semisimple A-module by (c)
for i = 0 , 1 , . . . , n — 1 and is artin since A is a left artin ring. Hence r*/?1'"1"1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.002
https://www.cambridge.org/core


10 Artin rings

is noetherian by Proposition 1.6, and consequently A is a left noetherian
ring. •

We now have the following description of the rings where all finitely
generated modules have finite length.

Corollary 3.2 For a ring A the following are equivalent.

(a) Every finitely generated A-module has finite length.
(b) A is left artin.
(c) The radical x of A is nilpotent and xl/xl+1 is a finitely generated

semisimple module for all i > 0. •

In general it may be difficult to compute the radical of a left artin
ring A by first finding the maximal left ideals. The following criterion is
usually easy to apply. However, before giving this result, it is convenient
to introduce the following notation. If A and B are submodules of a
module C, we denote by A + B the submodule of C generated by A and
B.

Proposition 3.3 Let A be a left artin ring and a an ideal in A such that a
is nilpotent and A/a is semisimple. Then we have a = r.

Proof Let a be a nilpotent ideal with A/a semisimple. To show that
a c: r, assume to the contrary that there is a maximal ideal m in A with
Q ^ m . Then a + m = A, where a + m denotes the smallest left ideal
containing a and m. Hence a2 + a m = a, so that a2 + m = A. Continuing
this way, we get an + m = A for all n, which gives a contradiction since
a is nilpotent. This shows Q c m , and consequently a c t .

Clearly the radical of A/a is equal to r/a, so that r = a since A/a is
semisimple. •

For left artin rings the radical of a module also plays an important
role. The radical rad^l of a A-module A over an arbitrary ring A is the
intersection of the maximal submodules. We have the following useful
characterization of the radical of a module. Recall first that a submodule
B of a A-module A is small in A if B + X = A for a submodule X of A
implies X = A.

Lemma 3.4 Let A be a finitely generated module over an arbitrary ring A.
Then a submodule B of A is small in A if and only if B a radA
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1.3 Radical of rings and modules 11

Proof Suppose B c rad^4 and let X be a submodule of A with B+X = A.
Since 4̂ is finitely generated, every proper submodule of A is contained
in a maximal submodule. We can then conclude that X = A since B is
contained in all maximal submodules of A.

Assume that B is a submodule of A which is not contained in rad^l,
and let X be a maximal submodule of A not containing B. Then B is
not small in A since B +X = A, but X ^ A. •

The following gives a useful description of the radical of a module for
left artin rings.

Proposition 3.5 Let A be a finitely generated module over a left artin ring
A. Then we have mdA = xA.

Proof We first show xA a mdA. Assume xA + X = A for a submodule
X of A. Then we get that xnA + X = A for all rc > 1, so that X = A since
r is nilpotent. Hence xA is small in A and is then contained in rad^4 by
Lemma 3.4.

Since A/xA is a semisimple A-module, it is easy to see that rad(^4/rv4)
is zero. On the other hand, rad(A/xA) = (rad^4)/r^4, and we are done. •

We end this section by connecting the radical of modules with the
notion of an essential epimorphism. An epimorphism / : A —> B is called
an essential epimorphism if a morphism g:X —• A is an epimorphism
whenever fg: X —> B is an epimorphism. The following result is an easy
consequence of Proposition 3.5.

Proposition 3.6 The following are equivalent for an epimorphism f:A-+B,
where A and B are finitely generated modules over a left artin ring.

(a) / is an essential epimorphism.

(b) K e r / c z r A

(c) The induced epimorphism A/xA —• B/xB is an isomorphism. •

We also have the following connection with right minimal morphisms.

Proposition 3.7 Let A be a left artin ring. If A is a finitely generated A-
module and f:A—>Bisan essential epimorphism, then f is right minimal.

Proof Since Ker/ c xA by Proposition 3.6, it is easy to see that no
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12 Artin rings

nonzero summand Af of A can be contained in Ker/ . Therefore / is
right minimal by Theorem 2.2. •

For a module A of finite length over a left artin ring A the smallest
integer i with xlA = 0 is called the radical length of A9 denoted by rl(^4),
and 0 cz xl~xA a • • • <= xA c A is the radical series of A. Sometimes the
radical length of A is called the Loewy length of A.

4 Structure of projective modules

In this section we give the structure of projective modules over left artin
rings, and their connection with simple modules. For this the notion of
projective cover is important. All rings will be left artin and we will
deal with the category mod A of finitely generated left A-modules unless
otherwise stated.

Let A be a left artin ring and A a A-module. A projective cover of A is
an essential epimorphism f:P—*A with P a projective A-module. Our
proof of the existence of projective covers for A in mod A is based on
the following characterization of projective covers.

Proposition 4.1 Let A be in mod A where A is a left artin ring and let
f \P ^> A be an epimorphism with P projective. Then f is a projective
cover if and only if f is right minimal.

Proof If / is a projective cover, then / is right minimal by Proposition 3.7.
Suppose / is right minimal and let g: X —• P be such that fg: X —• A

is an epimorphism. We want to show that g is an epimorphism. Since
fg: X —> A is an epimorphism and P is projective, we have the following
commutative diagram.

P - ^ A

b I
X

U
Using that / is right minimal, we get that gh is an isomorphism, which
shows that g is an epimorphism. •

As an immediate consequence of this proposition we have the following
existence and uniqueness theorem for projective covers.
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1.4 Structure of projective modules 13

Theorem 4.2 Let A be in mod A where A is a left artin ring. Then we have
the following.

(a) There is a projective cover f : P —» A in m o d A .

( b ) Any two projective covers f\:P\ —> A and fi'-Pi —> A are isomorphic

in mod A/A.

Proof (a) Since A is in mod A, there is an epimorphism / : P —• A in
mod A with P projective. But we know by Theorem 2.2 that P =P'U p"
where f\p> is right minimal and f\p» = 0. Therefore f\p>\Pr —> A is a
right minimal epimorphism with Pf projective and is hence a projective
cover by Proposition 4.1.

(b) We leave the proof to the reader. •

We now point out some easily verified properties of projective covers.

Proposition 4.3

(a) An epimorphism f:P^>A with P projective is a projective cover if
and only if the induced epimorphism P/xP —> A/xA is an isomorphism.

(b) Let {fi'.Pt —> Ai}iei be a finite family of epimorphisms with the Pi
projective modules. Then the induced epimorphism \JieI Pt —• ]JieI A\
is a projective cover if and only if each fi: Pi —• At is a projective
cover.

Proof Part (a) follows from Proposition 3.6, and (b) is an easy conse-
quence of (a). •

We now apply these results to obtain the basic structure theorem for
projective modules in mod A. We denote the full subcategory of mod A
consisting of the projective modules by ^(A). We use projective covers
and the uniqueness of decomposition of a semisimple module into a
sum of simple modules to get a corresponding decomposition result for
projective modules. Recall that a A-module A is called indecomposable if
A cannot be decomposed as a sum of proper submodules.

Theorem 4.4

(a) For each P in 0>(A) the natural epimorphism P —• P/xP is a projective
cover.
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14 Artin rings

(b) IfP and Q are in 0>{A), then P ~Q if and only ifP/xP ~ Q/xQ.
(c) P in 0>(A) is indecomposable if and only if P/xP is simple.

(d) Suppose P is in 0>(A) and P = ]J|Li pi - LJJ=i Qj where the pt and Qj
are indecomposable modules. Then m = n and there is a permutation
o of {1,...,n} such that Pt ~ Qa^ for all i = I, ..., n.

Proof Part (a) follows from Proposition 4.3 and (b) is a consequence of
Theorem 4.2 and Proposition 4.3.

(c) Clearly P/xP being simple implies that P is indecomposable. Sup-
pose P/xP is not simple. Then P/xP ~ U]JV with U and V nonzero
semisimple modules. Let P(U) —• U and P(V) —• V be projective covers.
Then P ~ P(U)\JP(V) by (b) and so P is not indecomposable.

(d) Suppose P = ]J"=1 Pi ~ ]JJ=i Qj with Pt and Qj indecomposable
modules. Then we have P/xP ~ ]Xi=i(pi/xPi) - Uj=i(Qj/xQj)- S i n c e t h e

Pi/xPt and the Qj/xQj are simple modules, it follows that n — m and
there is a permutation o of {l , . . . ,n} such that Pi/xPt ^ Qo{i)/*Qo{i) for
i = 1, . . . , n. Hence by (b) we have Pi ~ Qa{i) for all i = 1, . . . , n, giving
the desired result. D

As an immediate consequence of this theorem we have the following.

Corollary 4.5 Let S\, . . . , Sn be a complete list of nonisomorphic simple
A-modules. Then their projective covers P\, . . . , Pn are a complete list of
nonisomorphic indecomposable projective A-modules. Moreover each Pt is
isomorphic to a summand of A as a left A-module. •

Before giving our final statement on the structure of projective modules,
we recall the definition of a local ring.

A (not necessarily left artin) ring A is local if the nonunits of A form
an ideal in A. We shall need the following property.

Proposition 4.6 If A is a (not necessarily left artin) local ring, then 0 and
1 are the only idempotents in A.

Proof Assume that the idempotent e is a unit. Then there is some / in
A such that ef = 1, and hence e = eef = ef = 1. So if e is an idempotent
different from 0 or 1, then e and 1 — e are not units. But their sum is a
unit, so that A would not be local. •

We now give the following useful characterizations of indecomposable
projective modules.
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1.4 Structure of projective modules 15

Proposition 4.7 The following are equivalent for a projective module P over
a left artin ring A.

(a) P is indecomposable.
(b) xP is the unique maximal submodule of P.
(c) EIKIA(P) is a local ring.

Proof (a)=>(b) We know that P being indecomposable implies that
P/xP is simple. But this implies that xP is a maximal submodule of
P, and hence the only one since xP is the intersection of the maximal
submodules of P .

(b)=>(c) Let / be in EndA(P). Since xP is the unique maximal sub-
module of P , we know that I m / £ xP if and only if f:P —• P is onto.
But f:P—>P being an epimorphism means that it is an isomorphism.
Therefore / is a unit in EndA(P) if and only if I m / <fi xP. It follows
that the nonunits of EndA(P) are precisely the / in EndA(P) such that
I m / c= rP, which are easily seen to be an ideal in EndA(P). Hence
EndA(P) is a local ring.

(c)=>(a) This follows from the fact that 1 and 0 are the only idempo-
tents in EndA(P) when EndA(P) is local. •

We now show how we can find the indecomposable projective modules
by using idempotents. A set {e\,..., en} of idempotents in A is orthogonal
if etej = 0 when i ^ j . A nonzero idempotent e is primitive if e cannot
be written as a sum of two nonzero orthogonal idempotents.

There is the following connection between decompositions of A as a
left A-module and idempotent elements in A.

Proposition 4.8 Let A be a left artin ring and e a nonzero idempotent in
A.

(a) Suppose Ae = Pi [ ] • • • [ ] Pn with the Pt ± 0 and let e{ in Pi for all
i = 1,.. . , n be such that e = e\ + • • • + en. Then [e\,..., en} is a set
of nonzero orthogonal idempotents with the property Aet = Pt for all
i= l , . . . ,n.

(b) Suppose {e\,...,en} is a set of nonzero orthogonal idempotents such
that e = e\ + • • -+en. Then Aet is a submodule of Aefor all i = 1,..., n
and Ae = Ae\ ]J " * II Aen.

(c) e in A is a primitive idempotent if and only if Ae is an indecomposable
projective A-module.

(d) 1 can be written as a sum of primitive orthogonal idempotents.
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16 Artin rings

Proof (a) Since e is in Ae9 it follows that there are unique elements et in
Pt for i = 1,.. . , n such that e = e\ + • • • + en. Now each x in Ae can be
written as Xe, so xe = (Xe)e = Xe = x since e2 = e. Now let x,- be in Pt for
some i. Then x* = x^i + h x,̂ ,- + • • • + xten. Since x,e/ is in Pj for all
j = 1,.. . , n and there is only one way of writing xt as a sum of elements
in the Pj, it follows that xfej = 0 for i ^ 7 and x\e\ = x,. Hence Pt = Ae,,
which implies e,- ^ 0 for all i = l , . . . ,n since all the P; are nonzero. We
have also shown that etej = 0 if j =£ i and that ej = e,. Thus {e\9 ...,en}
is a set of nonzero orthogonal idempotents.

(b) We have that ete = e\e\ + • • • + e^ei + • • • + e\en = e} = et since
etej = 0 if j' ^ i. Hence each et is in Ae and so each Ae\ a Ae. We
now want to show that each x in Ae can be written uniquely as a sum
xi + • • • + xn with the x,- in Aet for all i = 1,..., n. It is clear that every
element in Ae\ can be written as such a sum, so we only have to show
the uniqueness or equivalently if 0 = xi + • • • + xn with the xt in Ae,-,
then Xi = 0 for all i. Suppose 0 = X\e\ + ^ 2 H h Xnen with the A,- in
A. Then 0 = Xieiet + faeiet H \- ^et -\ + Xnenei. Since e^i = 0 if
j =f= i9 we have that 0 = ^e? = Xiei. So all the kiei are 0, which is our
desired result.

(c) and (d) These follow easily from (a) and (b). •

This result shows that there is a close connection between the de-
composition of A into a sum of indecomposable A-modules and the
decomposition of 1 into a sum of primitive orthogonal idempotents.

We end this section by showing the connection between subgroups of
A of the form eAf and exf for idempotents e and / and the groups of
A-morphisms from Ae to A/ and from Ae to xf respectively.

Proposition 4.9 Let A be a left artin ring and let e and f be idempotents.
The morphism (/>:eAf —• HoniA(Ae,A/) given by (j)(eAf)(A'e) = X'eXf is an
isomorphism and 4>\exmf gives an isomorphism from exmf to HoniA(Ae,rm/)
for all m. •

Proof The proof of this is straightforward and left to the reader. •

5 Some homological facts

This section is devoted to recalling some facts from homological algebra
which will be used freely (without reference) in the rest of the book. For
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1.5 Some homological facts 17

the most part, no proofs are given. The reader is referred to the notes
for references for this material.

We begin with the following way of computing the left global dimen-
sion l.gl.dim A of a left artin ring A. For a A-module X we denote by
pdA X the projective dimension of X.

Proposition 5.1 Let r be the radical of a left artin ring A. Then we have
l.gl.dimA = pdA(A/r).

Proof By definition we have l.gl.dim A > pdA(A/r). To prove the
reverse inequality it suffices to show that pdA(A/r) > l.gl.dim A when
pdA(A/r) = n < oo. Since A/r is a semisimple A-module containing every
simple A-module as a summand, it follows that pdA(A/r) = max{pdA S\S
a simple A-module}. Therefore we have that pdA5 < n for all sim-
ple A-modules S. We now prove by induction on l(M) that this
implies that pdAM < n for all finitely generated A-modules M. If
l(M) = 0 we are done. If l(M) = t > 0, then there is an exact sequence
0 - > S - > M - > M ' - > 0 with S a simple A-module and l(M') = t - 1.
Since pdA M < max{pdA 5, pdA M'}, we have by the inductive hypothesis
that pdA M < n. But it is a standard fact that l.gl.dim A = sup{pdA M\M
a finitely generated A-module }, and hence l.gl.dim A < n. This completes
the proof of the proposition. •

A ring A is called left hereditary if all left ideals are projective. It
is well known that if A is left hereditary then submodules of projective
A-modules are projective. A left artin ring A will be called hereditary if
A is left hereditary.

The following characterization of hereditary left artin rings is an im-
mediate consequence of Proposition 5.1.

Corollary 5.2 The following are equivalent for a left artin ring A.

(a) A is hereditary.
(b) r is a projective A-module.
(c) pdA(A/r)<l.
(d) l.gl.dimA<l. •

The rest of this section is devoted to a discussion of some basic facts
concerning short exact sequences. Since these concepts and results hold
for arbitrary modules over arbitrary rings we make no assumptions on
our ring A or on the A-modules we are considering.
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18 Artin rings

Let A and B be two fixed A-modules. Two short exact sequences
0 - > £ - * £ - > , 4 - > 0 and ( ) - • £ - • £ ' - > v 4 - > 0 are said to be
equivalent if there is a commutative diagram

0

0

-> B ->
II

- • B - >

£
1

£ '

—> v4

||

-> A

-> 0

-+ 0.

Clearly in such a diagram the morphism £ -• E' is an isomorphism. This
shows that two sequences being equivalent is an equivalence relation. We
denote by E(A,B) the set of equivalence classes of short exact sequences
0 - > B - > £ - > ; 4 - » 0 . The equivalence class of a short exact sequence
£ : 0 - > B - > £ - > , 4 - » 0 i s denoted by [£].

Now suppose we are given an exact sequence <i;:0-»B—• £ —• 4̂ —• 0
and a morphism f\A' —• A. Then we have the exact commutative
pullback diagram

€f: 0 —> B —> E x^Ar —* Ar —> 0

II 4 1 /
^ : 0 - > B ^ £ ^ ^ - > 0 .

It can be shown that if [£] = [T] in £(AB) then [̂ /] = [T/] in
£(A,B). Then we obtain the map £(/,B):£(AB) ~> £(A,B) given
by £(/,B)[£] = K/]. It is easily seen that £(U,B):£(AB) -» £(AB) is
the identity and E(fg,B) = E(g,B)E(f,B) for morphisms g: A" —• A and

Dually, given a morphism g: B ^^ Br, we have the exact commutative
pushout diagram

£ : 0 - > B - > £ -• A -+ 0

fg: o -> B; -> B r x 5 £ -» ^ -> 0.

It can be shown that if [£] = [T] in £(^4,B), then [^g] = [zg] in
£(i4,B;). Thus we obtain the map E(A,g):E(A,B) - • £ ( i ,B ' ) given
by E(^,g)(K]) = K«]. It is easily seen that £(yl,lB):£(yl,B) -> £(^,B)
is the identity and E(A,fg) = E(A9f)E(A,g) for morphisms g\B —> Bf

a n d / : B ' — B".
We now point out the following important fact about these maps.

Proposition 5.3 Let f:A'—*A and g:B —• B1 be morphisms of A-modules.
Then we have E(f,B')E(A,g)[t;] = E(A'9g)E(f9B)[{] in E(A',B')for all
K] inE(A,B). D
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1.5 Some homological facts 19

This proposition suggests the following definition. Let / : A' —> A and
g:B —• Bf be morphisms of A-modules. Then define E(f,g):E(A9B) —•
E(A',B') by £(/ ,g) = £( / ,B ' )£(4g) = £(^ ,g)£( / ,B) .

Using these observations we define an addition in E(A, B) called the
Baer sum, which makes E(A,B) an abelian group.

Let ft :0 - • B ^ Ex % A - • 0 and £2:0 -> B h E2 ^ A -> 0 be exact
sequences. We define [£i] + [£2] in E(A,B) as follows. Let f:A^^A\JA
be the map given by f(a) = (a, a) for all a in A and let g: B \J[ B —> B be
given by g(£i,fr2) = bi + &2 for all fti, 62 in B. Let £1 ^ £2 be the sum

in E(AUA,BUB) and define [ft] + [fc] = £(/,g)(fiIIfa) in
Then £(;4,£) with this addition is an abelian group with the class of
the split exact sequence 0 —• B —• £]Jyl —• A —> 0 the zero element

and the inverse of the class ofO^>B^>E-^>A-+0 being the class

o f O — • £ — » £ - > ; 4 - > 0 . Also for all morphisms f\A'-+A and
g:B -^ B\ the map E(f,g):E(A,B) -» £(i4',B;) is a homomorphism of
abelian groups.

We also make the following useful observation. Let £,: 0 —> B —> £ —•
4̂ —> 0 be an exact sequence of A-modules and / : A' —> A a A-morphism.

Then £(/,£)([£]) = 0 in E(E\B) if and only if there is some t:A' -> £
such that /it = / . To see this we use that an element in E(Af,B) is zero
if and only if a corresponding exact sequence splits, together with the
universal property of pullbacks.

Before continuing with our discussion of the abelian groups E(A9B)
we pause to review the notion of a bimodule.

In concrete situations where one has two rings A and T operating
on an abelian group M, M is in a natural way either a A-module or
a Aop-module and M is either a F-module or a Fop-module. In all
such situations we will call M SL A-F-bimodule if for each k in A the
operation of k on M commutes with the operation of each y in T on
M. If M is a A-module and a F-module this is expressed by the relation
k(y(m)) = y(k(m)) for all k G A, y e F and m in M. If M is a A-module
and a right F-module this commutativity relation is expressed by the
"associative" relation k(my) = (km)y for all k e A, y G F and m in M.
For brevity, if F = A, we refer to a A-F-module as a A-bimodule.

For the rest of this section we shall mean that M is a (left) A-module
and a (left) F-module when M is a A-F-bimodule. For example, suppose
M is a A-module and F = EndA(M). Then we consider M as a F-module
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20 Artin rings

by means of the action / • m = f(m) for all / in EndA(M) and m in
M. Then M is a A-F-bimodule since A(/(m)) = /(Am) for all X in A, all
/ in EndA(M) and m in M. This is the only way we consider M as a
A-F-bimodule.

Suppose now that A and B are A-modules and A is a A-F-bimodule.
Then for each y in F the map fy'.A —> A given by fy(a) = ya for all
a in ,4 is a A-module homomorphism. Also we have that fm2(a) =
(yi72)(tf) = yiiyia) = fyi(fy2

a) f° r aU 71 a n d 72 in r and a in A. Hence
we have fym = fyjy2 for all yi and 72 in F. Then for each y in
F we can define the operation of y on the abelian group E(A9B) by
y[£] = E(fy,B)[£]. It is not difficult to check that this operation makes
E(A,B) a rop-module. It is a rop-module and not a F-module since
yiteK]) = E(fn,B)(E(fn,BM]) = £( / y 2 / y i ,B)m = (y2?1)K] for all 7l

and 72 in F and [{] in E(A9B). This is the way we consider E(A,B) a
Fop-module when A is a A-F-bimodule. In particular, since A is always a
A-EndA(/l)-bimodule, we can always consider E(A,B) as an EndA^4)op-
module by means of the operation of EndA(^4)op on E(A9B) given above.
This is the only way we consider E(A,B) as an EndA(^4)op-module.

Similarly, suppose A and B are A-modules and B is a A-H-bimodule.
Then for each o in S, the map ga:B -+ B given by ga(fc) = fffr for all b
in £ is a A-module morphism. Thus for each a in Z we can define the
operation of <r on E(A,B) by or • [£] = £(y4,g(T)[£] for all [£] in £(^,B).
It is then straightforward to check that this operation makes E(A,B) a
S-module. This is the way we will consider E(A,B) as a Z-module when
B is a A-Z-bimodule. Since B is always a A-EndA(#)-bimodule, we can
always consider E(A,B) as an EndA(#)-module and this is the only way
we will consider E(A,B) as an EndA(#)-module.

Suppose now that A is a A-F-bimodule and B is a A-E-bimodule. Then
the abelian group E(A,B) is a Fop-module and a Z-module. In fact, it is
a Fop-E-bimodule. For let y be in F and a in X and let fy: yl ^> ^. be the
A-module morphism given by fy(a) = ya for all a in A Let gG:B —• 5
be the A-module morphism given by g<7(fr) = ob for all ft in B. Then
for [f] in E(A,B) we have that y(a[Z]) = E(fy,B)(E(A,ga)[£]) which by
Proposition 5.3 is the same as E(A,ga)(E(fy,B)[^]) = &(y[£]). Therefore
E(A,B) is a Fop-E-bimodule. In particular E(A,B) is an EndA(^4)op-
EndA(^)-bimodule.

Associated with each pair of A-modules (A,B) is also the abelian
group Ext\(A,B). We now describe for each pair of A-modules (A,B)
isomorphisms of abelian groups ®(A,B)'E(A,B) —> E x t ^ ^ , ^ ) which are
functorial in A and B.
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7.5 Some homological facts 21

Let 0—•!£—»P—•v4—> 0 be an exact sequence with P a projective
A-module. Then for each A-module B we have the exact sequence

H o m A ( P , £ ) -> HomA(K,B) ^ Extjv(,4,£) - • 0. Now let £:0 -» B ->
£ —• 4̂ —• 0 be an exact sequence. Then we have a commutative exact
diagram

0 - > K - > P - > , 4 - > 0
1 h \% ||

Now dB(h^) in Extj^^jB) does not depend on the particular choice of
g:P —• E. Also if £':0 —> £ —> £ ' —• yl —• 0 is in the same equivalence
class as £:0 —• B —• £ -^ yl —• 0 and we have a commutative diagram

it!

then ^B(/I^) = dsih^) in Ext^(^4,J5). Therefore we obtain a well defined
map ®{A,B):E(A9B) -> Exti(i4,B) by setting ©([{]) = ^ ( ^ ) for all [£]
in £(v4,J5). One can prove that these maps ©(̂ 4,5) have the following
properties.

Theorem 5.4 For each pair (A, B) of A-modules the maps ®(A,B) :E(A,B) —•
Ext j^ , !?) are isomorphisms of abelian groups which are functorial in A
and B. •

Using the functorial isomorphism in Theorem 5.4 we get the following
important consequence of the equality E(f9B')E(A9g) = E(A',g)E(f,B)
in Proposition 5.3.

Corollary 5.5 Let f : A r —• A and g:B —> Br be A-morphisms. Then
Extitf , B')Ext\(A, g) = Ext{(A', g)Ext\(f, B). U

Suppose now that A is a A-F-bimodule and B is a A-module. Then we
define a rop-structure on Ext\(,4, B) just as we did for E(A, B). Similarly if
B is a A-E-bimodule, then we define a E-module structure on Ext\(,4, B)
just as we did for E(A, B). Finally if A is a A-F-bimodule and B is a
A-E-bimodule, then Ext^A^B) is a Fop-Z-bimodule and the isomorphism
®(A,B)'E(A,B) —> Ext\(^4,B) is an isomorphism of Fop-S-bimodules. In
particular Ext\(A,B) is an EndA(^4)op-EndA(B)-bimodule, and ®(A,B) an
EndA(^4)op-EndA(5)-bimodule isomorphism.

We end this section by pointing out connections between pullback
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22 Artin rings

diagram, pushout diagram and decomposition of the middle term B in a
short exact sequence 0-+A-+B—>C^>0.

Proposition 5.6 Let

A U B

(*) 4/' f i *

B' X C

fee a commutative diagram of morphisms between A-modules.

(a) 77ie following are equivalent.

(i) 77ie diagram (*) is a pushout diagram.

(_ft) (g,gf)

(ii) 77ze induced sequence A —• 2? ] J £ ' A C —• 0 fs exact.

(b) 7/* (*) is a pushout diagram, then in the induced exact commutative
diagram

A ^
if
B' £•

B

i*
C

-> Coker/
i»

->• Coker g'

- • 0

- • 0

h is an isomorphism.

(c) The following are equivalent.

(i) The diagram (*) is a pullback diagram.

(ii) The induced sequence 0 -» A —• B]\Br A C is exact.

(d) If (*) is a pullback diagram, then in the induced exact commutative
diagram

0 - Ker/
i*

Kerg'

- > A -*•

If
-> B' X

B
i«
C0 -

h is an isomorphism. •

We have the following consequence.

Corollary 5.7 Let 0 -^ A -+ B\JB' A C ^ 0 be an exact sequence of
A-modules. Then the following hold.
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(a) The diagram

A U B
l - r f i *
Bf X C

is both a pushout and a pullback diagram.
(b) / is an epimorphism if and only if gr is an epimorphism.
(c) / is a monomorphism if and only if gf is a monomorphism. D

Exercises

1. For each nonzero integer n let Zn denote the cyclic abelian group of
order n.

(a) Find all five composition series for Z4 x Z2.
(b) How many composition series exist for Z4 x Z4 and how many exist

forZ2 x Z 2 xZ 2?

2. Let k be a field, A = k[x]/(x3) and let /:A]Jfc -> A/(x2) be the
A-homomorphism given by f(X,a) = (X + ax) mod(x2), where fc is the
trivial A-module. Prove that / is right minimal but not an essential
epimorphism.

3. In each of the three cases below give examples of exact sequences

0 -> A -4 B -^ C -• 0 and 0 -• A' £ Br X C -• 0 of finite abelian
groups i4, B, C, A', 5 ' and C".

(i) i - i ' ^ -^C^ Cr.
(ii) A~A\C~C,B$L Br.

(iii) 5 - Bf, C ~ C, A qk Af.

4. Let A be a hereditary left artin ring. Let f:A —> P be a nonzero
A-homomorphism with P a projective A-module. Show that there exists
a nonzero left ideal / in A such that A ~ I ]J JV for some A-module N.

5. Let fe be a field and let A be a finite dimensional fc-algebra. Show that
A is isomorphic to a fe-subalgebra of a full matrix algebra over fe.

6. Let A = Ul°l)\a,b9c e R } . Show that A ~ 1R x C where 1R fe the
real numbers and (C is the complex numbers.
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24 Artin rings

7. (Nakayama's lemma) Let A be a ring with radical r and a a left ideal
of A. Prove that the following statements are equivalent.

(i) a c t .
(ii) For every finitely generated A-module M we have that aM = M

implies M = 0.
(iii) For every finitely generated A-module M we have that aM is small

in M.

8. Let A be a left artin ring and P SL finitely generated indecomposable
projective A-module. Prove that P/M is an indecomposable A-module
for each submodule M of P with M ^ P.

9. Let A be a left artin ring. Show that every finitely generated A-module
is isomorphic to a finite sum of indecomposable A-modules.

10. Show that a ring A has a composition series when viewed as a
module over itself if and only if every finitely generated A-module has a
composition series.

11. Let r be the radical of a left artin ring A.

(a) Show that for each A-module M we have (A/r) ®A M ~ M/xM.
(b) Show that a finitely generated A-module M is projective if and only

if Toif(A/r,M) = 0.
(c) Show that a finitely generated A-module M is projective if and only

if Ext\(M,A/r) = 0.
(d) Let 0 - » l £ — > P — > M — > 0 b e a n exact sequence of finitely

generated A-modules with P projective. Prove that the following are
equivalent.

(i) M is projective
(ii) The induced morphism K/xK —> P/xP is a monomorphism
(iii) The induced sequence 0 -> K/xK -> P/xP -• M/xM -• 0 is

exact.

12. Let A be any ring and a a left ideal. Let Z be the idealizer of a in A,
which is Z = {X G A|cd cz a}.

(a) Prove that £ is a subring of A containing a as a two-sided ideal.
(b) Prove that 0 : 1 -> EndA(A/a)op, given by <p(y)(A + a) = Xy + a

for y e S and 1 + aG A/a, is a surjective ring morphism with
kernel a.
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Notes 25

13. Let p be a prime number. Prove that f:(Z/pZ)]J(Z/p2Z) -> Z/p3Z
given by f(x + (p\y + (p2)) = p2x + py + (p3) is not right minimal in
f.l.Z.

Notes

The basic material on rings and modules can be found for example in
[AnF]. Note that our proof of the Jordan-Holder theorem differs slightly
from the standard proofs through the use of generalized composition
series.

Right and left minimal morphisms were introduced in [AuSl] in con-
nection with work on preprojective partitions.

For the homological facts in the last section we refer to standard texts
on homological algebra, like [HiS], [No], and [Rot].
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II
Artin algebras

In this chapter we turn our attention to artin algebras and their finitely
generated modules, the main subject of this book. One important feature
of the theory of artin algebras as opposed to left artin rings is that en-
domorphism rings of finitely generated modules are again artin algebras.
In principle, this enables one to convert problems involving only a finite
number of modules over one artin algebra to problems about finitely
generated projective modules over some other artin algebra. This proce-
dure, which we call projectivization, is illustrated by our proofs of the
Krull-Schmidt theorem and other results. Another important property
of artin algebras is that there is a duality between finitely generated left
and finitely generated right modules. It is convenient to start the chapter
with a section on categories over a commutative artin ring R, and study
equivalences of such categories.

1 Artin algebras and categories

Generalizing the category mod A for an artin .R-algebra A we intro-
duce the notion of K-categories, and study equivalences between such
categories.

Let R be a commutative artin ring. We recall that an R-algebra A is
a ring together with a ring morphism </>: R —> A whose image is in the
center of A. For an i^-algebra ^ : R —• A we usually write rX for (j)(r)X
where r is in R and X is in A. If (j)\:R —• Ai and <j>2'.R —• A2 make Ai
and A2 ^-algebras, then Ai is an R-subalgebra of A2 if it is a subring
of A2 via f: Ai —> A2 and i(j>\ = fa. We say that A is an artin R-algebra,
or artin algebra for short, if A is finitely generated as an K-module. It is
clear that an artin algebra is both a left and a right artin ring. It can be

26
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I I.I Artin algebras and categories 27

shown that the center Z(A) of an artin jR-algebra is a commutative artin
ring and that A is an artin Z(A)-algebra.

Important examples of artin algebras are finite dimensional algebras
over a field. Examples which are not of this type are found amongst
proper factor rings of principal ideal domains and endomorphism rings
of finite abelian groups.

It is clear that if A is an artin jR-algebra via a ring morphism R —• A,
then the same ring morphism R —> Aop makes Aop an artin ^-algebra.
We give another way of associating new artin algebras with a given
one. If A and B are in mod A for an artin .R-algebra A, then A and B
are in modK. For r G R and / G HomR(A,B) we have f(ra) = rf(a)
for all a G A. We define rf by (rf)(a) = rf(a) for a G A. Then
HomR(A,B) is an K-module. HomA(^4,B) is contained in HomR(A,B)
and is clearly a subgroup. Since the image of R is in the center of A, we
have (rf)(ka) = r(f(ka)) = r(kf(a)) = krf(a) = k((rf)(a)) for k G A and
/ G HomA(A,B). Hence Hom\(A,B) is an i^-submodule of HomR(A, B),
and we shall always consider Horn A (A, B) as an K-module this way.
Similarly for A in mod A we define for r e R a map (j)(r)\A —> A by
(j)(r)(a) = ra for a e A. Since the image of R is in the center of A, we
have (j)(r)(ka) = r(ka) = X(ra) = k(j)(r)(a) for X G A. Hence we have the
map cj):R —• EndA(^4) cz End^f/l) which is clearly a ring morphism. For
g G EndR(A) and r G R and a G i w e have {(j>{r)g){a) = r(g(a)) = g(ra) =
(g<t>(r))(a)9 so that I m 0 c Z(EndR(^)) n EndA(4) c Z(EndA(i4)). This
makes EndR(A) and EndA^4) K-algebras, with EndA^4) an K-subalgebra
of EndR(A), and we shall always consider End^(^4) and End\(A) as R-
algebras this way. Note that the K-module structure on End^(^) given by
(j>:R -¥ EndR{A) is the same as the K-module structure for YlomR(A,B)
with B=A.

We can now give the following result.

Proposition 1.1 Let A be an artin R-algebra.

(a) If A and B are in mod A, then Hom\(A9B) is a finitely generated
R-submodule ofHomR(A,B).

(b) If A is in mod A, then EndA^4) is an artin R-algebra which is an
R-subalgebra of the artin R-algebra

Proof (a) Let A and B be in mod A. Since A is in mod A, and hence
in modK, we have an epimorphism nR —• A for some n > 0, where
nR denotes the sum of n copies of R. Hence we get a monomorphism
Hom*(i4,£) -> HomR(nR,B) ^> nB. Since R is noetherian and nB is a

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.003
https://www.cambridge.org/core


28 Artin algebras

finitely generated i^-module, we get that the submodule HomA(^4,B) of
HomR(A,B) is a finitely generated i^-module.

(b) We have seen that EndA^4) is an K-subalgebra of End#(v4). Now
End.R(A) and End\(A) are finitely generated JR-modules by (a), and are
hence artin i^-algebras. •

Recall that a category ^ is preadditive if for each pair of objects A, B
in # the morphism set Hom<#(A, B) is an abelian group and for A, B, C in
^ the composition morphism Hom%(A,B) x Hom#(£, C) —• Hom^(^4, C)
is bilinear. If in addition ^ has finite sums, then ^ is additive. For
a commutative artin ring R we say that a preadditive category ^ is an
K-category if each Hom%(A9B) is an i^-module and the composition mor-
phism Hom#(,4,£) x Hom#(£,C) -> Hom<#(A,C) is J^-bilinear. Further
we recall that a covariant (respectively contravariant) functor F: # —> 2
between two preadditive categories is additive if for each pair of objects
A, B in # , the induced morphisms Hom<g(A,B) —• Hom@(F(A),F(B))
(respectively Hom^(A9B) —> Hom@(F(B),F(A))) are group homomor-
phisms. We say that an additive functor F:^ —• ^ between two
K-categories is an K-functor if the induced morphisms above are JR-
homomorphisms. Unless stated to the contrary, all our categories will be
i^-categories and all our functors are i^-functors for some commutative
artin ring R.

When A is an artin jR-algebra we have seen in Proposition 1.1 that
HomA(^4,5) is an ^-module for A and B in mod A. For f:A-+B
and g:B —• C in mod A and r e R we have (g(rf))(a) = g(rf(a)) =
rg(f(a)) = ((rg)/)(<0 for a e A. Hence the composition morphism
Hom\(A,B) x HomA(£, C) —• HomA(^4, C) is i^-bilinear. Since mod A
is clearly an additive category, it follows that mod A is an additive
^-category.

For A in mod A, add A denotes the full subcategory of mod A whose
objects are summands of finite sums of copies of A. Then it is easy to
see that add^4 is an ^-category.

We now give some examples of K-functors. Various well known
functors from mod A to the category Ab of abelian groups are in fact
K-functors when A is an artin i^-algebra.

First we note that the forgetful functor F:modA —• modR is easily
seen to be an K-functor, by using Proposition 1.1.

For A in mod A it follows from Proposition 1.1 that EndA^4) and
EndA(^4)op are artin tf-algebras. Then A is an EndA(^)-module, when
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I LI Artin algebras and categories 29

for a G A and / G EndA(^4) we define fa = f(a), and hence A is a
right EndA(^4)op-module. If X is also in mod A, then HomA(^4,Z) has
a natural structure as a module over F = EndA(^4)op given as follows.
For t G T and / G HomA(,4,X), define (tf)(a) = f(t(a)) for a e A. Since
Ylom\(A,X) is in m o d ^ by Proposition 1.1, it is also in mod P. It is then
easy to see that the functor HoniA04, ): mod A —> mod F is an K-functor.

If B is in mod(Aop) for an artin algebra A, then B is a module over
the artin algebra F = EndAop(B). For X in mod A we have that B ®&X
is then a F-module, where f(b ® x) = f(b) ® x for / G F, b G B and
x G X. It is easy to see that the functors B ®A —: mod A —• mod F and
B ® A —: mod A —> mod R are i^-functors.

Similarly E x t j ^ , ) is an K-functor from mod A to modEndA(^4)op or
to mod-R, and Tor^(B, ) is an K-functor from mod A to modEndA°p(#)
or to modi^, when A is in mod A and B in mod(Aop).

We shall now see that there is a general procedure for associating
with any additive functor F:%> —> Ab, where # is an K-category, an
K-functor F:^ —• Modi^, in a natural way. To see this we first note
that for each Am^t there is a ring morphism R —• End^(^4) obtained by
sending r to r l^ . For since composition of morphisms in # is i^-bilinear,
we have ( r i l ^ f o U ) = U(ri(r2U)) = (rir2)U. Then we define F(^)
in M o d # to be the abelian group F(A) with K-module structure given
by the composite ring morphism R —• End#(^4) —• End^b(F(^4)). It is
then easy to see that for f:A —• B in ^ the induced group morphism
F(/):F(^4) —> F(5) is an .R-morphism, and it is easily seen that we get
an K-functor F: # ^^ Mod i^ this way.

To formally express that two /^-categories ^ and 9) are essentially the
same we say that a covariant .R-functor F: # —> Q) is an isomorphism if
there is an K-functor G\® - • ^ such that GF = W and FG = 1#.

We illustrate this concept through the following. For an K-algebra A
and a unit a in A we have a ring automorphism ga: A —> A defined by
ga(A) = a"Ua for A G A. There is an induced K-functor F a :modA -+
mod A sending a A-module C to a A-module aC which is equal to C as an
abelian group and where the new A-structure is defined by X • c = ga(^)c
for k G A and c G aC. We clearly have Fa-iFa = lmodA = FaFa-i, so that
F a : mod A —• mod A is an isomorphism.

Isomorphisms of /^-categories are, however, rare, and in practice it is
sufficient to have a weaker relationship between ^-categories ^ and 9)
in order to ensure that their algebraic structures are essentially the same.
We say that a covariant K-functor F: # —• 3) between two ^-categories
is an equivalence of ^-categories if there is an K-functor G\3) -+ <€ such
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that the composite functors GF and FG are isomorphic to the identity
functors.

It is useful to have another way of describing when two categories are
equivalent. We say that an K-functor F.W —• 3 between i^-categories
is faithful if the morphism FA,B'Hom<$(A9B) - • Hom@(F(A)9F(B)) given
by F is a monomorphism for all A, B in ^ , and full if this morphism is
an epimorphism. The functor F is dense if for each M in 3 there is some
C in V with F(C) ~ M.

We have the following characterization of an equivalence of categories.

Theorem 1.2 A covariant functor F: ^ —> 3 between R-categories is an
equivalence if and only if it is full, faithful and dense.

Proof Assume first that F: # —• 3 is an equivalence. We then have an R-
functor G:3 -» # and isomorphisms <t>: GF —• 1# and xp.FG —• 1^. For
each A and J? in %> we then have an isomorphism (f)AB:llom<#(A9B) —•
Hom#(GF(>l), GF(B)) given by <t>A^(f) = ^f^A- But we clearly have
^ B

 =
 GF(A),F(B)FA,B- Hence FAj:Hom<e(A9B) —• Hom@(F(A), F(B)) is a

monomorphism and GF(A\F(B) is an epimorphism. Using the isomorphism
xp we get that FA,B is an epimorphism. Hence FA,B is an isomorphism
and therefore F is full and faithful. It is clear that F is dense.

Assume conversely that the .R-functor F is full, faithful and dense.
Since F is dense, we can for each M in 3 choose an isomorphism
rjM'-M —• F(A) for some A in c€. We define G(M) = A, so that we
have a morphism rjM'-M —• FG(M) for each M in ^ . If / : M —• AT is a
morphism in ^ , let h:FG(M) —• FG(N) be given by /i = n^ft]]^9 i.e. the
diagram

M -4 AT
i I

FG(M) A FG(AT)

commutes. Since F is full and faithful, there is a unique morphism
t:G(M) - • G(N) such that F(t) = h. We define G(/) = t so that
/z = FG(t). It is obvious that G(1M) = IGM for each M in § and
G(g'g) = G(gr)G(g) for morphisms g:M —• N and gf:N -* L in @.
Hence G is a covariant functor and the TJM give an isomorphism between
\QI and FG.

The functor FG is an R-functor since it is isomorphic to 1^ by the
^-isomorphism Y\M> Let / and g be in Hom^(M,AT). Because F is also
an K-functor, we have FG(f + g) = FG(f) + FG(g) = F(G(f) + G(g)) and
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FG(rf) = rFG(f) = F(rG(f)) for r in R. Using that F is full and faithful
we get G(f + g) = G(f) + G(g) and (G(rf) = rG(/), and consequently G
is an K-functor.

It remains to show that we have an isomorphism e:l@ —• GF. For
4̂ in ^ we have the isomorphism f/F(i4): F(^4) —• FGF(A). Since F is

full and faithful, there is a unique morphism eA: 4̂ —• GF(^) in # such
that F(e^) = r\F(A). Since */F(i4) is an isomorphism, there is a morphism
g:FGF(,4) -* F(^) such that rjF(A)g = 1FGF{A) and gr\F{A) = lF(i4). Choosing
t:GF(v4) - • A such that F(f) = g we have F(eAt) = F(1GF(>4)) and
F(teA) = F(1A). Since F is faithful we see that eA:A -> GF(yl) is an
isomorphism. Then for / : A —• B in #, the diagram

i€A l€B

GF(A) °^] GF(B)

has the property that after applying F it is commutative. Since F is
faithful, the diagram is then itself commutative, and we are done. •

Theorem 1.2 can be used to show that many homological properties
of K-categories are preserved under equivalence. We illustrate this on
projective and injective objects. To cover more general categories than
module categories, we generalize the following concepts. A morphism
g.B -» C in an K-category ^ is an epimorphism if for any nonzero
morphism h:C —> X in %> we have ftg ^ 0. And g.B —> C is a
monomorphism if for any nonzero morphism / : 7 - > 5 w e have gf =fc 0.
An object P in ^ is projective if for any epimorphism g.B —> C and
morphism h:P -> C there is a morphism s:P —• B such that gs = ft.
Similarly an object / in ^ is injective if for any monomorphism g.B —> C
and morphism h:B -> I there is a morphism s:C -» / such that 5g = ft.
It is not difficult to check that in the case # is Mod A for some .R-algebra
A, then the concepts just introduced coincide with the usual module
theoretic concepts of epimorphism, monomorphism and projective and
injective modules.

We then have the following direct consequence of the definitions and
Theorem 1.2.

Proposition 1.3 Let F:^ —• 2f be an R-functor which is an equivalence of

R-categories.

(a) A morphism g.B —•> C in ^ is an epimorphism (respectively mono-
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morphism) if and only if F(g):F(B) —> F(C) is an epimorphism (re-
spectively monomorphism) in 3).

(b) An object C in <tf is projective (respectively injective) if and only if
F(C) is projective (respectively injective) in Q). •

We shall see examples of equivalences of K-categories in the next
section and in later chapters. Here we just point out that if # =
3) = mod/c for a field fc, then the natural functor F : mod/c —> mod/c
defined on objects by F(C) = C** is an equivalence of fc-categories where
C* = Homfc(C,/c) is the dual of the vector space C. Even though for
every finite dimensional vector space C we have a natural isomorphism
C —• C**, not every C in mod/c is actually a dual vector space. Hence
the functor F:mod/c —• mod/c is not an isomorphism of fc-categories.

If F: # —• 3) is a contravariant .R-functor between i^-categories, there
is an induced covariant .R-functor F : ^ o p —> 3) and F is a full, faithful
or dense K-functor if and only if F is a full, faithful or dense R-
functor respectively. We say that the i^-functor F: # —• ̂  is a duality if
F : ^ o p —> ^ is an equivalence. Then we have the following analogues of
Theorem 1.2 and Proposition 1.3.

Theorem 1.4 A contravariant R-functor F:%> —> 3) between two R-cate-
gories is a duality if and only if F is full, faithful and dense. •

Proposition 1.5 Let F:%> —> 3) be an R-functor which is a duality of R-
categories.

(a) A morphism f:A->Bin^isa monomorphism if and only if
F(f):F(B) —> F(A) is an epimorphism.

(b) An object C in *£ is projective (respectively injective) if and only if
F(C) is injective (respectively projective) in 3). •

The functor F:mod/c —• mod/c which sends a finite dimensional vector
space to its dual space is an example of a duality of fe-categories. More
examples will be discussed later.

2 Projectivization

In this section we show that passing from an artin algebra A to the endo-
morphism algebra F = EndA</4)op for A in mod A provides a technique
for reducing questions about the module A to questions about projective
modules. We prove the Krull-Schmidt theorem using this procedure.
Throughout this section we assume that all rings are artin algebras.
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II.2 Projectivization 33

For A in mod A we denote the ^-functor Hom\(A9 ): mod A —> mod F
by eA and call it the evaluation functor at A. Note that e& is a left exact
functor which commutes with finite sums. The following result gives the
basis for our reduction.

Proposition 2.1 Let A be in mod A where A is an artin algebra. Then the
evaluation functor eA: mod A —> mod F has the following properties.

(a) e^:HomA(Z,X) —• H o m r C e ^ Z ) , ^ ^ ) ) is an isomorphism for Z in
add A and X in mod A.

(b) IfX is in add A, then eA(X) is in &{T).

(c) exladcU'add,4 —> ^(F) is an equivalence of R-categories.

Proof (a) It is clear that ^:HomA(^4,X) —• Homr(^(^4),^(X)) is an
isomorphism. Our desired result follows by the additivity of e^.

(b) Since eA(A) ~ F, it is clear that eA(nA) ~ nT for all positive integers
n. Since eA commutes with sums, it follows that e^(X) is in ^ (F) for all
X in add A.

(c) By (a) we know that eA\addA is full and faithful. To see that it is dense
let P be in ^(F) . Then we have that P ]J Q = nT for some n. Hence
there is an idempotent / e End r(nF) such that P = Ker/ . Therefore
there is an idempotent u E EndA(n^l) such that ^(w) = /• Then Kerw is
in add A and ^(Keru) ^ P since eA is left exact. •

Our first application of this proposition will be the Krull-Schmidt
theorem for mod A.

Theorem 2.2

(a) A module A in mod A where A is an artin algebra is indecomposable
if and only if EndA^4) is a local ring.

(b) Let {Ai}ieI and {Bj}jeJ be two finite families of finitely generated
indecomposable A-modules. If \JieI At ^ LI;ej Bj> tnen there is a
bijection a:I —• J such that At ~ BG^ for all i e I.

Proof (a) Let A be in mod A and let F = EndA(^4)op. Since eA induces
an equivalence add ,4 —> ^(F) we have that A is indecomposable if and
only if eA(A) is an indecomposable projective F-module. But we have
already seen in I Proposition 4.7 that since CA{A) is a finitely generated
projective module over the artin algebra F, then CA{A) is indecomposable
if and only if EndrC^C^)) is local. But e^iEndA^) —> Endr(^(^4)) is

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.003
https://www.cambridge.org/core


34 Artin algebras

an isomorphism. Hence A is indecomposable if and only if EndA^4) is a
local ring.

(b) Let C = LL€/,4;. Then C is a finitely generated A-module and
Bj and At are in addC for all i and j . Let F = EndA(C)op and let
ec'.vnodA —• modF be the evaluation functor. Since ec induces an
equivalence add C —> ^(F) , we use the corresponding result about pro-
jective modules in I Theorem 4.4 to complete the proof. •

We now show how the evaluation functor can be used to connect up
right minimal morphisms of arbitrary modules with projective covers,
and use this to show that a direct sum of right minimal morphisms is
right minimal.

Proposition 2.3 Let A be in mod A and f:X—> Y a morphism in add A
where A is an artin algebra. Then f is right minimal if and only if the
induced morphism

HomA(A,X) - • Im(HomA(A,/))

is a projective cover in mod EndA^4)op.

Proof Let F = EndA(^4)op and let e&: mod A -> mod F be the evaluation
functor. Since e&: add ,4 —> ^(F) is an equivalence of categories, it follows
from the definition of right minimal morphisms that / : X -> Y is right
minimal if and only if Hom\(A, f):Hom\(A, X) —• HOIIIAC^, Y) is right
minimal. But HomA(^4,/):HomA(^4,X) —• Hom\(A,Y) is right minimal
if and only if the induced morphism HomA(^4,X) —• Im(HoniA04,/)) is
a projective cover by I Proposition 4.1. •

As an easy consequence of this characterization of right minimal
morphisms we have the following.

Corollary 2.4 Let {ft'.At —> Bi}ieI be a finite family of morphisms in mod A
where A is an artin algebra. Then ]JieI / , : \JieI At —> ]JIE/ Bt is right
minimal if and only if each fi: At —> B[ is right minimal.

Proof Let A be a finitely generated A-module such that the At and Bt are
in add A for all i in / . Let e^imodA —• modF be the usual evaluation
functor. Now we have already seen that ]JieI ft: JJ ieI At —• \\ieI Bt is
right minimal if and only if £u(lL€/ / / )• ^ (U I G / At) ^ I m ^( l J iG/ fi) i s a

projective cover. But we know that e^(LLe/ ft) is a projective cover if and
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only if each ^ ( / i ) is a projective cover by I Proposition 4.3. Therefore
each fi: At —• Bi is right minimal if and only if ]JieI ft: ]JieI At —> \JieI Bi
is right minimal. •

In many instances it is technically easier to deal with modules over
artin algebras A which have the property that if A = JJ"=1 Pt with the Pi
indecomposable projective modules, then Pt cfc Pj for i ^ j . Such artin
algebras are called basic artin algebras.

Suppose now that A is an arbitrary artin algebra and A = \J™=1 mPt
with the Hi > 0 and the Pi nonisomorphic indecomposable projective
modules. Let P = UT=ipt a n d l e t r = EndA(P)op. Consider the
evaluation functor epimodA -> mod P. Then ep(P) = T and the de-
composition P = JJJlj Pi with nonisomorphic indecomposable Pt gives
the decomposition T = UJLi ep(Pi) where the ep(Pt) are nonisomorphic
indecomposable projective F-modules. Thus T is a basic artin algebra
which is called the reduced form of A. Our next aim is to show that
ep: mod A —• mod T is an equivalence of categories, which means that A
and its reduced form T have essentially the same module theory. This re-
sult will be a trivial consequence of a more general result which will have
other applications later on. It is convenient to first give some definitions.

Let X be a A-module. A projective presentation for X is an exact

sequence Pi -* Po —• X —• 0 with the P; projective modules for i = 0, 1.

A projective presentation Pi -* Po —• X —• 0 for X is called a minimal
projective presentation i f / o :Po -+ X and f\:P\ -> Ker/0 are projective

covers.
Suppose P is a projective module. Then we denote by mod P the full

subcategory of mod A whose objects are those A in mod A which have
projective presentations Pi —• Po —• A —• 0 with the Pi in add P for i = 0,
1.

Proposition 2.5 Let P be a projective A-module and let T = EndA(P)op.
Then the restriction ep|m odp:modP —• modF of the evaluation functor
ep: mod A —• mod T is an equivalence of categories.

Proof We first show that ep\modp is dense. Suppose X is a F-module

and Q\ -> go -> X - • 0 a projective T-presentation of X. Then there is
some Pi in addP with ep(Pi) ^ Qi for i = 0,1. Hence there is a morphism
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g

P\ —• PQ in add P such that the diagram

ep(Pi) ^

\l \l
<2i ^ Qo

commutes. Therefore ep(Cokerg) ~ Coker/ = X since P being projec-
tive implies that ep is exact. This shows that ep|modP is dense.

We now want to show that epUodP is full and faithful. Let A and B
be in mod P and let Pi —• Po —• A —> 0 be a projective presentation for
A. Then we have the following commutative exact diagram.

HomA(A,B)

i
Homr(ep(A),eP(B))

-+ HomA(P0,fl) - •

I
-+ Homr(eP(Po)MB)) -

HomA(Pi,B)

I
Homr(ep(Pi),eP

Since the P,- are in add P, we know that the second and third vertical mor-
phisms are isomorphisms. Hence ep:HoniA04,2?) —• Homr(ep(A),ep(B))
is an isomorphism for all A and B in mod P. Therefore ep\m0dP is full
and faithful and hence an equivalence of categories. •

As an immediate consequence of this result we have our desired result
about the reduced form T of an artin algebra A.

Corollary 2.6 Suppose {Pi , . . . , Pn} is a complete set of nonisomorphic inde-
composable projective A-modules. Let P = ]J"=1 Pt and let T = EndA(P)op.
Then ep: mod A —• mod F is an equivalence of categories.

Proof Clearly addP = ^(A), so modP = mod A. Therefore by our
previous result, ep: mod A —• mod T is an equivalence of categories. •

Finally it is not difficult to see that an artin algebra A is basic if and
only if Aop is basic. Using I Theorem 4.4 (b) it is not hard to obtain the
following result.

Proposition 2.7 The following statements are equivalent.

(a) A is basic.
(b) A/r is basic.

(c) A/r ~ YLi=i A where the Dt are division rings.
(d) A°P is basic. •
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3 Duality

Another important reason for restricting our attention to artin algebras
is the existence of a duality between mod A and mod(Aop). We begin by
describing a duality D: mod R —• mod R for a commutative artin ring R.

Recall that for an arbitrary ring A and arbitrary modules A and B
with B a A we say that A is an essential extension of B if X n B =/= 0
for all submodules X =£ 0 of A. A monomorphism i:A —• / with /
injective is called an injective envelope of A if / is an essential extension
of i(A). Also recall that for an arbitrary ring A and any module A
in Mod A there exists an injective envelope i:A —• / in Mod A unique
up to isomorphism. Let R be a commutative artin ring. Since R is
an artin ring, it has only a finite number of nonisomorphic simple
modules Si, . . . , Sn. Let I(St) be the injective envelope of S* and let
J = II"=1/(Si). Then J is the injective envelope of JJ"=1 S, and for each
A in mod R there is a monomorphism A —> J7 with Jr in add J. We have
Si ~ -R/rrt; where m* is a maximal ideal of R, and we get i^-isomorphisms
HomR(Si9Si) ~ Hom/KK/mfcS,-) ~ Homa(R,S,-) ~ $. For i ^ j we have
Hom^(Si, S/) = 0. As a consequence of these observations, using the
notation for the multiplicities of the simple composition factors from
Chapter I, we have the following.

Theorem 3.1 Let X be in mod R. Then we have the following.

(a) Hom^(X,J) is of finite length and m5.(Hom^(X, J)) = ms^X) for
i= 1, . . . , n.

(b) The natural morphism X -> Hom^Hom^X, J), J) is an isomorphism.
(c) The contravariant R-functor D.modR —• modi^ defined by D —

Hom#( , J) is a duality.

Proof (a) We prove this by induction on 1{X). If X = 0 there is nothing
to prove. Suppose l(X) = 1. Then X ^ S, for some j . But Hom/^S;, J) ^
HomR(Sj9UUSi) ^ HomR(Sj9Sj) ~ Sj. So mSi(X) = m5l(HomR(X,J)).
Now suppose that l(X) > 1 and let 0 -> Xx -> X -» Xr/ ^ 0 be exact
with X/r - S ; for some y. Then 0 - • H o m n ( l V ) -> HomR(X,J) -^
HomR(Xr, J) -^ 0 is exact. Since l(X') < l(X) and 1{X") < l(X), the result
now follows from the induction hypothesis.

(b) Since by (a) we have that X and Hom^Hom^X, J), J) have the
same length, it suffices to show that </>:X —> Hom^(Hom^(X, J), J) is a
monomorphism. Because (j>(x)(f) = f(x) for all / in Hom^(X, J) and
x in X, we have (f)(x) ^ 0 if there is an f:X —• J such that /(x) =̂ 0.
Suppose x is a nonzero element of X and let ftx be the submodule of
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X generated by x. But then Rx/(mdR)Rx ^ 0 by Nakayama's lemma
and so there is a nonzero morphism jfoc/(rad R)Rx —• ]J"=1 S,-. Hence the
induced map g: Rx —• J is not zero, in particular g(x) ^ 0. Since J is
injective, we can extend g to a map / : X —• J which does not vanish on
x. It follows that (j)\X —• Hom^(Hom^(X, J), J) is an isomorphism,

(c) This is a direct consequence of (b) and the definition of duality. •

As an immediate consequence of this we have the following facts about
J, by choosing X to be R in Theorem 3.1.

Corollary 3.2

(a) J and R have the same length, and mst(J) = ms^R) for all i.
(b) R~EndR(J). •

We now want to show that the duality D.modR —> mod£ for a
commutative artin ring R induces a duality D:modA —• mod(Aop) for
an artin K-algebra A. To see this we first show that for X in mod A the R-
module Hom^(X, J) has the following natural structure as a Aop-module.
For / in Hom*(X, J) and X in A we define (//t)(x) = f(Xx) for all xeX.
This is the way we will consider DX as a Aop -module for each A-module
X. It is clear that Hom^(X, J) is a finitely generated Aop-module since
it is a finitely generated i^-module by Proposition 1.1. If f:X -> Y is
a morphism in mod A, it is easy to see that Hom#(/, J):HomR(Y, J) -»
Homfl(X,J) is a morphism in mod(Aop). This shows that D gives a
contravariant K-functor D: mod A —• mod(Aop). In fact we have the
following.

Theorem 3.3 If A is an artin R-algebra, then the contravariant R-functor
D:modA —• mod(Aop) is a duality.

Proof If X is in mod A, then we have seen that Hom^(X, J) is in
mod(Aop), and similarly HomR(HomR(X, J\J) is in mod A. The nat-
ural i^-isomorphism (frx'X —• Hom^(Hom^(X, J), J) is then also a A-
isomorphism. For if X is in A and x is in X, we have (f)(Xx)(f) = f(Xx) =
(fX)(x) = (j){x){fX) = (Xcj){x))(f) for all / in HomK(X, J), so that <j){Xx) =
X(f)(x). Hence we have an isomorphism <j>: lmodA —• D2, and similarly an
isomorphism (f>: lmod(A°p) -* D2- It follows that D:modA -> mod(Aop) is
a duality. •

For any left artin ring A the category mod A has enough projectives,
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that is, for each C in mod A there is an epimorphism f:P —• C in mod A
with P projective. The category mod A is said to have enough injectives if
for any C in mod A there is a monomorphism g:C —• / with / injective.
For an artin ring the category mod A does not necessarily have enough
injectives, but for artin algebras we have the following consequence of
the above.

Corollary 3.4 For an artin R-algebra A the category mod A has enough
injectives.

Proof For C in mod A we have an epimorphism h:P —> D(C) in
mod(Aop) with P projective. So we have a monomorphism D(h)\D2(C) —•
D{P\ and D(P) is injective by Proposition 1.5. Since D2(C) ~ C, this
finishes the proof. •

We end this section by showing the following alternative description
of the duality D which we will use freely in the rest of the book.

Proposition 3.5 The functors Hom^( , J) and HomA( , DA) from mod A to
mod(Aop) are isomorphic.

Proof Considering the RA\ we have by using adjointness functorial iso-
morphisms HomR(M,J) ^ HomR(A®AM,J) >̂ HomA(M,Hom^(A, J)) =
HomA(M,i>A). •

4 Structure of injective modules

Throughout this section A will always denote an artin algebra. We have
seen that for an artin algebra A the category mod A has enough injectives.
In this section we investigate the structure of the injective modules in
mod A for an artin algebra A. In this connection we describe the injective
envelope of a finitely generated A-module and introduce the notion of
the socle of a module.

For A in mod A the socle of A, denoted by soc^4, is defined to be
the submodule of A generated by all semisimple submodules of A. We
have the following basic properties of the socle of a module for an artin
algebra A.
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Proposition 4.1 For A in mod A where A is an artin algebra we have the
following.

(a) 4̂ = 0 if and only if soc A = 0.
(b) A is an essential extension of soc A.
(c) A —• / is an injective envelope of A if and only if the induced morphism

soc A —• / is an injective envelope.
(d) An injective module I in mod A is indecomposable if and only if soc /

is simple.

Proof (a) Clearly if A = 0 then soc A = 0. Let A be a nonzero module.
Since the radical r of A is nilpotent, there is a largest integer t such that
x*A ̂ = 0. Since xlA is semisimple, it follows that soc A ^= 0.

(b), (c) and (d) are easily verified consequences of (a). •

It follows from the above proposition that one way to describe the
injective envelope of a module A is to describe soc A and the injective
envelopes of simple modules. To describe the injective envelopes of the
simple modules it is first useful to investigate a duality between projective
left and right modules.

Given a A-module A we consider the abelian group HomA(^4, A) to be
a Aop-module by the operation (fX)(a) = f(a)X for all X in A, for all /
in HomA(/4,A) and a in A. It is clear that if A is a finitely generated A-
module, then HomA(^4, A), which we denote by A*, is a finitely generated
Aop-module. Also it is easily checked that if / : A -» B is a morphism of
A-modules, then Hom\(f,A):B* —> A* given by HoniA(/, A)(g) = gf for
all g in B* is a morphism of Aop-modules, which we denote by /*. It is
clear that the contravariant functor T = HoniA( , A): mod A —• mod Aop

given by A i—• A* for all A in mod A and / *-* f* for all morphisms / in
mod A is an ft-functor.

As in the case of vector spaces we define (J)A'-A —• A** by 0^(a)(/) =
f(a) for all a in A and all / in A*. This is easily seen to be a A-
morphism which is functorial in A, i.e. we have a morphism of functors

0:lmodA - • T2.
We now want to consider what happens to the category 3P( A) of finitely

generated projective A-modules under the functor T. We begin with the
following easily verified result.

Lemma 4.2

(a) The map t: A —• A* given by t(X)(x) = xk for all X in A and x in A
is a Aop-isomorphism which we view as an identification.
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II.4 Structure of injective modules 41

(b) 0A : A —> A** as defined above is a A-isomorphism. •

This readily gives the following.

Proposition 4.3

(a) Let A be an artin algebra. For each P in &(A) we have that P* is in

(b) For each P in ^(A), the morphism (j)p'.P —• P** is an isomorphism
which we will view as an identification.

(c) The functor HomA( , A)|^(A): ^(A) - • ^(A°P) is a duality.

Proof For P = A we have by Lemma 4.2 that P* is in ^(Aop) and that
(j)p:P —> P** is an isomorphism. Since HomA( ,A) is an .R-functor, the
same holds for <f)n\ when n is a positive integer. For an arbitrary P in
^(A) there is some Q in ^(A) and some integer n such that nA ~ P \J Q-
Hence (a) and (b) follow by using the additivity of HoniA( ,A) again.

It follows from (b) that the morphism 0:1^(A) —>
HOIIIA( ,Aop)|^(Aop)HomA( ,A)|^(A) is an isomorphism. Since also the
morphism \p: 1̂ >(A°P) -^ HomA( , A)|^(A)HoniA°p( , A)|̂ (A<>P) is an isomor-
phism, it follows that HomA( ,A)\<?w:0>(A) -> ^ ( A ° P ) is a duality. •

We now give the final preliminary observation about finitely generated
projective A-modules we need in studying finitely generated injective
A-modules.

Proposition 4.4 Let A and B be in mod A, where A is an artin algebra.

(a) The morphism tp:HomA(^4,A) ®A B —> Hom\(A,B), defined by
xp{f (8) b)(a) = f(a)b for all f in Hom\(A,A),for all b in B and all a
in A, is functorial in A and B.

(b) If A is in &*(A), then \p is an isomorphism for all B in mod A.

Proof The first part of the proposition is a routine calculation. Also it is
easily seen that xp:Hom\(A, A) ®A B —• HomA(A,£) is an isomorphism
for all B in mod A. Since ^(A) = add A, the rest follows from the func-
toriality of \p in A. •

We now make some observations concerning simple modules over
semisimple rings which we then generalize to projective A-modules.
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42 Artin algebras

Lemma 4.5 Let A = Ai x • • • x Aw be the unique decomposition of a

semisimple ring A into a product of simple rings Ai for i = 1, . . . , n. Let

rrtj = ri/V=i A/ for all i = 1> -•-> n-

(a) The m, are the unique maximal ideals in A.
(b) If S is a simple module, then annS, the annihilator of S, is m, for

some i.
(c) Two simple A-modules S and T are isomorphic if and only if ann 5 =

annT.
(d) If S is a simple A-module, then HoniA(iS,A) is a simple Aop-module

and annS = annHoniA(S,A).

Proof We only discuss (d), and leave the rest as an exercise. Since A is
semisimple, S is an indecomposable projective A-module, so HomA(5,A)
is indecomposable and hence simple. Let m,- = ann S. Then the epi-
morphism A —• A, gives an isomorphism HOIIIA(S,A) ^ HoniA^A;) of
Aop-modules, which shows that annHoniAOS, A) = nt;, finishing the proof.

•

We now have our main result concerning injective envelopes.

Proposition 4.6 Let A be a semisimple module over the artin algebra A
and let P —> A be a projective cover for A in mod A. Then D(P*) is an
injective envelope of A.

Proof It clearly suffices to prove this in the case where A is a sim-
ple A-module and P its projective cover. Hence P is indecompos-
able and so P* is also an indecomposable projective Aop-module. Now
P*/xP* ~ P* ®A(A/r) = HomA(P,A/r) = HomA / r(P/rP,A/r) . There-
fore, by Lemma 4.5, we have that ann(P/rP) = ann(P*/^*) and so
A ^ D(P*/xP*). Since P* - • P*/xP* is a projective cover, it follows that
D(P7rP*) -> D(P*) is an injective envelope. •

We now have a one to one correspondence between the nonisomor-
phic simple A-modules, the nonisomorphic indecomposable projective
A-modules and the nonisomorphic indecomposable injective A-modules.
More explicitly, if 5 is a simple A-module, we associate with S its
projective cover P and its injective envelope D(P*).

Let A be in mod A for an artin algebra A. For j > 1 we define by
induction soo7 A a A to be the preimage of soc(^4/ soo7"1 A) in A. The
smallest integer t with soc' A = A is called the socle length of A, denoted
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by sl(^4), and 0 c soc^l a soc2^4 c • • • c soc'"1 A c A is the socle series
of A

The radical series defined in I Section 3 and the socle series do not
necessarily define the same series of submodules of a module A. But
using that xmA = 0 if and only if (DA)xm = 0 and that the duality D takes
radical series to socle series and socle series to radical series, we have the
following.

Proposition 4.7 Let A be an artin algebra and let A be in mod A. Then
we have rl(A) = sl(^4). •

5 Blocks

In this section A will be an artin algebra and we study the decomposition
of A into a product of indecomposable algebras, which are called blocks.
We shall see that the study of the module theory of A reduces to the
module theory for the corresponding blocks.

We first consider the case of a commutative artin ring R, and we show
that there is a close connection between ring summands and idempotents.
Let 1 = e\ + • • • + en be a decomposition of 1 into a sum of primitive
orthogonal idempotents. We first observe that e\9 . . . , en are then the
only primitive idempotents in R. For let e be a primitive idempotent in
R. Since e = ee\ + V een and each eej is clearly an idempotent, there
is some i with ee\ =£ 0 and eej = 0 for i =/= j since e is primitive. We
further have e\ — (1 — e)et + eet, which implies that (1 — e)et = 0 since e\
is primitive. This shows that et = eet and hence e = et.

The decomposition JR = Re\ ]\... ]J Ren of R as a sum of indecom-
posable projective modules gives in this case a decomposition of R into
a product of indecomposable rings Ret, with identity et. Such a ring
decomposition clearly has to be given by a decomposition of 1 into a
sum of primitive orthogonal idempotents, and must hence be unique.
We also point out that Ret = etRei ~ E n d ^ l ^ ) is a local ring for all
i = 1, . . . , n, since Ret is indecomposable.

Now let A be an artin i^-algebra, where R is the center of A. We then
get the following.

Proposition 5.1 Let A be an artin algebra with center R, and 1 = e\-\- • --\-en

the decomposition of\ into a sum of primitive orthogonal idempotents in R.
Then A = Ae\ x • • • x Aen is a decomposition of A into a finite product of
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44 Artin algebras

indecomposable algebras A,- = Aet with identity et, and this decomposition
is unique.

Proof We first have a decomposition A = Ae\ U # * U ^en of left A-
modules. But since the et are in the center of A, this is clearly an algebra
decomposition and et is the identity of Aet. We want to show that Ae is
an indecomposable algebra when e is a primitive idempotent of JR. For
if Ae = Ai x A2, then e = f\ + fi, where f\ and f% are idempotents in
Ai and A2 respectively, and they clearly lie in the center R of A. This
shows that f\ or f2 must be zero, and hence Ae is an indecomposable
algebra. Similarly any decomposition A = Ai x • • • x Am into a product
of indecomposable algebras is given by a decomposition of 1 into a sum
of primitive orthogonal idempotents in R, and is hence unique. •

Let now A = Ai x • • • x An be a product of indecomposable algebras
and 1 = e\ H V en the corresponding decomposition of 1. The A,- are
called the blocks of A. We have natural ring maps A —> A, for each
i, and in this way A,- has a natural structure as a A-module. If A is
a A-module, then A = e\A ]J " ' U enA, where etA is a Armodule and
hence a A-module. If A is an indecomposable A-module there is a unique
i such that A = etA and ejA = 0 for j ^ i. We then say that A belongs to
the block A,-. If B = e\B ]J • • • ] J ^ 5 is another A-module, we have an
isomorphism Hom\(A,B) ~ n? = 1 Hom^eiA^etB), functorial in A and JB,
since clearly Hom\(eiA,ejB) = 0 for i ^ j . This shows that the study of
mod A can be reduced to the study of mod A* for i = 1, . . . , n. Hence
we can often without loss of generality assume that our algebras are
indecomposable.

Since the decomposition of A into blocks gives a partition of the inde-
composable modules according to the blocks to which they belong, we get
in particular a partition of the indecomposable projective A-modules. We
now show how to define this partition of the indecomposable projective
A-modules without reference to the block decomposition of A.

Denote by 9 the set of indecomposable projective A-modules. We
say that a partition 3P = 3P\ U • • • U ^ n of the indecomposable projective
A-modules is a block partition if

(a) HomA(P, Q) = 0 when P and Q belong to different »x and
(b) if P and Q are in ^ , we have a chain

P = fil " Ql ~ ' ' ' ~ Qn-l ~Qn = Q

in 0>u with nonzero maps from Qt to Qi+i or from Q,-+i to Qu for
each i = 1, . . . , n— 1.
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We leave the proof of the following result to the reader.

Proposition 5.2 Let A be an artin algebra and 0> = 0>\ U • • • U £Pn a block
partition of the indecomposable protective modules.

(a) If we write A = Pi \J • • • \J Pn> where Pi is a sum of indecompos-
able modules f r o m ^h t h e n A ~ E n d A ( A ) o p = E n d A ( P i ) o p x ••• x
EndA(Pn)op gives the block decomposition for A.

(b) / / P and Q are in 0>{ with P qk Q there is a chain P = Qi - Qi-
• •' - Qn-i ~Qn = Q in 0>t such that HomA(QhxQi+1/x

2Qi+i) ± 0 or

Exercises

1. Let A be an artin algebra, P an indecomposable projective module, /
an indecomposable injective module in mod A and M arbitrary in mod A.

(a) Prove that HoniA(P,M) ^ 0 if and only if P/rP is a composition
factor of M.

(b) Show that the length of HomA(P,M) as an EndA(P)op-module is
the same as the multiplicity of P/xP as a composition factor of M.

(c) Prove that HomA(M,J) ^ 0 if and only if socJ is a composition
factor of M.

(d) Show that the length of HoniA(M, J) as an EndA(/)-module is the
same as the multiplicity of soc / as a composition factor of M.

2. Let P be a finitely generated projective A-module. Prove that
^®End(P)°p«niodEnd(P)op —• mod A induces an equivalence from
modEnd(P)op to modP which is an inverse of HomA(P, )|modp-
modP -> modEnd(P)op. (Hint: Define (j)M:P <g>End(P)°p HomA(P,M) - •
M by <j)M{p®f) = f(p) for M in mod A, for p in P and / G HoniA(P, M),
and define xpx: X -> HomA(P, P ®End(P)°p -X") for each X in mod End(P)op

by Wx(x)(p) = P ® x for all x e X and p e P).

3. Let TL be the integers and for each integer n let 7Ln = Z/(n).

(a) Show that TLn is an injective Zn-module for all n =£ 0.
(b) Let A be a finite abelian group. Show that there is a monomorphism

(j>:Z/(a,nnA) —• A where ann^4 is the annihilator of A.
(c) Let cj) be as in (b). Show that ann^4 <= ann(coker </>).
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46 Artin algebras

(d) Show that A ~ (Z/(ni))U(Z/(n2))U'''U(z/(nj)) f o r integers
ni,ri2,...,nj such that n,-+i|nj for i = 1,...,j — 1 (rational canoni-
cal form of finite abelian groups).

(e) Let n = p^p^ • • -pf™ be the prime factorization of an integer n > 0.
Show that Z/(n) ~ (Z/(p r

1
1))U'"II(z/0Pm)) (Chinese remainder

theorem).
(f) Let i be a finite abelian group with (n) = ann^4 with prime de-

composition n — p^pl2 " 'Pm- Show that there are integers sy, with

ti1

4. Let A be an artin algebra and S a simple A-module. Let e be a
primitive idempotent in A.

(a) Show that there is a projective cover Ae —• 5 if and only if eS =£ 0.
(b) Show that e S ^ O o (DS)e ^ 0.
(c) Show that there is a projective cover Ae —• 5 if and only if there is

a projective cover eA —• DS.
(d) Show that the morphism 0: HoniA(Ae, A) - • eA given by <j){f) = f(e)

is a Aop-isomorphism for each idempotent e in A.

5. Let k be a field and let A = k[X\,...,Xn] be the polynomial ring in
n indeterminates X\,- -,Xn. Let si be the category of finitely generated
graded A-modules, i.e. the objects M of si are the finitely generated
A-modules M together with a decomposition of M as a fc-vector space
M = UJ(EZM; where Xj-mt G Mi+\ for m\ G Mt and j = l , . . . ,n. We
denote the objects by M = (Af, ] J I G Z M,-).

The morphisms in si are the degree zero morphisms, i.e. if M and
N are two objects in si then Hom^(M,N) are the A-homomorphisms
f:M -+N such that f(Mt) c Nf.

(a) Let M = (M, UJGZ ^ ) ^ e *n ̂ - Show that there exists n e Z with
Mj = 0 for i < n.

(b) Prove that J / is a fc-category in which dim/c(HomJ^(M,iV)) < oo for
each pair of objects M and N.

(c) Prove that si is not equivalent to mod A for any artin algebra A.

6. Let A be any ring and M a A-module of finite length. Let 0 =
Mo c M j c Mi c - - ' c M n = M b e a filtration such that Mj+i/M,- is
semisimple for i = 0,. . . , n — 1 and such that M I+i/M( is not semisimple
if M- is a proper submodule of Mt.
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(a) Prove that for each i we have that M, <= soc'M and consequently
n > sl(M).

(b) Prove that for each i we have that M, ID rad""1 M and consequently
n > rl(M).

(c) Prove that M,- <£ soc'"1 M for any i > 1.
(d) Use (a) and (b) to prove n = sl(M) = rl(M). (Note that this

generalizes Proposition 4.7.)

7. Let A be a ring and let C be in Mod A.

(a) Show that set of morphisms from / to f in Mod A/C is not closed
under sums so that Mod A/C is not a preadditive category.

(b) L e t / : X - > C a n d g : 7 -» C be in Mod A/C.

(a) Show that the pullback X xc Y -> C is the product of/ and
g in the category Mod A/C.

(b) Show that ( / ,g) :X[]F -• C is the sum of / and g in
Mod A/C.

8. Let A be an artin algebra and ^(A) the category of projective A-
modules.

(a) Prove that for an indecomposable object P in ^(A) we have that
P/xP is isomorphic to a submodule of A as a left A-module if
and only if for each epimorphism / : Q -> P in ^(A) there is some
g:P ->Q with fg = lP.

(b) Prove that if an indecomposable object P in ^(A) is projective in
^(A) then P/xP is isomorphic to a submodule of A.

(c) Prove that all indecomposable objects P in ^(A) are projective in
^(A) if and only if P/xP is isomorphic to a submodule of A for all
indecomposable objects P in ^(A).

(d) Prove that all objects in ^(A) are injective as objects of ^(A) if and
only if for each simple right A-module S we have that A contains a
right A-submodule isomorphic to S.

(e) Prove that mod A has no module of projective dimension 1 if and
only if all objects of ^(A) are injective as objects of

Notes

The basic theory of equivalences of categories can be found in for
example [No]. Our approach follows [No] closely, formulated in terms of
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48 Artin algebras

/^-categories and R-functors. Most of the standard material on rings and
modules is found in [AnF]. Note that our proof of the Krull-Schmidt
theorem is essentially the standard proof, but is organized differently
since we first prove it for projective modules and then reduce the general
case to the projective case. For a generalization to the case where
there is an infinite number of summands with local endomorphism rings
(Azumaya's Theorem) we refer to [AnF].
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Examples of algebras and modules

The main object of study in this book is the finitely generated modules
over artin algebras. A central role is played by the simple, projective
and injective modules studied in the previous chapters. In this chapter
we study some classes of algebras where the module categories have
an alternative description which is sometimes easier to work with. The
algebras we investigate are path algebras of quivers with or without
relations, triangular matrix algebras, group algebras over a field and
skew group algebras over artin algebras. These examples of algebras and
their module categories are used to illustrate various concepts and results
discussed in the first two chapters.

1 Quivers and their representations

In this section we introduce quivers and their representations over a
field fc. The notion of quiver and the associated path algebra come
up naturally in the study of (not necessarily finite dimensional) tensor
algebras of a bimodule over a semisimple fc-algebra. The representations
of a quiver with relations correspond to modules over a factor algebra of
the associated path algebra. This way we get a concrete description of the
modules in terms of vector spaces together with linear transformations.
This is particularly effective in describing the simple, projective and
injective modules. We show that any finite dimensional basic fe-algebra
is given by a quiver with relations when fc is algebraically closed.

We start with the basic definitions. A quiver F = (Fo,Fi) is an oriented
graph, where Fo is the set of vertices and Fi the set of arrows between
vertices. We assume in this section that F is a finite quiver, that is, Fo
and Fi are both finite sets. We denote by s:T\ —> Fo and e:T\ -> Fo
the maps where s(a) = i and e(oc) = j when oc:i —• j is an arrow from

49
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the vertex i to the vertex j . A path in the quiver F is either an ordered
sequence of arrows p = an- -a\ with e(<xt) = s((xt+\) for 1 < t < n, or
the symbol e\ for i G Fo. We call the paths et trivial paths and we define
s(et) = e(et) = i. For a nontrivial path p = cnn- • -OL\ we define s(p) = s(oc\)
and e(p) = e(ocn). A nontrivial path p is said to be an oriented cycle if
s(p) = e(p).

For a field fc, let feF be the fe-vector space with the paths of F as basis.
To see that feF has a natural structure as a fe-algebra, we define a fe-linear
map /:feF —• Endfc(fcF) as follows. It is enough to define /(p) for any
path p in F, and it is sufficient to define f(p)(q) for any path q in F, since
the paths form a basis for feF as fe-vector space. We then define, for the
trivial paths et

' q if e(q) = i,
otherwise,

and for an arrow a G Fi,

{ ocq if e(q) = s(a) and q is a nontrivial path,
a if q = es(a),
0 otherwise.

If p = ocn • • • ai is a nontrivial path in F, we define /(p) = f(an) • • • /(ai).
For an element a = YM=I

 aiPt in ^F, with a, G fe and p, a path for
i = 1,.. . , U we then have /(<J) = $^ = 1 aJipi). We see that / (E l G r 0

 ed = 1-
If ^ = E!=i OiVi ± 0, t hen / ( a ) (^ . e r o ^) = a ± 0, so that / (a) ^ 0. Hence
/ is an injective map, so that /:feF —• I m / is an isomorphism of fe-vector
spaces. Since 1 G I m / and clearly f(p)f{p') = f(pp') G I m / for paths
p and p' in F, it is easy to see that I m / is a fc-subalgebra of End/^fcF).
Hence I m / is a fe-algebra, and there is induced via / a fc-algebra structure
on feF, by defining, for paths p and q in F,

{
pq if e(q) = s(p) and p, g nontrivial,
P Hq = es{ph

q if p = e^),
0 otherwise.

This fe-algebra fcF is called the path algebra of F over fe. Note that
YlieTo ei is t ' i e identity element of feF.

The following is an immediate consequence of the definition.

Proposition 1.1 If k is a field and T a finite quiver, then kT is a finite
dimensional k-algebra if and only if T has no oriented cycles. •

We illustrate with some examples.
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Example Let fc be a field and F the quiver •—>•—••. Then {^1,^2,^3,a,
1 2 3 ^

P,Pcc} is a basis for the path algebra fcF over fc.
As illustration of multiplication of paths we have (e\)(a) = 0, {a)(e\) =

a, (a)(j8) = 0 and (]8)(a) = Pa.

Example Let fc be a field and F the quiver 1 • Qa. Then {eua,a2,...,a\...}
is a fc-basis for fcF, and (al)(a)) = ai+j for i > 0 and j > 0. Clearly fcF
is isomorphic to the polynomial ring k[X] in one variable X over fc, by
identifying a! with X1 for i > 0.

2

Example Let k be a field and F the quiver 1 •+ — 3. Write
y

Pi = ypoc, p2 = ctyp and p3 = pay. Then {p^p^
l
3\i > 0} is a fc-basis for fcF, where pf = e,-.

Example Let fc be a field and F the quiver 2 / 3 • Then

is a fe-basis for feF.

We now show how path algebras of quivers over a field come up nat-
urally in connection with tensor algebras. Associated with the pair
(L,xVx) where I is a ring and V a E-bimodule is the tensor ring
T(Z, V). If we write the n-fold tensor product V ®£ V ® • • • (8)2 V
as Vn, then T(Z, V) = Z LI V ]\ V2 ]J • • J j Fi: ]J • • • as an abelian group.
Writing V° = Z, multiplication is induced by the natural Z-bilinear maps
yi x yj _^ yi+j for f > 0 and j > 0.

We shall use the following criterion for constructing ring morphisms
from tensor rings to other rings.

Lemma 1.2 Let X be a ring and V a X-bimodule. Let A be a ring and
/ : I [ ] F - » A a map such that the following two conditions are satisfied.

(i) / | s : Z —• A is a ring morphism.
(ii) Viewing A as a 2,-bimodule via / | L : Z —• A then f\y: V —• A is a

H-bimodule map.

Then there is a unique ring morphism f: T(E, V) —> A such that /I^TT v =
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Proof Consider the map 0: F x F —• A defined by <f){v\,V2) = f(v\)f(v2)
for v\ and V2 in V. We have for r e Z that (j){v\r,V2) = f(v\r)f(v2) —
f(vi)rf(v2) = f(v\)f(rv2) = </>(vurv2), using that f\v:
V —> A is a Z-bimodule map. Hence there is a unique group morphism
/ 2 : F ® i 7 - > A such that /2(^i ® 1̂2) = /(^i)/(^2)- Considering F ®s ^
as a Z-bimodule in the natural way, it is easy to see that / 2 : K ® i F - ^ A
is a Z-bimodule map. By induction we get a unique Z-bimodule map
fn'-Vn —• A such that fn(v\ ® • • • ® vn) = f(v\) • • • f(vn). Then we define
/ :T (Z ,F ) ^ A by 7(E"=o^) = E"=o/«K) for £ ^ 0 ^ e T(Z, F)
with wn € Fn . It is an easy calculation to check that / is a ring mor-
phism, and / is clearly uniquely determined by / . •

For an artin ^-algebra (/>: R —• Z we only consider those Z-bimodules
V such that rv = vr for all r in R and v in F. Then the ring morphism
xp:R - > 2 1 I 7 U - " 1 I ^ L I - " given by v(r) = (^(r),0,...,0,...) for all
r in .R has its image in the center of T(L, V) because R acts centrally on
Z and V and hence on F1 for all i = 0,1,..., i.e. rv = vr for all r in K
and v in F1 for all i > 0. Thus the ring morphism \p:R^> T(Z, F) makes
T(Z, F) an K-algebra and this is the only way we consider T(Z, F) as
an i^-algebra. Further if in Lemma 1.2 the rings Z and A are .R-algebras
and / : Z ] J F —• A is such that / | s is a morphism of i^-algebras, then
the unique ring morphism / :T(Z, F) —• A such that / | £ T T ] / = / is a
morphism of i^-algebras.

Before beginning our discussion of the connection between path alge-
bras and tensor algebras, it is convenient to make some definitions.

Let k be a field. For each positive integer n we denote by Yln(k) the
fc-algebra which as a ring is k x • • • x fe, the product of k with itself
n times, and has the fc-algebra structure given by the ring morphism
<l>'k-* l\n(k) where </>(*) = (x,...,x) for all x in fc. Let Z = Hn(k) and
let F be a Z-bimodule where fc acts centrally, that is av = va for a e fc
and v G V, and assume that F is finite dimensional over fc. Then the
tensor ring T(Z, F) is a fc-algebra, and we can associate with T(Z, F)
a quiver F = (Fo, Fi) in the following way. The set of vertices Fo is
{l, . . . ,n}. Let €i for i = l , . . . ,n be the idempotent of Z with the ith
coordinate equal to 1 and the other coordinates zero. Then ejVei is a
fc-subspace of F and there will be dimk ejVet arrows from i to j in F.
The quiver F = (Fo,Fi) constructed in this way is called the quiver of
T(Z, F).

For a path algebra fcF denote by J the ideal in fcF generated by all
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the arrows in T. We then have the following connection between tensor
algebras and path algebras.

Proposition 1.3 Let k be afield, and 2 = \[n(k). Let V be a H-bimodule
where k acts centrally and which is finite dimensional over k.IfT is the
quiver of the tensor algebra T(E, V), there is a k-algebra isomorphism
0: T(Z, V) -> fcr such that (j){Y[j>t Vj) = Jl-

Proof We have a fc-algebra homomorphism / : X —» kT with image fcFo
defined by f(a\,a2,...,an) = YTi=\aiei f° r ai m k a n d a ^-isomorphism
/ : V —> kT\ defined by giving a bijection between a chosen basis for
each ejVei and the set of arrows from i to j . Then it is easy to see
that fcFi is a E-subbimodule of kT and that f:V —> fcFi is an iso-
morphism of Z-bimodules when kT is viewed as a E-bimodule via the
isomorphism / : Z —» fcFo. Hence there is by Lemma 1.2 a ring mor-
phism ]:T(L,V) -* fcr extending / : L I J F - • fcr. It is clear that /
is a surjective fc-algebra morphism with /(U/>t F-7') = Jf. We obtain a
fc-basis for V1 formed by elements v\ ® • • • ® vt where there is some path
• —> • —>•••—••—>• in F such that i;, is amongst the chosen basis
it U-i h k _

elements in e^ Veij for j = 1,... , £. Then /(t;i ® • • • (E) vt) is a path from
if to z'o> and^distinct basis elements are mapped to distinct paths. This
shows that / is injective, and hence (f) = f is a fc-algebra isomorphism
with the desired properties. •

We now investigate the indecomposable projective modules for a finite
dimensional path algebra fcr over a field fc. Since fcr is finite dimensional
it follows that T has no oriented cycles by Proposition 1.1. It is then
easy to see that the ideal J generated by the arrows is nilpotent. Clearly
kT/J ^ ke\ x • • • x ken as fc-algebras, where To = {l, . . . ,n} is the set of
vertices of T. Since kT/J is semisimple, it follows from I Proposition 3.3
that J = r, the radical of A = fcr. Hence A is a basic fc-algebra by
II Proposition 2.7. Since 1 = e\ + * * * + en is a decomposition of 1 into
a sum of orthogonal idempotents, we have A = Ke\ I I " ' I I Aen, where
Aet is a projective module for i = 1,... , n, which is indecomposable since
Aet/xet is one-dimensional over fc. Clearly the paths p with s(p) = i
constitute a fc-basis for the indecomposable projective A-module Aet.

A vertex i in T is called a sink if there is no arrow a with s(a) = i and
a source if there is no arrow a with e(<x) = i. Then Aet is simple if and
only if i is a sink.
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The nontrivial paths p with s(p) = i are obviously a basis for xet.
Denote by ai , . . . ,a f the arrows with s(a;) = i. Then any nontrivial path
p with s(p) — i is of the form q<Xj for some j , where q is a path with
s(q) = e(oLj). Hence we have xet = U j = 1 Aee(a.}a; ~ U j = 1

 A^(a ;), so we
have proved that r is a projective A-module. Therefore we have the
following by using I Corollary 5.2.

Proposition 1.4 Let k be a field and F a quiver without oriented cycles.
Then the finite dimensional k-algebra kT is hereditary. •

Actually, one can show that fcF is (left) hereditary even if F has
oriented cycles.

For a finite dimensional path algebra kT with vertex set Fo = {1 , . . . , n}
the indecomposable injective /cF-modules are up to isomorphism of the
form It = Homk(ei(kT)9k) for i = l , . . . ,n. Clearly the paths p with
e(p) = i form a fc-basis for the projective (fcF)op-module e,(fcF). We take
the dual basis consisting of elements p* for paths p with e(p) = i to get
a fc-basis for It. For such a basis element p* and a path q in F we have
(qp*)(u) = p*(uq) when u is a path with e(u) = i. Hence we have

otherwise.

We illustrate the description of the projective modules and their radi-
cals and of the injective modules with some examples.

E x a m p l e L e t k b e a field a n d F t h e q u i v e r • -* •—•- . T h e n {kY)e\ h a s

fc-basis {ei,a,/?a}, (fcF)e2 has fc-basis {e2,f5} and (fcF)e3 has fc-basis {e3}.
We have xei = (fcF)a = (fcF)e2a ^ (fcF)e2 and xe2 = (kT)P = (fcF) 3̂j8 ~
(kT)e3 and xe3 = 0.

The projective (fcF)op-module ^i(fcF) has fc-basis {e\}, so that {e\} is a
fc-basis for the corresponding injective fcF-module I\. Further the injective
fcF-module I2 has fc-basis {e*2,a*} and J3 has fc-basis {^?j8*,(j8a)*}. The
operation of A on J3 is illustrated by e3/T = 0, e2p* = /T, a(j8a)* = /T
and pp* = e\.
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Example Let fc be a field and F the quiver 2 • ^ • 3 . Then

4

has fc-basis {ei,a,j8,ya,<5/}}, (fcF)^ has fc-basis {e2,y}9 (fcF)^ has fc-basis
{̂ 3,(5} and (/cF)^4 has fc-basis {24}.

We have rei ~ (fcF)^ U(feF)^3 and r^2 — {kY)e$ ~ re3 and r^4 = 0.
The injective feF-module /1 has fc-basis {ej}, I2 has fc-basis {e5,a*},

/3 has fc-basis {e*3,p*} and J4 has fc-basis {e*49y*9S\(ya)m
9(5py}. The

operation of A on I4 is illustrated by a(ya)* = 7* and /?(ya)* = 0.

We next want to study the connection between modules over path
algebras and representations of the quivers.

Let C be a module over the path algebra fcF. Then C = \Jiero eiC
gives a decomposition of C into a finite sum of vector spaces over fc.
And if a is an arrow from i to j , then left multiplication by a induces
a fc-linear map from etC to ejC. This motivates the following definition,
which gives us a concrete way of viewing the modules over path algebras.

A representation (V9f) of a quiver F over a field fc is a set of vector
spaces {F(i)|i e Fo} together with fc-linear maps / a :F( i ) —• V(j) for
each arrow oc:i: —> j . We here assume that the representations are finite
dimensional, that is, each V(i) has finite dimension over fc.

A morphism h:(V,f) —> (V'9f) between two representations of F over
fc is a collection {ht: F(f) —• Vf(i)}ier0 of fc-linear maps such that for each
arrow a: i —• 7 in F the diagram

F(i) ^ V\i)

commutes. If / i : (F, / ) - • (V'Jf) and g^K' , / ' ) -> (K",/") are two
morphisms between representations then the composition gh is defined
to be the collection of maps {giht:V(i) —• V"(i)}. In this way we get
the category of (finite dimensional) representations of F over fc, which we
denote by Rep F. We introduce some basic terminology in Rep F.

We say that an object (F , / ) is a subobject of an object (V'Jf) in RepF
if V(i) c: V'(i) for all i € Fo and / a = f'Jv(i) fo* each arrow a:i —> j .
For a morphism h:(V,f) —• (F7,/ ') we define the kernel Ker/i to be
the subobject {WJ") of (F , / ) defined by W(i) = Kcrht for i e Fo and
f^ = /a|^(j) for each arrow a: i —> y. We here use that /a(Ker hi) c Ker /i7-
for each arrow a: 1 —> j9 which is easy to see. Further we define the image
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Imft of ft to be the subobject (U,g) of (F',/') defined by U(i) = Imft; and
ga = f'Jimh. for each arrow a: z —• j . The object (F,/) where F(i) = 0 for
all i G To and / a = 0 for all a G Fi is the zero object in Rep F. It is easy
to see that a morphism ft:(F,/) —> (F',/ ;) is a monomorphism in RepF
if and only if Kerft = 0 and that ft is an epimorphism if and only if
Imft = (V'9f). Clearly ft is an isomorphism if and only if ft,-: V(i) —• F'(z')
is an isomorphism for all z G Fo. We say that a sequence of morphisms
(VJ)^ (V',f) - i (F"J") is exact if Img = Kerft. This is clearly the
case if and only if the induced sequences V(i) -* V'(i) -> V"(i) are exact
for all i G To.

A sum of two objects (F,/) and (V\f) in RepF is the object (W,g)
where W(i) = V(i) U 7'(i) for each i G Fo and ga = /« U / i for all oceTh

An object (F,/) is said to be indecomposable if it is not isomorphic to the
sum of two nonzero representations. An object (F,/) is simple if it has
no proper nonzero subobjects. A simple object is clearly indecomposable.
For each vertex z G Fo we have a simple object (St,f) given by St(i) = k
and St(j) = 0 for j ^ i, and by / a = 0 for each arrow a G Fi. We leave
to the reader to check that Rep F is a fc-category.

We illustrate with some examples.

aa
E x a m p l e L e t k b e a field a n d F t h e q u i v e r 1 ^ - 2 . L e t F b e t h e

P
1 a~l

representation k =$ k and PF the representation k^k, where a ^ 0 in fc.
a 1

Then we have an isomorphism h:V ^> W given by h\ = 1& and ft2: k —> k
being multiplication by a~l.

Example Let k be a field and F the quiver • Qa. For each 1G/C there is
a simple representation (Sx,f^) given by 5^(1) = k and /^:/c -^ k being
multiplication by A. It is easy to see that if X ^ X then (S^f^) and
(Sx',fa) are not isomorphic in RepF.

We now want to show that the categories RepF and f.d.(fcF) are
equivalent, where f.d.(fcF) denotes the category of /cF-modules of finite
/c-dimension. We start by defining functors F :RepF —• f.d.(feF) and

For (F,/) in RepF we define F(V,f) to be LLer0 V(i) as a /c-vector
space. For each arrow a: i —> j we have a fc-linear map / a : V(i) —> F(7*).
If we denote by ni'.F(V9f) —• F(z) the projection and by &:F(z) —>
F(V,f) the inclusion according to the decomposition of F(F,/), there
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is induced a map Ja = €jfani:F(VJ) - • F(VJ). For the trivial path
et we have the induced map fe. = €ifeini'.F(V,f) - • F(V,f) where
U = 1 K ( 0 : K ( 0 _ - > V(i). Then J:kT0 -> Endk(F(VJ)) is a fe-algebra
morphism and /:fcFi —• Endfc(F(F,/)) a fcFo-bimodule morphism. Hence
there is by Lemma 1.2 and Proposition 1.3 a unique fe-algebra morphism
/ : fcF - • Endk(F(VJ)) extending/, so that F(VJ) becomes afeF-module.

Let h:(V,f) —• (V',f) be a morphism in RepF. Then we have a
fe-linear map hi: V(i) —> F'(z) for each i G Fo, and hence an induced map
of vector spaces h:F(V,f) —> F(Vf,f). For each arrow a:i -> 7 in Fi
we haveji7 /a = faht: V(i) -> F'(;). Hence we have /z/a = 7 ^ , j>o that
we get hfa = fGh for each o G feF. In other words, h(av) = <rh(v) for
v e F (F , / ) , so that h is a feF-map. Then we define F(h) = h. It is now
straightforward to see that F: Rep F —• f.d.(feF) is a fe-functor.

We next want to define a functor H :f.d.(feF) —• RepF. Let C be in
f.d.(feF). Since 1 = e\ + • • • + en is a sum of orthogonal idempotents in feF,
we get a sum of vector spaces C = LLer0 tyC. For each a G feF we have
a map fa:C^>C defined by fG(c) = crc. If a:i: ^« j is an arrow in F we
have a(ejC) = ejCcC a ejC, so that a induces by restriction a fe-linear map
foc'.etC —• e/C. We now define H(C) to be the representation given by the
fe-vector spaces e\C for each i e Fo together with the maps fa :etC —> ^ ;C
for each arrow a: i —• 7.

If h:B -> C is a morphism in f.d.(feF), we have h(etB) c e,-fc(5) c ^C,
so we get by restriction a fe-linear map \i\\e\B —> etC. For an arrow
a:i -» 7 we have a/z(fc) = /*(ab) for b e B, and hence a/ii(fc) = /i7(afo)
for b G e;£. In other words we have fahi(b) = hjfa(b\ so by letting
H(h) = {hi} we get that H(h):H(B) -> H(C) is a map in RepF. It is
straightforward to show that if is a functor from f .d. feF to Rep F.

We can now prove the following.

Theorem 1.5 Let k be a field and F a finite quiver. Then the functors
F : R e p F —• f.d.(feF) and H :f.d.(feF) -> RepF are inverse equivalences of
k-categories.

Proof Let (VJ) be in RepF. Then F(VJ) = Uier0
 F(0 a n d eiF(vJ) =

fei(F(V,f)) = £i(V(i)). If (x:i —> j is an arrow in F, the fe-linear map
f*'.V(i) - • V(j) induces the fe-linear map fa:F(V,f) -• F(VJ). The
restriction of/a to &(F(0) gives a fe-linear map fa:ii(V(i)) -
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For each arrow a: i —> j we have the commutative diagram

if. if.

Using that HF(V,f) is the representation given by the collection
{€i(V(i))}9 we get that £ = {&} gives an isomorphism £ : (F , / ) ->
HF(V9f). It is not hard to verify that £ is an isomorphism of func-
tors from lRePr to HF.

Let now B and C be in f.d.(fcF), and / : £ —• C a fcF-map. Then we
have the commutative diagram

B -4 C

where fi'.etB —> e\C are the restriction maps. From this it follows that
we have an isomorphism of functors from lf.d.(/cr) to FH. •

Since there are finite dimensional fc-algebras which are not hereditary,
not every basic finite dimensional fc-algebra, even when fc is algebraically
closed, is isomorphic to the path algebra of a quiver. But as we shall
see later on in this section, if A is a basic finite dimensional algebra
over an algebraically closed field fc, then A is a factor of a path algebra
feF for some finite quiver F. Therefore mod A is a full subcategory of
f.d.(feF), and is hence equivalent to some subcategory of RepF. In order
to describe this subcategory we are led to the following definitions.

A relation ( r o n a quiver F over a field k is a fc-linear combination
of paths G = a\p\ + • • • + anpn with at G k and e(p\) = • • • = e(pn) and
s(p1) = • • • = s(pn). We here assume that the length Z(p,-) of each pt, that
is the number of arrows in each path, is at least 2. If p = {at}teT is a set
of relations on F over fe, the pair (F, p) is called a quiver with relations
over k. Associated with (F,p) is the fc-algebra fc(F,p) = fcF/(p), where
(p) denotes the ideal in fcF generated by the set of relations p. We have
by assumption (p) cz J2, where J is the ideal of fcF generated by all the
arrows in F.

We are mainly interested in the algebras fc(F,p) where J1 cz (p) cz J2

for some integer t. These are clearly finite dimensional, and we have the
following description of the radical, where for an element x in fcF we
denote by x the corresponding element in fc(F, p).
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Proposition 1.6 Let k be afield and (F,p) a quiver with relations over fc.
Assume that Jl a (p) c J2 for some t. Then the image J of J in fc(F, p) is
radfc(F,p).

Proof We have J = 0 and fc(F,p)/J ~ Yln(k), where n is the number of
vertices of F. In particular fc(F, p)/J is semisimple. It then follows from
I Proposition 3.3 that 1 = radfc(F,p). •

Note that fc(F, p) may be a finite dimensional algebra without J being
the radical as we now show.

Example Let k be a field and F the quiver • Oa and p = {a3 — a2}. Then
fc(F,p) = fcF/(a3 - a2) - k[X]/(X3 - X2) ~ (fc[X]/(X2)) x fc and J has
/c-basis {a, a2}. But a is not in the radical of fc(F,p).

We now want to describe the indecomposable projective A-modules
when A = fc(F,p) for a quiver with relations (F,p) such that J1 cz (p)
for some t. We have that 1 = Z^er0 ^ is a decomposition of 1 into a
sum of orthogonal idempotents, and A = LLero A^. We see that Ae, is a
projective cover of the simple module associated with the vertex i, and is
hence indecomposable. Since the elements p in A where p is a path with
s(p) = i generate Aet as fc-vector space, we can always find a fe-basis for
Aet consisting of elements p where p is a path with s(p) = i.

We illustrate with some examples.

E x a m p l e L e t fe b e a field a n d F t h e q u i v e r • A • — • • — > • . L e t p b e
1 2 3 4 ^

the set of relations {j8a,yj8} for F over fe. Then {/?a, y/?, y/?a} is a fe-basis
for the ideal (p), and {^i,^2?^3?^4?a,j?,y} is a fe-basis for the algebra
A = fc(F,p). The module Ae\ has fe-basis {^i,a}, A^2 has fc-basis {^2,j8},

has fc-basis {£3,7} and A^4 has fc-basis {£4}.

Example Let fc be a field and F the quiver 2 / ' 3 • ̂ e t P c o n s i s t

\ /

of the relation ya — 5 fi on F over fc. Then for A = fc(F, p) we see that Ae\
has fc-basis {^i,a,j8,ya}. Further, A^2 has fc-basis {^2,7}, A^3 has fc-basis
{̂ 3,(5} and A^4 has fc-basis {£4}.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.004
https://www.cambridge.org/core


60 Examples of algebras and modules
2

Example Let k be a field and F the quiver 1 <i-——^ 3 and p =
y

{Poc,yP,ocy} a set of relations on F over k. Then A = fc(F,p) has fe-basis
{ei,e2,e3,a,P,y} and Ae\ has fc-basis {e\,a}9 Ae2 has fc-basis {e2,fi} and

has fc-basis fa.y}.

For a quiver with relations (F, p) over a field fc we define the category
Rep(F, p) of representations to be the full subcategory of Rep F whose
objects are the (V,f) with fa=0 for each relation o in p. Then we get
the following.

Proposition 1.7 Let k be a field and (F, p) a quiver with relations over
fe. Then the functor F: Rep F —• f.d.(feF) induces an equivalence of k-
categories between Rep(F,p) and f.d.(fe(F,p)).

Proof If (F , / ) is in Rep(F,p), then by definition the map fa is zero for
all G in p. Hence crF(VJ) = 0, so that F(VJ) is a fc(F,p)-module.

If conversely F(V,f) is a fc(F,p)-module, then aF(V,f) = 0 for all o
in p, so that fG=0 for all cr in p. Hence (V,f) is in Rep(F,p). In view
of Theorem 1.5, this finishes our claim. •

Note that we have f.d.fc(F,p) = modfe(F,p) when Jl a (p) <= J2 for
some t. We then get the following consequence of F being an equivalence
of categories by using II Proposition 1.3.

Proposition 1.8 Let k be a field and (F, p) a quiver with relations over k
such that Jx cz (p) c J1 for some t, and let F:Rep(F,p) —• modfe(F,p) be
the above equivalence. Then we have the following.

(a) An object (F , / ) in Rep(F,p) is protective (respectively injective, sim-
ple, indecomposable) if and only if F(V,f) is projective (respectively
injective, simple, indecomposable) in modfe(F,p).

(b) A sequence (U,f) —• (V,g) —> (W,h) in Rep(F,p) is exact if and
only if the induced sequence F(U,f) —• F(V,g) —> F(W,h) is exact
in modfe(F, p).

Proof Since F is an equivalence of fc-categories we know by II Proposi-
tion 1.3 that (V,f) is projective (respectively injective) in Rep(F,p) if and
only if F(V,f) is projective (respectively injective) in mod/c(F,p). The
rest is an easy consequence of the definitions. •
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Whenever it is convenient we shall view the equivalence between
Rep(F,p) and modfc(F,p) as an identification. It is useful to describe
the projective, injective and simple objects in Rep(F, p) directly. We also
interpret the ordinary duality D and the duality HoniA( ,A) on projec-
tives in the context of representations when A = fc(F, p). In addition we
interpret the radical and the socle of a module in the category Rep(F, p),
and also the Grothendieck group. For these interpretations we assume
that Jl cz (p) cz J2 for some t.

We have considered simple objects St in Rep(F,p), for each i e To,
which are in one to one correspondence with Fo and hence with the simple
fc(F, p)-modules. Therefore there are no other simple representations of
(r,p).

Let Pt = Aet be an indecomposable projective A-module where A =
fc(F,p), and let (F,/) = H(Pt) be the corresponding representation of
(F, p). Then we have by definition that V(j) = ejPt. If we start with
a fc-basis for P, consisting of elements p where p is a path in F with
s(p) = i9 we get a fe-basis for V(J) by picking the basis elements p where
e(p) = j . If a;? —• / is an arrow, we get a map / a : V(i') —> V(f) by
defining fa(p) = ocp when e(p) = ir.

For a quiver F with set of vertices {l, . . . ,n} we denote by Fo p the
quiver having the same set of vertices. For each arrow a: i —• j in F
there is an arrow aop :j^>i in Fop . For a path p = ocn • • • ai in F let pop

be the path a^p • • • a£p in Fop . For a relation a in F over fc, denote by
<7op the induced relation in Fo p . Then we have fc(F,p)op ^ /c(Fop,pop).
For the finite dimensional algebra A = /c(F, p) we have an isomorphism

e,)* = HoniA(Ae;, A) ^ etA = A o p ^ p given by sending g: Aet —> A to

When (F,/) is in Rep(F,p) we want to describe the representation
of (Fop,pop) which corresponds to the fe(F,p)op-module DF(VJ). We
denote this representation by (D(F),D(/)). As a /c-vector space DF(V,f)
is £>(UiGr0 ^(0) = Homjfe(IJl.Gro V(i),k). For the vertex i the vector space
D(V)(i) is e°»DF(VJ) = D(eiF(VJ)) = D(V(i)) = Hom*(7(i),fc), where
we identify etF(V,f) with V(i). This describes the vector space of the dual
representation as the dual spaces at each vertex. Next consider an arrow
oc:i —• j and the corresponding linear map fa'V(i) —> V(j). Applying
the duality with respect to the field we get a map D(fa):D(V(j)) —>
D(V(i)) given by D{fa){t)(v) = t(fa(v)) for t in D(V(j)) and v in V(i).
Now let D(/)aoP = D(/a). It is straightforward to verify that if (VJ)
is in Rep(F,p) we get that (D(F),D(/)) is in Rep(Fop,pop) and that
DF{V,f)~F(D(V),D(f)).
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62 Examples of algebras and modules

We now get the following way of interpreting the duality for the
simple, projective and injective representations. If (Suf) is the simple
representation in Rep(F,p) corresponding to the vertex i we know that
Si(j) = 0 for j ^ i and Si(i) is a one-dimensional vector space and / a = 0
for all arrows a. Hence (D(Si),D(f)) is obtained by taking the dual space
D(Si(i)) at the vertex i in Fo p which is also one-dimensional and with all
maps being zero.

Consider the projective representation (V9f) in Rep(F,p) correspond-
ing to the vertex i of F. We have vector spaces V(i) for i e Fo and mor-
phisms U for a e T{. Then (D(V),D(f)) is obtained by D(V)(i) = D(V(i))
for i e F£p and D(f)aoP = /)(/«) for a°P € F ^ . But we have that
(V9f) is a projective representation if and only if F(V,f) is a projective
fc(F,p)-module. It then follows that DF(VJ) is an injective /c(F,p)op-
module. But /c(F,p)°P = /c(F°P,p°P) and hence (D{V\D(f)) is an injective
representation in Rep(rop, pop).

Conversely starting with the projective representations in Rep(rop ,pop)
and taking their duals we get the injective representations in Rep(F,p).
From linear algebra it is well known and easy to see that if / : V —• W is
a linear map between finite dimensional fe-vector spaces represented by a
matrix M relative to bases & and %> in V and W respectively, then using
the dual bases &* of D(V) and ^* of D(W) respectively one gets that
the matrix representing £>(/) with respect to these bases is the transpose
of the matrix M. In this way one gets an easy way of describing the
injective representations of (F, p) as we will show on examples.

Identifying modules with representations, the duality ( )*:^(A) —>
^(Ao p) between projective left and right A-modules induces a duality
also denoted by ( )* between the projective representations of (F, p) and
of (ro p ,po p) , when Jl c (p) <z J2 for some t. If Pt is the indecomposable
projective representation corresponding to a vertex i in F, then P* is the
projective representation of (ro p ,po p) corresponding to i.

If (V,f) is a representation of (F,p) we want to describe the subrepre-
sentation x(V,f) = (U,f) of (V,f) corresponding to the /c(F, p)-module
xF(VJ) and the subrepresentation soc(F,/) = (WJ") of (VJ) corre-
sponding to the /c(F, p)-module socF(F, /) . Since r is generated by the
arrows, we have U(i) = J]e(a)=i/a(^(5(a)))' tne subspace generated by the
images of the maps / a to V(i). For each arrow cz:i —• j let fa be fa\u(i)
which clearly is a fc-linear map from U(i) with image in U(j). Further
we have W(i) = p| s ( a ) = IKer/a , consisting of the elements which go to 0
by all maps / a from V(i). Clearly /a(W(0) = 0 f° r e a c n arrow a:f —> 7
so we let /;r = 0.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.004
https://www.cambridge.org/core


III.l Quivers and their representations 63

We also note that the associated elements in the Grothendieck group
have a simple description when we start with a representation ( 7 , / ) of
(F, p). If Si denotes the simple fc(F, p)-module corresponding to the vertex
i, then the associated element [F(7,/)] of ( 7 , / ) in the Grothendieck
group K0(modfc(r,p)) is £,-er0 dim* 7(i)[S*].

We now illustrate the various interpretations on concrete examples.

Example Let fc be a field and F the quiver • A • — • • — > • . Then
F M 1 2 3 4

aop ^op ^op

F o p is the quiver •<—•<—•<—•. The projective fcF-module Pi = Ae\
1 2 3 4

which has the fe-basis {ei,a,/?a,y/?a} corresponds to the representation
fc —• fc —> fe —> fe and Px* corresponds to the representation fe <— 0 <— 0 <— 0
of r o p . The module P2 = Ae2 has fc-basis {e2,/?,y/?} and corresponds

to the representation 0 —• fc —• fc —• fc, whereas P2* corresponds to the

representation fc<^-fc<-0<-0of r o p . Then U = D(P{) corresponds to

the representation fc —• 0 —• 0 —• 0 and 12 = ^)(P2*) to the representation

fc—»fc—•()—•OofF. Note that we could here also use the explicit
description of the injective fcF-modules given earlier in this section.

If we consider the relation p = {7/?} on F, then the representation

corresponding to the projective fc(F, p)-module Ae2 with fc-basis {e2,/?}

is 0 —> fc —• fe —> 0. The representation corresponding to the projective

fe(F, p)op-module (Ae2)* is fe<— fe <— 0 <— 0. The representation corre-

sponding to the projective fe(F, p)-module Ae4 i s 0 ^ > 0 - ^ 0 ^ ^ f e and to

the injective module U is 0 —• 0 —> fc —> fe.

Example Let fc be a field and F the quiver 1 • =£ -2. Then Fo p is the

quiver 1 • $= -2. Let (F , / ) be the representation fe =$fe of F, where

has fc-basis {w}, V(2) has fc-basis {t;} and /a(w) = u and /^(M) = av,
where a G fc. Let {w*} and {t;*} be the dual basis for D 7(1) = 7(1)*
and D7(2) = 7(2)* respectively. If we write D(VJ) = (DV,Df), then
(Df)Mv*)(u) = v*(fa(u)) = v*(v) = 1, so that (Df)Mv') = u* and
consequently (D/)aoP = /*. Further we have (Df)poP(v*)(u) = v*(fp(u)) =
v*(av) = a so that (Df)poP(v*) = au*. Hence D(V,f) is the representation

fc ^ fc of Fo p .
a

The projective fc(F)-module Pi has fc-basis {ei,a,/?} and corresponds
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64 Examples of algebras and modules

U
to the representation k =£ k ]J k where fa(b) = (b, 0) and fp(b) = (0, b) for

U
b G fc. The projective fc(r)-module Pi has /c-basis {̂ 2} and corresponds

to the representation 0 =£ fc. The projective ferop-module Px* corresponds

to the representation k £: 0 of Fo p and P2*
 t o ^ ]Jfc J= >̂ where ga°p(c) =

g/?°P

(c,0) and gpoP(c) = (0,c) for c G fc. The injective fc(r)-module I\ = DP{
fa.

corresponds to k z% 0 and /2 = DP2 to fe ]J fc =£ fe where /a(fo, c) = b and

fp(b9c) = c for fc, c in k.

Let (F,/) be the representation k]\k]\kzikY[k where /« = (J ? 0)
h

and /^ = (0 0 1) ^lative to the standard bases for k ]J k ]J k and /c ^ fc.
Then an easy calculation shows that D(V,f) = (DV,Df) is the repre-

W)«°p
sentation fe]J/cU/c t= fe]J/c when D(nk) is identified with nk through

dual bases, where (Df)^? = M ? j and (/)/)/?<* = (J ?) relative to the
standard bases. We see that the dual is given by the transposed matrices,
when we are using dual bases.

Example Let F be the quiver

and (F,/) the representation

k

where fa(a) = (a,0), ffab) = b and fy(a,b) = a-b. If x(VJ) = (UJf),
then 1/(1) = 0 since no nontrivial path ends at 1, 1/(2) = Im/ a = /c]JO,
U(3) = fc, and L/(4) = k. Hence the radical x(V,f) is the representation

where clearly gy = 1 and gp = 0.
We now want to compute soc(F,/) = (W,ffr). Using that socF(F,/) =
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I I LI Quivers and their representations 65

{v e JJ"=1 V(i)\xv = 0}, we have W(3) = k = W(4) since no arrows start
at 3 or 4. W(2) = Ker/^ n Ker/y = 0 and W(l) = Ker/ a = 0.

The element [F(V,f)] corresponding to (V,f) in the Grothendieck
group is [S\] + 2[S2] + [S3] + [S4], where S,- is the simple fcF-module
corresponding to the vertex i.

Our aim now is to show that every basic finite dimensional algebra
over an algebraically closed field fc is isomorphic to some fc(F, p). To this
end it is convenient to have the following definitions. A finite dimensional
algebra A over a field k is said to be elementary if A/r ~ Y[n{k) for some
n as fc-algebras. When A is an elementary fc-algebra we call the quiver
of the tensor algebra T(A/r,r/r2) the quiver of A. We first show that
every elementary fc-algebra is isomorphic to some fc(F, p) and then show
that every finite dimensional algebra over an algebraically closed field k
is elementary, completing the proof of our desired result.

Theorem 1.9 Let A be a finite dimensional elementary k-algebra.

(a) Let {e\9...9en} be a complete set of primitive orthogonal idem-
potents in A, and { r i , . . . , r j a set of elements in x such that the
images r\9...9rt in r/r2 generate r/r2 as a A/x-module. Then
{eu...,en9ri,...9rt} generate A as a k-algebra.

(b) There is a surjective ring homomorphism / : T(A/r,r/r2) —> A with

(c) A ^ fc(F, p) with Js a (p) a J2 for some s, where T is the quiver of
A and p is a set of relations of T over k.

(d) If A~ fe(F, p) with Jl cz (p) cz J2 for some t, then T is the quiver of
A.

Proof (a) We prove this by induction on the Loewy length rl(A). For
rl(A) = 1 we have A ~ Yln(k) and A is hence generated as a fe-algebra by
the idempotents e\ for i = l , . . . ,n. For rl(A) = 2 the result is then easy
by the assumption on r i , . . . , r t . Assume now that the claim holds for
rl(A) = m > 2 and assume that rl(A) = m + 1. Let A be the fc-subalgebra
of A generated by eu...9en9ru...,rt, and let x e A. By the induction
assumption we have A/(A Pi rm) = A/rm. Hence there is some y G A
such that x — y is in rm, and therefore there are a,- in rm - 1 and /?; in r
such that x — y = X^=i a*A- Again by the induction assumption we have
at = ai + af

t with ateAn xm and a[ e xm and /?,- = bt + b\ with bt in A n r

and b\ in rm. We then get a;/?; = a\b[ for all i — 1,..., s, so that x — y is in
A. Since y is in A, we conclude that x is in A9 and this finishes our claim.
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66 Examples of algebras and modules

(b) Let e\9..., en be a complete set of primitive orthogonal idempotents
in A, and denote by et the image of et in A/r. For each pair of integers
U j with 1 < i9j < n, choose elements {ys} in ejXet such that if Js

denotes the image in r/r2, then {ys} is a fc-basis for ^ ( r / r 2 )^ . Define
/ : (A/r) ]J(r/r2) -* A by /(£,-) = e, for i = 1,..., n and f(ys) = ys for each
chosen element ys in r. Then f\\/t: A/r —» /(A/r) is a ring isomorphism
and / | r / r2: r/r2 —> /(r / r 2 ) is an isomorphism of (A/r)-bimodules. By
Lemma 1.2 there is then a ring homomorphism / : T(A/r,r/r2) —• A
such that /l(A/r)TT(r/r2) = /• I* follows from (a) that / is surjective.
Since 7((r/r2)>) <= Xi <= r2 for j > 2 and 7l ( A / t ) I J ( t / t 2 ) : (A/r)U(r/r2) -
A is a monomorphism with image intersecting r2 trivially, it follows
that Ker/ <= U;>2(r/r2y. Since J((t/x2)j) = 0 for 7 > rl(A), we have

7
(c) Let F be the associated quiver of T(A/r, r/r2). From (b) we have the

surjective /c-algebra morphism / : T(A/r,r/r2) ^> A with U;>ri(A)(r/r2)"/ c

Ker / c Uy>2(r/r2)y- Since by Proposition 1.3 there is a fc-algebra
isomorphism cj>: T(A/r,r/r2) -> fcF with </>(IJ7>n(r/r2)7) = «̂ n w e S e t t h a t

f^^-.kY —• A is a surjective fc-algebra morphism where / = Ke^ /^" 1 )
has the property that Js a I c J 2 for some integer s. Then / is a finitely
generated ideal in kT since Js is finitely generated in kT and 7/J s is
a finitely generated ideal in the artin algebra kT/Js. For each a from
a finite set of generators for the ideal / , write o = Y^\<ij<mejGei a n ^
replace o by the ejoet for 1 < i,j < m, which are relations on F over k.
This gives us a finite set of relations p on F with (p) = / .

(d) If A ^ fc(F,p) with J1 cz (p) cz J2 for some t, then it follows
from (b) that A/r2 ~ kT/J2 as fe-algebras. Since it is easy to see that F is
the quiver ofkT/J2, we get that F is the quiver of A/r2 and hence of A. •

Corollary 1.10 Let A be a basic finite dimensional algebra over an alge-
braically closed field k.

(a) A is an elementary k-algebra.

(b) A is isomorphic to fc(F, p) where F is the quiver of A.

Proof (a) In order to show that A is elementary, it suffices to show that
the basic semisimple algebras over the algebraically closed field k are
elementary. So let k be an algebraically closed field and E a semisimple
basic fc-algebra. Then Z = k\ x • • • x kn where the kt are division rings.
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III.l Quivers and their representations 67

Let 71,:E —• k\ be the ith projection and let (j)\k —> £ be the inclusion
making Z a fc-algebra. Then nrfik —• fc* makes fc; a finite dimensional
division ring extension of k. But k being algebraically closed implies
that Ui(j) is an isomorphism. Now identifying each fcj with k through the
isomorphism TC,-0 gives that Z is isomorphic to Yln(k) as a fe-algebra.

(b) This is an immediate consequence of part (a) and Theorem 1.9. •

It is worth noting that if A is an elementary fe-algebra and A is
isomorphic to fc(F,p), then T is, up to isomorphism, determined by A
but neither p nor the ideal (p) in feF is determined by A.

We have seen that the path algebra feF of a quiver without oriented
cycles over a field fe is hereditary. Using Theorem 1.9 we can show that
any elementary hereditary algebra over a field fc is isomorphic to a path
algebra feF. To do this we need the following results on hereditary artin
algebras.

Lemma 1.11 If A is a hereditary artin algebra and a a nonzero ideal of A
contained in x2, then A/a is not hereditary.

Proof Let A be a hereditary artin algebra and a c r2 a nonzero ideal
of A. Consider the exact sequence 0 —> ct/(ct r) —> r/(ct r) —• x/a'—> 0
of (A/ct)-modules. Since r is a projective A-module we have that x/(a r)
is a projective (A/a)-module. Also a ^ 0 implies that a/(a r) ^ 0 by
Nakayama's lemma, and hence r/(ct r) qk x/a. Now using that a c r2 we
get a/(a r) c X\/a(x/(a r)) and therefore x/a x —• x/a is a projective cover
which is not an isomorphism. Hence x/a is not a projective (A/a)-module
and therefore A/a is not hereditary. •

Lemma 1.12 Let A be a hereditary artin algebra and f:P^>Qa nonzero
morphism in mod A with P and Q indecomposable A-modules and Q a
projective module. Then f is a monomorphism and P is a projective module.

Proof Since / is nonzero Im / is a nonzero submodule of Q. Since Q is
projective and A is hereditary, it follows that I m / is projective. Hence
f:P —• I m / is a split epimorphism. Therefore f:P —> I m / is an isomor-
phism since P is indecomposable. Thus / : P —> Q is a monomorphism
with P projective. •

We now have the following.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.004
https://www.cambridge.org/core


68 Examples of algebras and modules

Proposition 1.13 Let A be a finite dimensional elementary hereditary alge-
bra over afield k. Then the associated quiver F of A has no oriented cycles
and A is isomorphic to kT.

Proof If there is an arrow a: i —• j in the quiver F of A, then by definition
ej(x/x2)ei is not zero, where i and j are the vertices corresponding to the
idempotents et and e7. Then efcei is not zero, and a nonzero element x
in ejxet gives by right multiplication a nonzero A-homomorphism from
Pj = Aej to Pt = Aet which is not an isomorphism but which must be a
monomorphism by Lemma 1.12. Hence an oriented cycle in the quiver
would give rise to a sequence of proper monomorphisms from some Pt

to itself. Since this is impossible, F has no oriented cycles.
Since A is assumed to be elementary, we have by Theorem 1.9 that

A ~ kT/(p) with (p) <= J2. Since A is hereditary, it follows from
Lemma 1.11 that (p) must be 0, and consequently A is isomorphic to fcF.

•

Since any basic finite dimensional algebra over an algebraically closed
field k is the factor algebra of the path algebra of the associated quiver,
it is useful to have various descriptions of the associated quiver.

Proposition 1.14 Let A be a basic finite dimensional algebra over an alge-
braically closed field k and 1 = e\ + • • • + en a decomposition of 1 into a
sum of primitive orthogonal idempotents. Let Pi = Ae,- and Si = Pi/xPifor
i = 1,. . . , n. Then for a given pair of numbers i, j in {1 , . . . , n} the following
numbers are the same.

(a) dimk(ejx/x2ei).

(b) The multiplicity of the simple module Sj in xPi/x2Pi.

(c) The multiplicity of Pj in P where P —> Pt —> St —• 0 is a minimal
protective presentation of Si.

(d) \

Proof For each i G {l, . . . ,n} we have the exact sequence 0 —> xPt —•
Pt —• Si; —• 0 where Pt —> S,- is a projective cover. Applying HoniA( , Sj)
we obtain the exact sequence of fe-vector spaces 0 —> HomA^;,^) —•

HomA(P,-,S/) -^ HomA(rPi, S/) - • Ext^SuSj) - • 0. Since h must be
zero, we have HomA(rPj,5;) ^ Ext\(S/,S/). But now HomACrP;,^) =
HomA(rPj/r2Pj,S/) and d imkHomA^,^ ) is 1 if p = q and 0 otherwise.
Hence we obtain dim^ Ext^Sj, Sj) = dim/c HoniA(rPj, Sj) =
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I I I.I Quivers and their representations 69

2Pi9Sj). But the last number is clearly the multiplic-
ity of Sj as a summand of rPj/r2P, which again is the multiplicity of P,
as a summand of the projective cover P of xPi/x2Pi. However the projec-
tive cover of xPt/x2Pi is the same as the projective cover of rP,. Hence we
have established the equality of the numbers in (b), (c) and (d). Further
we have that dimfe(HomA(rPI/r

2PI,57)) = dimfc(HomA/r(rPiA2Pi,S/)) =
dimk(HomA/x(Sj,xPi/x2Pi)) = dim^HomACP^rPj/r2^)). But we have
HomA(P7,rmPj) ~ €jXm€i (see I Proposition 4.9), and hence
dim/c(HomA(tPl/r

2Pi,5;)) = dimfc^r/r2^). This finishes the proof of
the proposition. •

Motivated by Proposition 1.13 we associate with any artin algebra
A a valued quiver, that is, a quiver with at most one arrow from a
vertex i to a vertex j , and with an ordered pair of positive integers
associated with each arrow. This is done by writing an arrow from i
to j if E\t\(Si,Sj) =£ 0, and assigning to this arrow the pair of integers
(dimEndA(Sy)Ext\(SIsS70,dimElldA(Sf)OpExti(SI-,Si/)). When A is elementary
this corresponds to replacing m arrows from i to j by one arrow with
valuation (m, m).

Another way of interpreting these numbers is given in the following
proposition which we leave to the reader to verify.

Proposition 1.15 Let A be an artin R-algebra.

(a) Let P\ —» Si and P2 —• 52 be projective covers of the simple modules
S\ and S2 respectively. Then the following numbers are the same.

(i) dimEndA(s2) Extj^Si, 52).

(ii) lR(Ext{(Su S2))/lR(EndA(S2)).
(iii) The multiplicity of the simple module S2 as a summand of

(iv) The multiplicity of P2 as a summand of the projective cover of

rPi.

(b) Let S\ —> Ii and S2 —> I2 be injective envelopes of the simple modules
S\ and S2 respectively. Then the following numbers are the same.

(i) dimBnd ŝoop Ext\(Si, S2).
(ii) The multiplicity of I\ as a summand of the injective envelope

ofl2/socl2. •

Note that the valued quiver of the opposite algebra of A has the
opposite underlying quiver but the valuations are the same. This is easily
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70 Examples of algebras and modules

seen from the fact that Extj^S,-, Sj) ^ 0 if and only if Extj^DS;, DSt) =£ 0
and that dimEndA($)°p Ext\(S,-, S,-) = dimEndA(D^) E x t ^ (DS,-,DS/).

We illustrate with the following.

Example Let k be a field and T3(fe) = H ^ ) t h e fe-subalgebra of the
full 3 x 3 matrix algebra M^(k) over k consisting of 3 x 3 matrices
where all entries above the main diagonal are 0. Let / be the ideal
consisting of elements of the form (2°g ] for a e fc, let A = T?,(k)/I

, „ / 1 o o \ / o o o \ „ / o o o \

and let ex = ( jooj + / , e2 = ( j j g j + ' and e3 = (^°?J + / • Then
r(Aei) ~ \e2/x(\e2\ t (A^) — A ^ and r(A^) = 0. Hence the associated

quiver F is • —• • —• • and A ~ k(T,p) where p = {j8a}.

Example Let R be the real numbers and C the complex numbers and

let A = ( ^ R j be the R-subalgebra of the 2 x 2 matrices over C. Let

e\ = ( o o ) an(^ 2̂ = ( o l ) * Writing • A • when the ordered pair (a, b) is

assigned to the arrow a:i —• j9 we get that the associated valued quiver
. (2,1)
IS ' - > \

1 2

We end this section by pointing out that viewing the modules as rep-
resentations is closely related to viewing modules as functors. Associated
with a quiver T (without oriented cycles) and a field fe, we have the path
category ^ whose objects are the vertices of F. For i and j in Fo we have
that Hom(f,y') is the vector space over k spanned by all paths from i to j
in F, and composition of morphisms is induced by composition of paths.
Then clearly RepF is equivalent to the category of covariant functors
from # to mod/c. It is easy to see that ^ is equivalent to ind^(A)op.
Actually, for any artin R-algebra A we have that mod A is equivalent to
the category of contravariant functors from ind ^(A) to mod R.

2 Triangular matrix rings

Writing the identity as a sum of two orthogonal idempotents 1 = e+(l— e)
gives a coarser way of dividing up an artin algebra than writing 1 as a
sum of primitive orthogonal idempotents. Writing 1 = e + (1 — e) with e
a nontrivial idempotent gives rise to the algebras eAe and (1 — e)A(l — e)
and the two bimodules eA(l — e) and (1 — e)Ae. This decomposition
takes on an especially nice form if eA(l — e) = 0. In this case we obtain
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III.2 Triangular matrix rings 71

an isomorphism between A and a triangular matrix algebra, a class of
algebras we introduce and investigate in this section.

Let T and U be rings and uMT a l/-T-bimodule. In this sec-
tion this means that M is a left LZ-module and right T-module such
that (um)t = u(mt) for all u e U, t e T and m e M. Then we can
construct the triangular matrix ring A = (^ ^ ) . The elements of A

are 2 x 2 matrices (^ with t e T, u € U and m e M. Addition

and multiplication are given by the ordinary operation on matrices, as

( t l O U f t 2 ° U f tl+t2 ° ^ and ( h °\ (t2 °\ = ( tlt2 ° ^
\^miMiy ' \m2 u2 J \mi+m2 ui+u2 y \ m i u i y \m2 u2 J ymit2+U],m2 u\u2 ) '

We give a description of the A-modules in terms of triples (TA,jjB/f)
where A is a T-module, B a (7-module and f:M <8>T A —• B a C/-
morphism. In particular, in the important special case T = U = M, we
just have morphisms between T-modules. We use this point of view to
give a description of projective and injective A-modules in terms of A, B
and / , and we illustrate how this description is convenient for establish-
ing connections between the homological properties of A and those of
(7, T and M.

Triangular matrix rings also come up as endomorphism rings of a sum
M \J N of two A-modules M and N with HomA(N, M) = 0. In this case
we have a ring isomorphism EndA(ML[JV) ^ ( ^ ^ End°A(iV)). This
happens for example when A = Z and M is a torsionfree Z-module and
N is a torsion Z-module.

If T is a division ring, a triangular matrix ring A = ( ^ ^ ) is called
a one-point extension of U by the bimodule c/Mj. The reason for this
terminology comes from the following.

Let A = k(T,p) be a finite dimensional path algebra over a field fc
of the quiver (F,p) with relations. Let i be a source in T and £,- the
corresponding idempotent in A. Since there are no nontrivial paths
ending in /, we have etAet ^ k and <?;A(1 — e,) = 0. If (V9p

f) denotes the
quiver with relations we obtain by removing the vertex i and the relations
starting at i9 then (1 — £,-)A(l — et) ^ k(V,p'). So k(T,p) is obtained from
A' = fc(r', //) by adding one vertex i, together with arrows and relations
starting at i. We then have A ~ ((1_^)A? jj,) so that A is a one-point
extension of Af.

The special case ( ^ ^ ) of a triangular matrix ring is also related to
another general ring construction. Let T and U be /c-algebras over a field
fe. Then the vector space (7% T becomes a ring by defining (t®u)(t'®ur) =
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t t ' ® u u r . W e t h e n h a v e a r i n g i s o m o r p h i s m g ' f ^ ) ® / ^ — • ( j j ) d e f i n e d

( ( ) ) U)
When we want to construct a triangular matrix ring starting with rings

T and U9 we are interested in natural choices of £/-T-bimodules. When
T and U are artin K-algebras we have ring homomorphisms (j>\ :R —• T
and <j>2'.R —• C7 inducing an i^-bimodule structure on a CJ-T-bimodule
M. Then we are especially interested in the case where R acts centrally
on M, that is, rm = mr for all r G R and m e M. Whenever we have
a ring homomorphism / : T —> I/, then (7 has a natural structure as
17-T-bimodule. In the case / = lT:T -> T, this specializes to f £ ° Y If
T = U, then two-sided ideals can be used for M, and also the bimodule
D(T) when T is an artin algebra and D is the ordinary duality. When
T and (7 are algebras over a field fc, and 4 is a left (7-module and 5 a
right T-module, then A ®k B is a £/-T-bimodule in a natural way.

Since we are mainly interested in artin rings, especially artin algebras,
we investigate when a triangular matrix ring is an artin ring or an artin
algebra.

Proposition 2.1 Let A = ( M v) where T and U are rings and XJMT is

a U-T-bimodule.

(a) A is left artin if and only if T and U are left artin and M is a finitely
generated XJ-module.

(b) A is right artin if and only if T and U are right artin and M is a
finitely generated T-module.

(c) A is an artin algebra if and only if there is a commutative ring R such
that T and U are artin R-algebras, and M is finitely generated over
R which acts centrally on M.

Proof (a) and (b) We have the exact sequence of left as well as right

A-modules 0 - • ( £ ° ) - • A -> T x U - • 0. The left A-submodules of

( M O ) correspond to the (7-submodules of M and the right A-submodules
correspond to T-submodules of M. Hence A is left artin if and only if
T and U are left artin and M is an artin [/-module, or equivalently, a
finitely generated (7-module. Similarly A is right artin if and only if T
and U are right artin and M is a finitely generated T-module.

(c) Assume there is a commutative artin ring # such that <f>T\R—> T
makes T an artin K-algebra and fyu'.R-* U makes U an artin K-algebra
and such that M is finitely generated over i£, which acts centrally on
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M. Then the morphism 0: R —> A given by cf)(r) = ( ^TJr) ,®,, J is a ring
homomorphism. Since T and U are .R-algebras and î  acts- centrally on
M, the image of (j) is in the center of A. Further A is a finitely generated
i^-module since T, U and M are finitely generated i^-modules. In other
words, A is an artin ^-algebra.

Assume conversely that A is an artin K-algebra, so that we have a ring
homomorphism <j>: R —> A with Im </> in the center of A. Considering the
natural composite maps cj)T\R - • A -+ T and <j)u'R -> A - • I/, we see
that T and 1/ are finitely generated i^-modules. Since the image of R is
clearly in the center in both cases, T and U must be artin J^-algebras.
Since A is a finitely generated R-module and M is an #-submodule, M
is a finitely generated i^-module. Since Im </> is in the center of A, R acts
centrally on M. •

Using this result it is easy to provide examples of left artin rings
which are not right artin. For example if A = ( ̂  £ J where Q are the
rational numbers and 1R the real numbers, then A is left artin since JR.
is a finitely generated R-module, but not right artin since R is not a
finitely generated Q-module. This shows that the class of left artin rings
considered in Chapter I is much wider than the class of artin algebras.

We assume from now on that A = ( ^ ^ ) is an artin algebra. When

C is a module over a triangular matrix ring A = f ^ ^ J, then the

idempotents e\ = ( Q O ) an(^ ez = ( o i ) &*ve r*se t 0 a decomposition
C = eiC\Je2C into a sum of abelian groups. Here e\C is in a natural
way a T-module and eiC a l/-module. Since for each m € M we have that
(m o) * = ^ ( ° °) and ( ° ») e2 = ex (» ° ) = 0 we get that multiplying

an element of C with an element of the form m = \mX\ gives that
me\C a e2C and m^C = 0. Hence we have a map xp:M x eiC —• ^ C ,
given by tp(m, e\c) = 2̂ ( ^ o ) c w^ich is easily seen to be T-bilinear. One
then obtains a unique map M ®T e\C —> eiC which is a [/-morphism.
This gives a convenient way of viewing the modules over a triangular
matrix ring A. To make this point of view precise we introduce the
following category which we shall show is equivalent to mod A.

Let A = (MU) be a triangular matrix i^-algebra. Let A%> be the
category whose objects are the triples (A,B,f) with A in modT, B in
modC/ and f:M®TA —• B a [/-morphism. The morphisms between
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74 Examples of algebras and modules

two objects (A,B,f) and (A',B',f) are pairs of morphisms (a,j8) where
cc.A —• A' is a T-morphism and /?:£ —• £' is a l/-morphism, such that
the diagram

M <g)T ,4 M-T M®T A'

if if

B I B>

commutes. If (otupi) and (a2,j82) are morphisms from (A,BJ) to
(A',B'J')9 then their sum is defined by (ai, j8i)+(a2, jB2) = (ai+a2, jSi+jB2).
It is easy to check that A^7 is an ^-category.

The relationship between A<€ and mod A is given via the functor
FIA^ 7 —• mod A which is defined as follows. For (A,B,f) in ^ we
define F(A,B,f) = A]\B as abelian group, and the A-module structure
is given by (^ (a,b) = (taj(m ® a) + ub) for t e T, u e U9 m e M,
a e A and b e B. If we have (aJ):(A,BJ) -^ (A',B',f) in A<g, then
F(a,j8) = a\Jp:AY[B -> A']\Bf. The following result gives the formal
connection between \%> and mod A.

Proposition 2.2 Let A = ( ^ ^ ) betf triangular matrix algebra. Then the

functor F'.A^^' mod A defined above is an equivalence of categories.

Proof It is easy to see that F is an i^-functor. Let (oc,P):(A,B9f) —•
(Af,BfJ') be a map in A%, and assume that F(aJ) = a\Jp:A]jB -•
4 ' LI ̂ r is 0. Then a = 0 and p = 0 so that (a, jS) = (0,0), and hence F is
faithful.

Let (A,BJ) and (.4', £ ' , / ' ) be in A*, and let s :F(^,BJ) ^ F(Af,BfJ')
be a morphism in mod A. Hence we have a map s: A ]J 5 —• 4 ' ]J 5 r , and
for a E ,4 and fc G B let s(a, 6) = (ar, fcr). Write ^ = (J g) and e2 = (S ?)•
Then s(a,0) = s(ei(a,&)) = eis(a,ft) = ei(af,V) = (a\0\ so that there is
induced a map s\ :A —• ^ given by si(a) = a'. Similarly there is induced
a map S2'.B —> 5 r . For m e M, write as before m = ( ^ Q ) . Then
s(m(a,0)) = s(0,/(m ® a)) = (0,s2f(m ® a)) and ms(a,0) = m(si(a),0) =
(0,f(m ® si(a)). It follows that sif{m ® a) = f'(m ® 5i(a)), so that
(sus2):(A9B,f) -> {A!9B\ff) is a map in A^. Then we have F(si,s2) = s,
and this shows that F is full.

To see that F is dense, let C be in mod A and consider C = eiC ]J ^ C .
We have seen that eiC is in modT and e2C is in modi/ and that
there is a T-bilinear map M x eiC —> ^ C inducing a L/-homomorphism

> e2C. It is then easy to check that F(eiC,e2CJ) ~ C.
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III.2 Triangular matrix rings 75

It now follows from II Theorem 1.2 that F is an equivalence of cate-
gories. •

From now on we identify \^ with mod A by means of the functor
F:^ —> mod A. It is in many respects more convenient to deal with
the category A%> than mod A, especially with respect to homological
properties. In particular we shall give a description of the projective and
the injective objects in ^€.

We say that a sequence of maps (A,BJ) {"4] (A',B'9f) ^ (A"9B"J")

is exact if the sequences A A A' —• A" and B —• B' —• B" are exact. And
an object (A,B,f) in t<€ is simple if it has no proper nonzero subobject.
Here we say that (A',BfJf) is a subobject of (A,BJ) if A' a A, Bf c B
and / ' = f\M®TA'- We then have the following.

Proposition 2.3 Let A be the triangular matrix algebra I M Jj. ) and F:

A%> —> mod A the equivalence of categories defined above.

(a) X in A ^ is projective if and only if FX is projective in mod A.
(b) X in A ^ is injective if and only if FX is injective in mod A.
(c) 0 —• X —• Y —> Z —• 0 is an exact sequence in A ^ if and only if

0 —• FX —• FY —» FZ —> 0 is an exact sequence in mod A.
(d) X in A%> is simple if and only if FX is simple in mod A.

Proof (a) and (b) follow from II Proposition 1.3 and (c) is a direct
consequence of the definitions. Part (d) follows easily from (c). •

In order to describe the injective objects in A ^ for a triangular
matrix JR-algebra (MU) w e u s e ^ e adjoint isomorphism
</>:Hornby(M ®r A,B) —• Homr(y4,Homc/(M,5)) to give a description
of a category isomorphic to A%>-

Let A ^ be the category whose objects are triples (A,B,g) where A is a
T-module, B is a 17-module and g:A —• Homjj(M,B) is a T-morphism.
A morphism from (A,B9g) to (A'9B'9g

r) is a pair of morphisms (a,j8)
with oc.A —• A! a T-morphism and j?:5 —>• 5 ' a L/-morphism such that
the following diagram commutes:

A ^ A'

I 8 | g '
, w „ , Homt,(M,/S)
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Now define a functor H: A ^ - • A ^ by H(^, £, / ) = (4, B, </>(/)) on objects
and H(<x,P) = (oc,P) on morphisms. Clearly the functor G.^ —> A ^
given by G(A,B,g) = (A,B,cj)-x(g)) on objects and G(a,j8) = (a,j8) on
morphisms is an inverse of H. Hence we have the rare occasion of an
isomorphism of categories.

Proposition 2.4 Let A, A #, A ^ and H'./^-^^be as above. Then H is
an isomorphism of categories with G as an inverse. •

Using the equivalence between tf€ and mod A obtained by composing
the functors G\ \%> —> \%l and F I A ^ 7 —• mod A we can now give a direct
description of how the duality acts on \^. In order to do this we identify
the i^-algebra Aop with the triangular matrix algebra ( o

uJo T°op) when

A is the K-algebra ( ^ £ ) , by sending ( ^ ) ° P to (•£ £ ) .

If (A,BJ) is in A% then H(A,BJ) = (A, B, </>(/)) is in A ^ where
0:Homt/(M ®r v4,B) —• HomT(^4,Homt/(M,B)) is the adjoint isomor-
phism. Applying the duality we obtain the Top-morphism D(j)(f):
DHomjj(M,B) —• D A . N o w it is e a s y t o see t h a t xp:M ®u°p DB -^
DUomu(M,B) given by xp(m ® g)(/) = gf(m) for m G M, g G DJB and
/ G Homc/(M?JB) is a Top-isomorphism functorial in B by first consid-
ering B = D(Uu) and using that M ®u°p D( ) and DHomt/(M, ) are
right exact functors from mod U to mod Top. Hence we obtain the object
(DB, DA, D(j)(f)xp) in AoP%. For a morphism (a, p): (A, B, f) - • (^r, 5 ' , / ' ) in
A ^ it is now straightforward to check that (Dp, Doc): (DB\ DAr, D(f)(ff)ip) -*
(DB,DA,D(j)(f)xp) is a morphism in A°P^ and that we get a contravariant
functor D : A ^ —• A°P^ this way. Let F : A ^ —> mod A and Ff:AoP^ -^
mod Aop be the equivalences described in Proposition 2.2 for A and Aop

respectively. Then an easy calculation shows that the following diagram
of functors commutes.

A # ^ mod A
ID ^ [D

X mod(Aop)

where D is the ordinary duality from mod A to mod(Aop). Hence D is a
duality which we shall also denote by D.

We now give a description of simple, projective and injective objects

P r o p o s i t i o n 2.5 Let A = ( ^ ^ J be a triangular matrix algebra.
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(a) radA = \MT radii)> an^ tne smiV^e objects in ^€ are of the form
(S,0,0) where S is a simple T-module and (0,5", 0) where Sf is a simple
U-module.

(b) The indecomposable protective objects in t^€ are objects isomorphic to
objects of the form (P,M ®T PAM®TP) where P is an indecompos-
able projective T-module and (0, Q,0) where Q is an indecomposable
projective U-module.

(c) The indecomposable injective objects in \^ are objects of the form
(7,0,0) where I is an indecomposable injective T-module and objects
isomorphic to objects of the form (Hom[/(M, J), J, (j>) where J is an
indecomposable injective U-module and 0 : M ®r Hornby (M, J) —> J is
given by 4>(m ® / ) = f(m) for m e M and f e Homjj(M,J).

Proof (a) Since T and U are artin rings, we have (rad T)1 = 0 = (rad U)1

for some i. Then an easy calculation shows that A21 = 0 when A is the
ideal ( " J ^ J ^ ) of A. Since clearly A/A ~ ( T / r a d T ) x ( ( / / rad U)
and is hence a semisimple ring, it follows from I Proposition 3.3 that
A = rad A.

The simple A-modules are hence given by the simple ( T / r a d T ) -
modules and the simple (C//rad (7)-modules. Therefore it is easy to see
that the simple objects in A ^ are (S, 0,0) where S is a simple T-module
and (0, S', 0) where Sf is a simple l/-module.

(b) We have A = P]\Q where P = ( ™ ) and Q = ( ° £ ) as left
A-modules. The object of t^€ corresponding to P is clearly (T,M, 1M),
where we identify M with M ®T T via the natural isomorphism and
the object corresponding to Q is (0, U, 0). The indecomposable sum-
mands of (0, U, 0) are of the form (0, Q, 0) where Q is an indecom-
posable projective (/-module. If T = P\ \J''' LJ Pn is a decomposi-
tion of T into a sum of indecomposable projective T-modules, then
(T,M, 1M) = (Pi,M ®T Pu IMOTPI) I I • ' ' U(pn,M ®T Pn, 1M®TPJ. Since
EndA^(Pj,M ®T P,-,1M®P,) - EndT(PI)? it follows that the
(PuM ®r Pf, 1M®TP,-) are indecomposable. In this way we get all in-
decomposable projective objects up to isomorphism.

(c) This follows from (b) and the description of the duality between

A% and AOP^7. •

We also interpret the duality HomA( ,A):^(A) -> ^(Aop), which we
denote by ( )*, on objects in ^%>. Let X = (P,M®TP, 1M®TP) >̂e a n ^de-
composable projective object in A^7, and let (S,0,0) be the corresponding
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simple object. We define X* to be the object in A°P^ corresponding to
the A°P-module (FX)*. Recall that A°P is identified with (o^uop T

0oP)-
Then we have D(S, 0,0) = (0,D(5),0) and the projective cover is (0,g,0),
where Q is the projective cover of the Top-module D(S). Then we have
Q = P\ andX* = (0,P*,0).

When X = (0,P,0), it follows similarly that X* = (P\M®P\ 1M®P-)-

We now illustrate how to use the category A^7 in computations, where
we identify tf€ with its image in mod A by the functor F.

Proposition 2.6 Let A = ( T
T ^) for an artin algebra T. Then we have

gl.dim A = gl.dim T + 1.

Proof It is easy to see from the description of the projective objects
in t^€ that for any T-module A we have pdA(A,A, 1A) = pdTA =
pdA(0,^4,0). It follows that if gl.dim T = oo, then gl.dim A = oo. As-
sume then that gl.dim T = n < oo. Then there are simple T-modules
S and Sf with Extn

T(S,Sf) ± 0. The exact sequence 0 -• (0,5,0) ->
(5,5, Is) -• (5,0,0) -* 0 implies that pdA(5,0,0) < n +1 and gives rise to
the exact sequence Ext^((5,5,ls),(0,5',0)) -> Ext^((0,5,0),(0,5',0)) ->
Ex^+1((S,0,0),(0,S;,0)) -* 0. Since HomA((P,P, 1P), (0,5^0)) = 0 for
each projective T-module P, we have Ext^((5,5, Is),(0,5',0)) = 0. Be-
cause Ext^((0,5,0),(0,5',0)) - Ext^(5,50 ^ 0, it follows that
E x t ^ f t S ^ O ^ O ^ O ) ) ± 0, so that pdA(5,0,0) = n + 1. This shows
that gl.dim A = n + 1. •

Proposition 2.7 Suppose T and U are artin R-algebras with T semisim-

ple and let JJMT be a nonzero bimodule where R acts centrally and M is

finitely generated over R. If A = ( M u)> then gl.dim A =
max(gl.dim U9 pdjj M + 1).

Proof For a simple {/-module 5 we have as above that pdA(0,5,0) =
pdv 5. Further we have an exact sequence 0 —• (0,M,0) —• (T,M, 1M) -»
(T,0,0) -• 0 showing that pdACr,0,0) = pd^ M + 1, and we are done. •

The triangular matrix ring construction is a special case of the more
general construction of trivial extensions. If V is a ring and yMv a
F-bimodule, we define the ring F K M a s follows. The elements are
pairs (v,m) with v G V and m G M, addition is componentwise and
multiplication is given by (v,m){v',mf) = (vv\vmf + mvr). In other words,
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V X M is isomorphic to the tensor algebra T(V,M) modulo the ideal
generated by M ®v M. For example the ring k[X]/(X2) for a field k is
isomorphic to the trivial extension fc IX fc. I f A = ( ^ ^ ) is a triangular
matrix ring, let V = T x U and consider JJMT as a F-bimodule by
(t, w)m = um and m(t, u) = mt for t e T, u e U and m € M. Then it is
easy to see that A ^ F K M .

3 Group algebras

Throughout this section G denotes a finite group, k a field and kG
the group algebra of G over fc. In this section we point out some
other features of group algebras not shared by arbitrary artin algebras,
which come from the fact that fcG-modules can be viewed as group
representations. In particular, we describe how for two feG-modules A
and B, the fe-vector spaces A ®k B and Homk(A,B) are considered as
feG-modules. These observations are applied to obtain the classical result
that fcG is semisimple if and only if the characteristic of fe does not divide
the order of G. In Chapter V these considerations will be used to give a
way of constructing almost split sequences when fcG is not semisimple.

Before describing how A 0k B is considered as a fcG-module when
A and B are fcG-modules, it is convenient to point out the following
description of fcG-modules and fcG-morphisms.

Clearly G is a subgroup of the group of units in fcG and fc is a subring
of fcG. Therefore associated with a fcG-module A is the structure of A as a
fc-vector space together with the operation of G on A given by o(a) = oa
for all a in G and a in A having the following properties.

(i) For each a in G, the map A —> A given by a \-> a a for all a in A is
fc-linear.

(ii) {p\oi)(a) = G\(o2a) for all o\ and <T2 in G and a in A.

(iii) la = a for all a in A where 1 is the identity in G.

Also it is not difficult to see that if A is a fc-vector space and GxA —> A
is an operation of G on A satisfying the above properties (i), (ii) and (iii),
then the operation fcG x A -> A given by CEoeG kff)(fl) = Y^aeG M^fa))*
for all tff in fc, a in G and a in A, is the only way of considering A as a
fcG-module so that the induced operations of fc and G on A are the ones
we started with. Thus we see that the fcG-modules can be considered as
fc-vector spaces A together with an action of G on A satisfying (i), (ii)
and (iii).
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Suppose A and B are /cG-modules. Then it is easily seen that
HomkG(A,B) is the fc-subspace of Homk{A,B) consisting of all fc-linear
maps f:A^>B satisfying o(f(a)) = f(aa) for all a in G and a in A.

Suppose now that A and B are /cG-modules. Then in order to define a
fcG-module structure on the fc-vector space A®kB it suffices to describe an
operation G x (A®kB) —• A®kB satisfying conditions (i), (ii) and (iii). We
leave it to the reader to check that the operation G x (A ®k B) —• A ®k B
given by a{a ®b) = oa®ob for all o in G and a in A and b in B satisfies
conditions (i), (ii) and (iii). Unless stated to the contrary, this is the only
way we consider A ®k B as a fcG-module. It is also easily seen that if
/ : B —• B' is a morphism of fcG-modules, then A®f:A®kB —> A®k B'
given by (̂ 4 ® /)(a (8) fo) = a ® /(fr) for all a in A and fc in £ is a fcG-
morphism. Thus with each A in modfcG is associated the exact functor
A ®k —:modfcG —• modfcG given by B i—• A ®k B for all B in modfcG,
and each f:B —• J3' in modfcG goes to 4̂ ® / :yl ®^ 5 —• A ®k Br in
modfcG. Similarly we have the exact functor — (g^B:modfcG —• modfcG.
We now point out two important properties of these functors which are
used constantly when dealing with the representation theory of fcG.

We say that G operates trivially on a fc-vector space V if ov = v for
all a in G and v in V. We denote by fc the fcG-module which is the fc-
vector space fc together with the trivial action of G on fc. This module is
called the trivial fcG-module. Then for each fcG-module A the morphism
A —• fc ®k A given by a »—> 1 (8) a for all a in A is a fcG-isomorphism
functorial in A which we will usually consider an identification. We leave
it to the reader to verify that this is indeed the case. We record the other
important property of tensor products we need in the following.

Proposition 3.1 Let Abe a projective kG-module. Then A®kB and B®kA
are projective kG-modules for all kG-modules B.

Before giving the proof of this result we give an important application.

Corollary 3.2 The following statements are equivalent for fcG.

(a) The group algebra kG is semisimple.

(b) The trivial kG-module k is projective.

Proof We know that fcG is semisimple if and only if every fcG-module
is projective. Therefore (a) implies (b). Suppose fc is projective. Then
A ^ A <8>fc fc is projective for each fcG-module A by Proposition 3.1.
Hence (b) implies (a). •
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In order to determine precisely when the trivial fcG-module is projective,
it is convenient to make the following observations. For a fcG-module
A we denote by AG the fcG-submodule of A consisting of all a in A
such that oa = a for all a in G. Moreover, if / : A —• B is a morphism
in modfcG, then f(AG) a BG. Hence we obtain the fixed point functor
( )G:modfcG - • modfcG given by ( )G(A) = AG and for f:A - • B in
modfcG, ( )G(f) = f\Ac:AG —> BG. We now give another description of
the fixed point functor.

Let A be a fcG-module. Then it is easily seen that an element a of
A is in AG if and only if there is a fcG-morphism f:k-+A such that
/ ( I ) = a, where fc is the trivial fcG-module. Therefore for each A in
modfcG we have isomorphisms HomkG(k,A) —• AG functorial in A given
by / i—• / ( I ) for all / in HomkG(k,A). Hence we have an isomorphism
between Hom/cG(fc, ) and the fixed point functor ( )G. We now apply
these considerations to determine when fc is a projective fcG-module.

We have the fcG-epimorphism e:kG —• fc given by ^ ( Z ^ G G ^ 0 " )
 =

YlaeG to- Therefore fc is a projective fcG-module if and only if there is a
fcG-morphism f:k—> kG such that ef = 1&. By our previous remarks,
this is equivalent to saying that there is an element z in (fcG)G such that
e(z) = 1. Straightforward calculations show that Y^aeG ^°" *s m (^G)G if
and only if all the ta are the same element of fc. For if J2GEG

 t^G ls m

(fcG)G, then YlaeG t^XG =
 J2GEG

 t^° f° r a ^ T m ^- Hence t\ = ta for all o
in G which means that all the ta are the same. On the other hand it is
obvious that X^eG t^° ^s m (^^)G when all the ta are the same. Hence
(fcG)G = kJ2aeGa> which means <=((kG)G) = |G|fc, where \G\ is the order
of G. Therefore the trivial fcG-module is projective if and only if \G\ is
not zero in fc, or equivalently, the characteristic of fc does not divide |G|.

Summarizing, we have the following.

Theorem 3.3 The following are equivalent for the group algebra kG.

(a) fcG is semisimple.
(b) The trivial kG-module is projective.
(c) The characteristic ofk does not divide \G\.

We now finish the proof of Theorem 3.3 by giving a proof of Propo-
sition 3.1. This will require some preliminary definitions and results.
In these considerations we are not making any assumptions about the
characteristic of fc or the order of G.

Let A and B be fcG-modules. Then Hom^(i,5) is a fc-vector space
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on which we define the following operation of G. Given a in G and /
in Homk(A,B) we define of in Yiomk(A,B) by (<jf)(a) = a(f((r~la))
for a € A. We leave it to the reader to check that this opera-
tion makes Homk(A,B) a fcG-module. Now it is not difficult to see
that if f:B —• Br is a morphism in mod/cG, then the induced mor-

phism Homfc(A,5) —̂-V Homfc(i,B') is a fcG-morphism. Thus for 4 in

modfcG we get an exact functor H o m ^ , ):modfcG —• modfcG given
by £ i—• H o m ^ , ! ? ) for all B in mod/cG and a morphism / : £ — • £ ' in
mod/cG goes to

Similarly, if g:A —• ^4' is in modfeG then
Homfc(̂ 4, 22) is a feG-morphism for each B in mod feG. Therefore for each B
in mod feG we get the contravariant exact functor Honifc( , B): mod feG —>
modfeG given by A i-> H o m ^ , ! ? ) and g:^4' —> 4̂ goes to Honing, J3):
Homfc(,4',B) -> Homk(A,B).

Another important feature of the operation of G on Homk(A,B) is
that HomkG(A,B) = Homk(A,B)G for all fcG-modules A and B. For
we have that an / in Homk(A,B) is in Homk(A,B)G if and only if
of{G~la) = (<rf)(a) = f(a) for all a in G and a in 4 . But a/(a'1 a) = f(a)
if and only if/(o-"1^) = o~lf(a). Therefore / is in Homfc(i4,£)G if and
only if/ is in Yiom.kG{A,B).

We now point out the following basic connection between the functors
— 0fc — and

Proposition 3.4 Let A, B and C be in modfeG. Then the morphism a:
UomkG(A, Uomk(B, C)) - • HomkG(A®kB, C) given by a(/)(a®ft) = f(a)(b)
for all f in HomkG(A,Homk(B, C)) and all a in A and b in B is an iso-
morphism functorial in A, B and C.

Proof We leave it to the reader to check that the isomorphism
a!: Homfe(̂ 4, Yiomk(B, C)) —• Yiomk(A <8>k B, C) of fe-vector spaces given by
a/(f)(a ® b) = f(a)(b) for all / in Homk(A9Homk(B,Q) and all a in A
and b in B is a feG-isomorphism functorial in A, B and C in modfeG.
Therefore od induces an isomorphism a on fixed points, which gives our
desired result. •

As a consequence of this result we obtain the following proof of
Proposition 3.1.

Proof Let A be a projective fcG-module and let B be an arbitrary fcG-
module. We want to show that A ®k B is projective. Let 0 -> C —> C —•
C" —> 0 be an exact sequence of fcG-modules. Since Hom/C(B, ) is an
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exact functor and A is a projective fcG-module, we obtain by applying
Proposition 3.4 the following commutative exact diagram.

')) — HomkG(A,Homk(B,C)) -> HomkG(A,Homk(B,C")) - • 0
H I*

, C) -+ HomfcG(>l <g>* B, C) - • H o m k G ( ^ <8>fc B, C")

This shows that HomkG(A ®k B, C) - • HomfcG(^4 ®k £, C") -> 0 is exact,
which proves that 4̂ ®^ B is projective. This finishes the proof of Propo-
sition 3.1 as well as the proof of Theorem 3.3. •

4 Skew group algebras

In this section we introduce the artin algebras known as skew group
algebras, which are a natural generalization of group algebras of finite
groups over fields discussed in the previous section. As in the case of
group algebras, we also discuss some elementary features of the module
theory of skew group algebras.

Throughout this section all groups considered are finite. Let A be an
artin K-algebra. By an K-algebra automorphism a:A —> A we mean a
ring automorphism of A with the additional property that c(rk) = ra(X)
for all r in R and X in A.

Suppose now that G is a finite group. Then an K-algebra operation of
G on A is a function ( J O : G X A - > A satisfying the following, where we
write cp(<r,/l) = o(X) for o in G and X in A:

(i) <T : A —• A is an i^-algebra automorphism for all a in G.
(ii) {o\<J2){X) = o"i(o"2(/l)) for all o\ and 02 in G and k in A.
(iii) \k = k for all k in A, where 1 is the identity element in G.

Suppose G x A —• A is an i^-algebra operation of G on A. Then the
skew group algebra of G over A, which we denote by AG, is given by the
following data.

(a) As an abelian group AG is the free left A-module with the elements
of G as a basis.

(b) The multiplication in AG is defined by the rule (kao)(kTx) =
(k(JG(kx))ai: for all kG and kx in A and a and x in G.

We leave it to the reader to check that AG is indeed a ring with identity
element the formal product of the identity of A with the identity in G,
also denoted by 1. It is also easily checked that the map R —> AG given
by r »—• r\ for all r in K makes AG an artin i^-algebra. We follow the
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usual convention of identifying each o in G with 1(7 in AG. In this way
G is a subgroup of the group of units in AG. Similarly, we identify each
element X in A with XV in AG, so A becomes an i^-subalgebra of AG.

We give some examples of skew group algebras.

Example The group algebra of a finite group G over a field k is an
example of a skew group algebra over k where the operation of G on k
is the trivial operation given by a(x) = x for all o in G and x in k.

Example Suppose N and H are groups together with an operation of
H on N satisfying h(niri2) = (hn\)(hn2) for all n\ and ri2 in N and h
in H. Let G be the semidirect product of N by H which as a set
is the cartesian product N x H together with multiplication given by
(wi,fti)(n2,/i2) = (n\hi(ri2),hih2) for all ni and ^2 in N and all /*i and /12
in H. Let R be a commutative artin ring. Define an action of H on the
group algebra RN by h ̂ 2xeN rxx = ^2xeN rxhx for all h in H, rx in R and
x in AT. If we denote RN by A, it is easily seen that the action of H on A is
an i^-algebra action, so we can form the skew group algebra AH. Define
the map cc.RG -> AH by <*(E(xfi)eGrm(x>h)) = EheH(ExeNr(x,h)x)h
where RG is the group algebra of G over K. It is not difficult to check
that a is an ^-algebra isomorphism. Thus the group algebra RG can also
be viewed as the skew group algebra AH.

In particular, let N be the cyclic group Z/nZ and let H = Z/2Z with
generator a. Define the action of H on N by o(x) = —x for all x in N.
Then G = H X N is Dn, the nth dihedral group which is the group of
symmetries of a regular n-gon in the plane. Therefore RDn ^ AH where
A is the group algebra RN.

Example Let k be a field of characteristic different from 2 and let T be
the quiver

Denote kT by A and let G = {a) be the group of order 2. Consider the
elements e\, e^ £3, a and /? in A and let o-̂ i = ei, <re2 = ^2s 0^3 = ^3s
aa = u! and a/? = pf. Then there is only one way of extending a to a
fc-algebra automorphism of A and this is the way we will consider G as
a group of automorphisms of A. We now want to compute AG and we
start by computing (A/r)G.

We clearly have a decomposition (A/r)G = (ke\)G x {ke2 x kej>)G x
xfce^G. Let?i = \(e\ +e\o) and?i = \{e\—e\o) which are nonzero
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idempotents in (fcei)G, and we have e\ = ?i + ? i . This gives a decom-

position (ke\)G ~ (kGJei x (kG)7>\. Further we obtain an isomorphism

(ke2 x kev)G ^ (**) by sending e2 to (»» ) , e* to ( ° ° ) , e2<x to ( °* )

and e^o to ( ? Q ) • Similarly we get an isomorphism (fê 3 x key)G ~ (k
k

by sending e3 to ( j ° ) , C y to ( ° ° ) , ^ to ( ° ' ) and eyd to ( )

Hence (A/r)G is isomorphic to the fc-algebra kxkx K *) x ( £ JM. Since

the simple KM-modu le s (*|M and ( ° M are isomorphic, we see that

e(AG)e is a reduced form of AG, where e = !>\ +? i + £2 + ^3- This means
that e(AG)e is a basic algebra which is Morita equivalent to AG.

We have that {eu e2, e2', ^3, ey9 a, ar, jS, jS', j8a, jg'a', ei(7, ^2^, ^2'^? e3a,
eyG,aa,(x'(j,l3G,pf<j,p0LG,pf(xf<T} is a fc-basis for^AG. By multiplying on
the left and right it is then easy to see that {ei9l>ue29e3, \{OL + oca), \(OL —
<xo)>P, 5j8(a + oca), ̂ P(a — ao)} is a fc-basis for eAGe. Writing a = ^(a + aa)
and a = ^(a — acr), we see that eAGe is isomorphic to the path algebra
of the quiver

This last example illustrates that even if we only want to deal with
basic artin algebras the skew group algebra construction may lead to
an algebra which is not basic. We have here seen how to construct the
associated basic algebra in a concrete situation.

We now give a description of the modules over a skew group algebra
AG over an artin K-algebra A, which closely parallels the description
given in Section 3 of the modules over a group algebra.

Suppose X is a AG-module. Since A is a subring of AG, the AG-module
X is also a A-module. The fact that G is a subgroup of the group of units
in AG commuting with the action of R gives an operation G x X —• X
satisfying the following.

(i) 0-(/bc) = o(X)o(x) for all a in G, X in A and x in X.

(ii) o(rx) = ro(x) for all o in G, r in R and x in X.

(iii) {<J\Oi)(x) = G\(G2X) for all G\9 02 in G and x in X.
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(iv) lx = x for all x in X when 1 is the identity element in G.

Thus associated with a AG-module X is the A-module X together with
an operation of G on X satisfying conditions (i), (ii), (iii) and (iv) above.

On the other hand, suppose we are given a A-module Y and an
operation of G on Y satisfying (i), (ii), (iii) and (iv) above. It is easily
checked that 7 is a AG-module by means of the operation (%2aeG ^a)y =

Y^aeG ^(a(y)) f° r an< S^eG ^G m ^G a n d y in Y- Hence we see that the
AG-modules where the operation of JR commutes with the operation of G
can be viewed as A-modules together with an operation of G satisfying (i),
(ii), (iii) and (iv). We will use these points of view interchangeably. As an
illustration, we now describe the morphisms between AG-modules from
this alternative point of view.

Let X and Y be AG-modules. Since A is an K-subalgebra of AG,
we have that each / in Hom\G(X,Y) is a A-morphism from X to Y.
Because G is contained in AG, it follows that each / in Hom\G(X,Y)
also satisfies f(ax) = of(x) for all a in G and x in X. Now it can be
easily checked that if / in HoniApC Y) satisfies f{ox) = of{x) for all o
in G and x in X, then / is in HoniAG(X, Y). Therefore HoniAGpC Y) =
{/ € HomA(X, Y)\f(ax) = of(x) for all a in G and x in X).

We now illustrate some of these points by considering some special,
but important, modules.

As for group algebras, associated with each AG-module X is the R-
submodule XG of X consisting of the fixed points in X, i.e. all elements
x in X such that o(x) = x for all a in G. Also it is clear that if f:X —> Y
is a AG-module morphism, then f(XG) a YG. It is further easily seen
that f\XG :XG —• YG is an ^-module morphism. We then obtain the fixed
point functor ( )G:modAG -> modi* given by X \-+ XG and / \-> f\xa
for all objects X and morphisms / in mod AG. As in the case of group
algebras, this important functor has an alternative description which we
now give.

Unless stated to the contrary, we always consider the A-module A as
a AG-module by means of the operation (X^GG ^OG)(X) = HaeG ^a(x)
for each x e A and J2aeG^°' e ^ - Next we consider the map
e:AG —• A given by e(52aeG^oG) = StreG^- This is easily seen to be
a AG-epimorphism with Ker e the left ideal of AG generated over A by
{o-1|<7 G G - {1}}. For each AG-module X it follows that HomAG(A,X)
consists precisely of those A-morphisms f:A-+X such that / ( I ) is in XG.
This implies that for each AG-module X, the map HoniAG(A,X) —• XG

given by / i—> / ( I ) is an /^-module isomorphism functorial in X. Thus
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we obtain a canonical isomorphism between the functors HomAG(A, )
and ( )G showing that our AG-module A is a natural generalization of
the trivial module for group algebras. For this reason we will call the
AG-module A the trivial AG-module. Having described in Section 3
when the trivial module over a group algebra is a projective module, it
is natural to wonder more generally when the trivial module over a skew
group algebra is a projective module. One such criterion is given in the
following.

Proposition 4.1 The trivial AG-module A is a projective AG-module if and
only if there is some X in A such that EaeGo(X) = 1.

Proof Since e: AG —> A is an epimorphism, A is a projective AG-module
if and only if there is a AG-morphism g: A —• AG such that eg = 1A-
But eg = 1A if and only if eg(l) = 1. In view of the isomorphism
HoniAG(A,AG) —• (AG)G given by / *-> / ( I ) , we know there is some
g: A —• AG such that eg(l) = 1 if and only if there is some YlaeG^G m

(AG)G such that e(J2aeG^G) = J2aeG^ = !• Therefore it is essential to
have a description of (AG)G. But it is fairly straightforward to show that
(AG)G = {^2(TeG G(X)G\X e A}, as we shall see in the next result. Therefore
A is AG-projective if and only if there is an element J2aeG

 GWG m AG
such that 1 = e(J2aeG o(X)o) = Y^oeG ff W> which is o u r desired result. •

We now prove our required lemma.

Lemma 4.2 (AG)G = {£ffGGtf(A)a|A € A}.

Proof We first show that the elements of the form J2aeG G(X)O for each
I in A are in (AG)G. This follows from the fact that r(]£ffeG G{X)O) =

Y^aeG ^(^W^) = EaeG T(J(^)T(J = SaeG G(^)G f° r a ^ T i n G.
Suppose now that Yl,aeG^G ls m (^^)G- Then for each T in G we

have that Y^ceG^G = TYlaeG^G = J2aeGT(^)TG' B u t this implies that
T(/II) = Xx for all x in G, or in other words, Y^aeG^°G ~ S T G G T ( ^ I ) T '

which is our desired result. •

As an application of this criterion for the trivial AG-module to be a
projective module, we have the following.

Corollary 4.3 Let AG be a skew group algebra with G a group of order n.
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(a) If n is invertible in A, then the trivial AG-module A is a protective
module.

(b) Suppose G operates trivially on A, i.e. ok = k for all o in G and k in
A. Then A is a protective AG-module if and only if n is invertible in
A.

Proof (a) Suppose 1/n in A is the inverse of n. Then for each a in G we
have 1 = a (I) = o(n - 1/n) = no(\/n). Hence o(\/n) = 1/n for all a in G.
Therefore J2aeG a( Vw) = 1> which by Proposition 4.1 implies that A is a
projective AG-module.

(b) In view of part (a) we only have to show that if G operates trivially
on A and A is a projective AG-module, then n is invertible in A. By
Proposition 4.1, since A is a projective AG-module, there is some k in A
such that J2aeGa(ty = 1- Since G operates trivially on A, we have that
nk = 1 so that k is the inverse of n in A. •

The following example shows that it is possible for A to be a projective
AG-module without the order of G being invertible in A.

Example Let k be a field and let A be the subalgebra of the 4 x 4 matrix

( a 0 0 0 \

0 c a 0 I

d 0 0 b /

with a, b, c, d in k. Now the invertible matrix

is of order 2 and acts as a fc-automorphism </> of A by conjugation. Let
G = {!,(/>}. From the equality

we see that A is a projective AG-module. In particular, A is a projective
AG-module even when char k = 2. Therefore A is a projective AG-module
even though 2, the order of G, is zero in A.

For the rest of this section we will be mainly concerned with skew
group K-algebras AG with the order of G invertible in A. This is not
because arbitrary skew group K-algebras are not of interest. Rather, it is
because this additional hypothesis gives a simpler and better understood
module theory. Our aim now is to prove the following.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.004
https://www.cambridge.org/core


III.4 Skew group algebras 89

Theorem 4.4 Let AG be a skew group R-algebra where the order of G is
invertible in A. Then gl.dim A = gl.dim AG.

The proof of this result will take several steps and involves general
concepts of independent interest. We begin by pointing out the following
relationships between the subalgebra A of a skew group algebra AG,
and AG. In particular, since A is a subalgebra of AG, AG is both a
left A-module and a right A-module. It is these structures which are of
particular interest to us.

Lemma 4.5

(a) The group G a AG is a basis for AG as a right as well as a left
A-module.

(b) Let C be the subset of AG consisting of all elements ^2ceG Xao sat-
isfying k\ = 0. Then C is a A-subbimodule of AG and we have that
AG ~ A U C as A-bimodules.

Proof (a) By definition AG is a free left A-module with basis G. We
now show that G is also a basis for AG as a right A-module. Since
J2(jeG^(J =

 S<TGGO '(O '~1/^)> ^ follows that G generates AG as a right
A-module. Also if X ^ e G 0 ^ = 0> then X^eG*7^)*7 = 0 which means
that each a(ka) = 0 or equivalently, Xa = 0 for each o in G. This shows
that G is a basis for AG as a right A-module.

(b) It is clear that C is a left A-submodule of AG. Now for each X in A
a n d T,<jeG^G i n A G w e h a v e t h a t ( E t f e G ^ M = E a e G ^ M * 7 - F r o m

this it follows that if J2aeG kao is in C, then (J2aeG K^)k is in C for each
X in A. The fact that A ]J C ^ AG as both left and right A-modules now
follows trivially from (a) and hence A ]J C ^ AG as A-bimodules. •

We now use these observations to show that gl.dim AG > gl.dim A. In
fact, we prove the following more general result.

Proposition 4.6 Let A be a subalgebra of the R-algebra T satisfying the
following two conditions.

(i) F is a protective left A-module.

(ii) There is a subgroup CofT which is a A-subbimodule ofT such that

Then we have gl.dim F > gldim A.
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Proof Let X be a A-module. Then F ®A X is a F-module by means of
the operation y(y\ <g) x) = yyi (g) x. Let

(*) • • • - • P t - • • • • - • P i - • P o - > F (g)A X - > 0

be a minimal projective F-resolution of F ®A X. Since F is a projective
left A-module, the exact sequence (*) when viewed as an exact sequence
of A-modules is a A-projective resolution of F ®A X viewed as a A-
module, and so pdr(r<g)AX) > pdA(F<g)AX). The fact that F = A]JC as
A-bimodules gives that T®\X = {A®\X) ]J(C®\X) as left A-modules,
where the action of A on C ® A X is given by X(c ® x) = kc ® x for all
x in A, c in C and x in X. Because A ®A X ~ X, we have that X
is a A-summand of F ®A X. Therefore pdAX < pdA(F ®\ X) and so
pdA X < pd r(F ®A ^) - The fact that this holds for all A-modules X
implies that gl.dim A < gl.dim F. •

Combining this proposition with Lemma 4.5, we have the following.

Corollary 4.7 The skew group algebra AG has the property that gl.dim A <;
gl.dim AG. •

Thus in order to finish the proof of Theorem 4.4, it suffices to show
that gl.dim AG < gl.dim A when the order of G is invertible in A. Our
proof of this result is based on the following where we consider AG ® A Y
as a AG-module by y(v ® y) = yv ® y for y G G and v ® y G AG ®A Y.

Lemma 4.8 Suppose AG is a skew group algebra with the order of G
invertible in A. Then Y is a AG-summand of AG®\ Y for all AG-modules
Y.

Proof For each AG-module Y define the multiplication map my:

AG <g)A Y - • Y by mY{Y,aeG^° ® y) = CCaeG^b 7 - lt i s e a s i l y
seen that mY is a AG-epimorphism. We now describe a AG-morphism
hY:Y —> AG <g>A Y with the property that mYhY = ly, which implies
that Y is a AG-summand of AG ®A Y.

Define hY:Y -» AG <g>A Y by hY(y) = E U G * 7 ® ^ ( I M v for
all y in 7 where 1/n is the inverse of n, the order of G in A. It is
clear that hY is additive. Also for each X in A we have that

.GG aeG ^ y ( y ) . SO /ly

is a A-morphism. The reader may check that hy{oy) = ohy{y) for all
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a in G and y in 7 . So hy is in fact a AG-morphism. Now the compo-
sition niyhy: Y —> 7 is ly since myfty(y) = my X^GG*7 ® °~l(y/n) =

Y^GeGGG~l^/n)y ~ n(l/n)y = y f° r a ^ y in 7 . Therefore Y is isomor-
phic to a AG-summand of AG ®A 7 . •

We now obtain our desired result as a special case of the following
more general result.

Proposition 4.9 Suppose A is an R-subalgebra of an artin R-algebra F

having the following properties.

(i) F is a projective right A-module.
(ii) Each T-module Y is isomorphic over T to a summand ofY®\ Y.

Then we have gl.dim F < gl.dim A.

Proof Let Y be a F-module. Then viewing Y as a A-module, we have
a A-projective resolution

• • • -> Pt -> > Po -> ^ -> 0.

Since F is right A-projective, the sequence

is exact and is therefore a projective F-resolution of F ®A Y. Hence we
get pd r F (8)A Y < pdA Y for all F-modules Y. But pdr 7 < pdr T®AY
since 7 is a summand of F ®A 7 , and hence gl.dim F < gl.dim A. •

Combining this proposition with Lemma 4.8 we obtain the following
result which finishes the proof of Theorem 4.4.

Corollary 4.10 Let AG be a skew group algebra with the order of G in-
vertible in A. Then we have gl.dim AG < gl.dim A. •

As an application of Theorem 4.4, we give a description of the radical
of AG when the order of G is invertible in A. To this end it is convenient
to make the following general remarks.

We say that an ideal a in A is G-invariant if era c a for all o in
G. Clearly this is the case if and only if a is a AG-submodule of
A. If a is a G-invariant ideal of A, then we can define an .R-algebra
operation of G on A/a by a(l + a) = o(X) + a for all o in G and I in
A. We also have the natural surjective .R-algebra morphism h: A —• A/a
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which induces the natural K-algebra morphism t:AG —• (A/a)G given

by t(J2aeG Xao) = J2aeGn(^)a f° r a ^ ^ m ^ anc^ °" m ^- ^ *s a^ s o

trivial to check that Ker t = aAG. In particular, the fact that a: A —• A
is an jR-algebra automorphism implies that the radical r of A is a G-
invariant ideal of A. Since (rAG)1 = r'AG for all i, we have that rAG is
a nilpotent ideal and therefore rAG is contained in rad(AG). Combining
these remarks with Theorem 4.4 we have the following.

Proposition 4.11 Suppose AG is a skew group algebra with the order of G
invertible in A. Then rAG = rad(AG) where r is the radical of A.

Proof We have already established that rAG is contained in rad(AG).
Therefore we will have our desired equality if we show that AG/rAG
is semisimple. We have already observed that AG/rAG ~ (A/r)G. The
fact that the order of G is invertible in A implies that the order of G is
invertible in the semisimple algebra A/r. Therefore by Theorem 4.4, we
have that gl.dim(A/r)G = gl.dim(A/r) = 0. •

We have already seen that the functor A G ® A - : mod A —• modAG
given by X i—• AG ®A X for all X in mod A plays an important role
in studying the module theory of AG. Another equally natural functor
from mod A to modAG is given as follows. For each X in mod A
we consider HomA(AG,X) a AG-module by means of the operation
(xf)(y) = f(yx) f° r an" x a n d y in AG and / in HoniA(AG,X). It is
not difficult to see that if f:X —• Y is a morphism in mod A, then
HomA(AG,/):HomA(AG,X) -> HomA(AG,7) is a AG-morphism. This
data defines the functor HomA(AG, ):modA —• modAG given by X \->
HoniA(AG,X). Our aim now is to show that AG®A~ and HoniA(AG, )
are isomorphic functors.

We first consider the following more general situation. Let A be
an K-subalgebra of the artin JR-algebra F. Clearly we can define the
functors F®A~- mod A —• modF and HomA(F, ):modA —> modF as
we did above in the special case F = AG. We then have the following
criterion for when these functors are isomorphic, where it is understood
that HoniA(r,A) is considered as a F-A-bimodule by means of the
operations (yf)(x) = f(xy) for all / in HomA(F, A) and y and x in F and
(fX)(x) = f(x)X for all X in A, x in F and / in HomA(F, A).

Proposition 4.12 Let A be an R-subalgebra of the artin R-algebra F. Then
the following are equivalent.
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(a) The functors HoniA(r, ) and T®\- from mod A to modF are iso-
morphic.

(b) Both of the following conditions are satisfied.

(i) F is a protective left A-module.

(ii) F and HoniA(r,A) are isomorphic as T-A-bimodules.

Proof (a) => (b) Since F ® A - is right exact and F ® A ~ is isomorphic to
HoniA(r, ), it follows that HomA(F, ) is right exact. Hence HomA(F, )
is exact, which is equivalent to F being a projective left A-module.

In order to prove that (ii) is satisfied let a^ :F ®A X —• HomA(F,X)
be an isomorphism functorial in X for all X in mod A. Now F ® A X
is an EndApO-module by means of the operation h(y ® x) = y ® h(x)
for all h in EndA(X), y in F and x in X. It is not difficult to check
that this operation of EndA(X) o n r ® A I makes F ® A X a F-EndA(X)-
bimodule. Also HomA(F,X) is an EndApO-module by means of the
operation (hf)(y) = h(f(y)) for all h in EndA(X), / in HomA(F,X) and
y in F. It is also not difficult to check that this operation of EndA(X)
on HomA(F,X) makes HomA(F,X) a F-EndApO-bimodule. Since the
isomorphisms a^ :F ®A X -» HomA(F,X) are functorial in X, they are
F-EndA(X)-bimodule isomorphisms. In particular, letting X = A we have
that OCA • r ®A A —> HomA(F, A) is a F-EndA(A) bimodule isomorphism.
Since EndA(A) ^ Aop it follows that a A :F -^ HomA(F,A) is a F-A-
bimodule isomorphism.

(b) => (a) Since F is a finitely generated projective left A-module we
have that the F-morphisms fix • HomA(F, A) ®A X —>> HomA(F,X) given
by Px(f ® x)(y) = f(y)x for all / in HomA(F, A) and y in F and x
in X are isomorphisms functorial in X. Let a :F —• HoniA(F,A) be a
F-A-bimodule isomorphism. Then a ® X: F ®A X -> HomA(F, A) ®A X
given by (a ® X)(y ® x) = a(y) ® x for all y in F and x in X, is a
F-isomorphism functorial in X in mod A. Therefore the composition

®A X —> HoniA(F,X) is a F-isomorphism functorial in X. •

We now apply Proposition 4.12 to the subalgebra A of the skew group
algebra AG. By definition we know that AG is a free left A-module.
Therefore by Proposition 4.12, to prove that the functors AG®A and
HoniA(AG, ) from mod A to modF are isomorphic, it suffices to show
the following.

Proposition 4.13 Let e\ in HoniA(AG,A) be defined by ^i(X^eG /^0 ') = ^i
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for all YLa^G^G *n AG. Then the map f:AG —• HoniA(AG,A) given by
f(x) = X€\ for all x in AG is a AG-A-bimodule isomorphism.

Proof By definition / is a AG-morphism. For each k in A we

have that /((£*&***)(*)) = f(EoeG^°W°) = E ^ c U W ^ i - Now

for all T in G. On the other hand for each k in A we have that

in G. Therefore / is a right A-morphism and hence a bimodule morphism.
We now show that / is an isomorphism.

Suppose j^2,kaG) = 0. Then for each % in G we have e\(xY^kaG) =
T(AT-I) = 0. So kT-i = 0 for all T in G which means that ^kaG = 0,
i.e. / is a monomorphism. Since AG is a free A-module with G as
basis, it suffices to show that for each T in G and k in A there is
some J2^o(J i n AG such that (^2kaG€\){x) = k and (^2kff(T€i)(u) = 0 for
all u in G—{T}. But (x~lk)x~l has this desired property, so we are done. •

Therefore we have proven the following.

Proposition 4.14 Let AG be a skew group algebra. Then the functors AG®A

and HomA(AG, ) from mod A to modAG are isomorphic. •

This result, which is an important tool in studying AG-modules, will
be applied in the next chapter.

Exercises

1. Let k be a field and T the quiver Oa, and / the ideal in kT generated
by the arrow. Let p = {a2 - a3}. Show that k(T)/(p) - (k[X]/(X2)) x fe,
that (p) <= / and that / " <£ (p)n for all n.

2. Let A be a basic artin .R-algebra.

(a) Prove that r = {k e A\k is nilpotent}.
(b) Let A' be an i^-subalgebra of A. Prove that A' is basic.
(c) Let e be an idempotent in A. Prove that eAe is basic.

y
3. Let k be a field and T the quiver a Q O O A L e t P =

S
{Sy _ a2? a3 _ a2 ? y8 _ ^ p3 _ ^ ad _ Sp9 ya _ py]
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(a) Show that dimk(kr/(p}) = 12.
(b) Show that the subalgebra of kT/(p) generated by a2, ya2, a2S, j82 is

isomorphic to Mi{k) and use Exercise 2 to conclude that kT/(p) is
not basic.

4. Let k be a field. In each of the cases below find the dimension of
feF and all indecomposable projective and all indecomposable injective
representations of F over k up to isomorphism.

(a) r : - - - ;
(b) r : • - > • - • ;
(C) r : - - > - - - ;
(d) r: x > - •

1 a 2

5. Let F be the quiver • <=» • and let k be a field. Let p = {a/?}.

(a) Show that there is some t with J* c (p) a J2.
(b) Find the radical of kT/(p).
(c) Find the indecomposable projective representations of (F, p) up to

isomorphism.
(d) Find the global dimension of kT/(p).

C / an 0 0 0

6 T et A — < I aix ai2 ° °
0. U5t A - < fl3i 0 a33 0

ay G C;C the complex numbers >.

(a) Prove that A is a subalgebra of the 4 x 4 matrix algebra over C
(b) Find the radical r of A.
(c) Show that A is basic.
(d) Find elements a,- G r - r2 such that {a,} is a (C-basis for r/r2 where

oii is the coset of aj.
(e) Find a quiver F and an ideal / in (CF such that A ^ CF/7.

7. Let fc be a field and let F be the quiver •* . For an ordered

pair (i,j) of elements in k let Mtj be the representation given by
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k k

\(o) /O
kUk

I (iJ)

k

(a) Determine for which (i,j) the representation Mtj is indecomposable
and for which (i,j) it decomposes.

(b) Prove that if Mtj and Mst are indecomposable then they are isomor-
phic.

Is the same true if Mtj and Mst decompose?

8. Let k be a field and F the quiver • 4 • Oy. Let p = {/3oc- y2
9ocp} and

(a) Prove that there exists some t such that Jl a (p) cz J2 and Jf cz

<p'> = ^2-
(b) Prove that if the characteristic of k is different from 2 then kT/(p) 2r:

(c) Prove that if the characteristic of k is equal to 2 then kT/(p)
kr/(p').

(d) Prove that kT/(p,y3) - kT/(p\y3) for all fields fc.

1 n

9. Let fe be a field, T the quiver a IN*, 3 , M the representationu
2

k 1 fe 0

*, k and AT the representation x I N< k .

(a) Find the radical and the socle of M and N.

(b) Find the annihilator, ann M and ann iV, of M and iV respectively.

(c) Prove that M is a projective (fcF/(ann M))-module and that N is an
injective (fcF/(ann AT))-module.
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10. Let A be an artin ^-algebra and e a primitive idempotent.

(a) Show that </>:HoniA(Ae,M) —> eM given by </>(/) = f(e) is an R-
isomorphism.

(b) Interpret the result in (a) for quivers with relations and their repre-
sentations.

(c) Show that \p:HomA(M,D(eA)) -• D(eM) given by \p(f)(em) =
f(m)(e) for / G HomA(M,D(eA)) and m G M is an i^-isomorphism.

(d) Interpret the result in (c) for quivers with relations and their repre-
sentations.

11. Let A be a hereditary artin algebra and F the valued quiver of A.
Prove that the underlying quiver of F has no oriented cycles.

12. Let Q be the rational numbers and R the real numbers. Let A =
{ }
(a) Prove that A is a subring of M2(1R), the ring of 2 x 2 matrices over

R.
(b) Show that the proper left ideals of A are the ideal {(£ °) |aGQ, fr elR j ,

the ideal j (° °)|fc,c G RJ , the family h indexed by 1 G R, where

lx = | r (0 0)|r G R } and the left ideal /« = {r(° °)|r G R } .
(c) Show that A is left artin but not right artin.
(d) Show that mod A does not have enough injectives.

13. Let (C(X) be the field of rational functions in one variable X over (C.
Then the subfield <C(X2) is isomorphic to C(X). Let M be C(X) as an
abelian group with the natural (C(X)-module structure. Consider M as
a (C(X)-C(X)-bimodule by letting the right action be given through the
isomorphism <C(X) - C(X2) c C(X). Let A = ( ^ J

(a) Find the center of A.
(b) Prove that A/r ^ Il2((C(X)) as a ring but not as an algebra over the

center of A.
(c) Find the valued quiver of A.

14. Let A be an artin algebra and F = T2(A). Prove that id rF = idAA+l.

15. Let A be an artin algebra isomorphic to ( ^ ^ J where T and U
are hereditary artin algebras. Prove that gl.dim A < 2.
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16. Let p be a prime number, let G be a finite p-group (i.e. the order of
G is pn for some n) and let fc be a field of characteristic p.

(a) Prove that for each g G G with g ^ 0 the element 1 — g is nilpotent
infcG.

(b) Let Z(G) be the center of G. Prove that {1 - g\g e Z(G)} generates
a nilpotent ideal / in kG.

(c) Prove that / is the kernel of the natural ring map from kG to
k(G/Z(G)).

(d) Prove that kG is a local ring. (Hint: Z(G) is nontrivial for each finite
group G.)

17. Let k be a field and let F be a Galois extension of k with [F:fc] = n
and Galois group G. Let G operate on F in the natural way and form
the skew group ring FG. Show that FG ~ Mn(k).

18. Let k be a field, F the quiver • ±» • and p the set of relations {a/?, /?a}.

Let G be the cyclic group of order 2 with generator g. Let G operate
on fcF as a group of fc-automorphisms by g(ae\ + bei + ca + dfi) =
(bei + aei + da + cjS) where a, b, c and d are in k.

(a) Prove that (feF/(p)) , the ring of fixed points, is isomorphic to
k[X]/(X2).

(b) Prove that the skew group ring (kT/(p))G is isomorphic to
M2(k[X]/(X2)\ the ring of 2 x 2 matrices over k[X]/(X2).

19. Let A be a finite dimensional algebra over a finite field k with
radical r. Let U(A) and U(A/x) denote the group of units in A and A/r
respectively.

(a) Prove that U(A/x) is a finite group isomorphic to Y[ GLHi(ki) where
kt are finite field extensions of k and nt are some integers.

(b) Let p:A —• A/r be the natural epimorphism. Prove that p induces
a surjective group morphism p: U(A) —• U(A/x) with kernel {1 + X
Aer} .

(c) Prove that l/(A/r) generates A/r as a fc-vector space if and only if
U(A) generates A as a fc-vector space.

(d) Let kU(A/x) and kU(A) be the group algebras of U(A/x) and U(A)
respectively. The inclusions U(A/x) -> A/r and U(A) —• A induce
fc-algebra morphisms (f)\/x'.kU(A/x) —• A/r and (j)\:kU(A) —• A.
Prove that 0A/r is surjective if and only if (j>\ is surjective.
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(Hence by (d) A is a quotient of a group algebra if k is different
from the field with 2 elements.)

(e) Prove that if k is a field with at least three elements then </>A/r is
surjective.

(f) Determine when 0A/ r is surjective for the field k with two elements.

20. Let A be a semisimple ring, M an A — yl-bimodule and T(A, M)
the tensor algebra of M over A, i.e. T(A, M) = A \J M ]J M <8U
M]J...IJM<guM<g>...<g>,4M]J...asa twosided >l-module and multipli-
cation is induced by the tensor product. Prove that T = T(A,M) is left
(and right) hereditary, independent of whether T(A, M) is artin or not.
(Hint: First prove using the adjoint isomorphism that P ®A X is a
left protective T-module whenever P is a T — ,4-bimodule projective
as a left T-module and X is any ^4-module. Apply this to prove that
M = M J j M ®A M H... U M <SU M (8)... <8U M ]J... is a left projective
T-module. Then for each left T-module X, prove that there is an exact
sequence of left T-modules

0 ->M ®AX •?* T ®AX 1* X ^>0

where / is defined on generators by f(t <8> x) = tx for t e T and x e X
and g is defined on generators by

g(m\ ® ... (8) mi <8> x) = m\ (8)... <g> mi <g) x — m\ <8>... <8) m;_i (

Notes

The systematic use of quivers and their representations in the representa-
tion theory of artin algebras goes back to [Gal], where they were used in
the classification of hereditary and radical squared zero algebras of finite
representation type over an algebraically closed field. This point of view
on modules has since then played a central role in representation theory.

Triangular matrix rings have for a long time been convenient for pro-
viding interesting examples of rings. A treatment of their homological
algebra, formulated more generally for trivial extensions of abelian cate-
gories, can be found in [FoGR]. The special case of one-point extensions
has been important in classification theorems (see [Rin3]).

For a further study of modules over group algebras from the point of
view of the methods of the representation theory of algebras discussed
in this book we refer to the texts [Ben], [CR], [Er]. For a representation
theoretic treatment of skew group algebras we refer to [ReR].
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IV
The transpose and the dual

In this chapter we introduce the notions of the transpose and the dual of
the transpose of a module. These functors are of fundamental importance
in the representation theory of artin algebras in their own right, as well
as because of their close connection with almost split sequences which
we discuss in the next chapter. Here we give some of the basic properties
of these functors.

We give illustrations of the transpose and the dual of the transpose by
showing that for certain types of artin algebras these functors are closely
related to more familiar functors. These algebras include Nakayama
and selfinjective algebras whose definitions we give here, in addition to
hereditary algebras.

The rest of the chapter is devoted to developing a formula giving a
basic relation between the lengths of the modules of morphisms between
modules, which involves minimal projective presentations of modules and
the dual of the transpose of modules. This formula plays an important
role in several places in the book.

All rings in this chapter are artin algebras and all modules are assumed
to be finitely generated.

1 The transpose

In this section we introduce the notions of the transpose and the dual of
the transpose of modules and morphisms. These notions are basic to the
rest of this book.

We have seen in II Proposition 4.3 that we have a duality T =

( )* :^(A) -> ^(A°P). Let C be in mod A and let Pi -4 Po -• C -• 0 be
a minimal projective presentation. Then we have C ~ Coker/. Applying

100
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the duality T to the morphism / we get a morphism /*:P0* ~* ^ i -
Associated with /* we have the module Coker/* in modAop which is
called the transpose of C and denoted by TrC. The operation Tr does
not induce a duality mod A —• mod Aop, and in general there is not even
a functor from mod A to mod Aop sending an object C to Tr C. But we do
get a duality by replacing mod A with an appropriate factor category, the
category modulo projectives, which we define later. Rather than showing
directly that this works, we give an approach which at the same time
motivates our choice of a factor category. But first we discuss the notion
of factor categories in general.

By a relation 01 on an .R-category si we mean .R-submodules
&(A,B) cz Hom(^4,J5), where Hom(A,B) is the i^-module of morphisms
from A to B, for all A and B in s/9 such that under the composition
map Hom(A,B) ®R Hom(£, C) —• Hom(^4, C), we have
lm(02(A,B) ®R Hom(£,C) - • Hom(A,Q) c 0t{A,C) and
ImCHomOifl) ®Rm(B,C) -> Hom(^,C)) c 0t{A,C). Then si/9t, the
factor category of si modulo the relation 91, is defined by the following
data. The objects of si 101 are the same as those of si. The mor-
phisms from A to B in si 101 are the elements of the factor module
Hom(A,B)/&(A,B). And the composition in si/0t is defined for A, B,
C in si 191 by (g + 9t(B9C)){J + 9t(A9B)) = gf + 9t{A,C) for all / in
Hom(^4,5) and g in Hom(jB, C). It is then easy to see that we have the
following.

Proposition 1.1 Let si be an R-category and 01 a relation on si.

(a) The factor category si 191 is an R-category and F: si —• si 191 given
by F(A) = A for all A in si and F: Hom(A, B) -+ Hom(A, B)/9t{A9 B)
being the canonical epimorphism, is a full and dense R-functor.

(b) If G.si -> Si is an R-functor between R-categories such that
G(&(A,B)) = 0 for all A and B in si, then there is a unique functor
H: si 191 -> S» such that HF = G. •

The morphism category of 0>(\) is the .R-category Morph(^(A)) defined
by the following data. The objects of Morph^(A) are the morphisms
f:Pi -> P2 in ^(A). The morphisms from / : P i -> P2 to f'\P[ -> P'2 are
pairs {gugi) where go Pi —• P( for i = 1, 2 such that the diagram

PI -U p2
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102 The transpose and the dual

commutes. Composition and addition of morphisms is componentwise.
It is not hard to check that this data defines an additive i^-category. Also
idempotents split, that is, if e:f —• / is an idempotent, then there is an
object f in Morph 0>{A) and morphisms g : / — • / ' and ft: / ' —> f such
that e = hg and gh = If.

We now define the i^-functor Coker: Morph ^>( A) —• mod A by
Coker(/:Pi - • P2) = Coker/ for all / : P i - • P2 in Morph &{A) and
Coker(gi,g2):Coker/-> Coker/ ' to be the unique morphism which
makes the diagram

^ • 0Pi

i
P'l

- ^ p 2 —>

I-
- U P^ -H.

Coker/

1
Coker/ ' > 0

commute. It is straightforward to see that the ^-functor Coker:
Morph 3P(A) —• mod A is dense and full but not in general faithful.
Specifically, Coker(gi,g2) = 0 if and only if there is some h.Pi —> P[
such that f'h = g2. If for objects / and / ' in Morph ^(A) we define
0t(f9f) to consist of the morphisms {gugi) with the property that there
is some h:P2 —• P[ such that f'h = g2, then & gives a relation on
Morph ^(A). Then we get the following.

Proposition 1.2 Let & be the relation on Morph ^(A) defined above.
The functor Coker: Morph ^ ( A) —> mod A induces a functor
G: Morph SP(K)l0t —> mod A, which is an equivalence of categories. •

The duality T\&(b) -> ^(Ao p) given by P i-> HomA(P, A) for all P in
^(A) induces a duality T: Morph &(b) - • Morph ^(Aop), which sends
the object f:P{ -» P2 to /* :P2* -> Pt*. For / : P i -> P2 and / ' iPf - • P'2 in
Morph ^(A), assume that (gugiY-f -> f is in 0t(j,f% with ^ as before.
There is then a morphism ft:P2 —> P{ such that g2 = /'ft, which gives rise
to the diagram

P'* - C P{*

with g2 = ft*/'*. We see that we do not necessarily have that {g*2,g\)
is in ^ ( / '* , /* ) . In fact, the smallest relation @> containing the relation
01, which we can put on Morph ^(A) such that it is sent to itself by
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IV.l The transpose 103

the duality T is generated by the following maps. For f\P\ —> Pi and
f':P[ - • P'2 in Morph ^ ( A) we have that (gugi):f -* / ' is in 0>(fj') if
there is some h:P2 -» P{ such that either /'/i = g2 or hf = g\. We then
get the following.

Proposition 1.3 The duality T: Morph 0>{A) - • Morph ^(Aop)
a duality T r :Morph^ (A) /^ - • Morph ^ ( A ° P ) / ^ with
Tr: Morph ^ ( A ° P ) / ^ -> Morph 0>(A)/0> as -inverse duality. D

We now interpret these results about Morph ^(A) and
in terms of the category mod A. Since the relation 2P on Morph ^ ( A)
contains the relation 01 on Morph ^(A), the image of 3P under the full
and dense functor Coker:Morph^(A) —• mod A is a relation on mod A
which we want to describe. For this the following description of the
relation 0> on Morph ^(A) is useful.

Lemma 1.4 Let / : P i - • P2 and f\P[ -> P'2 be in Morph ^(A). Let
&(f,f) a Hom(/ , / ' ) consist of the morphisms (gi,g2)-/ —̂  / ' wit/i £/ie
property that there is some h'.Pi —> P[ such that f'hf = gif. Then we

Proof It is clear that &(f,f) a &(fj'). Suppose now that (gi,g2) is in
f'\ and let h:P2 -> P[ be such that f'hf = g2f. Then the diagram

/
Pi

l g l [f'h

Pi ^ Pi

commutes and (guf'h) is in ^(/./ ')- Also (gug2)-(guf'h) = (0,g2-/'fc)
is in &(f,f), so that (gi,g2) is in ^(/,f)- Hence we have 0>{f,f) =

Suppose now that we have the commutative exact diagram

Pi - ^ Pi - ^ Coker/ ^ 0

lgl Ig2 I Coker(g,,g2)

P[ •£+ P'2 - ^ Coker/ ' -> 0.

It is fairly straightforward to see that (gi,g2) is in ^(f9f), i.e. there
is some h\P2 —• P{ such that f'hf = g2/ if and only if there is some
t:Coker/ —> P'2 such that 6rr = Coker(gi,g2). This suggests that the
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104 The transpose and the dual

image of 0* in mod A under the functor Coker: Morph ^ ( A) —> mod A
consists of the morphisms A —• B in mod A which can be written as a
composition A —• P —• B with P a projective A-module. That this is
indeed the case follows from the above discussion and the next lemma.
We say that a morphism / : A —• B in mod A factors through a projective
module if / = hg with g: A —> P and h:P —> 1? with P a projective
A-module.

L e m m a 1 . 5 The following are equivalent f o r a morphism f : A ^ > B i n
mod A.

(a) / factors through a projective module.
(b) If g\P —• B is an epimorphism with P projective, then there is some

t:A-> P such that gt = / .
(c) If g:X —• B is an epimorphism, then there is some t:A —> X such

that gt = f. n

It is clear that the image in mod A of the relation SP on Morph gP{ A)
is a relation on mod A, which we also denote by gP, and which has the
following description. For A and B in mod A, gP(A, B) is the i^-submodule
of HomA(^4,B) consisting of the morphisms f\A—>B which factor
through a projective module. From Lemma 1.5(b) it is clear that if g: P —>
B is an epimorphism with P projective then 0>(A,B) = Im Hom\(A9 g).
We shall usually denote HomA(A,B)/0>(A,B) by HomA(AB) and the
factor category mod A / ^ by mod A. Since Coker: Morph^(A) -> mod A
is full and dense it induces an equivalence from Morph &(h)/3P to mod A
which we also denote by Coker. Identifying Morph ^ ( A ) / ^ with mod A
through this equivalence we obtain that the duality Tr: Morph g?(A)/g? —•
Morph ^(Aop)/^ induces a duality from mod A to modAop which we
also denote by Tr. We now collect our findings.

Proposition 1.6

(a) The functor Coker: Morph 0>(A) —• mod A induces an equivalence
Coker: Morph ^ ( A ) / ^ - • mod A.

(b) The compositions mod A —• mod Aop -> mod A and mod Aop ->

mod A —* mod Aop are isomorphic to the identity on mod A and

mod Aop respectively. •

For C in mod A we have a unique (up to isomorphism) decomposition
C = C&> Y[ C , where C$> has no nonzero projective summands and C
is projective. Denote by mod^ A the full subcategory of mod A whose

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.005
https://www.cambridge.org/core


IV.l The transpose 105

objects are the C in mod A with C = C^, and denote by &> the relation
on mod^ A induced by the relation & on mod A. Denoting mod<^ A/0>
by mod^ A it is easy to see that the functor mod^> A —• mod A induced
by the inclusion mod^ A —• mod A is an equivalence of categories, since
C in mod A is the zero object if and only if C is projective. Hence there
is also induced a duality TriimxU A —• mod^(Aop).

Even though it is on the factor categories mod A and mod^A that
Tr defines a functor, it is often useful to consider the induced map be-
tween objects Tr:modA —• mod(Aop) which we can define directly by
po ^ pi -> T r c ~* ° b e i n S e x a c t w h e n ^1 ^ po - • C - • 0 is a minimal
projective presentation of C. Note that if C is indecomposable nonpro-
jective, then it is clear that / : Pi —> Po is an indecomposable map which
is not an isomorphism. Hence /*: Po* —• P[ is also an indecomposable
map which is not an isomorphism, so that Coker/* = TrC is clearly

indecomposable. It is also not hard to see that Po* -> P{ —> Tr C —• 0 is
a minimal projective presentation of TrC. If C = P is indecomposable
projective, then 0—»P—>P—>0isa minimal projective presentation, but
P* —•()—•()—>0is not a minimal projective presentation of TrP = 0.
Using these observations we obtain the following easily verified properties
of the map Tr from mod A to mod(Aop).

Proposition 1.7

(a) TrflJJLi At) ^ ]JLi T r(^)> where Ait . . . , An are in mod A.
(b) Tr^4 = 0 if and only if A is projective.

(c) Tr Tr^4 ^ A& for all A in mod A.
(d) If A and B are in mod̂ » A, then TrA~TrB if and only if A ~ B.

(e) Tr:modA -* mod(Aop) induces a bisection between the isomorphism
classes of indecomposable modules in mod^ A and the isomorphism
classes of indecomposable modules in mod^(Aop). •

We now turn our attention to studying the dual of the transpose.
Let A and B be in mod A. Then f:A - • B is in 0>(A,B) if and

only if D(f):D(B) —• D(A) factors through an injective module, where
D:modA —• mod(Aop) is the usual duality, i.e. there exists an injective
Aop-module / and Aop-morphisms g:DB - • / and h:I - • DA with
Df = hg. This suggests introducing the relation "modulo injectives" on
mod A, which is the dual of the relation "modulo projectives" on mod A.
Before giving the formal definition of this notion, we state the dual of
Lemma 1.5.
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106 The transpose and the dual

L e m m a 1.8 The following are equivalent for a morphism f : A ^ > B i n
mod A.

(a) / factors through an injective module.

(b) If g: A —• / is a monomorphism with I injective, then there is some

t:I -> B such that f = tg.

(c) If g:A —• X is a monomorphism, then there is some t:X —• B such

that f = tg. •

For A and B in mod A we define J(A,B) a HomA(A,B) to be the set
of all / : A —• B which factor through an injective module. Therefore, if
g: A —> I is a monomorphism with / injective, then

and is therefore an K-submodule of HomA(,4,E). It is also not difficult to
check that the system of K-submodules J(A,B) defines a relation «/ on
mod A. We will often denote HomK{A,B)/J{A,B) by HomA(^,J5) and
mod A / , / by mod A. As a consequence of our discussion we have the
following.

Proposition 1.9

(a) The duality D:modA —> modAop induces a duality D: mod A -»
modA°P.

(b) The composition DTr:modA —• mod A is an equivalence of cate-
gories with inverse equivalence TrD:mod A —• mod A. •

Each C in mod A can be written uniquely up to isomorphism as C =
Cj U C where Cj has no nonzero injective summands and C is injective.
We denote by mody A the full subcategory of mod A whose objects are
the C such that C ^ Cj. The relation «/ on mod A induces a relation on

A which we also denote by «/. Then letting mod^ A/ . / = modjf A
we have that the inclusion modjr A —> mod A induces an equivalence

A —• mod A since C in mod A is the zero object if and only if C
is injective. With this terminology in mind, we list some of the basic
properties of the map D Tr: mod A —• mod A which is the composition of
the map TrimodA - • mod(Aop) with the duality D:mod(Aop) - • mod A
and the map TrD:modA —• mod A which is the composition of the
duality and the map Tr:mod(Aop) —> mod A. These properties are trivial
consequences of Proposition 1.7.
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IV.l The transpose 107

Proposition 1.10

(a) D Trf lJJLi At) ~ ] J " = i D TrAi> where Alf ...,Anare in m o d A.
(b) D TxA — 0 if and only if A is projective.
(c) DTrA is in mod,/ A for all A in mod A.
(d) (Tr D)D TrA~A& for all A in mod A.
(e) If A and B are in mod^ A, then D TrA ~ D Tr B if and only if A ~ B.
(f) DTr:modA —• mod A induces a bisection between the isomorphism

classes of indecomposable modules in mod^ A and the isomorphism
classes of indecomposable modules in mod,/ A with Tr D as inverse. •

Thus we see that associated with an indecomposable nonprojective
module A is the indecomposable noninjective module DTr^4 which, in
principle, we can construct from A. Similarly, given an indecomposable
noninjective module B there is associated the indecomposable nonpro-
jective module Tr DB, which in principle can be constructed from B. In
this connection the following relation between minimal projective presen-
tations and minimal injective copresentations of these various modules
is of interest. Here a minimal injective copresentation of a module B is
an exact sequence 0 —• B —• Jo —> I\ with go: B —• 7o and the induced
monomorphism g[: Coker go -> h injective envelopes.

Proposition 1.11 Let P\ —• Po —• C —• 0 be a minimal projective presenta-
tion of the indecomposable nonprojective module C. Then 0 —> D Tr C —>

D(P{) °V D(P*) -> D(C*) -+ 0 is exact with 0 -> DTrC -> D(P{) %
D(PQ) a minimal injective copresentation of the indecomposable A-module
DTrC. In particular, socDTrC ^ P\/xP\.

Proof Since Pi —• Po -^ C —• 0 is a minimal projective presentation

of C, it is easily seen that 0 - • C* -> Po* 4 P ; - • TrC -^ 0 is exact

and that Po* -̂ > Px* —»• Tr C is a minimal projective presentation of the
indecomposable Aop-module TrC. Applying the functor D to this last
sequence we obtain our desired result. •

We also have the following dual result.

Proposition 1.12 Let 0 —> C —• Jo —> 7i 6e a minimal injective
copresentation of the indecomposable noninjective module C. Then
0 -> (DC)* -* (D/o)* -^ (D/i)* -^ TrDC -^ 0 is exact with

-^ Tr DC -^ 0 a minimal projective presentation of the
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108 The transpose and the dual

indecomposable A-module Tr DC. In particular, TrDC/rTr DC ~ soc/i.
•

We end this section by calculating the transpose and the dual of the
transpose for some particular modules. We start out with a concrete
example.

0 ^

Example Let A = kT where T is the quiver 1 . — — • • ^ • Then Fo p

2 ^

aP y *3

is i--« «̂ T . We compute DTrS2 by using the category Rep(F).

Let Pf be the indecomposable projective representation corresponding to

the vertex i. Then P^ is o ^<C » anc^ w e have a minimal projective

presentation 0 —• P3 ]J P4 A P2 -> & -> 0 in Rep(F), where s and t

are not zero. This gives rise to an exact sequence P2 ~* ^3* LI ̂ 4* ^>

^4^ ,
^ 0

0 where s* and t* are not zero. Here P2* is

is in fc^ and P4* is fc^—fc^ . Since s*: P2*
^ 0 ^ / c

and t*:P2* -+ P4* are nonzero, it is easy to see that they are both
/ k

monomorphisms. Hence Tr S2 must be of the form k< k ̂ T where

the maps are either zero or isomorphisms. If one of the maps is zero,
we would get a contradiction to Tr^2 being indecomposable. Hence all
maps are isomorphisms. Therefore after a change of basis all maps can
be represented by the identity matrix. Then we get that D Tr S2 is given

by the representation u l *b^ , which is Pi.

Our next example shows that Tr C is a familiar construction for some
A-modules C. To state this result, it is convenient to recall that Ext^(C, A)
is considered as a right A-module, or Aop-module, by means of the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.005
https://www.cambridge.org/core


IV.l The transpose 109

operation of A on A given by right multiplication, for all i > 0 and all C
in mod A.

Proposition 1.13 Let <£ be the full subcategory of mod A consisting of all A-
modules C with pdA C < 1. Then the contravariant R-functors T
mod(Aop) and ExtA( , A ) : ^ / ^ —• mod(Aop) are isomorphic, where
is the category %> modulo projectives.

Proof Let 0 —> Pi —> Po —> C —> 0 be a minimal projective resolution
for C in *. Then

is exact. This gives an isomorphism TrC ~ ExtA(C,A) in mod(Aop)
which it is not difficult to check is functorial in C. •

As an immediate consequence of this result we have the following.

Corollary 1.14 For a hereditary artin algebra A the functors Tr:mod A —>
mod Aop and ExtA( , A): mod A —> mod Aop are isomorphic. Hence the
functors DTr:mod A —• mod A and DExtA( , A): mod A —• mod A are
isomorphic. •

In this connection it is useful to make the following observation which
shows that for hereditary algebras the transpose is really defined on
mod A and not just on mod A.

Proposition 1.15 Assume A is a hereditary artin algebra. Then for B and
C in mod^ A we have that ^(B, C) = 0. Hence the functor mod^ A —>
mod A is an equivalence of categories.

Proof Let g: B —• C be in &{B, C). Then there is a commutative diagram

P

with P a projective module. Since A is hereditary, we have that I m s c P
is projective. Hence Im s is a summand of B and so must be zero since
B has no nonzero projective summands. Therefore g = 0, and hence
0*(B, C) = 0. The rest of the lemma is an immediate consequence of this
fact. •
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110 The transpose and the dual

As our final observation concerning the connections between the trans-
pose and modules of projective dimension 1 we have the following.

Proposition 1.16 Let X be a A-module. Then pdA X < 1 if and only if
UomA(D(A\DTrX) = 0.

Proof Let Pi —• Po —• T r Z —• 0 be a minimal projective presentation
of TrX in mod(Aop). Then we have the exact sequence of A-modules
0 - • (TrX)* - • Po* -» Pi -> Y - • 0 where Y has no projective indecom-
posable summands and X = Y ]J P with P a projective module. Since
Po* —• P[ —> Y —> 0 is a minimal projective presentation of 7 , we have
that pdA Y < 1 if and only if (TrX)* = 0. Hence we see that pdAX < 1
if and only if HomA°p(TrX,A) = 0. Since HomAoP(TrX, A) = 0 if and
only if HomA(D(A),D TrX) = 0, we have our desired result. n

We now give an example of how the operations D and Tr can be used
to show the existence of indecomposable modules of arbitrarily large
length.

Example Let k be a field and A = k[X, Y]/(X, Yf. Then A is a local
ring so that A is an indecomposable A-module, and is the only indecom-
posable projective A-module up to isomorphism. We have r2 = 0 and
r ~ S U S where S = A/r is the unique simple A-module up to iso-
morphism. If C is an indecomposable nonsimple A-module, we have
xC = soc C For clearly xC a soc C, and if the inclusion was proper we
would have a nonzero submodule K of soc C such that soc C = xC\\K.
Then the composition K —• C —• C/xC is a monomorphism, and hence
there is a morphism C/xC —> K such that the composition K —• C —• K
is the identity. Then C would be simple.

For an indecomposable A-module C let t = l(C/xC) and s = l(xC). It
is easy to see we have then a minimal projective presentation (It — s)A —>
fA —• C —• 0. If C is simple there is a minimal projective presentation
2A —• A —> DC —> 0 and if C is not simple there is a minimal projective
presentation (2s — t)A —> sA —• DC —> 0. Hence for C simple we have
a minimal projective presentation A —• 2A—>Tr DC —• 0 and for C
not simple we have a minimal projective presentation sA —• (2s — t)A —•
TrDC —• 0. Hence we get by induction that Tr DnS, n > 1, has a minimal
projective presentation (2n — 1)A —• 2nA —• Tr DnS —• 0. Hence there is
no bound on the length of the indecomposable A-modules.
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IV.2 Nakayama algebras 111

An artin algebra A is said to be of finite representation type, or of finite
type for short, if there is only a finite number of indecomposable objects
up to isomorphism in mod A. Such algebras are studied in Chapter VI.
We have just seen that k[X, Y]/(X, Y)2 is of infinite representation type.

2 Nakayama algebras

The interest in the functors Tr and D Tr stems from the fact that their
behavior reflects important properties of the category of A-modules. As
our first illustration of this point we show in this section that Nakayama
algebras can be characterized by the property that the DTr-orbits of
simple modules consist entirely of simple modules. Nakayama algebras
are of considerable interest because next to semisimple algebras they are
the best understood artin algebras. Since Nakayama algebras are defined
in terms of uniserial modules, we start this section with a discussion of
these modules.

Let A be an artin algebra. A A-module A is called a uniserial module
if the set of submodules is totally ordered by inclusion. We have the
following useful characterizations of uniserial modules, using the notions
of radical filtration and socle filtration introduced in Chapter II. The
proof is left as an exercise for the reader.

Proposition 2.1 The following are equivalent for a A-module A.

(a) A is uniserial.

(b) There is only one composition series for A.

(c) The radical filtration of A is a composition series for A.

(d) The socle filtration of A is a composition series for A.

(e) l(A) = rl(A). n

The following are easily verified properties of uniserial modules.

Lemma 2.2 Suppose A is a uniserial module. Then we have the following.

(a) D(A) is a uniserial module.

(b) If 0 —• A ' —• A —> A " —> 0 is exact, then Ar and A " are uniserial
modules.

(c) A is indecomposable with A/xA and socA simple modules.

(d) If P —> A is a protective cover, then P is indecomposable.

(e) IfA—>I is an injective envelope, then I is indecomposable. •
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112 The transpose and the dual

An artin algebra A is said to be a Nakayama algebra if both the
indecomposable projective and indecomposable injective modules are
uniserial. Obviously A is Nakayama if and only if the indecomposable
projective A and Aop-modules are uniserial. If k is a field then k[X]/(Xn)
is a Nakayama algebra for all n > 0.

It is worth noting that A having the property that every indecompos-
able projective module is uniserial does not necessarily imply that Aop

has the same property. For example, if A is the path algebra kT of
the quiver j ~ > 2 ^ 3 , then every indecomposable projective A-module
is uniserial, but the same is not true for Aop. Since the class of artin
algebras A with the property that A is a sum of uniserial modules, i.e.
every indecomposable projective module is uniserial, is of interest in it-
self, we point out some features of these algebras which we will need in
connection with our study of Nakayama algebras.

Proposition 2.3 The following are equivalent for an artin algebra A.

(a) A is a sum of uniserial modules.
(b) A/a is a sum of uniserial modules for all ideals a of A.
(c) A/r2 is a sum of uniserial modules.

Proof (a)=>(b) and (b)=>(c) are trivial.
(c)=>(a) Let P be an indecomposable projective A-module. We show

that P/xnP is uniserial by induction on n when n > 2.
When n = 2 there is nothing to prove. Suppose n > 2. Then P/xn~xP is

uniserial by the induction hypothesis. If xn~lP = 0, then P/xnP is clearly
uniserial, so we can assume xn~xP ^ 0. It follows from Proposition 2.1
that xlP/xi+lP is simple for i = 0, . . . , n - 2. To show that P/xnP is
uniserial, it is then sufficient by Proposition 2.1 to prove that xn~1P/xnP
is also simple. Let Q —> xn~2P be a projective cover. Since x

n~2P/xn~1P
is simple, Q must be indecomposable and so Q/x2Q is uniserial. But we
have an epimorphism xQ/x2Q - • xn~lP/xnP which shows that r ^ P / r T
is simple. •

Restating this result for Nakayama algebras we have the following.

Corollary 2.4 The following are equivalent for an artin algebra A.

(a) A is a Nakayama algebra.
(b) A/a is a Nakayama algebra for all ideals a of A.
(c) A/r2 is a Nakayama algebra. •
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IV.2 Nakayama algebras 113

The following is a direct consequence of the definitions involved.

Lemma 2.5 Let A be an artin algebra which is a sum of uniserial modules.
Then the following are equivalent for a A-module C.

(a) C/xC is simple.

(b) If P —• C is a projective cover, then P is uniserial.

(c) C is uniserial.

Moreover, if A and B are uniserial A-modules, then A ~ B if and only if
A/xA ~ B/xB and l(A) = l(B). •

The following description of the dual of the transpose for uniserial
modules over Nakayama algebras is basic to our treatment of Nakayama
algebras.

Proposition 2.6 Suppose C is a uniserial nonprojective module of length n
over a Nakayama algebra A. Then we have the following.

(a) Tr C and D Tr C are uniserial.

(b) l(C) = l(DTrC).

(c) If P -» C is a projective cover, then DTrC ~ rP / r n + 1 P.

f g
Proof Let P i — > P — > C — • O b e a minimal projective presentation of
C. Since C is uniserial, P is uniserial, which implies that Kerg = xnP
since l(C) = n and is thus uniserial. Hence Pi is uniserial. Now it is
not difficult to see that n = l(C) is the maximal length of a chain of
nonisomorphisms Pi —• Q\ —> • • • —• gw-i ~> P with composition /
between indecomposable projective modules. Since A is a Nakayama
algebra, the minimal projective presentation P* —> Px* —> TrC —> 0 has
the property that P* and P{ are uniserial since they are indecomposable.
Also the duality T:^(A) -> ^ ( A ° P ) shows that P* -> Q*^ - • • • • - »
Q*\ ~* ^i* ^s a maximal chain of nonisomorphisms with composition /*
between indecomposable projective modules. Therefore Tr C is uniserial
and /(TrC) = /(C), which gives immediately that DTrC is uniserial and
/(DTrC) = /(C). This proves parts (a) and (b).

We now prove part (c). We know that socD Tr C ^ P\/xP\ by Proposi-
tion 1.11 and also that Pi/rPi ^ x

nP/xn+1P since xnP = Kerg. Therefore
rP/ r" + 1 P and D Tr C are two uniserial modules of the same length with
the same socles. Since Aop is a sum of uniserial modules and D(D Tr C)
and D(rP/r"+ 1P) are uniserial modules of the same length and are iso-
morphic modulo their radicals, it follows by Lemma 2.5 that they are
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114 The transpose and the dual

isomorphic. Therefore xP/xn+1P ~ DTrC, which finishes the proof of
the proposition. •

By duality, we have the following version of Proposition 2.6.

Proposition 2.7 Suppose C is a uniserial noninjective module of length n
over a Nakayama algebra A and suppose C -* I is an injective envelope.
Then Tr DC ~ (socn+1 / ) / socJ, which is a uniserial module of length n. •

We show in Chapter VI that all indecomposable modules over a
Nakayama algebra are uniserial. Hence Propositions 2.6 and 2.7 describe
D Tr and Tr D for all indecomposable modules.

The rest of our discussion of Nakayama algebras uses the notion of
the D Tr-partition of the indecomposable A-modules which is defined as
follows for arbitrary artin algebras, not just Nakayama algebras.

Let A be an arbitrary artin algebra. We denote by indA a full
subcategory of mod A whose objects consist of chosen representatives
from isomorphism classes of indecomposable modules in mod A. Note
that the zero module is not in ind A.

Now D Tr operates on ind A U {0} and we define (D Tr)1 for all i e N
by (DTr)° = 1 and (DTr)1 = DTr^DTr)1-1) for i > 0. Further (DTr>>
for - ; e N is defined by (DTrV = (Tr £>)->, where also (TrD)° = 1 by
definition.

Let C be in ind A. Then define the D Tr-orbit of C to be the collection
of indecomposable modules in { (DTryC}^ . It is easily seen that the
D Tr-orbits induce a partition of the objects in ind A which we will refer
to as the D Tr-partition. The D Tr-orbits of ind A are of three basically
different types as we now describe.

Proposition 2.8 Let G be a D Tr-orbit o/indA.

(a) Suppose there is a projective module P in (9. Then we have the fol-
lowing.

(i) (9 consists of the nonzero objects in {

(ii) 0 is finite if and only if (DTr)-nP = (Tr DfP is injective
for some n in N. Moreover if(TrD)nP is injective, then (9 =
{P, (D T r ) " ^ , . . . , (D Tr)-"P}.

(b) Suppose (9 contains an injective module I. Then we have the following.

(i) 0 consists of the nonzero modules in {/, D Tr / , . . . , (D Tr)1 / , . . .} IGN-
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IV.2 Nakayama algebras 115

(ii) (9 is finite if and only if (DTr)nI is projective for some
n G N. Moreover if (DTr)"/ is projective, then (9 =
{/,DTr / , . . . , (DTr)"/}.

(c) Suppose (9 contains no projective or injective modules. Then we have
the following.

(i) (9 consists of {(D Ti)iA}iez where A is any object in (9.
(ii) (9 is finite if and only if there is some i > 0 such that (D Tr)lA ~

Afar some (and hence all) A in (9. Moreover, ifn is the smallest
such i then ® = {A,...,(DTr)n-lA}.

Proof (a) Since (D Tr)'P = 0 for all i > 0, part (i) is established. We claim
that if (D Tr)~T ~ (D T r ) " ^ P ^ 0 with j > 0, then P ~{D Tr)~JP =
(Tr D)jP which is impossible since j > 0. Therefore the only way (9
can be finite is that (D Tr)~(n+1)P = 0 for some n > 0, or equivalently,
(DTr)~nP is injective. It is also clear by our previous remark that if
(DTr)~nP is injective, then (9 = {P,(DTr)~lP,...,(DTr)~nP}.

Part (b) is the dual of (a) and (c) is easily seen to be true. •

The following is an obvious consequence of the definitions of D Tr-
orbits and the previous propositions.

Corollary 2.9 Let A be a Nakayama algebra. If C is a uniserial module of
length n, then all the modules in the D Tv-orbit of C are uniserial modules
of length n. •

We can now prove our promised characterization of Nakayama alge-
bras.

Theorem 2.10 An artin algebra A is a Nakayama algebra if and only if the
D Tr-orbits of simple modules consist entirely of simple modules.

Proof By Corollary 2.9 we know that if A is a Nakayama algebra, then
the D Tr-orbits of simple modules consist entirely of simple modules.

Suppose now that the D Tr-orbits of simple modules consist entirely
of simple modules. Let P be an indecomposable projective A-module.
Suppose P is not simple and let Pi —> P —• P/xP —> 0 be a minimal
projective presentation. Then P* —• P[ —> Tr(P/rP) —> 0 is a minimal
projective presentation. The fact that DTr(P/rP) , and hence Tr(P/rP),
is simple implies that P{, and hence Pi, is indecomposable. Therefore
xP/x2P is simple. This shows that A/r2 is a sum of uniserial modules,
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which implies that A is a sum of uniserial modules by Proposition 2.3.
Using the fact that TrD(S) is simple if S is simple noninjective, we get
that Aop also has the property that if T is a simple nonprojective Aop-
module, then D Tr T is simple. Thus Aop is a sum of uniserial modules,
which shows that A is a Nakayama algebra. •

We end this preliminary discussion of Nakayama algebras by taking a
more detailed look at the structure of the D Tr-orbits of indecomposable
modules containing simple A-modules.

Let A be a Nakayama algebra. We have seen in Corollary 2.9 that all
the modules in a D Tr-orbit of a uniserial module have the same length.
In particular, the DTr-orbits (9\, . . . , (9m of the simple modules give a
partition of the isomorphism classes of simple modules. We claim that
this is the same as the block decomposition of simple modules, i.e. each
G\ consists of the simple modules belonging to one indecomposable block
of A. To see this it is convenient to introduce an ordering on each of the
D Tr-orbits (9^ called the Kupisch series, which we now describe.

Let (9 be the D Tr-orbit of some simple A-module, i.e. (9 = G\ for
some L Since (9 consists entirely of simple A-modules, it is finite.
Hence it follows from Proposition 1.10 that (9 contains an injective
simple module if and only if it contains a projective simple mod-
ule. Furthermore, if (9 contains an injective simple module 5, then
(9 = {(DTrfS = S,DTrS,. . . ,(DTr)"-1S} where the DTr 'S are distinct
for i = 0, . . . , n— 1 and (D Tr)""1^ is projective. Then (9 with this ordering
is called the Kupisch series for the DTr-orbit (9. If (9 does not contain
an injective module, then (9 = {(DTr)°S,DTrS',...,(DTr)n-1S'}, where
S is an arbitrary element of (9, and n is the smallest integer such that
DTr n S ~ iS, and where all the DTrlS are nonisomorphic for i = 0,
. . . , n — 1. (9 together with this ordering, which is unique up to cyclic
permutations, is then called a Kupisch series for the DTr-orbit (9. For a
D Tr-orbit (9 we denote by (9 the projective covers of the simple modules
in (9. We call 0 with the induced ordering the Kupisch series for (9.

We have the following connection between the D Tr-partition of the
simple modules and the blocks of A.

Proposition 2.11 Let Abe a Nakayama algebra and {(9\, . . . , (9n) the D Tr-
partition of the isomorphism classes of simple A-modules. Let {O\t . . . , On]
be the corresponding partition of the isomorphism classes of indecomposable
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IV.2 Nakayama algebras 117

projective A-modules, where P is in (9\ if and only if P/xP is in &t. Then
this is the block partition of the projective modules.

Proof Let {So,...,Sn-i} be a Kupisch series for &i9 and Pj a projective
cover of Sj for j = 0, . . . , n - 1. Since Sj+i ~ DTvSj ~ xPj/x2Pj, and
hence P/+i is a projective cover for rP7, for all 7 = 0, . . . , n — 2, there
are nonisomorphisms P ; + i —• Pj. Hence Po, ..., Pn_i are all in the same
block of A.

The fact that DTr(P/rP) ~ xP/x2P for each indecomposable projec-
tive nonsimple A-module P also implies that if P is in &i9 then xjP/xj+lP
is in (Pf for a l l j = 0, . . . , l(P) - 1. From this it follows that if P is in 0t

and P ' is in 0t with 1 ^ t, then HomA(P,P /) = 0 = HomA(Pf,P). This
finishes the proof. •

Corollary 2.12 A Nakayama algebra A is an indecomposable ring if and
only if all the simple A-modules are in the same D Tr-orbit. •

Assume now that A is an indecomposable Nakayama algebra with
Kupisch series {Sb,...,Sn_i} and {Po,...,Pn_i} of simple and projective
modules. Since P ; + i is a projective cover for xPj for all j = 0, . . . , n — 2,
and Po is a projective cover of rPn_i if Pn-\ is not simple, the sequence
of positive integers (ao,...,an_i) where a ; = l(Pj) for 0 < j < n — 1
has the property that o/+i > a}• — 1 > 1 for all j = 0, . . . , n — 2 and
ao > an-\ — 1. Any sequence of positive integers (OQ9 . . . , an-\) satisfying
these conditions is called an admissible sequence. If {Po,...,Pn_i} is
a Kupisch series for the indecomposable projective A-modules, then
(/(Po),...,/(Pn_i)) is called the admissible sequence of A. We then have
the following.

Proposition 2.13 For any admissible sequence (ao,...,an_i) of positive in-
tegers there is a Nakayama algebra with this sequence as its admissible
sequence.

Proof Let (ao, a\9..., an_i) be an admissible sequence of positive integers.
Consider the quiver T

0 qw_! n-\ qM_2 n-2
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if an-\ > 1 and
«o v «i v aH-2

0 1 n-2 w-1

if an-\ = 1. For each i there is a unique path pt of length a, starting at i.
Then the path algebra kT of F modulo the ideal generated by the paths
Pi is a Nakayama algebra with admissible sequence (ao,ai,...,an-i). The
verification of this fact is left to the reader. •

We illustrate with the following.

Example k[X]/(Xn) is a Nakayama algebra with admissible sequence (ft).

Example The n x n full lower triangular matrix algebra over a field is a
Nakayama algebra with admissible sequence (ft, n — 1,..., 1).

The rest of this section is devoted to showing how to construct new
examples of Nakayama algebras from old ones by using skew group
algebras. The main result is the following.

Theorem 2.14 Let AG be a skew group algebra with the order of G invert-
ible in A. Then AG is a Nakayama algebra if and only if A is Nakayama.

We begin the proof by showing that we can reduce the proof of
Theorem 2.14 to proving it for A with the property that r2 = 0 where
r is the radical of A. We know by Corollary 2.4 that an artin algebra
F is Nakayama if and only if F/(rad F)2 is Nakayama. Therefore A is
Nakayama if and only if A/r2 is Nakayama and AG is Nakayama if and
only if AG/(radAG)2 is Nakayama. But by III Proposition 4.11 we have
(rad AG) = rAG and so (rad AG)2 = r2AG. Moreover we also know from
Chapter III that AG/(rAG)2 ~ (A/r2)G. Finally, the fact that the order
of G is invertible in A implies that the order of G is invertible in A/r2.
Thus we have shown that to prove Theorem 2.14 it suffices to prove it
under the additional hypothesis that r2 = 0. This we now proceed to do.
We begin with the following description of the indecomposable modules
of a Nakayama algebra of radical square zero.

Lemma 2.15 Let Abe a Nakayama algebra with r2 = 0. Then the following
are equivalent for an indecomposable nonsimple A-module M.

(a) M is a protective A-module.
(b) M is an injective A-module.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.005
https://www.cambridge.org/core


IV.2 Nakayama algebras 119

Proof (a) => (b) Let M be a nonsimple indecomposable projective A-
module. Since A is a Nakayama algebra, M is uniserial. Since r2 = 0, it
follows that l(M) = 2. Let I(M) be an injective envelope of M. Since
socM ~ soc/(M) is simple, it follows that I(M) is indecomposable and
therefore uniserial of length at least 2. Since r2 = 0, it follows that
1(1 (M)) = 2, so M ~ I(M) which means that M is injective.

(b) => (a) This is dual of (a) => (b). •

We apply this to obtain the following homological characterization of
Nakayama algebras whose square of the radical is zero.

Proposition 2.16 Let A be an artin algebra with radical r such that r2 = 0.
Then A is a Nakayama algebra if and only if the injective envelope I (A) is
a projective module.

Proof Suppose A is a Nakayama algebra. Let P —• I(P) be an injective
envelope for an indecomposable projective A-module P. Since socP is
simple, soc/(P) is simple and so 7(P) is an indecomposable injective
module. If 7(P) is simple then P is simple and P ~ /(P), so / (P) is
projective. I f / (P) is not simple, then by Lemma 2.15 we have that I(P)
is projective. So in any event, / (P) is projective as well as injective, which
shows that /(A) is projective.

Suppose now that /(A) is projective. Let P be an indecomposable
projective A-module. We want to show that P is uniserial. If P is
simple there is nothing to prove. Suppose P is not simple and let
P —• I(P) be an injective envelope. Since / (P) is projective we know that
/ (P) = Qx ]J • • • JJ Qt where the Qt are indecomposable modules which
are both projective and injective. Since r2 = 0, it follows that each of
the Qt is uniserial. Since P is not simple, P £ f/(P), so there is some
projection I(P) —• Qt such that Im(P —> /(P) —• Qt) is not contained in
xQt. Therefore the composition P —> Qt is an epimorphism and hence
an isomorphism since P is indecomposable. So P is a uniserial injective
module. Hence we have that the indecomposable nonsimple projective
modules are uniserial injective modules. So we now have to show that if
/ is an indecomposable injective module, then / is uniserial.

If / is simple, there is nothing to prove. Suppose / is not simple. Let
f:P - • / be a projective cover for / . Let P = Pi [ ] • • • ]}Pt with the
Pi indecomposable modules. Then /(socP;) ^= 0 for some i = l , . . . , t , or
else / would be simple. Hence /|p,:Pj —• / is injective. Since f:P—>I
is a projective cover and socJ is simple, Pt is not simple. Therefore P; is
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injective and so f\pt:Pi -> / is an isomorphism. But we also know that
Pi is uniserial which means that / is uniserial. •

Combining this proposition with our previous remarks, we see that to
prove Theorem 2.14 it suffices to show the following.

Proposition 2.17 Let AG be an arbitrary skew group algebra. Then /(A),
an injective envelope of A, is a protective A-module if and only if /(AG),
an injective envelope of AG, is a projective AG-module.

This proposition follows readily from some general considerations
which are also of interest in their own right.

Proposition 2.18 Let / : A —• F fee a morphism of artin R-algebras. Then

the following are equivalent.

(a) F is a projective right A-module.
(b) Every injective Y-module is also an injective A-module.

Proof (a) => (b) Let 0 — > , 4 — • £ — > > C — • O b e a n exact sequence

of A-modules. Since F is a projective right A-module, we have that

0 —• F ® A ^ 4 —• F 0\B —>F ®A C —• 0 is exact. Suppose / is an injective

F-module. Then we have the exact commutative diagram

H o m r ( F < g ) A £ , J ) -> Hom r(r<g) A AJ) -> 0

Hom A (B , J ) -> Hom A 04 , / ) ,

which means that H o m A ( £ , J ) —> HomA(^4,J) —• 0 is exact. This shows

that / is an injective A-module, since 0 — > ; 4 — • £ — > C — > 0 i s a n

arbitrary exact sequence of A-modules.
/ g

(b) => (a) Let 0 — > ; 4 — • £ — > C — > 0 b e a n arbitrary exact se-

quence of A-modules. Then we have the exact sequence of F-modules

0 —> Ker(F ® / ) —• F ®A A —> T ®A B. Let / be the F-injective envelope

of F / rad F. Then / is also an injective A-module, so we have the exact

commutative diagram

Hom r ( r<g) A £ , J ) - • Hom r(F<g)A,4,J) -> Hom r(Ker(F ® / ) , / ) -* 0

il [I

HomA(B,/) -> Hom A ( i , / ) -> 0,

which shows that Homr(Ker(r®/) , / ) = 0. This means that Ker(F®/) =
0 or that 0 -> F 0 A A -+ F ®A B is exact. Since this holds for all exact
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IV.2 Nakayama algebras 121

A-sequences 0-*A^>B^>C->0, we have that F is a projective right
A-module. •

As an easy consequence of Proposition 2.18 we have the following
which proves one direction of Proposition 2.17.

Corollary 2.19 Let AG be a skew group algebra. Ifl(AG), the AG-injective
envelope of AG, is AG-projective, then I (A), the A-injective envelope of A,
is A-projective.

Proof We know by III Lemma 4.5 that AG is both a projective right
and left A-module by means of the inclusion A —• AG. Since AG is a
projective right A-module, we know by Proposition 2.18 that /(AG) is an
injective A-module. Since /(AG) is a projective AG-module and AG is a
projective A-module, it follows that /(AG) is also a projective A-module.
Therefore /(AG) is a A-module containing A which is both a projective
and an injective A-module. Hence /(AG) contains /(A) as a summand,
which means that /(A) is also a projective A-module. •

We now finish the proof of Proposition 2.17 by showing that if /(A) is
a projective A-module, then /(AG) is a projective AG-module.

The inclusion A —• /(A) induces a monomorphism of AG-modules
HomA(AG,A) -> HomA(AG,/(A)). Since AG ~ HomA(AG,A) as AG-
modules, this gives a monomorphism of AG-modules AG ->
HomA(AG,/(A)). Since AG is a projective right AG-module, the fact
that /(A) is an injective A-module implies that HomA(AG,/(A)) is an in-
jective AG-module. This follows from the fact that for all X in mod AG,
the morphisms /z:HomA(X,/(A)) —• HomAG(X,HomA(AG,/(A)) given
by h{t)(x)(z) = t(zx) for all t in HomA(X,/(A)) and x in X and z in
AG are isomorphisms functorial in X. But by III Proposition 4.14 we
know that HomA(AG,/(A)) and AG®A/(A) are isomorphic AG-modules.
Since we are assuming that /(A) is a projective A-module, it follows that
AG ®A/(A) is a projective AG-module. So AG is a AG-submodule of the
AG-module HomA(AG,/(A)) which is both a projective and injective AG-
module. This implies that /(AG) which is a summand of HomA(AG,/(A))
is also a projective AG-module. •

We end this section with the following illustration of Theorem 2.14.
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Example Let C be the complex numbers, let A = <E[X]/(Xn) and let G
be the cyclic subgroup of C*, the multiplicative group of <C, generated
by a which is an nth root of unity. Define the operation of G on the
C-algebra A by a\X + (Xn)) = a1! • X + (Xn) for all i = 1,..., n. Since
n is invertible in A we have by Theorem 2.14 that AG is a Nakayama
algebra since A is a Nakayama algebra.

3 Selfinjective algebras

This section is devoted to pointing out some special features of the
module theory of selfinjective artin algebras which do not hold for
arbitrary artin algebras. In particular, we show that for selfinjective
algebras D T r M is very closely related to Q2(M), the second syzygy of
a module M, and that D T r M and Q2(M) are the same for symmetric
algebras, a special type of selfinjective algebras.

An artin algebra A is said to be selfinjective if it is injective as well
as projective as A-module. Before considering the special types of self-
injective algebras we are mainly interested in, we point out various
characterizations and properties of selfinjective algebras.

Proposition 3.1 The following are equivalent for an artin algebra A.

(a) A is selfinjective.

(b) A A-module is projective if and only if it is injective.

(c) Aop is selfinjective.

Proof (a)=>(b) Since every indecomposable projective A-module is a
summand of A, every indecomposable projective module is injective if
A is injective. But the numbers of isomorphism classes of indecompos-
able projective modules and indecomposable injective modules are the
same. Hence every indecomposable injective module is projective, which
establishes (b).

(b)=>(a) is trivial.
(b)o(c) This is an immediate consequence of the duality D: mod A —>

mod Aop and the equivalence of (a) and (b). •

Our next characterization of selfinjective artin algebras is in terms
of the contravariant functor HoniA( , A): mod A —> modAop given by
A i—• HomA(^4,A) = A* for all A in mod A. We have seen earlier that
HomA( , A) induces a duality T: 3P{S) - • ^(Aop). Our aim now is to show
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IV.3 Selfinjective algebras 123

that A is selfinjective if and only if HomA( -> A): mod A —• mod Aop is a
duality. The proof is based on the following more general considerations.

Let A be in mod A, where A is an artin i^-algebra. Then for each
X in mod(Aop) we have the morphism of ^-modules ax'-X ®\A —•
HomAop(̂ 4*, X) given by OLX(X ® a)(f) = f(a)x for all x in X, for all a in A
and all / in A*. It is not difficult to check that OLX is functorial in X and
that ax is an isomorphism when A is a projective A-module. We now
describe the kernel and cokernel of OLX for arbitrary X.

Proposition 3.2 Let A be in mod A. Then for each X in mod Aop we have
an exact sequence

0 - • Ext̂ opCTr A, X)-+X®KA % HomAoP( i*J)

where all morphisms are functorial in X.

f s
Proof Let Pi —> Po —• A —• 0 be a minimal projective presentation of A.

g* f*
Then we have an exact sequence 0 —• A* —• Po* —> Pj* —> TrA -^ 0. Since
the Pj* are projective Aop-modules for i = 0, 1, it is not hard to see the
following for all X in mod Aop.

(a) HomAoP(P0*,X) ^ g ' ; HomAoP(,4*,X) -> Extiop(Tr,4,X) -> 0 is
an exact sequence with all morphisms functorial in X.

(b) HomAoP(P1*,X) -> Ker(HomAoP(g*,X)) -> ExtJvoP(Tryl,X) -> 0 is an
exact sequence with all morphisms functorial in X.

Using these observations, it is not difficult to deduce our desired exact
sequence from the commutative diagram with exact first row

X <8>\ P\ —• X ® A Po —• X ® A A —• 0

HomAoP (Pj*, X) —> HomAoP (Po*, X) ^-+ ' HomAoP (A*9X)

D

While the exact sequences described in Proposition 3.2 are of interest in
general, we are now interested only in the case X = A. Then aA: A —• A**
is the usual evaluation morphism given by oc\(a)(f) = f(a) for all a in
A and / in A*. We recall that A is said to be torsionless if a\:A —• A**
is a monomorphism and A is said to be reflexive if cc\:A —> A** is
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an isomorphism. We have the following immediate consequence of
Proposition 3.2.

Corollary 3.3 Let A be in mod A. Then we have the following.

(a) A is torsionless if and only if Extl
Aop(Tv A, A) = 0.

(b) A is reflexive if and only if Ex^iTr A, A) = 0 for i = 1, 2. •

Combining this corollary with the fact that TrA runs through all of
mod^(Aop) as A runs through all of mod«^ A, we have the following.

Proposition 3.4

(a) The following are equivalent for an artin algebra A.

(i) A is selfinjective.
(ii) Every A in mod A is torsionless.
(hi) Every A in mod A is reflexive.

(b) If A is selfinjective, then HoniA( , A): mod A —> mod(Aop) is a duality
with dual inverse HomA°P( , A):mod(Aop) —• mod A. •

Another important property of selfinjective algebras we want to give
involves the syzygy and cosyzygy functors which we now describe.

Let A be an arbitrary artin algebra. We define a functor Q:modA —•
mod A, called the syzygy functor, as follows. For each A in mod A choose

a fixed projective cover P(A) —• A and define Q,(A) to be Ker/i. Suppose
/ : A —> B is in mod A. Then there is an exact commutative diagram

0
i

Q(A) -

0
1

-> Q(B)

P(A) -JU P(B)

A -U B
I i
0 0 .

Now the morphism t:Q.(A) —> Q(B) we obtain in this way depends on
the particular choice of g. It is not difficult to see that if we change g to
g':P(A) -»• P(B) we obtain a new morphism t':Q(A) -»• Q(B) and that
t — t' is in 2?{QA,Q.B). In this way we get a morphism Y{omx(A,B) —>
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HomA(Q(A)M(B)). Since/ e 0>(A,B) gives that t e 0>(QA,QB) we obtain
the morphism Q:UomA(AB) -> UomA(Q(A\Q(B)l It is a straightfor-
ward exercise to check that this data defines a functor Q:modA —>
mod A.

Dually, we define the cosyzygy functor Q"1: mod A —• mod A as
follows. For each A in mod A choose a fixed injective envelope u:A —>
7(̂ 4) and define Q " 1 ^ ) to be Cokerw. Suppose f:A —• B is a morphism
in mod A. Then there is an exact commutative diagram

0
1
A U
i

HA) -
1

Or1 (A) 4
1
0

0
1
B

i
I(B)

i

1
0

While the morphism w:Q x(,4) —• £2 ^B) we obtain this way depends
on the particular choice of v, it is not difficult to see that the image
of w in HomACiJ" 1 ^)^" 1 ^) ) is independent of the choice of v. In
this way we get a morphism HomA(^4,B) —• HomA(^4,B) whose kernel
contains J{A,B). Thus we obtain the morphism Q ^
Hom\(Qr1(AXQr1(B)). It is a straightforward exercise to check that this
data defines a functor Q"1: mod A —• mod A.

Although the syzygy and cosyzygy functors are important for arbitrary
artin algebras, we consider them in this section only for selfinjective
algebras.

Suppose A is a selfinjective algebra. Since the projective and injective
A-modules coincide, we have that ^(A,B) = J{A,B) for all A and B in
mod A, and hence mod A = mod A. The duality HoniA( , A): mod A —•
mod(Aop) induces a duality HomA( , A): mod A —• mod(Aop).
Because Aop is also selfinjective we have the duality
HomA°p( ,A):mod(Aop) —• mod A which is an inverse duality of
HoniA( ,A). It is not difficult to check that the functor Q - 1 : mod A —•
mod A is given by Q"1 = HoniAop( , A)QA°P HoniA( , A). Straightforward
calculations show the following.

Proposition 3.5 Let A be a selfinjective artin algebra. The functors
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Q:mod A —• mod A and Q"1: mod A —> mod A are inverse equivalences.

•

Considering Q:modA —> mod A and Q - 1 :modA —> mod A as maps
on modules we get the following as a consequence of this proposition.

Proposition 3.6 Let A be a selfinjective artin algebra. The map
Q:modA —• mod A induces a map Q:mod^A —• mod^> A which has the
following properties.

(a) For all A and B in mod^ A, A ~ B if and only ifSl(A) ~ Q(£).

(b) Q(ULi At) - IT=i &(Ai) when the Ai are in m o d ^ A-
(c) For each A in mod^ A, A is indecomposable if and only if £l(A) is

indecomposable. •

It should be observed that this proposition remains valid if we substi-
tute Q"1 for Q.

As before, assume that A is a selfinjective artin algebra. We define
Q*: mod A —• mod A by induction as follows: Q° = lmodA and QI+1 = QQ'
for all i > 0. Similarly one defines Q~* for i = 0 ,1, . . . .

In order to explain how the functors D Tr and Q2 are connected we need
the notion of the Nakayama automorphism of mod A. The composition

of dualities mod A -^V mod Aop —> mod A is an equivalence which
we denote by Jf and which is called the Nakayama automorphism. We
denote its inverse equivalence HomAoP( ,A)D by Jf~x. We now have the
following result.

Proposition 3.7 Let A be a selfinjective artin algebra.

(a) The functors D Tr, Q2J^, and J^Q2 from mod A to mod A are iso-
morphic.

(b) The functors TrD, Q " 2 ^ " 1 and J^^Qr2 are isomorphic.

Proof (a) Let Pi —> Po —> A —• 0 be a minimal projective pre-
sentation of A in mod A. Then we have the exact sequence 0 —•
A* —> Po* —• Px* —• TTA -* 0, which gives rise to the exact sequence
0 -> DTrA -* D(P{) - • D(P0*) -> D(A*) -+ 0. Because A is selfinjective,
the D(P*) are projective A-modules and D(P^) -> D(P0*) -> D(A*) -> 0
is a minimal projective presentation of D(A*) = Jf(A). Hence we get
D TrA ^ QtJ^iA). We leave it to the reader to check that these isomor-
phisms are functorial in A and also to prove the rest of the proposition. •
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IV.3 Selfinjective algebras 127

Of course, for those selfinjective artin algebras such that Jf ~
we get that D Tr ~ Q2 and TrD ~ Q~2 on mod A. This brings us to the
notion of a symmetric artin algebra.

An artin algebra A is said to be symmetric if A ~ D(A) as two-sided
A-modules.

We illustrate with the following.

Example Let A be a local commutative selfinjective K-algebra. Then
D(A) = HomR( A, I (R/XR)) is the unique indecomposable injective A-
module and hence is isomorphic to A as left A-module. Using that A
is commutative and the definition of the right A-module structure on A
and D(A), we see that we have a A-bimodule isomorphism between A
and D(A), so that A is symmetric.

Note that if A is a local commutative algebra with socA simple,
then A is selfinjective. For then A is contained in /(socA), the unique
indecomposable injective A-module up to isomorphism. Since A and
/(socA) have the same length because duality preserves length, we see
that A is an injective A-module.

As a concrete example we have A = k[X, Y]/(Xn, Yn) for some n > 0
and k a field. Then it is easy to see that socA is the simple A-module
generated by the image of xn~lYn~l in A.

Proposition 3.8 Suppose A is a symmetric artin algebra. Then we have the
following.

(a) D ~ H o m A ( , A ) .
(b) A is a selfinjective algebra and Jf ~ lmodA-
(c) D Tr ~ Q2 and Tr D ~ Q~2.

Proof (a) Suppose g:A —> HoniK(A,J) is a two-sided A-isomorphism
where J = I(R/xR). Then for each A-module X the induced morphism
HomA(X, A) —• HomA(X,Hom#(A, J)) is an isomorphism which is easily
seen to be a Aop-isomorphism which is functorial in X. But the usual ad-
jointness gives an isomorphism Horn A (X, Horn/* (A, J)) ~ Hom^(X, J) =
D(X) which is a Aop-isomorphism functorial in X. Thus we have the
Aop-isomorphism HoniA(X, A) —• HomR(X,J) which is functorial in X.

(b) and (c) follow readily from (a). •

We now give a way of constructing from any artin algebra A a
symmetric artin algebra of which A is a factor.
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Proposition 3.9 Let A be an arbitrary artin algebra. Viewing D(A) as a
two-sided A-module, the trivial extension A x D(A) is a symmetric algebra.

Proof It is a straightforward calculation to show that the map t: A \x
D{A) - • D(A x D(A)) given by t(AJ)(XJ') = f(k')+f\X) is a two-sided
(A ex D(A))-isomorphism. •

We end this section by pointing out that group algebras of finite groups
over fields are symmetric algebras. These are particularly important and
interesting examples of symmetric algebras. We leave the proof as an
exercise.

Proposition 3.10 Let kG be the group algebra of the finite group G over
the field k. Then the map V.kG - • Homk(kG,k) given by t(^2aeGaao)
(^ZaeG^a0) = J2aeG ava'a-i l s a two-sided kG-isomorphism and so kG is a
symmetric artin algebra. •

4 Defect of exact sequences

In this section we give a remarkable connection between the functors D Tr
and TrD and the structure of short exact sequences. This connection
plays a fundamental role in the rest of this book. For instance, the proof
of the existence of almost split sequences given in the next chapter as
well as the theory of morphisms determined by modules developed in
Chapter XI are based on this connection.

Associated with a short exact sequence <5:0 —• A —> B —• C —• 0 in
mod A are the functors d*, the covariant defect of the exact sequence, and
(5*, the contravariant defect of the exact sequence, which are defined by
the exact sequences

0 -> HomA(C, ) -> HomA(£, ) - • HomA(A, ) -> S* - • 0

and

0 -> HomA( ,A) -> HomA( ,B) -> HomA( , C) -> 5* -> 0.

Clearly 3* is a subfunctor of ExtA(C, ) and S* is a subfunctor of
ExtA( ,A). Since HomA(^4,X) and HomA(X,C) are finitely generated
K-modules, d*(X) and S*(X) are also finitely generated ^-modules for
each X in mod A. For brevity of notation as well as to avoid confusion,
we denote the length of an K-module Z by (Z).

Our main objective in this section is to prove the following.
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IV.4 Defect of exact sequences 129

Theorem 4.1 Let (5:0 —* A -+ B —» C —> 0 be an exact sequence. For

each A-module X we have (6*(DTrX)) = (S*(X)) where d* and S* are

the covariant and contravariant defects respectively of the sequence 8:0 —»

A -> B -> C — 0.

The proof of this theorem proceeds in several steps. We begin with the

following.

Proposition 4.2 Let P\ —> Po —• X —• 0 be a minimal protective presenta-

tion of X, and let Z be a A-module.

Then there is an exact sequence

0 - • H o m A ( X , Z ) -> Hom A (P 0 ,Z) -> H o m A ( P i , Z ) -^ T r X ®A Z -^ 0

wit/i all morphisms functorial in Z.

Proof The exact sequence Po* —• Px* -^ T r X —• 0 gives rise to the

commutative exact diagram

P0*(g>AZ -> P ; ( 8 ) A Z - > T r X ( 8 ) A Z - ^ 0

Uo I ai

0 - • H o m A ( X , Z ) -> H o m A ( P 0 ? Z ) -> Hom A (P 1 ? Z )

Here the morphisms a^P,* (g)A Z —> Hom A (Pj ,Z) are given by

oci(f ® z)(x) = f(x)z for / G P ; , z G Z and x G P,. By II Proposi-

tion 4.4 the morphisms a; are functorial in Z and are isomorphisms since

the Pt are projective. It then follows that we have our desired exact

sequence and that in this exact sequence all morphisms are functorial in

Z . •

Before stating our next result, it is convenient to introduce the following

notation. If A and B are A-modules, we denote the length of the R-

modules Hom\(A9B) by (A9B) rather than (¥Lom\(A,B)).
The next result is an easy consequence of Proposition 4.2.

Corollary 4.3 Let P\ —• Po —> X —> 0 be a minimal projective presentation

in mod A. Then for each Z in mod A we have

(X,Z) - (Z,DTrX) = (P0,Z) - (PUZ).

Proof Let J be the K-injective envelope of R/ rad R. Since by adjointness
HomA(Z,D TrX) ^ HomK(TrX ®A Z,J) = D(TvX ®A Z), we have that
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130 The transpose and the dual

(TrX ®A Z) = (Z,DTrX). Our result now follows from the exact
sequence of JR-modules

0 -> HomA(X,Z) - • HomA(P0,Z) - • HomA(Pi,Z) -* TrX <g)A Z - • 0

given in Proposition 4.2. •

We now show that Theorem 4.1 is an easy consequence of Corollary 4.3.

Proof of Theorem 4.1 Let <5:0—>;4—•£—>C—>0bean exact sequence
in mod A. It then follows from the definitions of d* and S* that we have
the following equalities for each X in mod A.

(S\X)) = (X,A)-(X,B) + (X9C)

(5*(DTrX)) = (A,DTrX) - (B,DTrX) + <C,D TrX).

Subtracting the bottom row from the top row and applying Corollary 4.3
we have that

(Sm(X))-(S.(D TrX)) = (Po,A)-(Po,B) + (Po,C)

-((PuA)-(Pl9B) + (Pl9C))

= (S*(P0)) - <5*(Pi)>

= 0,

since the P, are projective modules. •

As an immediate consequence of Theorem 4.1 we have the following.

Here we say that a morphism g:X -» Y factors through t:B —• Y if

there is some s:X —> B with ts = g, and g:X —> Y factors through

u:X -+ A if there is some v:A -> Y with fw = g.

/ g
Corollary 4.4 Let (5:0—>yl-»l?—•(!?—•Ofrean exact sequence in mod A.

TTien /or each X in mod A the following are equivalent.

(a) Every morphism h : X —> C f a c t o r s through g : B —> C.
( b ) Ever}; morphism t:A—> DTrX factors through f:A^>B.
(c) For eac/i fc:X -> C, we fcave t/iat ExtA(/z,,4):ExtA(C,,4) - •

ExtA(X,^) has the property that Ext^h, A)(5) = 0.
(d) For each t:A -> D T r X we have that ExtJv(C,t):Exti(C,A) ->

ExtJv(C,i)TrX) /zas tte property that Ext\(C, t)(d) = 0.
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IV.4 Defect of exact sequences 131

Proof Since (d*(X)) = (S.(D Tr X)) it follows that d*(X) = 0 if and only
if S*(D TrX) = 0. This shows that (a) and (b) are equivalent. Statement
(c) is just a rewriting of (a) in terms of the functor ExtA( 9A) and (d) is
just a rewriting of (b) in terms of the functor ExtA(C, ). •

As another indication of how Theorem 4.1 can be applied, we give the
following result.

Proposition 4.5 The following equalities hold for arbitrary A-modules.

)) = (Ext{(A9DTvX)).

Proof Let 3:0 -> Ql(A) - • P -4 A -> 0 be exact with f:P -> A a
projective cover of A Applying the duality D and usual adjointness
isomorphisms to the exact sequence

0 - • Tor^(TrX9A) - • TrX <g)A Q 1 ^ ) -+ TrX ®A P -> TrX ®A A -^ 0

we obtain the exact sequence

0 - • HomA(^,DTrX) -+ HomA(P,DTrX) - 1

Thus we have that 8*(DTrX) = D(Tor^(TrX,yl)). But we also have
that (5*(DTrX) = ExtA(,4,DTrX) since P is projective. Hence we get
(Tor^(TrX,yl)) = (Ext{(A,DTrX)). Also by Theorem 4.1 we have that
(S*(DTrX)) = (5*(X)). But d*(X) = UomA(XMl so we have that
(Tor^(TrX,yl)) = (HomA(X,^)), which completes the proof of the
proposition. •

The above equalities are often used in computations since it is some-
times easier to compute HomA(X,^4) than either Tor^TrX,^) or
Ext j^DTrX) .

As our final application of Theorem 4.1 we prove the following.

Proposition 4.6 The equality

(Ext\(X,A)) =

holds for all A-modules X and A.
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132 The transpose and the dual

Proof Let 8:0 -> A -> I -> Q " 1 ^ ) -> 0 be an exact sequence
with A —• I an injective envelope. Then d*(X) = ExtA(X,,4) and
8*(DTrX) = UomA(A,DTvX). Since (8m(X)) = (5*(DTrX)) by The-
orem 4.1, we have our desired result. •

When pdA X < 1 we have the following simplification of the formula
in Proposition 4.6.

Corollary 4.7 Suppose p d A X < l . Then (Ext1
A(X,A)) = {HomA(A,DTrX))

for all A in mod A.

Proof Since pd A X < 1, we have by Proposition 1.16 that
HomA(D(A), D TrX) = 0. Therefore HomA(,4, D Tr X) = HomA(,4, D TrX)
for all A, so that (Extl

A(X,A)) = (HomA(^,DTrX)) for all A in mod A
by Proposition 4.6. •

We end this section on the defect of exact sequences with the following
remark.

Let (5:0—»;4—•£—> C —• 0 be an exact sequence in mod A. Then
the contravariant defect S* is a contravariant i^-functor from mod A
to modi^ which vanishes on projective modules. Therefore 8* induces
a contravariant K-functor 8*: mod A —• modi^. Hence if we define
(D8*)(X) to be HomK((T(X),J) where J is the K-injective envelope of
R/ vadR, we obtain the covariant i^-functor D8* :mod A —• mod#. Also
the covariant defect 8* is a covariant functor mod A —> modK which
vanishes on injective modules. Therefore 8* induces a covariant R-
functor 8*: modA —> mod R. Consequently the composition modA —>

modA A modK which we denote by (5*(DTr) is a covariant functor
modA —• mod R.

It can be shown that the functors D8* and 8*D Tr are isomorphic and
hence that the ^-modules D8*(X) and 8*(D Tr(X)) are isomorphic for all
A-modules X. Since (D8*(X)) = (8*(X)) we get the fact established in
Theorem 4.1 that (8*(X)) = (8*(DTrX)) for all A-modules X. Despite
the fact that the functors D8* and 8*D Tr being isomorphic is of interest
in its own right, we do not prove it since the proof involves more
complicated categorical arguments than we wish to get involved with
here.
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Exercises

1. Find the radical and socle filtration of Z72 as a Z72-module.

2. Prove that if A is a Nakayama algebra and A = \Js
i=1 mPt with

Pi nonisomorphic indecomposable projective modules, then the total
number of nonisomorphic uniserial modules is ^ = 1 l(Pt).

3. Let F be the quiver *•* and fc a field. Let M be the fcF-module

given by the representation

kUk

(U)
r

k

(a) Find EndkT(M).
(b) Find the socle and radical filtration of M.
(c) Find D Tr M and Tr DM.

4. Let fe be a field of characteristic 2 and let D4 be the dihedral group of
order 8.

(a) Find the radical and socle filtration
(b) Find D Trfe, when fe is the trivial feD4-module.

5. Let fe be a field, i G fe and let At = k(X9 Y)/It where k(X,Y) is the free
fc-algebra in two noncommuting variables and /; = (X2, Y2,XY — iYX)
is the ideal generated by X2, Y2 and XY - iYX.

(a) Determine for which i we have that A, is selfinjective.
(b) Determine for which i we have that A; is symmetric.

6. Let fe be a field, let A = k[X]/(Xn) with n > 2 and for each fc-vector
space V let (V) denote its length (dimension). Consider the exact sequence

of A-modules 5:0 -^ k[X]/{Xn~l) -4 k[X}/{Xn)]\k[X]/(Xn-2) -^
k[X]/{Xn~l) -> 0 where f(p + (X""1)) - (Xp + (Xn\p + (X""2)) for
p + (X""1) € fc[X]/(X""1) and g(p + (Xn\q + (X""1)) = p - Xq + (X""1)
for p + (Xn) G fc[X]/(Xn) and q + (X""2) G fc[X]/(Xn~2).
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134 The transpose and the dual

(a) Prove that ((5*(fc[X]/(X'"))) = ((5*(/c[X]/(X0)) = 0 for i ^ n - 1.
(b) Prove that (d*(k[X]/(Xn-1))} = ( ( T ^ X ] / ^ " " 1 ) ) ) = 1.

7. Let A be an artin algebra and M a module in mod^ A.

(a) Prove that ^ (M, M), the group of A-homomorphisms from M to M
which factors through a projective module, is contained in tEndA(M)-

(b) Prove that / E EndA(M) is invertible if and only if the image f of f
in EndA(M) is invertible.

8. Let A be an artin algebra with gl.dim A < oo. Prove that there is some
simple A-module S with HomA(DA,S) = 0.

9.

(a) Let A be a Nakayama algebra with admissible sequence
(5,4,3,4,3,2,2). Describe the simple modules with projective dimension
2.

(b) Give a description of the simple modules of projective dimen-
sion 2 for a Nakayama algebra A in terms of the admissible
sequence. (Hint: For each maximal sub-sequence of the form
(t + i91 + i — 1,.. . , t + 1, £), compare t with the length of the next
maximal sub-sequence).

10. Let k be a field, n e N and let V be an rc-dimensional /c-vector space.
Let T(/c, V) be the tensor algebra of V over fc, let / be the ideal generated
by {v ® v\v e V) and A = T(k, V)/I, which is the exterior algebra of V
over k. Denote by V1 the image of V1 in A. Prove that the following
hold.

(i) Vn+l c / .
(ii) v = tA, hence A is a local ring.

(hi) d im(F7^ I + 1 ) = (") f°r 0 < i < n with V° = k.

(iv) For each i < n there is some v € V1 and some X e V with Iv ^= 0.
(v) soc A is simple, hence A is selfinjective.
(vi) Find the numbers n where A is symmetric.

11. Let k be a field and S = k[X,Y], Prove that the 5-module
(X,Y)n/(X,Y)n+2 is an indecomposable (k[X, Y]/(X, Y)2)-module for
all n > 0.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.005
https://www.cambridge.org/core


Notes 135

12. Let A be an artin algebra such that A/r ~ socA. Prove that A is
selfinjective.

Notes
The transpose of a module viewed only as a module, not a functor, first
appeared implicitly in the study of commutative noetherian regular local
rings [Aul]. It also appeared, again implicitly, in the study of certain
types of additive functors called coherent functors on the category of
finitely generated modules over noetherian, not necessarily commutative,
rings [Au2]. The notion given here of the transpose as a functor dates
from [AuB] where it was defined and studied in the context of finitely
generated modules over arbitrary noetherian rings. While the pertinence
of the notion to the theory of modules over artin algebras was indicated
earlier in the Ph.D. theses of Leighton, Menzin and Teter, students of
Auslander, it was not until the connection of D Tr with almost split
sequences was shown in [AuR4] that the importance of the transpose in
representation theory was finally established.

Nakayama artin algebras were introduced by Nakayama in connection
with his work on classical maximal orders. The Nakayama algebras are
also called generalized uniserial algebras, or serial algebras. He also
determined their representation theory [Nak]. The method of describing
Nakayama algebras in terms of Kupisch series was given by Kupisch
in [Kul]. Further information was given in [Fu].

A systematic study of the defect functors 8* and S* associated with
short exact sequences was given in [Au5] where it was shown that the
functors D3*(X) and 5*(DTrX) of X are isomorphic. The formula given
in Corollary 4.3 was developed in [AuR8] in connection with proving
results given in Chapter IX. Its use in proving Theorem 4.1 is new.

Proposition 4.6 is a special case of the functorial isomorphism
)) ~ YLomA(A,DTrX), sometimes called the Auslander-

Reiten formula. It is proved in [AuR4] and used there as the basis
of the proof of the existence of almost split sequences (see also XI.5).
Similar formulas have been proved in other contexts as an approach to
establishing the existence of almost split sequences.
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V
Almost split sequences

In this chapter we give an introduction to almost split sequences, a special
type of short exact sequences of modules which play a central role not
only in this book, but also in the representation theory of artin algebras
in general. Almost split sequences are introduced via the dual notions
of left almost split morphisms and right almost split morphisms. These
notions give rise not only to almost split sequences but also to the equally
basic concept of irreducible morphisms. In this connection the radical
of the category mod A, which is an K-relation on mod A, is studied. In
addition to the general theory, various examples and special types of
almost split sequences are discussed, including a method for constructing
almost split sequences for modules over group algebras of finite groups.

1 Almost split sequences and morphisms

Even though until now our major emphasis has been on studying mod-
ules, we have also discussed some special types of morphisms, such as
projective covers, injective envelopes and right and left minimal mor-
phisms. In this section we introduce some other special morphisms,
called right and left almost split morphisms, which give rise in a natural
way to the notion of almost split sequences. The section ends with a
proof of the existence and uniqueness of almost split sequences.

Even though it is not quite grammatically correct, we say that a
morphism f:B —> C is a split epimorphism if lc'.C —• C, the identity
morphism of C, factors through / . Dually, we say that a morphism
g:A —• B is a split monomorphism if 1A factors through g. We have the
following reformulation of these concepts in terms of indecomposable
modules.

136
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Lemma 1.1 The following are equivalent for a morphism / : E —• C.

(a) The morphism f'.B^Cisa split epimorphism.
(b) / / C = C\ U ''' I I Cn with the Q indecomposable for all i = 1 , . . . , n,

then the natural inclusion morphisms hi: C,- —> C factor through f.

Proof It is clear that (a) implies (b). If (b) holds, let gt :Q —> B be
such that fgt = ht. Letting pt:C —> Q be the projections associated
with the decomposition C = C i ] J [ - ] j C n for i — l , . . . , n we get that
l c = YH=i fSiPu so that f:B —• C is a split epimorphism. •

Lemma 1.2 The following are equivalent for a morphism g:A^> B.

(a) The morphism g:A ^> B is a split monomorphism.
(b) If A = A\\[- • \\An with the At indecomposable for all i = 1 , . . . , n,

then the associated projection morphisms pt:A —• At factor through g.

Proof This is the dual of Lemma 1.1. •

As motivation for the definitions of right almost split morphisms and
left almost split morphisms we consider the following special situation.

The radicals of indecomposable projective modules and the socles of
indecomposable injective modules have come up repeatedly in our past
considerations. We now give a description of these important submodules
in terms of morphisms.

Let P be an indecomposable projective module over an artin algebra A.
Then the inclusion i: xP —• P is not a split epimorphism since it is not an
epimorphism. In addition i:xP —• P has the property that any morphism
g\X —> P which is not a split epimorphism factors through i.xP —> P.
For let g\X —• P be a morphism which is not a split epimorphism.
Then g is not an epimorphism and hence Img c rP since xP is the
unique maximal submodule of the indecomposable projective module
P. Therefore g:X —• P factors through i.xP —> P. These observations
suggest the following definitions.

A morphism f:B —> C is right almost split if (a) it is not a split
epimorphism and (b) any morphism X —• C which is not a split epi-
morphism factors through / . In view of our previous remarks, we see
that i.xP —• P is right almost split for all indecomposable projective
modules P . Dually, a morphism g:A —• B is left almost split if (a) it is
not a split monomorphism and (b) any morphism A —• Y which is not a
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split monomorphism factors through g. As examples of left almost split
morphisms we point out that if / is an indecomposable injective module,
then the epimorphism / —• 1/ sod is left almost split. This can be seen
either directly or by using the following easily proven fact.

Lemma 1.3 A morphism f:B —• C in mod A is right almost split if and
only ifD(f):D(C) -> D(B), the dual off, is left almost split. •

Let P be an indecomposable projective module. Having seen that
i: xP —> P is right almost split, it is natural to ask if there are other right
almost split morphisms B —• P. If j : C -> P is an inclusion which is right
almost split, then condition (a) means that C is a proper submodule of
P, and condition (b) means that C contains all proper submodules of P.
Hence we must have i:xP —• P in this case. It is clear that if g:X —• xP
is any morphism, then the induced morphism X ]J rP —• P is also right
almost split. More generally, it is not difficult to see that a morphism
f:B —> P is right almost split if and only if I m / = xP and the induced
epimorphism B —• I m / is a split epimorphism. We have that i:xP —• P
is right minimal since it is a monomorphism, and so i:xP —• P is the
only, up to isomorphism in modA/P, right almost split morphism to P
which is also right minimal. We now show that this is a general fact
about right almost split morphisms. But first it is convenient to make
the following definition.

A morphism is said to be minimal right almost split if it is both right
almost split and right minimal. Dually, a morphism is said to be minimal
left almost split if it is both left almost split and left minimal. Clearly a
morphism is minimal right almost split if and only if its dual is minimal
left almost split. We can now prove the following.

Proposition 1.4

(a) Let f:B—>C and ff:B'—>Cbe right almost split morphisms. Then
f is equivalent to f in modA/C and all morphisms equivalent to f
are right almost split.

(b) If f.B —• C is right almost split then the minimal version of f is
minimal right almost split.

(c) If for C in m o d A f : B —> C is minimal right almost split, then f is
unique up to isomorphism.

Proof (a) Let f:B^>C and / ' : B ' —• C be right almost split morphisms.
Then since f is not a split epimorphism and / is right almost split,
there exists some g:B —• Br with f'g = f. Similarly there exists some
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g':Br —• B with f = fgf. Therefore / and / ' are equivalent in mod A/C.
The rest of (a) is trivial.

(b) This is a direct consequence of (a) and the definitions.
(c) This follows from (a) and (b) and the fact that the right minimal

version of a map / : B —• C is unique up to isomorphism in the corre-
sponding equivalence class in mod A/C. •

We also state the dual of Proposition 1.4.

Proposition 1.5

(a) Let g:A —• B and gr:A —> B' be left almost split morphisms. Then g
and gf are equivalent in m o d A \ A and all morphisms equivalent to g
are left almost split.

(b) If g.A —• B is left almost split then the minimal version of g, which
is a minimal left almost split morphism, is unique up to isomorphism.
•

Combining these propositions with our previous remarks about in-
decomposable projective modules as well as indecomposable injective
modules, we have the following, where (b) follows from (a) by duality.

Corollary 1.6

(a) Let P be an indecomposable projective module. Then i:xP —> P is
the unique, up to isomorphism in mod A/P, minimal right almost split
morphism.

(b) Let I be an indecomposable injective module. Then the natural epi-
morphism t:I —> 1/ soc J is the unique, up to isomorphism in mod A\/ ,
minimal left almost split morphism. •

In view of these results about indecomposable projective modules and
indecomposable injective modules, it is natural to ask what the situation
is for decomposable projective modules, and decomposable injective
modules. The following general result answers these questions.

Lemma 1.7 Let f'.B^Cbea morphism.

(a) If f is right almost split, then C is an indecomposable module.
(b) If f is left almost split, then B is an indecomposable module.

Proof (a) Suppose C = C\ JJ • • • \J Cn with the Q indecomposable
modules and n > 2. Then each of the associated inclusion morphisms
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tt :Q —• C factors through / since / is right almost split. Therefore / is
a split epimorphism by Lemma 1.1, which is a contradiction.

(b) This is the dual of (a). •

Having described all the right almost split morphisms f:B^>C with C
projective and all left almost split morphisms g:A^>B with A injective,
we now turn our attention to considering when right or left almost split
morphisms exist for other modules. To this end, it is convenient to have
the following characterization of right and left almost split morphisms
in terms of indecomposable modules.

Proposition 1.8 The following are equivalent for a morphism f:B-*C.

(a) The morphism f\B^>C is right almost split.
(b) The morphism f is not a split epimorphism and every nonisomorphism

g.X —• C with X indecomposable factors through f.

Proof (a) => (b) This follows from the observation that if g: X —• C
is not an isomorphism with X indecomposable, then g is not a split
epimorphism.

(b) => (a) Since we are assuming that / is not a split epimorphism, we
only have to show that if g: X -» C is not a split epimorphism, then g
factors through / . Write X as X\ \J ''' U Xn with the Xt indecomposable
modules. Then none of the morphisms g\xt:Xi —• C is a split epimor-
phism because g is not a split epimorphism. Hence each g\Xi factors
through / which means that g:X -> C factors through / . •

We now state the dual of Proposition 1.8.

P r o p o s i t i o n 1.9 The following are equivalent f o r a morphism g : A —• B .

( a ) The morphism g is left almost split.
(b) The morphism g.A^B is not a split monomorphism and every non-

isomorphism A-+Y with Y indecomposable factors through g. •

We now give examples which show that the existence of almost split
morphisms is not restricted to indecomposable projective or injective
modules.

Example Let p be a prime element in a principal ideal domain .R and let A
be the local commutative artin ring R/(pn) with n > 2. Using the structure
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theorem for finitely generated modules over principal ideal domains, one
sees that R/(p),R/(p2), • • • ,R/(pn) are all the indecomposable A-modules.
So A is a Nakayama algebra. Since we have natural inclusion morphisms
R/(p) -» R/(p2) - > • • • - • R/(pn\ it follows that R/(pn) is the unique
indecomposable injective A-module as well as the unique indecomposable
projective A-module. We also have the natural epimorphisms R/(pn) —•

It is not difficult to check that we have the nonsplit exact sequences

0 -> R/ip) iV R/tf) h R/(p) _ 0,

0 ->• R/(p2) -^ (R/(p))U(R/(p2)) h R/(p2) -»• 0,

0 -> R/{pn~l) ^ (R/(pn-2))U(R/(pn)) ^ R/{pn~l) - 0,

where the fi:{R/{j?-l))]\{R/itf+1)) -* R/(Pl) a r e induced by the inclu-
sions R/ip1'1) - • R/(pl) and the epimorphisms R/(pi+1) -> R/ip1) for
i = l , . . . , n - 1. The morphisms gt'.R/ip1) -> (^/(p1"-1))LIC^/Cp1'"1"1)) are
induced by the same inclusions R/ipl) -^ R/ipi+l) but for the epimor-
phisms R/ip1) -> ^/(p1"1) for i = 1,.. . , n — 1 we switch sign.

Since the R/ipl) for i = 1,... , n are indecomposable modules, it follows
that all the g, are left minimal and all the / , are right minimal morphisms.
Also using the description of the indecomposable A-modules given above,
it is a straightforward calculation using Propositions 1.8 and 1.9 to show
that the /,- are right almost split morphisms and all the gi are left almost
split morphisms.

These examples suggest not only that for an arbitrary artin algebra each
indecomposable module C has a minimal right almost split morphism
M —• C and a minimal left almost split morphism C —• N, but the ones
for nonprojective and noninjective modules match up nicely in the form
of short exact sequences. The rest of this section is devoted to proving
that this is indeed the case. To this end it is useful to have the following
variation of Lemma 1.7 and Proposition 1.8.

Proposition 1.10 The following are equivalent for a morphism f:B-*C.

(a) / is right almost split.
(b) The morphism f is not a split epimorphism, the module C is indecom-

posable and if X is an indecomposable module not isomorphic to C,
then every morphism g:X —> C factors through f.
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Proof (a) => (b) This is an easy consequence of the previous results.
(b) => (a) Since we are assuming that / is not a split epimorphism,

it suffices to show by Proposition 1.8 that all nonisomorphisms Y —> C
with Y indecomposable factor through / . Since we are assuming that
this is the case if Y is not isomorphic to C, it suffices to show that every
nonisomorphism g:C —• C factors through / . Since g:C —• C is not
an isomorphism we know that A = Img is a proper submodule of C.
Let A = A\ U'' • ]jAn with the At indecomposable modules. The fact
that each At is a proper submodule of C implies that none of the A\ are
isomorphic to C. Therefore each of the inclusion morphisms A\ —> C
factors through / , which means that the inclusion A —> C factors through
/ . Therefore g:C —> C, which is the composition C —• Im g —> C, factors
through / . •

The dual of this result is the following.

P r o p o s i t i o n 1.11 The following are equivalent for a morphism g : A —> B .

( a ) The morphism g:A —> B is left almost split.
(b) The morphism g is not a split monomorphism, the module A is inde-

composable and if Y is an indecomposable module not isomorphic to
A, then every morphism h:A —> Y factors through g. •

We now apply these results to investigating right almost split mor-
phisms B —> C when C is not projective and left almost split morphisms
A —• B when A is not injective.

Proposition 1.12 Suppose f:B-+Cisa minimal right almost split mor-
phism with C not a projective module. Then we have the following.

(a) The module C is indecomposable and f is an epimorphism.
g f

(b) The exact sequence 0 —• K e r / —> B —> C —• 0 has the following
properties.

(i) Ker/-DTrC.
(ii) g is a minimal left almost split morphism.

Proof (a) Since / is right almost split, we know by Lemma 1.7 that C is
indecomposable. Let h:P —• C be a projective cover of C. Then h is not
a split epimorphism since C is not projective. Hence h factors through
/ : B -> C, which implies that / is an epimorphism.

(b) We first show that Ker / is indecomposable. Suppose Ker / =
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M U ' • • U ^ n with the Ai indecomposable modules. Since g: Ker / —> B
is not a split monomorphism there is some Ai such that the projection
Ker / -> 4,- induced by the given decomposition does not factor through
g. Therefore the commutative pushout diagram

0 -> Ke r / ±> B 4 C -> 0

1 « I • > II
0 -> Aj A y l i X ^ B -^ C -> 0

has the property that t is not a split epimorphism. Also if h:X —> C is
not a split epimorphism, then it factors through t since it factors through
/ . Thus t is right almost split. But it is also right minimal since At is
indecomposable. Hence t is also minimal right almost split, which implies
that v:B —• At x

Ker^ B is an isomorphism. Therefore w:Ker/ -> y4; is an
isomorphism and hence Ker / is indecomposable.

Since C is indecomposable and / is not a split epimorphism it follows
that g is left minimal.

We now prove that g is left almost split and that Ker / ~ DTrC
simultaneously. Let Y be any indecomposable module not isomor-
phic to DTrC and h:Ker/ —• Y any morphism. Two cases occur.
If Y is injective, then Y is not isomorphic to Ker / since g is not a
split monomorphism. Suppose now that Y is not injective. Because
Y qk D T r C we have that T r D 7 qk C. But since / is a right almost
split morphism, all morphisms TrDY -» C factor through / . Therefore
by IV Corollary 4.4 every morphism /z:Ker/ —• Y factors through g. It
follows that Ke r / qk Y since g is not a split monomorphism. But then
we have Ker / ~ DTrC since Ker / is indecomposable. We have now
also proved that any morphism /i :Ker/ —> 7 with Y indecomposable
and Y cf± Ke r / factors through g and hence g is left almost split by
Proposition 1.11. This finishes the proof of the proposition. •

We now give the dual of Proposition 1.12.

Proposition 1.13 Suppose g:A—>B is a minimal left almost split morphism
with A not injective. Then we have the following.

(a) The module A is indecomposable and g is a monomorphism.

(b) The exact sequence 0 —> A —> B —• Coker g —• 0 has the following
properties.

(i) Cokerg~TrDA
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(ii) / is a minimal right almost split morphism. •

Propositions 1.12 and 1.13 suggest the following definition.

An exact sequence 0 — > ; 4 - ^ J B — • ( ! ? — > 0 i s called an almost split
sequence if g is left almost split and / is right almost split. It is clear that

g /
a n e x a c t s e q u e n c e 0 — > ; 4 — • £ — > C — > 0 i s a l m o s t spl i t if a n d o n l y if

0 —• D(C) —• D(B) —• D(A) —• 0 is a l m o s t spli t . S u m m a r i z i n g s o m e o f
o u r p r e v i o u s r e s u l t s w e h a v e t h e fo l lowing .

Proposition 1.14 The following are equivalent for an exact sequence 0 —•

A -^ B -^ C -> 0.

(a) The sequence is an almost split sequence.
(b) The morphism f is minimal right almost split.
(c) The morphism g is minimal left almost split.
(d) The module A is indecomposable and f is right almost split.
(e) The module C is indecomposable and g is left almost split.
(f) The module C is isomorphic to TrD^4 and g is left almost split.
(g) The module A is isomorphic to D Tr C and f is right almost split.

Proof (a) => (b) Since g is left almost split, the module A is indecom-
posable by Lemma 1.7. Hence / is right minimal, and consequently it is
minimal right almost split.

(b) => (c), (c) => (d) and (d) => (e) are immediate consequences of
Propositions 1.12, 1.13 and Lemma 1.7 together with Proposition 1.12
respectively.

(e) => (f) Since C is indecomposable, g is left minimal and therefore g
is minimal left almost split. Hence C ~ TrD^l by Proposition 1.13.

(f) => (g) Since g is left almost split, A is an indecomposable module.
Therefore Tr DA ~ C is indecomposable. Hence g is minimal left almost
split. So by Proposition 1.13 we have that / is right almost split with
A~DTTC.

(g) => (a) Since / is right almost split, we know that C is indecom-
posable. Therefore A ~ D Tr C is indecomposable and so / is also right
minimal. Hence / is a minimal right almost split morphism, so by Propo-
sition 1.12 we have that g is a minimal left almost split morphism. Hence

the sequence 0—>;4-^>2J—>C—>0is almost split. •

We are now ready to prove the following existence theorem for almost
split sequences.
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Theorem 1.15

(a) If C is an indecomposable nonprojective module, then there is an al-
g f

most split sequence 0 — » ^ 4 — • # — > C ^ 0 .
(b) If A is an indecomposable noninjective module, then there is an almost

g f
split sequence 0—».4—>B—>C—>0.

Proof (a) In view of Proposition 1.14 it suffices to show that if C is an
indecomposable nonprojective module, then there is an exact sequence

0 - > D T r C - ^ £ ^ > C - > 0 with / right almost split. Since D Tr C is not
injective we know there is some nonsplit exact sequence

If every morphism C —> V factors through j9 then every morphism
D Tr C - • D Tr C factors through h by IV Corollary 4.4. Then h would
be a split monomorphism, which contradicts the hypothesis that the
sequence does not split. Letting F = EndA(C)op we get the exact sequence
of F-modules

HomA(C, B) -3 "' HomA(C, V) -> Coker HomA(C, j) -> 0

with CokerHomA(C,y) ^ 0. Hence there is a morphism t:C —> F such
that its image in CokerHomA(C,y) generates a simple F-module. Thus
we have the pullback diagram

0 -> DTrC -̂ > £ -4 C - • 0

II I l <
0 - • DTrC A B -4 F -> 0.

g f
We claim that the exact sequence 0—>DTrC—•£—•C—•() has our
desired property that / is right almost split. First of all, it does not
split. For if it did, t would factor through j , which would imply that
the image of t in CokerHomA(C,7) is zero, a contradiction. Suppose
now that s:X —• C is not a split epimorphism. We want to show that
5 factors through / or, what is the same thing, that the exact sequence
0 ^ D T r C - > £ x c X - » X - > 0 i n t h e pullback diagram

0 - • DTvC A ExcX -^ X - • 0

0 -> DTrC ^ E 4 C - • 0
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splits. To do this it suffices by IV Corollary 4.4 to show that every
morphism w:C —> X factors through v.

Now the composition sw: C —• C is not an isomorphism since 5 is not
a split epimorphism. Hence the composition tsw: C —> V is in (rad F)Ft.
Since the image of Ft in CokerHoniA(C,7) is a simple module, tsw goes
to zero in CokerHoniA(C,y). In other words tsw factors through j . This
means, by the basic properties of pullbacks, that sw factors through / .
But again by the basic properties of pullbacks, this means that w:C —> X
factors through v. This shows that / is right almost split, finishing the
proof of part (a) of the theorem.

(b) This is dual to (a). •

Having proven the existence of almost split sequences, we now explain
in what sense they are unique.

Theorem 1.16 The following are equivalent for two almost split sequences

0 -> A -?> B -U C -> 0 and 0 -> A! X B' U C - • 0.

(a)
(b)

(c)

C~C.
A~A'.

The sequences
diagram

are

0

0

isomorphic

-> A -

\l
-* A' «

in the sense

+ B ^

\l
i B' £

that

C

\l

a

there is a commutative

->• 0

- • 0

with the vertical morphisms isomorphisms.

Proof (a) o (b) This follows from the fact that A ^ DTrC and
A' ~DTxC established in Proposition 1.14.

(a) o (c) Clearly (c) implies (a). Suppose there is an isomorphism
h:C —> C'. Since / is minimal right almost split, the composition
hf: B -> C is also minimal right almost split. Therefore hf:B-+C and
f':Br —>• Cr are two minimal right almost split morphisms, so they are
isomorphic in mod A/C r by Proposition 1.4. This shows (a) <=> (c). •

Note that the exact sequences described for R/(pn) on page 141 are
almost split sequences.

Combining Corollary 1.6 with Theorem 1.15 we obtain the following.
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Corollary 1.17 We have the following for an artin algebra A.

(a) For each indecomposable A-module C there is a unique, up to isomor-
phism in modA/C, minimal right almost split morphism f:B^>C.

(b) For each indecomposable A-module A there is a unique, up to isomor-
phism in mod A \A, minimal left almost split morphism g:A —• E. •

2 Interpretation and examples

This section is devoted to giving some basic interpretations of almost
split sequences as generators of the socle of ExtA(C,DTrC) viewed either
as an EndA(C)op-module or as an EndA(DTrC)-module. From this it
follows that any nonsplit exact sequence 0—•DTrC—•£—•C—>0i s
almost split if C is indecomposable with EndA(C) a division ring. Using
this fact we construct almost split sequences where the left or right hand
term is simple.

We begin with the following result.

Proposition 2.1 Let C be an indecomposable nonprojective A-module. Then
ExtA(C,DTrC) has a simple socle both as an EndA(C)OP'-module and as
an EndA(D Tr C)-module. These socles coincide and each nonzero element
of this socle is an almost split sequence.

f g
Proof Let 5: 0 —• DTr C —> B —• C —• 0 be an almost split sequence and

let e:0 - • D Tr C U B' ^ C - • 0 be a nonzero element in the EndA(C)°P-
socle of ExtA(C,DTrC). Since any nonisomorphism h:C —• C factors
through g, it follows that d is annihilated by rad EndA(C)op and is hence
in the socle. Using that 5 is almost split, we have an exact commutative
diagram

<5;0 — • DTrC -U B - ^ C —• 0

e:0 — • DTrC -L> B' -^> C —• 0

and consequently Extl
A(t,DTrC)(e) = 3. Since t e EndA(C)op does

not annihilate e, t is not in rad EndA(C)op and is therefore an iso-
morphism since EndA(C)op is a local ring. Hence we have that e =
Extj^r"1, DTTC)(S). This shows that e is in the EndA(C)op-submodule
of Exti(C,DTrC) generated by 5. Therefore the EndA(C)op-socle is
simple and generated by 5.

That the EndA(DTrC)-submodule of ExtJv(C,DTrC) generated by 8
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is simple and equal to the End(D Tr C)-socle follows by duality. Since
in each of the two socles the nonzero elements are the almost split se-
quences, the socles must coincide. •

We now proceed to give a series of characterizations of almost split
sequences.

Proposition 2.2 Let C be a nonprojective indecomposable A-module and
f g

( 5 : 0 — > D T r C —> B —> C -> 0 a nonsplit exact sequence. Then the
following are equivalent.

(a) S is an almost split sequence.

(b) Each nonisomorphism h:C —> C factors through g:B —* C.

(c) I m ( H o m A ( C , g)) = r a d ( E n d A ( C ) ° P ) .

(d) d*(C) is a simple EndA(C)OP-module, where d* denotes the contravari-
ant defect of 6.

(e) d*(X) = Ofor each indecomposable module X which is not isomorphic
to C.

(f) d generates the socle o/ExtA(C,DTrC) as an EndA(C)OP-module.

(bf) Each nonisomorphism h.DTrC —• DTrC factors through

f.DTrC ->B.

(c') Im(HomA(/, D Tr C)) = rad(EndA(D Tr C)).

(d') d*(D Tr C) is a simple EndA(D Tr C)-module, where d* is the covariant

defect.

(e') d*(X) = Ofor each indecomposable module X which is not isomorphic

to D Tr C.

(f) S generates the socle of ExtA(C, D Tr C) as an EndA(D Tr C)-module.

Proof We prove that (a), (b), (c), (d), (e) and (f) are equivalent. That
(a), (b')? (c')> (d'), (e') and (f) are equivalent follows by duality.

Since C is an indecomposable module, EndA(C) is local and there-
fore (b), (c) and (d) are clearly equivalent. By Proposition 2.1 we have
that (a) and (f) are equivalent. But d*(C) is isomorphic to the EndA(C)op-
submodule of ExtA(C,DTrC) generated by 5. Hence d*(C) is a simple
EndA(C)op-module if and only if 6 is an almost split sequence by Propo-
sition 2.1. Therefore (a), (b), (c), (d) and (f) are equivalent.

Since C is an indecomposable module and d is a nonsplit exact se-
quence it follows by Proposition 1.10 that (e) is equivalent to g being
right almost split. But then d is an almost split sequence by Proposi-
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tion 1.14 since Kerg is isomorphic to DTrC. Hence also (e) and (a) are
equivalent. This concludes the proof of the proposition. •

As our first application of Proposition 2.2 we show that an exact
sequence 0 —• 4̂ —• 2? —» C —• 0 is determined up to isomorphism by the
modules A, B and C if it is almost split. Also split exact sequences have
this property. A further discussion of sequences with this property which
we call rigid exact sequences will be given later in Chapter XL

Proposition 2.3 Let 5:0 -> A -4 B -^ C - • 0 and e:0 -> A •£ B X C -> 0
be exact sequences. If 3 is almost split or split then 3 and e are isomorphic
sequences.

Proof We only give the proof when 5 is almost split, and leave the rest
as an exercise. Consider 5*(C) and e*(C) as EndA(C)op-modules. Let-
ting l(X) in this proof denote the length of X as an EndA(C)op-module
we obtain 1(5*(C)) = l(llomA(C,A))-l(HomA(C,B)) + l(IlomA(C,C)) =
l(e*(C)). By Proposition 2.2 we have 1(5*(C)) = 1 since 5 is an almost
split sequence. Therefore e*(C) is also a simple EndA(C)op-module and
since A ~ D Tr C, Proposition 2.2 gives that e is also almost split. •

From the definition of an almost split sequence it appears that one
needs to know all modules in order to determine whether a given short
exact sequence is almost split or not. However, Proposition 2.2 gives a
powerful way of determining whether an exact sequence 0 —• A —• B —•
C —• 0 with C indecomposable and A ^ D Tr C is almost split or not. In
some cases, as we see in the next result, this should in principle be easy.

Corollary 2.4

(a) Let C be an indecomposable module with EndA(C) a division ring.
Then the following are equivalent for a short exact sequence
<5:0->DTrC - • £ - • C - • 0.

(i) S is almost split.
(ii) 5 does not split.
(iii) B

(b) Let A be an indecomposable module with End A (̂ 4) a division ring.
Then the following are equivalent for a short exact sequence
3:0 -> A -> B -+TrDA -> 0.
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(i) 3 is almost split.
(ii) 3 does not split.
(iii) B£

Proof (a) Let C be an indecomposable module with EndA(C) a division
/ g

ring and let 3:0 —• DTrC —• B —> C -> 0 be an exact sequence.
Since g is an epimorphism, ImHoniA(C,g) contains the ideal of all
morphisms f:C^>C which factor through a projective module. Since
C is indecomposable and EndA(C) is a division ring, we then have that
3*(C) is a simple EndA(C)op-module if and only if 3 is not split. Hence
by Proposition 2.2 we have that 3 is almost split if and only if 3 is not
split, so that (i) and (ii) are equivalent. The equivalence of (ii) and (iii)
follows directly from Proposition 2.3.

(b) This follows by duality. •

We illustrate with the following.

Example Let A = kT where k is a field and T is the quiver

Denote as usual by St the simple module corresponding to the vertex
i and by P,- the corresponding indecomposable projective module, for
i = 1,2,3,4. In Chapter IV we showed that DTiS2 = P\. Viewing the
modules as representations we have the exact sequence

0

0 —• k —* ktik —* I
1 / \ 1 (1 0)/ \ (0 1) / \

XX / \ / \
fc k fc fc o 0

where g = (1, (}), 1,1) and / = (0,(1,—1),0,0), according to the number-
ing in the quiver. This sequence does not split since the middle term is
indecomposable. Hence it is almost split.

We now illustrate how to use this result to construct almost split
sequences where the right hand term is simple nonprojective or the left
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hand term is simple noninjective. The answers are particularly easy when
the right hand term is simple injective or the left hand term is simple
projective, and also when the algebra is symmetric.

Proposition 2.5 Let A be an artin algebra and P\ —> Po —> S -» 0 a
minimal projective presentation of a simple nonprojective module S.

(a) There is an almost split sequence 0 - • D Tr S -> (D/THSOCCDPQ )) - •
£-•0.

(b) If S is also injective, there is an almost split sequence 0 —> D Tr S —>
D P ; -+S - • o.

(c) If A is a symmetric algebra, there is an almost split sequence 0 —•
Q2S - • f'^S) -> S -» 0.

Proof (a) Let S be a simple nonprojective A-module and let Pi —> Po —•
S —• 0 be a minimal projective presentation. Apply HoniA( , A) to obtain

the minimal projective Aop-presentation Po*
 f-+ P* - • TrS -+ 0 of Tr5.

Then apply the duality to obtain the minimal injective copresentation

0 -> DTrS -+ DP{ *-+ DPQ of DTrS. Since this resolution is minimal,
the sequence 0 -> D Tr 5 -> (D/*)"1 soc(DP0*) ^ soc(DP0*) -> 0 does not
split. However soc(DP0*) ^ <S, hence we get a nonsplit exact sequence
0 - • DTrS - • (D/*)-1soc(DP0*) ^ 5 - ^ 0 which is almost split by
Corollary 2.4.

(b) When S is simple injective, then S ^ DPQ, SO that soc(DP0*) ^
DP0* and hence (D/THsocCDPj)) = DPX*. Then we use part (a) to
complete (b).

Df*
(c) When A is symmetric, the exact sequence 0 —• D Tr S —• DP{ —•

DP0* is isomorphic to the exact sequence 0 —• Q2S —> Pi ^^ Po. Hence
the sequence in (a) becomes the sequence 0 —• Q2S -» f^iS) -> 5 —• 0. •

By duality we also have the following result.

Proposition 2.6 Let A be an artin algebra and 0 —> iS —> /o —> /i <3f minimal
injective copresentation of a simple noninjective A-module S.

(a) There is an almost split sequence 0 -> S - • (D/i)*/(Dg)*(r((D/0)*)) - •
T r D S - > 0 .

(b) If S is also projective, there is an almost split sequence 0 —• S —>
—TrDS->0.
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(c) If A is a symmetric algebra, there is an almost split sequence 0

•» Q~ZS - • 0. •

We illustrate with the following.

Example Let T be the quiver

Then the path algebra kT is finite dimensional and the simple module Si

corresponding to the vertex 1 is injective nonprojective. It is easy to see

that we have an almost split sequence 0 —• D Tr Si —> h \\ • • • U In —•

Si —• 0, where It denotes the injective envelope of the simple module

corresponding to the vertex i.

When A is a selfinjective artin algebra and 0 — > ; 4 — • £ — > C — > 0 i s

an exact sequence, we have an exact commutative diagram

e: 0 -

rj\ 0 —

5: 0 -

0

1
- • QA -

i
-* P(A) -

I
-> A -

i
0

0

1
1

-> P(A)UP(C)

i
- • B

i
0

0

1
— • QC

1
—> P(C)

1
—» c

1
0

- ^ 0

— • 0

—> 0

where P(A) -> A and P (C) —> C are projective covers. We shall see in

Chapter X that e is almost split if and only if d is almost split. Hence

starting with an almost split sequence 0 — > ; 4 - » £ — > C — > 0 where C is

simple, we can use this procedure to construct many other almost split

sequences.
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3 Almost split sequences with projective or injective middle terms

For an indecomposable nonprojective module C we have in addition to
the important projective cover P —• C also the minimal right almost split
morphism B —• C. These morphisms are both unique up to isomorphism,
and the main object of this section is to investigate when they coincide.
We shall see that knowing that a projective cover is in addition right
almost split gives additional interesting information on C.

g /
IfO-»,4—>P—>C—>0isan almost split sequence with P projective,

then / : P —> C is clearly a projective cover since it is right minimal. Hence
asking when projective covers and minimal right almost split morphisms
coincide is the same thing as asking when almost split sequences have
projective middle terms.

We have seen in Section 2 that when S is a simple module which
is projective and not injective, there is an almost split sequence 0 —•

S —• P —• TrDiS —> 0 where P is projective. The next result provides
an example with projective middle term when the left hand side is not
simple projective.

Denote by k[X\,...,Xn] the polynomial ring over a field k in the
indeterminates X\,...9Xn. Let A = k[Xu...,Xn]/(Xu...9Xn)

2 where
(Xi, . . . , Xn) is the ideal generated by X\,..., Xn. Then A is a commutative
local ring of fc-dimension n + 1 with the unique maximal ideal m =
(xi, . . . ,xn) where xt = Xt + (Xi,...,Xn)

2. Also S = A/m is the unique
simple A-module and S has dimension 1 over k.

Proposition 3.1 Suppose A = k[X\,...,Xn]/(Xu...,Xn)
2 (n > 1) and A/m

is the simple A-module. Let / : A / m —> nA be the A-morphism such that
f g

/ ( I ) = (xi,X2,•• >,Xn) in nA. Then the exact sequence 0 —• A / m —> nA —*

Coker/ —• 0 is an almost split sequence and nA -> Coker/ = TrD(A/m)
is a projective cover.

U V

Proof Let nA —> A —> A/m —• 0 be the minimal projective presen-
tation of A/m where v: A -> A/m is the canonical epimorphism and
tt((^i,...,An)) = YH=i^ixi f° r a ^ {h,--,K) in nA. Then we have the
exact sequence 0 —• (A/m)* —> A* —• (nA)* -> Tr(A/m) —> 0. Using the
usual identification of A with A*, we see that Imi;* = m, so that Coker t;*
is identified with A/m. Identifying nA with (nA)* through dual basis we

/ g

obtain the exact sequence 0 —• A/m —• nA —• TrD(A/m) —• 0 with g
a projective cover. Hence this sequence is almost split by Corollary 2.4
since it is not split and EndA(A/m) = fc, a division ring. •
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Before proving the main result of this section we point out some basic
properties of almost split sequences which are generally useful as well as
needed for the proof of our main theorem.

/ gLemma 3.2 Let 0^>A^B^>C-+0bean almost split sequence.

(a) If X is a proper submodule of C, then the exact sequence 0 -» A —•
g~l(X)^>X ->0 splits.

(b) If Y is a nonzero submodule of A, then the exact sequence 0 —•
A/Y -> B/f(Y) -> C -* 0 splits.

(c) If a is a two-sided ideal in A such that aA =/= 0, then 0 -» A/aA —>
B/aB -> C/aC -> 0 is split exact.

(d) If C is not simple, then 0 —> soc,4 —» soc J5 —• soc C —• 0 is

Proof (a) and (b) follow immediately from the definition of almost split
sequences and are left as exercises.

(c) Since aA ± 0, it follows from (b) that 0 - • A/aA -* B/f(aA) ->
C —> 0 is a split exact sequence. Tensoring with A/a we obtain the split
exact sequence 0 —> A/aA —> 5 /aB —• C/aC -> 0.

(d) For a A-module X we know that HomA(A/r,X) = socX under
the identification / »-> / ( I ) for all / in HomA(A/r,X). Since C is not
simple, C is not a summand of A/r. Hence by the definition of almost
split sequences we have that 0 —> HomA(A/r,^4) —> HomA(A/r,5) —>
HomA(A/r, C) —> 0 is exact, giving our result. •

We now describe the almost split sequences 0—>;4—•£—>C—•()
with B either a projective or an injective module.

/ gT h e o r e m 3 . 3 L e t 0 — > ; 4 — • £ * — > C — > 0 f o e a n almost split sequence.

( a ) The following are equivalent.

(i) The module B is injective.
(ii) The morphism f is an injective envelope.
(iii) C is a nonprojective simple module which is not a composition

factor ofxP/ socP for any projective module P.

(b) The following are equivalent.

(i) The module B is projective.
(ii) The morphism g is a projective cover.
(iii) A is a noninjective simple module which is not a composition

factor of xl/ soc/ for any injective module I.
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V.3 Projective or injective middle terms 155

Proof We only prove (a) since (b) then follows by duality.

The equivalence of the first two statements is easy and left to the
reader. To establish the equivalence of (i) and (iii), assume first that B
is an injective module. Let S be a simple submodule of B. Since B is
injective, there is a summand B' of B which is an injective envelope of S.
If g(5) c: C is not zero, then g\s' 'B' —• C would be a monomorphism and
hence an isomorphism since C is indecomposable. Therefore g:B —• C
would split, which is a contradiction. We can then conclude g(soc£) = 0.
But this implies that C is simple, because otherwise 0 —• soc^4 —> socB —•
soc C -» 0 is exact by Lemma 3.2 (d). Thus C is a nonprojective simple
module.

We next show that C is not a composition factor of r P / s o c P for
any projective module P. Suppose that P is a projective module such
that C is a composition factor of r P / s o c P . Let Q —> C be a projective
cover for C. Then there is a nonzero morphism u:Q —> r P / s o c P since
C is a composition factor of xP/ soc P. Because Q is projective, u factors
through some t: Q —• rP. Then X = Im t is a submodule of rP which is
an indecomposable nonsimple module such that X/xX ~ C. Thus there
is an epimorphism h:X —> C which is not a split epimorphism. Since
g: J5 —• C is right almost split, there is a morphism hf:X-+B such that
g/z' = /z. Because B is injective, there is some s:P -* B such that s\x = hf.
Then we have h'(X) c r£ since X <z rP. Hence the composition ghf is
zero since C is simple, which means that h:X —• C is zero, and this is a
contradiction.

We now prove that (iii) implies (i), completing the proof of (a). In
order to carry out this proof it is convenient to have the following
facts. Let P be an indecomposable projective A-module. Then we have
the exact sequence of Aop-modules 0 —• HoniA(P,r) —• HomA(P, A) —•
HomA(P,A/r) —> 0. Since HomA(P,A) is an indecomposable projective
Aop-module and HoniA(P,A/r) is a nonzero semisimple Aop-module, it
follows that HoniA(P,A/r) is simple and HoniA(P,r) = HoniA(P,A)r.
Suppose P is not simple and P/xP = C has the property that C is
not a composition factor of r /socr. Then HoniA(P,socr) = HoniA(P,r)
and so the monomorphism HoniA(C,A) —> HoniA(P,A) of Aop-modules
induced by the epimorphism P ^> C has HoniA(P,r) as its image. Hence
0 - • HomA(C,A) - • HomA(P,A) -> HomA(P,A/r) -> 0 is exact with
HoniA(P,A/r) simple.

We now return to showing that (iii) implies (i) in (a). Suppose C is
a nonprojective simple A-module which is not a composition factor of
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r/ soc r. Let Pi —• Po —• C —> 0 be a minimal projective presentation of
C. Then we have the exact sequence

0 -> C* - • Po ^ P ; -> TrC -> 0.

By our previous discussion Imh* is the simple Aop-module P0*/tP0*.
Therefore applying the duality, we get the exact sequence

8:0 -> DTrC ^ D(P{) X C - • 0

since C ~ D(P0*/tP0*). This sequence does not split since f is an injective
envelope. Since EndAC is a division ring, it follows by Corollary 2.4
that <5 is an almost split sequence. Now D(Pf) is injective and since 5
is isomorphic to the original almost split sequence, it follows that B is
injective. •

As an immediate consequence of this theorem we have the following.

Corollary 3.4 Let S be a simple A-module.

(a) If S is not projective and not a composition factor of xP / soc P for
any projective A-module, then S is a quotient of an injective module.

(b) If S is not injective and not a composition factor of xl / soc / for any
injective A-module / , then S is a submodule of a projective module. •

While we have given examples of artin algebras which have almost
split sequences with projective or injective middle term, it is worth
noting that there are artin algebras which do not have such almost split
sequences. Suppose A is a local artin algebra with r2 ^ 0 (for example,
A = k[Xi9...9Xn]/(Xu...,Xny with t > 3 and n > 1). Then A/r, the
only simple A-module, is a composition factor of r/ soc r since this is
a nonzero module. Therefore, by Theorem 3.3, there is no almost split
sequence with an injective middle term. Dually, there is no almost split
sequence with a projective middle term.

By contrast, artin algebras A with r2 = 0 which are not semisim-
ple always have almost split sequences whose middle terms are either
projective or injective. This follows directly from the following.

Proposition 3.5 Let A be an artin algebra with x2 = 0 and let 0 —> A —>

B —• C —• 0 be an almost split sequence.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.006
https://www.cambridge.org/core


V.3 Projective or injective middle terms 157

(a) The module B is injective if and only if C is a nonprojective simple
module. Moreover, if B is injective, then f:A->Bisan injective
envelope.

(b) The module B is projective if and only if A is a noninjective simple
module. Moreover, if B is projective, then g:B -* C is a projective
cover.

Proof (a) Let A be an artin algebra with r2 = 0. We then have that
r/ soc r = 0, so no simple module is a composition factor of r/ soc r.
Hence (a) follows from Theorem 3.3.

Statement (b) follows from (a) by duality. •

When 0 —• <S —• P -» Tr DS —• 0 is an almost split sequence with
P projective we can deduce some extra information about the module
Tr DS, in addition to the information on generators and relations given
by having a minimal projective presentation.

A nonprojective A-module C is said to be almost projective if whenever
g:P —• C is a projective cover, the induced morphism g~l(X) —> X is
a split epimorphism for all proper submodules X of C. We have the
following.

Proposition 3.6 Let g:P —• C be a projective cover which is minimal right
almost split. Then we have the following.

(a) If A is indecomposable with Ext\(C,A) =/= 0, then A is simple and
isomorphic to DTvC.

(b) C is almost projective.

Proof (a) If A is indecomposable with Extj^C,^) ^ 0, we have a nonsplit
exact sequence 0—>;4—•£—•(!?—•(), and hence an exact commutative
diagram

0 ->

0 ->

A

DTrC

- • E

-» P

C -+

II
c ->

0

0

0 - > A ^ - E A C ^ O .

Since A is i n d e c o m p o s a b l e , / : £ —> C is r ight m i n i m a l . H e n c e ts:E —> E
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is an isomorphism, and consequently w.A -> DTrC is an isomorphism.
In addition we know from Theorem 3.3 that D Tr C is simple.

(b) This is a direct consequence of the definitions. •

4 Almost split sequences for group algebras

While the proof of the existence of almost split sequences for arbitrary
artin algebras given in Section 1 is fairly constructive, it is sometimes
possible to give other ways of constructing almost split sequences which
are particularly well suited to special types of artin algebras. This section
is devoted to illustrating this point in the case of group algebras. We
give an application to integral representation rings.

Unless stated to the contrary, we assume throughout this section that
fc is a field of characteristic p > 0 and G is a finite group whose order is
divisible by p. Then fcG is not a semisimple fc-algebra, so the theory of
almost split sequences developed so far applies to mod fcG. In particular

the trivial fcG-module fc has an almost split sequence 0 —> A —• E —>
fc —• 0. Then for each indecomposable module X we obtain the exact

sequence of fcG-modules 0 — • X ® ^ — • X ® / c £ —• X —• 0. Our main
aim is to show that the epimorphisms X <8>k f:X ®k E —> X are either
split epimorphisms or right almost split morphisms and to determine for
which X they are right almost split morphisms.

We know that A ~ D Tr(fc) in the almost split sequence 0 —• A —• E —•
fc —• 0. Since fcG is a symmetric algebra we know that D Tr(fc) ~ Q2(fc),
the second syzygy of fc, by IV Proposition 3.8. We now show that
X <g)k Q

2(fc) ~ Q2(X) \J Q for some projective fcG-module Q.

Lemma 4.1 Let

be a minimal projective resolution of k. Then for each kG-module X we
have the following.

(a) The exact sequence

• X ®fc Pj; - • • • • - » X ®k Pi -> X ®k Po -+ X -> 0

is a (not necessarily minimal) projective resolution of X.
(b) X ®k Q'(fc) ^> Ql(X) ]J Qi with Qt a projective module for all i > 0.
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Proof By III Proposition 3.1 the X(S>kPi are projective feG-modules since
the Pi are projective fcG-modules. Parts (a) and (b) follow trivially from
this fact. •

Thus we see that if X is an indecomposable nonprojective module, the

exact sequence 0 —• X ®^ Q2(/c) —> X ®& E —• X —• 0 is isomorphic

to 0 -> Q 2 (X) \JQ-+ X ®kE
 X^f X -» 0 with Q projective. Since kG

is a symmetric algebra, g is also injective. Hence the exact sequence

0 - • X ®k Q2(/c) -+ X ®kE
 X^f X - • 0 can be written as the sum of

exact sequences 0 -> Q2(X)]JQ ^ ^ I ^ ^ o l i e «x®4)o'O) x - • 0.
Consequently X ®& / is a split epimorphism or a right almost split
morphism according to whether (X ®k /)o is a split epimorphism or a
right almost split morphism. Also X ®k f is right almost split if and only

if 0 -> Q2(X) -+ (X ®fc £) 0
 {X^>f)° X ^ 0 is an almost split sequence. We

use these observations and notation freely throughout this section.

Our proof that X ®kf'>X ®kE —• X is either a split epimorphism or a
right almost split morphism is based on the following comparison with
the morphism Hom^GpCX ®k f):HomkG(X,X % E) —• HomkG(X,X).

Lemma 4.2 Let 0 —> Q2(/c) —> £ —> fe —> 0 foe an almost split sequence.
Then the following are equivalent for an indecomposable kG-module X.

(a) radEndfcGpO fs contained in I m H o m ^ ^ l ®/c / )•
(b) X 0^ / : X ®k E —• X is either a split epimorphism or a right almost

split morphism.

Proof (a) => (b) Since E n d ^ X ) is a local ring,
ImHom/CG(X,X®/c/) => radEnd/cG(X) implies that ImHom/cGCX^®^/)
is End/cG(X) or radEnd^G^)- If lmHomkG(X,X ®k f) = E n d ^ X ) , then
X®kf is a split epimorphism. Suppose now that ImHomkG(X,X®kf) =
rad End/cG(X). Then the exact sequence

(*) 0 -> Q2(X) ^ (X ®fc E)o
 ( Z ^ / ) o X ^ 0

also has the property that ImHomfcofX, (X®^/)o) = rad End/cG(X). This
means that an endomorphism X —> X factors through (X ®£ /)o if and
only if it is not an isomorphism. Then it follows from Proposition 2.2 that
the exact seqeunce (*) is almost split since it is not split, Q2(X) ^ D TrX
and every endomorphism X —> X which is not an automorphism factors

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.006
https://www.cambridge.org/core


160 Almost split sequences

through (X ®k /)o. Hence (X ®& /)o is right almost split and therefore
X (8)fc / is right almost split.

(b) => (a) This is trivial. •

In view of this lemma it is of interest to have a description of
lmHomkG(X,X ®^ / ) . Since our description is in terms of traces of
linear transformations, we first give some notation and recall some basic
facts we will need concerning traces of linear transformations.

Let h: V —• V be a fc-linear transformation. We denote by tr(h) the
trace of h which is the sum of the diagonal elements in any matrix
representing h with respect to some basis of V. Recall that tr(h) = 0 if h
is nilpotent and tr(h) = dim^ V • 1 if h is the identity.

Proposition 4.3 Let 0 —• Q2(fe) —> E —> k —» 0 be an almost split sequence
and let X be a kG-module. Then the following are equivalent for an element
h in

(a) h e Im(HomfcG(X, X ®k E)
(b) tr(hg) = Ofor all g in EndfcG(X).

Before giving the proof of this result, we will deduce some conse-
quences.

Corollary 4.4 Let 0 —> Q2(/c) —• E —> k —> 0 be an almost split sequence.
For each kG-module X we have the following.

(a) Im(Hom^(j(X, X <S)k E) —> End^GpO) contains radEnd^GpO-

(b) X ®/c E —• X is a split epimorphism if and only if tr(h) = 0 for all
h in EudkG{X).

Proof (a) Suppose h is in rad EndkdX). Then hg is in rad EndkG(X) for
all g in EndkG{X). Therefore hg is nilpotent for all g in EndkG(X) and so
tr(hg) = 0 for all g in End/cGpQ. Hence h is in lm(HomkG(X,X % E) —•
EndkG(X)) by Proposition 4.3.

(b) This is a trivial consequence of Proposition 4.3. •

Combining Lemma 4.2 and Corollary 4.4 we have the following.

Theorem 4.5 Let 0 —• Q2(/c) —• E —• k —> 0 foe an almost split sequence
and X an indecomposable kG-module.
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(a) X <8>k f:X ®k E —• X is a split epimorphism if and only if tr(h) = 0
for all h in End^CX). Otherwise X®kf:X%£ —> X is right almost
split.

(b) Ifp does not divide dim^ X, then X ®k f • X ®k E —• X is right almost
split.

(c) If fc is algebraically closed, then X ®& / : X ®£ E —> X is right almost
split if and only ifp does not divide dim^X.

Proof (a) This is an easy consequence of Lemma 4.2 and Corollary 4.4.
(b) If p does not divide dim^X, then tr(lx) ^ 0 in fc. S o I ® J : I ^

E —• X is right almost split by (a).
(c) Suppose k is algebraically closed. Then the elements of the local

ring Endfco(X) can be written as vl + h with v in fc, 1 the identity on
X and h a nilpotent element. Here we use that when A is a local fc-
algebra, then A/r is a division fc-algebra and hence isomorphic to fc, so
that the composition fc —• A —• A/r is an isomorphism. We then get
tr(vl +h) = v(tr(l)). Hence it follows that tr(vl + h) ± 0 if and only if
v =/= 0 and p does not divide dim^ X. Therefore, by part (a), we have that
X ®k f: X ®k E —> X is right almost split if and only if p does not divide

•

The following is an immediate consequence of this theorem.

Corollary 4.6 Let X be an indecomposable protective kG-module. Then we
have the following.

(a) tr(h) = 0for all h in End/^X).
(b) p divides dim/c X. •

Theorem 4.5 can be formulated in terms of almost split sequences as
follows.

Theorem 4.7 Let 0 —> Q2(fc) —> E —• fc —• 0 be an almost split sequence
and assume that X is an indecomposable nonprojective kG-module. Then

the exact sequence 0 —> Q2(X) —> (X®kE)o -» ° X —• 0 has the following
properties.

(a) It is either split or almost split.
(b) It is split if and only iftr(h) = Ofor all h in End/cG(X).
(c) It is almost split if p does not divide dim/c X.
(d) Suppose k is algebraically closed. Then the sequence is almost split if

and only if p does not divide dini/c X. •
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We now finish the proof of Theorem 4.5 by giving a proof of Propo-
sition 4.3. Our proof of Proposition 4.3 is based on the following
generalities.

Lemma 4.8 For B and C in mod/cG we have the following.

(a) The map of vector spaces rj:D(B) —• ¥Lomk(B ®k C,C) given by
rj(h)(b <g) c) = h(b)cfor all h in D(B) = Homk(B,k) and b in B and c
in C is a kG-module morphism.

(b) The vector space isomorphism d:B ®k C —• Komk(D(B),C) given by
d(b <g) c)(h) = h(b)c for all h in D{B), for all b in B and c in C is a
kG-isomorphism functorial in B and C.

Proof This is left to the reader to check. •

As a consequence of this lemma we obtain the following result.

Proposition 4.9 Let A, B and C be in mod/cG. Then we have the following,

p: HomfeG(i, B ®k C) - • HomkG(D(B) ®k A, C)

given by p(f)(h ® a) = r\(h){f{a)) for all f in HomfeG(-4, B ®k C), for all a
in A and h in D(B), where rj(h)(b ® c) = h(b)cfor all b in B and c in C, is
an isomorphism functorial in A, B and C.

Proof By Lemma 4.8 we know that d:B ®k C —• Homk(D(B),C) given
by d(b ® c)(h) = h(b)c for all b in B and c in C as well as all h in D(B) is
a fcG-isomorphism functorial in B and C. This induces the isomorphism

UomkG(A,d):HomkG(A,B ®k C) -> HomkG(A,Homk(D(B),Q)

functorial in A, B and C. By III Proposition 3.4, we have the canon-
ical isomorphism tx:HomkG(A,Homk(D(B\C)) —• HomkG(D(B) ®kA,C)
which is also functorial in A, B and C. It is not difficult to check that
the composition (xHomkG(A,d) is our morphism f3:HomkG(A,B ®k C) —>
HomkG(D(B) ®k A, C). Therefore /? is an isomorphism functorial in A, B
and C. •

It is easily checked that the usual vector space isomorphism
e:D(A) ®k A —> Endk(A), given by e(h ® a)(x) = h(x)a for all h in
D(A), for all a and x in A, is a fcG-isomorphism whose inverse can be
described as follows. Let {ai,...,a</} be a fe-basis for A with dual basis
{h\9...,hd}. Then it is easily seen that the map fi:Endk(A) —• D(A) ®k A
given by fi(g) = X^iC1* ® g(^t)) for all g in Endfc(̂ 4) is the inverse of
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e and therefore a fcG-isomorphism. It is also not difficult to see that
E?=i Wg(<k)) = trig) for all g in End*(^).

We now use Proposition 4.9 with A = B and C = fc, the trivial
fcG-module. Then P:HomkG(A,A) —• HomkG(D(A) ®£ A,k) given by
P(f)(h ® a) = Hf(a)) f° r aU ^ i n D(A) and a in yl is an isomorphism.
From these remarks it follows that the isomorphism v:EndfcG(/l) —•

),/*:) which is the composition

) A HomkG(D(,4) ®k A,k) H o m ^ ( M ) HomfeG(Endfc04),fc)

is given by v(/)(g) = tr(fg) for all / in EndfcG(,4) and g in Endfc(̂ 4). We
are particularly interested in the following property of the isomorphism
v.

Lemma 4.10 Let A be in mod/cG.

(a) An element h in End/cG(,4) has the property that v(h):Endk(A) —• k
is a split kG-epimorphism if and only if there is some g £ End/cG(^4)
such that tr(hg) j= 0.

(b) The trivial module k is a kG-summand ofEndk(A) if and only if there
is some h in End/cG(^4) such that tr(h) =£ 0.

Proof (a) Obviously v(h):Endk(A) —> k is a split fcG-epimorphism if
and only if there is a feG-morphism t:k —• Endk(A) such that v(f)t ± 0.
The isomorphism Hom^fcjEnd/^)) —• End/c(yl)G = EndfcG(̂ 4) given by
t \-> t(\) shows that there is a feG-morphism t:fe —• End^(yl) such that
v(/z)t ^ 0 if and only if there is some g in End/cG(^4) such that v(/*)(g) ^ 0.
Using the fact that v(h)(g) = tr(hg), we have our desired result.

(b) This is a trivial consequence of (a) and the fact that v: EndfcG(;4) —•
Hom/cG(Endfe(^4),fe) is an isomorphism. •

We are now ready to prove Proposition 4.3. Suppose that fc, the
trivial fcG-module, is not projective (i.e. feG is not semisimple) and let

0 —> Q2(fc) -> E —> fc —• 0 be an almost split sequence ending in fc.
Let X be a fcG-module. Then we have the following commutative exact
diagram.

HomkG(X,X®kE) Ho^JW> UomkG(X,X)

H it
UomGiDiX) ®k X,E) H o m - ^ ^ ^ » HomfcG(D(Z) ®t X,k)

n n
HomkG(Homk(X,X),E) H o m ^ ( ^ ^ » ^ HomkG(Homk(X,X),k)
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Since f:E —• k is right almost split, we have that
Im(HomkG(Komk(X,X),E) —• HomfcG(Homfc(I,I),fc)) consists of the
morphisms g:Homk(X9X) —> k which are not split epimorphisms. Then
by Lemma 4.10 (a) we have that

lm(UomkG(X, X ®k E) - • UomkG(X, X))

consists of the h in HomkG(X,X) such that tr(hg) = 0 for all g in
HomkG(X,X). Therefore the proof of Proposition 4.3, and hence the
proof of Theorem 4.5, is now complete. •

The rest of this section is devoted to showing how the results about
almost split sequences over group algebras can be used to give a de-
scription of the integral representation ring of kG where k is a field of
characteristic p > 0 and G ~ Z/pZ. But first we define what is meant by
the integral representation ring of a group algebra kG.

For each A in mod/cG we denote the isomorphism class of A in
modfcG by [A]. Then the collection of all [A] with A in mod/cG is
a set. Let Rep(fcG) be the free abelian group with basis elements [,4]
modulo the subgroup generated by [A] + [B] — [A\JB] for all A and
B in mod kG. We denote the image of [A] in Rep(fcG) also by [A].
By the Krull-Schmidt theorem we know that Rep(fcG) is a free abelian
group with basis elements [A] where A runs through all indecomposable
fcG-modules. We now make Rep(fcG) a commutative ring by defining
[A] • [B] = [A ®fc B]. The fact that this multiplication is well defined is a
consequence of the isomorphism A ®k (B \J C) ~ (A ®k B) \J(A ®k C). The
unit element is [k] where k is the trivial feG-module. It is commutative
because A (E>k B ~ B ®k A. It is left to the reader to finish the proof that
this multiplication makes Rep(feG) a commutative ring which is a free
Z-algebra.

Suppose now that k is a field of characteristic p > 0 and G is a
finite cyclic group of order p. Then kG ^ k[X]/(Xp — 1) where X is an
indeterminate. Since char k = p, we have that (Xp — 1) = (X — l)p so
kG ~ k[X]/(X — Vf which is a commutative Nakayama local ring. Let
At = k[X]/(X - I)1 for i = l , . . . ,p . Then {AUA2,...,AP} is a complete
set of nonisomorphic indecomposable modules and dim/c At = i. We have
Ai ~ fc, the trivial module, and Ap ~ kG, the unique indecomposable
projective fcG-module. We also know all the almost split sequences. They
are

0 - > / c - > A2 - > / c - > 0 ,
0 - • Ati - • A + i l M - i -> 4 -» 0

for p > i > 1.
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Since p does not divide dim^ At for 1 < i < p, we have by Theorem 4.7
that 0 —• A}i —> Ai ®/c Ai —> ̂ 4̂  —> 0 is an almost split sequence for
1 < i < p. Therefore we have that A2 ®/c At ~ Ai+\Y[Ai-i when
p > i > 2. We also know that A2 ®kAp ~ 2AP since it is a free /cG-module
of dimension 2p, and finally A2 ®k M — M> So we know all the products
[A2] • [Aj] for 1 < j < p.

Now we have the surjective Z-algebra morphism £:Z[X2,...,XP] ->
Rep(fcG) given by i(Xt) = [At] for i = 2,. . . ,p. Of course we have
£(1) = [A\]. By our calculations above we know that the ideal a generated
by the elements X\ - X3 - 1,X2X3 -X4-X2,...,X2XP-X - Xp - Xp-2

and X2XP — 2XP is in Ker^. We now show that a = Ker£.
We begin by showing that l,X2,...,xp generate Z[X2,...,Xp]/a as an

abelian group where xt = X\ + a. To do this, it suffices to show that every
monomial is a linear combination of the xu and 1. But this will obviously
be the case if we show that all monomials XiXj are linear combinations of
the xu and 1. It is clear that all monomials X2Xj are linear combinations
of xu and 1. Suppose t is an integer satisfying 2 < t < p and that we have
shown that all monomials xtXj are linear combinations of 1 and the xu

when 2 < i < t and j satisfies 2 < j < p. We now want to show that all
the monomials of the form xtXj with 2 < j < p are linear combinations
of the xu and 1.

Now we have that X2Xt-\ = xt + xt-2- So we have X2Xt-\Xj — xt-2Xj =
xtXj. But by the inductive hypothesis xt-\Xj and xt-2*j are linear
combinations of the xu and 1. Therefore X2(xt-\Xj) is also a linear
combination of the xu and 1. Hence the xtXj are a linear combination of
the xu and 1 for all 2 < j < p. This finishes the proof that the xu and 1
generate the abelian group Z[X2,.. .9Xp]/a.

We are now ready to give our description of the Z-algebra Rep(fcG).

Proposition 4.11 The Z-algebra surjection £:Z[X2,...,XP] —> Rep(fcG)
given by £(Xi) = [Ai] induces an isomorphism Z[X2,...9Xp]/a —> Rep(feG)
where a is the ideal (X\ - X3 - l,X2X3 -X4-X2,...,X2XP_1 - Xp -

— 2XP).

Proof We have already seen that the xu and 1 generate the abelian
group Z[X2,...,Xp]/a. Since the [Ao], [A\],..., [Ap] are linearly indepen-
dent in Rep(fcG), it follows that the xu together with 1 are Z-linearly
independent in Z[X2,...,Xp]/a. Thus the set {l,X2,...,xp} is a ba-
sis of the abelian group 'Z[X2,...,Xp]/a. Therefore the induced map

2,..., Xp]/a —• Rep(feG) is an isomorphism of Z-algebras. •
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5 Irreducible morphisms

Let / : A —> B be a minimal left almost split morphism and g : 5 - > C a
minimal right almost split morphism. Associated with a decomposition
B = \\BU are the morphisms pif'.A —• Bt and gji'.Bt —> C, where p,-
is the fth projection and jt is the ith embedding. We show that these
morphisms are not arbitrary, but are irreducible in a sense that we now
define. This section is devoted to a study of irreducible morphisms and
their basic properties.

A morphism g: B —• C in mod A is called irreducible if g is neither
a split monomorphism nor a split epimorphism, and if g = ts for some
s:B —> X and t:X —> C, then s is a split monomorphism or t is a split
epimorphism. It is easily seen that a morphism g: B —• C is irreducible if
and only if D(g):D(C) -» D(£) is irreducible.

Before giving the connection with almost split sequences, we make
some simple but important observations about irreducible morphisms.

Lemma 5.1

(a) If g.B —» C is an irreducible morphism in mod A, then g is either a
monomorphism or an epimorphism.

(b) If g.B —> C is an irreducible monomorphism, then B is a summand of
all proper submodules of C containing B.

(c) If g:B —> C is an irreducible epimorphism, then C is a summand of
B/I for all submodules I of B such that 0 ^ / c Kerg.

Proof (a) Let g: B —• C be an irreducible morphism. Consider the factor-
ization B -^ 2?/Kerg —> C of g. Then either s is a split monomorphism,
or t must be a split epimorphism. But s being a split monomorphism im-
plies that g is a monomorphism and t being a split epimorphism implies
that g is an epimorphism. This completes the proof of (a).

The rest of the proof is left as an exercise. •

Another basic property of irreducible morphisms is that they are
minimal.

Lemma 5.2 If g.B —> C is an irreducible morphism, then g is both a right
minimal and a left minimal morphism.

Proof We only prove that g is a right minimal morphism. Assume
h.B —• B is such that g = gh. Since g is not a split epimorphism, h is a
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split monomorphism. But then h is an isomorphism since B is of finite
length, and hence g: B —• C is right minimal. •

We now give the precise connection between irreducible morphisms
and right and left almost split morphisms.

Theorem 5.3

(a) Let C be an indecomposable module. Then a morphism g.B —> C
is irreducible if and only if there exists some morphism g' \B' —> C
such that the induced morphism (g, gr): B ] J Br —• C is a minimal right
almost split morphism.

(b) Let A be an indecomposable module. Then a morphism g:A —> B is

irreducible if and only if there exists some morphism gf:A^>Bf such

that the induced morphism ( g, ] : A —• B JJ B1 is a minimal left almost

split morphism.

Proof We only prove (a) since (b) follows from (a) by duality. Assume
first that g.B —• C is irreducible and let h:E —> C be the minimal right
almost split morphism which exists by Corollary 1.17. Since g is not a
split epimorphism, g factors through h, i.e. g = hf for some / : £ — • £ .
Since h is not a split epimorphism, / is a split monomorphism, and
therefore E ~ B \jBf where B' = Coker/. Considering this isomorphism
as an identification we have that h'\Bf —• C, where h' = h\s', is such that
(g,hf):B ]JB 1 —> C is a minimal right almost split morphism.

Next assume that h: E —• C is a minimal right almost split morphism.
Let E = B]JB' and let g.B -> C, with g = /i|5. Assume that g = st for
some morphisms t:B -+ X and s:X —• C with s not a split epimorphism.
Then, since h is a right almost split morphism, there exists (") :X —•
5 ]}Bf with s = (g,gr) (") where g' = h\B>. We then obtain the following
commutative diagram

BUB' • XUB' *• BUB'

C

Since h = (g,gf) is right minimal, ( "J x° ) is an isomorphism. Hence
ut.B —• B is an isomorphism, showing that £ is a split monomorphism.
This shows that g is an irreducible morphism. •
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f g
Because in an almost split sequence 0—»^4—•£—>C—»0we have

that / is minimal left almost split and g is minimal right almost split,
Theorem 5.3 also gives a connection between irreducible morphisms and
almost split sequences. We then get the following examples of irreducible
morphisms by reinterpreting some results from Section 3.

Example Assume that r2 = 0 and let S be a simple noninjective module
and C = Tr DS. Then we know from Section 3 that in the almost split
sequence 0—> S -* B ^+ C -+ 0 the morphism g: B —> C is a projective
cover. It is now not hard to show that a morphism h:X —• C which is not
a split epimorphism is irreducible if and only if the induced morphism
X/xX —> C/xC is a monomorphism.

An important consequence of Theorem 5.3 is that we can get infor-
mation about minimal left almost split morphisms from knowing the
minimal right almost split morphisms and conversely. In particular this
can be used to study the structure of almost split sequences. We illustrate
this point by giving some information about the middle term in an almost
split sequence.

Proposition 5.4 An indecomposable module X is not a summand of the
middle term of any almost split sequence if and only ifX is a simple module
which is not a composition factor of x/ soc r.

Proof Assume first that X is not a summand of the middle term of any
almost split sequence, and let g: B —> X be minimal right almost split.
If B' is an indecomposable summand of B, then gf = g\B''-B' —• X is
irreducible by Theorem 5.3, and hence again by Theorem 5.3 there is a
minimal left almost split morphism h:B' —> X\J Y for some Y. KB'
is not injective, there is an almost split sequence 0 —• Br —• X ]J 7 —•
Coker/i —• 0 contradicting the assumption on X. Hence Bf is injective
and therefore also B is injective. If X is not projective, we know by
Theorem 3.3 that X must be a simple module which is not a composition
factor of r/ soc r. If X is projective, then B = rX, which implies that
B must be 0 since B is injective. Hence X is simple projective and
consequently not a composition factor of r/ soc r in this case either.

Assume conversely that X is a simple module which is not a composi-
tion factor of r/ soc r. If X is projective there is no irreducible morphism
to X, hence X is not a summand of the middle term of any almost
split sequence. If X is not projective, then in the almost split sequence
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0—>Z—>>Y—•X—>Owe have that Y is injective by Theorem 3.3.
Hence if h: A —> X is irreducible with A an indecomposable module, then
A is a summand of 7 by Theorem 5.3, and consequently A is injective.
This shows that X is not a summand of the middle term of any almost
split sequence. •

Using Proposition 5.4 one sees immediately that for an artin algebra
A with r2 = 0, the middle term of any almost split sequence does not
contain a semisimple summand.

Our next application is to give the structure of the almost split se-
quences whose middle terms have a nonzero projective injective sum-
mand. This result is of a similar flavor to the structure of the almost
split sequences with projective or injective middle term. In addition to
illustrating how to use Theorem 5.3 this result will also be applied later.

Proposition 5.5

(a) Let 3:0 —> A —• B —• C —• 0 be an almost split sequence. If B has
an indecomposable projective injective summand P, then l(P) > 2 and
8 is isomorphic to the sequence

e:0 -> xP ^U PUxP/socP M P/socP -> 0,

where i:xP —> P and j:xP / socP —> P / s o c P are the natural inclu-
sion morphisms and p:xP —• r P / s o c P and q:P -> P / s o c P are the
natural quotient morphisms.

(b) If P is indecomposable projective injective with l(P) > 2, there is
some almost split sequence d:0-^A^>B^>C->0 such that P is a
summand of B.

Proof (a) Assume (5:0—>,4—•2?-»C—•Oisan almost split sequence
with B = P ]J B' and P an indecomposable projective injective module.
It follows from Proposition 5.4 that l(P) > 2. We have a minimal
right almost split morphism i:xP —• P and a minimal left almost split
morphism q:P —> P / s o c P and xP and P / s o c P are indecomposable.
It then follows from Theorem 5.3 that A ~ xP and C ^ P / s o c P and

that 6 must be of the form 0 -> xP ^ i P ] j X ^ l P / s o c P -> 0
with f\xP - • X and g:X - • P / s o c P . Then we have Z(X) = /(rP) +
/ (P / socP) - /(P) = /(P) - 2 = lixP) - 1 = / (P/socP) - 1, so that / is
an epimorphism and g is a monomorphism. Since P/ socP has a unique
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maximal submodule xP f socP, we must have g(X) = xP/ socP, so g can
be chosen to be the natural inclusion y:rP/socP —• P/socP. Hence
(qJ):P \JxP/socP —> P/socP is right almost split. Since e is an exact
sequence and xP is indecomposable, it must be almost split.

(b) If P is indecomposable projective injective with /(P) > 2, we have
an irreducible morphism P ^> P/ socP. Hence P is a summand of B in
the almost split sequence 0 —> A —• B —> P/ socP —> 0. •

In addition to the connection with almost split sequences, irreducible
morphisms have other interesting properties and give rise to new classes
of indecomposable modules.

/ gProposition 5.6 Let 3:0 —> A —• B —> C -> 0 foe an exact sequence.

(a) / is an irreducible morphism if and only if 3 is not a split exact
sequence and for any morphism h:X —• C there is either a morphism
t:X —• B with h = gt or a morphism s:B —• X with g = hs.

(b) If f is an irreducible morphism, then EndA(C) is a local ring, and
hence C is an indecomposable module.

Proof (a) Assume first that / is an irreducible morphism. Then 3 does
not split. Let h: X —• C be an arbitrary morphism. Consider the following
exact commutative diagram.

A

A

j

f

0

i
L

i
BxcX

I-
B

0

1
= L

i
V

i c0 —+ A -±> B -^ C —> 0

Since / is irreducible, either j is a split monomorphism or u is a split
epimorphism. In the first case there exists a morphism t:X —> 5 such
that h = gt and in the second case there exists a morphism s:B —> X
such that g = /is.

Assume now conversely that <5 does not split and that each morphism
h\X —• C satisfies the property that there exists either a morphism
t:X —> B with h = gt or a morphism s:£ -> X with hs = g. Since
<5 does not split, / is not a split monomorphism. Assume that f = vu
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V.5 Irreducible morphisms 171

with u:A —• Y and v:Y —• B. Since / is a monomorphism, w is a
monomorphism. Consider the induced exact commutative diagram

0

I
L =

1
Y -U

1-
B - 1 *

0

1
L

i
1'
C

e: 0

( 5 : 0 —> A --> B - ^ C —> 0

with X = Cokerw. From our assumption there is either a morphism
t\X —> B such that gt = h or a morphism s:B —• X with g = hs. In the
first case the sequence e splits and hence u is a split monomorphism. In
the second case, since h is then an epimorphism, v is also an epimorphism.
Then from the exact commutative diagram

u: 0 —> L —> Y ^U B —• 0

v : 0 — » L — > X - ! U C — • ( )

one sees that /n is a split exact sequence. Hence v is a split epimorphism,
and consequently / is an irreducible morphism.

(b) Assume that / is an irreducible monomorphism. We first observe
that since g is an epimorphism, g does not factor through any noniso-
morphism h:C —• C. From (a) it then follows that ImHoniA(C,g) is
the set of nonisomorphisms in EndA(C). Obviously ImHoniA(C,g) is a
right EndA(C)-ideal of EndA(C). Now let s be in ImHomA(C,g). Since
s is not an isomorphism, it is not a monomorphism. Therefore ts is
not a monomorphism for each t in EndA(C) which means that ts is in
ImHomA(C,g) for each t in EndA(C). Hence ImHoniA(C,g), the set of
nonisomorphisms in EndA(C), is an ideal in EndA(C), which shows that

is a local ring. •

We also state the dual result.

/ g
Proposition 5.7 Let d:0 -> A —• B —• C —• 0 be an exact sequence.

(a) g is an irreducible morphism if and only if 6 is not a split exact se-
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quence and for any morphism h:A —• X there is either a morphism
t:B —• X such that h = tf or a morphism s:X —• B with f = sh.

(b) If g is an irreducible morphism, then End\(A) is a local ring, and
hence A is an indecomposable module. •

Clearly any indecomposable nonprojective module C is of the form
Coker/ where f:A —> B is an irreducible monomorphism, as is seen

/ g
by considering the almost split sequence 0-+A—>B-*C—>0. If
however we require B to be indecomposable, then Proposition 5.6 imposes
restrictions on the modules occurring as Coker/.

Corollary 5.8

(a) If f : A —• B is an irreducible monomorphism with B indecomposable,
then each irreducible morphism h:X —> C o k e r / is an epimorphism.

(b) If g:B —• C is an irreducible epimorphism with B indecomposable,
then each irreducible morphism h: Ker g —• Y is a monomorphism.

Proof (a) Let / : A —• B be an irreducible monomorphism with B inde-
composable. Assume that h:X -> Coker/ is an irreducible monomor-
phism. By Proposition 5.6 there is then some t:X —> B with gt = h
where g:B —• Coker/ is the natural morphism. Since g is not a split
epimorphism, t must be a split monomorphism, and hence an isomor-
phism since B is assumed to be indecomposable. This contradicts the
fact that g is a proper epimorphism. Hence each irreducible morphism
h: X —• Coker / is an epimorphism.

(b) This follows by duality. •

We now know that if C is an indecomposable nonprojective module
such that there is an irreducible monomorphism h:X —• C, then C
is not of the form Coker/ where f:A —> B is irreducible and B is
indecomposable. This is for example the case for C = P / s o c P when P
is indecomposable projective injective of length at least 3, since we then
have an irreducible monomorphism r P / s o c P —• P / s o c P .

We now characterize almost split sequences in terms of irreducible
morphisms.

/ gProposition 5.9 Let 6:0 —> A —• B -> C —• 0 be an exact sequence. Then
6 is an almost split sequence if and only if f and g are both irreducible.
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Proof It follows from Theorem 5.3 that if S is an almost split sequence,
then / and g are both irreducible.

Assume conversely that both / and g are irreducible. We then know
by Propositions 5.6 and 5.7 that A and C are both indecomposable and

/ ' g'noninjective and nonprojective respectively. Let e:0 —• DTrC —> Bf —>

C —• 0 be the almost split sequence with right hand term C. We then get
the following commuting diagram

( 5 : 0 —> A - U B - % C —• 0

[• 1 ' II
V ~V II

0 —> DTrC JL> B> JL> c —> 0

{•

Since g is irreducible and g' is not a split epimorphism, £ is a split
monomorphism, so there exists h\Br —• 5 with ht = 1B- Hence we get
/ = htf = hfs. Since / ' is a minimal left almost split morphism, hf is
not a split epimorphism. Therefore s is a split monomorphism. But then
5 is an isomorphism since DTrC is indecomposable. It follows that t is
also an isomorphism proving that d is isomorphic to e. •

6 The middle term of an almost split sequence

Whereas the end terms A and C of an almost split sequence 0 —• A -»
B —• C —• 0 are indecomposable, the middle term 5 will usually decom-
pose. The number of indecomposable summands in a sum decomposition
of B is an important invariant of C, which we denote by a(C), and it
measures in a sense the complexity of morphisms to C. For any positive
integer t there is an indecomposable module over some artin algebra A
with cc(C) = t. For example let C = Tr DS where S is the unique simple
(k[Xi9...9Xt]/(Xi9...9Xt)

2)-module, as studied in Section 3. However,
for a given algebra there are strong limitations on which numbers can
occur. We here give two preliminary results, one which shows that the
number 1 always occurs for an arbitrary nonsemisimple algebra A, and
one which shows that there is a bound on the a(C) for a given algebra
A.

For the first main result in this section we shall be particularly in-
terested in indecomposable nonprojective modules C having a minimal
projective presentation Pi —• Po —> C —• 0 with Po and Pi indecompos-
able. It is easy to construct examples of such modules. For instance, if
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P is indecomposable projective and B is a submodule of P with B/xB
simple, then C = P/B has this property. Our first aim is to show that
a(C) = 1 if in addition to Po and Pi being indecomposable, we also have
Im/i (fc x2Po. To see this the following result is useful.

Proposition 6.1 Let h:P\ —• Po be a nonzero morphism between inde-
composable projective modules which is not an epimorphism, and let C =

f s
Coker h. Let 0 -> A —> ]JieI Bi —• C —• 0 be an almost split sequence
where each Bi is indecomposable. Then we have the following.

(a) There is a unique j such that Bj has maximal length.

(b) The induced irreducible morphisms gj:Bj —• C and fj'.A —• Bj are
epimorphisms and monomorphisms respectively.

(c) The induced irreducible morphisms LLy^ ̂  —> C and A —> LLy^ Bi are
monomorphisms and epimorphisms respectively.

Proof Let Bj be a summand of maximal length in the decomposition
B = \JieI Bt. Since Po is an indecomposable projective module, C has
a unique maximal submodule. Therefore not all g; can be monomor-
phisms. Hence gj must be an epimorphism since Bj has maximal length.
D T r C has a simple socle since it is contained in D(P[), which is an
indecomposable injective module because Pi is an indecomposable pro-
jective module. This guarantees that not all the / , can be epimorphisms.
Again, since Bj is an indecomposable summand of B of maximal length,
fj has to be a monomorphism. Writing B' = W^Bi and computing
lengths we get l(C) + l(A) = l{Bj) + l(Br). But l{Bj) > max{/(C), 1{A)}
since gj is an epimorphism and / , is a monomorphism. Therefore we
get l(Br) < min{/(C), l(A)}9 which implies that the induced morphism
A —• Bf is an epimorphism and the induced morphism Bf —• C is a
monomorphism. This proves our claims. •

The next result describes a class of indecomposable modules C such
that there are no irreducible monomorphisms to C.

Lemma 6.2 Let M be an indecomposable module and N a nonzero sub-
module of M which is a summand of all maximal submodules X of M
containing N. Then we have the following.

(a) M/N is indecomposable.

(b) There are no irreducible monomorphisms to M/N from any module.
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Proof (a) This is left as an exercise.

(b) Consider the exact sequence 0 —• N —• M —> M / N —> 0, and
assume ft:C —> M/AT is an irreducible monomorphism. Then it fol-
lows from our assumptions that the induced exact sequence 0 —> JV —>
/^(Imft) —• Im/i —• 0 splits. Hence we get that h = pg for some
g: C —> M. Since M is indecomposable and iV ^ 0, it follows that p is
not a split epimorphism. Since h:C -+ M/N is irreducible, g:C —• M
must be a split monomorphism and consequently an isomorphism. This
contradicts the fact that h is a proper monomorphism. •

We have seen in Section 5 that if / : A —> B is an irreducible monomor-
phism and B is an indecomposable module, then any irreducible mor-
phism to Coker/ is an epimorphism. This result can be considered as a
special case of Lemma 6.2 since by Lemma 5.1 we have that f(A) is a
summand in every maximal submodule of B containing f(A). Here we
shall apply Lemma 6.2 in another situation, as a step towards proving
the existence of an indecomposable module C with a(C) = 1.

Proposition 6.3 Let P\ —• PQ —> C —• 0 be a minimal protective presentation

for a nonzero module C with Po and P\ indecomposable projective modules

and I m h <fi x2Po. Then the almost split sequence 3:0 —• A —> B —• C —• 0

has the property that B is indecomposable.

Proof Clearly M = Po/xlmh is indecomposable with a unique maximal
submodule xM = xPo/xlmh. Further, since r lm/i c r2Po, we get that
x2M = x2Po/xlmh. Let N = Imh/xlmh which is a simple submodule of
xPo/xlmh. However, since Imh <fi x2Po we have that N </: x2M. Therefore
N is a summand of xM. Hence M and C = M/N are indecomposable
with N a summand of all maximal submodules of M containing N. It
then follows from Lemma 6.2 that all irreducible morphisms g:X —• C
are epimorphisms. From Proposition 6.1 we have that the middle term
B in the almost split sequence (5:0—>^4—•£—>C—•() has a decom-
position B = Br U B" with Bf indecomposable and such that if B" =£ 0
the induced morphism g" \B" —• C is an irreducible monomorphism. But
we have just seen this cannot happen. Hence we get B = B' and B is
therefore indecomposable. •

As a consequence of Proposition 6.3 we get the following.
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Theorem 6.4 For each non-semisimple artin algebra A there exists an almost
split sequence < 5 : 0 — > 4 — > 2 J — > C — > 0 with B indecomposable.

Proof Since A is not semisimple, there exists an indecomposable pro-
jective module Po with rPo ^ 0. Let Pf —• XPQ be a projective cover and
let Pi be an indecomposable summand of Pr with induced morphism
h\P\ —> Po. Then we get that Im/i <̂  r2Po, so for C = Coker/i we have
a(C) = 1 by Proposition 6.3. This completes the proof of the theorem. •

We shall in Chapter X give methods for computing new almost split
sequences from old ones. In particular this will provide us with more
examples of indecomposable modules C with a(C) = 1 since the invariant
a is often preserved by these computations. Also in Chapter XI we discuss
other ways of obtaining almost split sequences with indecomposable
middle term.

For a given artin algebra A we denote by a(A) the numerical invariant
which is the supremum of the a(C) for C indecomposable and not
projective. It is obvious that each a(C) is finite and our next aim is to
show that a(A) is also finite. For this we need to compare the lengths
of the modules C and D Tr C, and of the modules A and B when there
is an irreducible morphism between them. These preliminary results are
also useful in other contexts, and will be applied in the next chapter.

Lemma 6.5 For an artin algebra A let n be an integer such that l(P) <n
for each indecomposable projective left and projective right A-module P .
Then we have l(DTrC) < l(C)n2 for all nonzero modules C in mod A or
modA°P.

Proof We only prove the claim for C in mod A since the rest follows
by duality. Let C be a nonzero A-module and let Pi —• Po —> C —• 0
be a minimal projective presentation of C. For each projective module
Q in mod A or modAop, we have that l(Q/xQ) gives the number of
summands in a decomposition of Q into indecomposable modules. Since
/(Po/rPo) < l(C), we then get l(P0) < l(P0/xP0)n < l(C)n. Therefore we
get J(DTrC) = Z(TrC) < l(P^) < l{P*JxP{)n = /(Pi/rPi)n < l(P0)n <
/(C)n2, which completes the proof of the claim. •

Using Lemma 6.5 we obtain the following.

Proposition 6.6 Let A be an artin algebra, n an integer such that l(P) <n
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for each indecomposable protective left and protective right A-module P
and f:A^>B an irreducible morphism.

(a) If A is indecomposable, then l(B) < l(A)(n2 + 1).
(b) IfB is indecomposable, then l(A)/(n2 + 1) < l(B).

Proof We only prove (a) since (b) then follows from (a) by duality. If A
is injective, / is an epimorphism and there is nothing to prove. If A is not
injective, consider the almost split sequence 0 —• A —• E —> Tr DA —> 0.
By Theorem 5.3 B is a summand of £, so l(B) < l(E) = l(A) + l(TrDA).
Using Lemma 6.5 we get l(A) + l(TrDA) < l(A) + n2l(A) = l(A)(l + n2).

•

We now use these results to get a bound for a(A).

Theorem 6.7 If n is the maximal length of the indecomposable projective
modules over A and Aop, then a(A) < (n2 + I)2.

Proof Let 0—+ A —> B -+ C —» 0 be an almost split sequence and
let B = JJ^Lj Bi be a decomposition of B into a sum of indecomposable
modules. By Proposition 6.6 we have /(^)(l/(n2+l)) < l(Bt) for each i and
l(B) < /(^4)(n2 + l), and hence l(A)(m/(n2 + l)) < l(B) < /(^)(n2 + l). From
this we conclude that m < (n2 + I)2, and consequently a(A) < (n2 + I)2.

•

By induction we obtain the following easy consequence.

Corollary 6.8 Let A be an artin algebra, n the maximal length of the
indecomposable projective modules over A and Aop and A an indecompos-
able A-module. Then the number of indecomposable modules B (up to iso-
morphism) with a chain of irreducible morphisms of length m between
indecomposable modules ending (starting) in B and starting (ending) in A
is bounded by (n2 + l)2m. •

To illustrate the point that the invariant a(A) is a measure of the
complexity of the modules over A, we show that if a(A) = 1, then A is a
Nakayama algebra of Loewy length. 2. First observe that since there is
some almost split sequence, A is not semisimple. For each nonprojective
indecomposable A-module B we then have that there is no irreducible
monomorphism f:A^>B and for each indecomposable noninjective A-
module B there is no irreducible epimorphism g:B -> C. Hence in any
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almost split sequence 0 - > i ^ 5 ^ C - ^ 0 w e have that B is both
projective and injective and therefore A and C are simple. But then each
indecomposable projective and each indecomposable injective A-module
is either simple or of length 2. This shows that A is a Nakayama algebra
of Loewy length 2.

7 The radical

Closely connected with the study of irreducible morphisms is the radical
of mod A which is an i^-relation in mod A when A is an artin i^-algebra, as
studied in Chapter IV. This section is devoted to introducing the radical,
developing the basic properties of this ^-relation in mod A and giving
the connections with irreducible morphisms between indecomposable
modules over an artin i^-algebra A.

Let A be an artin K-algebra and let A and B be in mod A. Define
radA(,4,£), the radical of HomA(,4,£) by radA(,4,£) = {/ € HomA(^,5)|
hfg is not an isomorphism for any g:X —> A and h:B —» X with X in
ind A}. Using the notion of an ^-relation in an K-category we have the
following basic result about the radical in mod A.

Proposition 7.1 Let A be an artin R-algebra. Then the radical radA is an
R-relation in mod A.

Proof We first prove that mdA(A,B) is a subgroup of HomA(v4,5) for
each pair of modules A and B in mod A. Let f\ and J2 be in radA(^4, B)
and let g:X —• A and h: B —• X be A-morphisms with X indecomposable
in mod A. Since f\ and fi are in radA(,4,£), hj\g and hf2g are not
isomorphisms. Since X is indecomposable the set of nonisomorphisms in
HomA(X,X) forms a subgroup and therefore hf\g — hfig = M/i ~ fi)g
is not an isomorphism. Since X, g and h were arbitrary it follows that
fi-fi isinradA(^,B).

In order to complete the proof we also have to prove that if / e
mdA(A,B) and / ' e HomA(B,C) then / ' / e radA(,4,C), and dually if
/ G radA(,4,B) and / " e HomA(£,,4) then / / " € radA(£,£). We prove
the first part of this. Let / e radA(,4,£) and / ' e HomA(£,C) and let X
be an indecomposable module in mod A and g:X —• A and h:C —• X
morphisms in mod A. Then h(ff)g = (hf')fg is not an isomorphism
since / is in radA(/!,£). Hence / ' / is in radA(/l, C). This shows that the
radical is a relation on mod A.

It is not hard to see that radA(^4,2?) is not only a subgroup of
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Yiom\(A,B) but an R-submodule, which then shows that radA is an
R-relation on mod A. •

As for any ^-relation on mod A we define the powers of the radical
inductively. Hence for A and B in mod A and a natural number n we have
that md\(A,B) = {/ e Hom^A^)] there exist X in mod A, morphisms
g e radA(,4,X) and h e r a d ^ X , ^ ) with / = hg}. Finally we define
rad^(^4,J5) = f)ne¥imd\(A,B). Before going on to give the connection
with irreducible morphisms, some comments of a general nature may be
helpful.

Any ^-relation on an i^-category behaves nicely with respect to de-
composition. If A and B are in mod A and A ~ ]J"=1 At and B ~ UJLi Bj
are decompositions of A and B into sums of modules A\ and Bj, with
OLt'.Ai -> A and fijiB —• Bj the induced inclusions and projections, we
have that a morphism f:A —> B is in md\(A,B) if and only if j8//a,- is in
md\(Ai, Bj) for all i = 1,..., n and j = 1,..., m.

We also want to make the following observation.

Lemma 7.2 For A and B in mod A with A an artin R-algebra there exists
anne¥i such that rad^(,4,£) = md%(A,B).

Proof For A and B in mod A we have that Hom\(A,B) is a finitely gen-
erated ^-module, hence of finite length. Therefore the descending chain
HomA(A,B) => radA (A, B) => • • • => rad^(^4,JB) => • • • becomes stable, and
hence there exists some n e N such that rad^ (A, B) = fLeN radA^4>5) =
rad^(^,B). D

We now give the desired connection between irreducible morphisms
and the radical.

Proposition 7.3 Let f:A —> B be a morphism between indecomposable
modules A and B in mod A. Then f is irreducible if and only if f 6
mdA(A,B)-md2

A(A9B).

Proof We first observe that if M is an indecomposable module and
X an arbitrary module, the radical radA(M,X) is the set of morphisms
from M to X which are not split monomorphisms and that the radical
radA(X, M) is the set of morphisms from X to M which are not split
epimorphisms. Our claim then follows directly from the definitions. •
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We next give a description of the morphisms in md\(A,B) for n > 2
by using irreducible morphisms.

Proposition 7.4 Let A and B be indecomposable modules in mod A and let
f G rad^A.B) with n>2. Then we have the following.

(a) (i) There exist a natural number s > 1, indecomposable modules
B\9...9BS, morphisms ft G radA(A,Bt) and morphisms gi:2?,- —> B
with each g, a sum of compositions ofn—l irreducible morphisms
between indecomposable modules such that f = YA=I £*/*•

(ii) Iffe mdn
A(A, B) - rad^+1(^, B) then at least one of the ft in (i)

is irreducible and f = u + v where u is not zero and is a sum of
compositions ofn irreducible morphisms between indecomposable
modules and v G rad^+1(i4,£).

(b) (i) There exist a natural number t > 1, indecomposable modules
Au...9At, morphisms ft:A -» At and gt G radA(At,B) with each
fi a sum of compositions ofn—l irreducible morphisms between
indecomposable modules such that f = YA=I Sift-

(ii) / / / G rad^04, B) - rad^+1(^, B) then at least one of the gt in (i)
is irreducible.

Proof We prove statement (a) by induction on n. Statement (b) then
follows by duality.

For n = 2 let g:M —> B be a minimal right almost split morphism.
Then there are some s and indecomposable modules Bi,...,Bs such
that M ^ LG=i^"- Let gi'.Bi —> B be the induced morphisms. Since
/ G md\(A,B), there is a morphism f'.A -* M such that / = gf.
Let ff.A —• Bt be the morphism induced by / ' and the decomposition
M ^ £J^=1 Bt. Then we get that /,- G radA(v4, Bt), the morphisms g,- are
irreducible and / = X^=i &fi- Moreover if / ^ md\(A,B) then not all /,-
are in md2

A(A,Bi). Hence for at least one i G {l, . . . ,s} we have that /,- is
irreducible. This establishes the claim for n = 2.

Assume now that / G mdn
A(A,B) where n > 3. Then there are some X

in mod A and morphisms g:A —> X and h:X ^> B with g G radA(^4,X)
and /i G radX"1^,!*) and / = hg. Let X = ]J[=1 Xt be a decomposition
of X into a sum of indecomposable modules, and let gt: A —> Xt and
hf.Xi —> 5 be the induced morphisms. Then we have that / = J][=i ^^i-
Now each hi is in x?idn

A
l(XuB), so since n — 1 > 2 there are by induc-

tion for each i = l , . . . , t indecomposable modules Q, for 7 = l , . . . ,s, ,
morphisms hy G radA(Xi,Qj) and h^'.Qj —> B, where each /ij7 is a sum
of compositions of n — 2 irreducible morphisms between indecomposable
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modules, such that ht = Y?j=i Kfaj- Since hjgt'.A —> Qj is in rad^(^4,Qj)
we have by induction that htjgi = Y^U u'ijP

uijp where uijp e mdA(A,Eijp)
and u'ijp'.Etjp —• Qj are irreducible morphisms and each EtjP is inde-
composable. We then have / = Y!i=ihgi = T,Ui(E%iKjhij)gi =

ELiEJ,i*!)W = E U E ^ I ^ E J I I ^ V P . Since each ^ is
a sum of compositions of n — 1 irreducible morphisms and each Mj7-P is in
rad\(A9 Etjp), this completes the proof of (a)(i).

To prove (a)(ii) observe that when / ^ ra,dT
A'1(A9B), then not all utjP

can be in md\(A,EijP) since each h^u^ is in rad^04,£). This shows that
at least one of the w,;p is irreducible. •

We next consider the associated subfunctors of the representable
functors HoniA( ,B) and HomA(£, ) for B in mod A induced by the
radical of mod A. Define for each B in mod A and n e N the sub-
functors rad^( ,B) of HomA( ,B) and rad^(£, ) of HomA(£, ) by
rad^( ,B)(A) = mdn

A(A,B) and rad^(5, )(A) = rad^(#,,4) respectively
on modules. If h:A —> A' is a morphism in mod A, then the mor-
phism Ylom\(h,B)\Ylom\(A\B) —• HomA(^4,5) induces a morphism
v2id\(Ar,B) - • r?id\(A,B). For an K-functor F:modA -> modi^ we
denote by Supp F the support of the functor F, which is the full subcate-
gory of ind A whose objects are the X in ind A with F(X) ^= 0. We have
the following useful consequence of Proposition 7.4.

Proposition 7.5 Let A and B be indecomposable modules in mod A and let
f be a nonzero element in r3.d\(A,B).

(a) Ifmd\( ,B) = 0 for some n G N, then f is a sum of compositions of
irreducible morphisms between indecomposable modules.

(b) If rad\(A, ) = 0 for some n £ N, then f is a sum of compositions of
irreducible morphisms between indecomposable modules.

Proof (a) Let B be an indecomposable A-module with rad^( ,B) = 0 and
let / be a nonzero morphism in radA(v4,£) where A is indecomposable.
Since mdn

A(A,B) = 0, there is some t < n such that / G mdl
A(A,B) —

rad^" 1 ^ ,^) . Then by Proposition 7.4(a)(ii) we have that f = u + v
where u is the sum of compositions of irreducible morphisms between
indecomposable modules and v £ rad^ 1 ^ , !? ) . If v ^ 0 choose s > t such
that v e ra,ds

A(A,B) — rads
A

1(A,B), and apply Proposition 7.4 again. Since
vadn

A(A,B) = 0 we see that / is a sum of compositions of irreducible
morphisms between indecomposable modules.
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(b) This follows from (a) by duality. •

From the subfunctors radA( ,B) of HomA( ,£) we may form the
quotient functors HomA( ,£)/radA( ,B) as follows. For a module X
(HomA( ,B)/mdn

A( 9B))(X) is the ^-module HomA(X,B)/mdn
A(X,B).

Since for a A-morphism f:X—>Y the morphism HomA(/,£) takes the
K-submodule radA(7,£) of HomA(Y,J3) into the K-submodule
rad\(X,B) of HomA(X,£), there is induced a unique map from
HomA(y,fl)/rad^(r,£) to HomA(X,£)/rad^(X,£). This is the value
of the quotient functor on / . One defines the covariant quotient functor
HomA(£, )/radJtfB, ) dually.

We have the following easily verified result about these quotient func-
tors.

Lemma 7.6 Let B be in mod A. Then we have the following.

(a) The supports of HomA( ,B)/radn
A( ,£) and HomA(B, )/mdn

A(B, )
are finite for each n G N.

(b) The support o/HomA( ,B) is finite if and only if there exists some
ne¥i with rad^( ,B) = 0.

(c) The support of HomA(#, ) is finite if and only if there exists some
n G N with rad^(£, ) = 0.

Proof (a) Since we have seen that radA(v4,£i \}B2) ^ mdA(A,Bi)Y[
radA(^4,52) it is clearly enough to prove the statement for B indecompos-
able. If A is indecomposable and radA(^4,2?) ^ r ad^ 1 ^ ,^ ) there is by
Proposition 7.4 a composition of i irreducible morphisms from A to B.
Since there is only a finite number of indecomposable modules X with
an irreducible morphism to a given indecomposable module 7, there is
only a finite number of such modules A up to isomorphism for each i.
It follows that the support of HomA( ,jB)/radA( ,B) is finite for each
n € N. By duality we also get that the support of HomA(£, )/ radA(£, )
is finite for each n G N.

In order to prove statement (b) first observe that if radA( ,2?) = 0 for
some n G N then by (a) the support of HomA( , B) is finite. Assume
conversely that the support of HomA( ,B) is finite. Then there is a bound
n on the Loewy length of all EndA(/l) with A in SuppHomA( ,B). Hence
the composition of tn nonisomorphisms within SuppHomA( ,B) is zero
where t is the number of modules in SuppHomA( ,B). This then shows
thatrad^( ,£) = 0.

Statement (c) follows from (b) by duality. •
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We have the following direct consequence of Lemma 7.6.

Theorem 7.7 The following are equivalent for an artin algebra A.

(a) A is of finite representation type.

(b) The support o/HoniA( ,B) is finite for each B in mod A.
(c) For each B in m o d A there is some n G N w i t h r a d ^ ( , B ) = 0 .
( d ) The support of HoniA(B, ) is finite for each B in mod A.
(e) For each B in mod A there is some n with rad\(B, ) = 0.

Proof It follows from the definition of finite representation type that (a)
implies (d). To prove that (d) implies (a) consider the functor HoniA(A, ).
Part (d) then states that HoniA(A, ) has finite support, but this is clearly
the same as saying that indA is finite. That (d) and (e) are equivalent
follows from Lemma 7.6. The rest follows by duality. •

We also have the following consequence for finite representation type.

Theorem 7.8 Let A be of finite representation type and let f e rad\(A,B)
with A and B indecomposable modules in mod A. Then f is a sum of
compositions of irreducible morphisms between indecomposable modules in
mod A.

Proof By Theorem 7.7 we have that SuppHomA( ,B) is finite and hence
rad^C ,B) = 0 for some n e N. Therefore it follows from Proposition 7.5
that / is a sum of compositions of irreducible morphisms between inde-
composable modules. •

We saw in Lemma 7.2 that for each pair of modules A and B in mod A
there is an n e N such that mdn

A(A,B) = rad^(,4,£). We want to show
that when the support of the functor HomA( , B) is infinite, then the
chain of subfunctors • • • c rad^( ,£) c rad^-1( ,B) c • • cz HomA( ,B)
is a proper descending chain of subfunctors. This is a direct consequence
of the following.

Proposition 7.9 If B is in mod A with the support o/HomA( ,B) infinite,
then

rad^( ,B)/md»A
+1( ,B)±0

for all n e N.
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The proof of this is based on results about minimal morphisms in
Chapter I and the following result.

Lemma 7.10 Let B be in mod A. Then for each n > 1 there exist a A-
module Cn in mod A and a morphism fn:Cn —• B such that fn = fn-ihn

with hn G radA(Cn, Cn_i) and such that ImHom A ( I , / n ) = radn
A(X, B) for

all X in mod A, where Co = B and /o = 1^.

Proof The proof goes by induction based upon the existence of right
almost split morphisms.

Let Co = B and /o = 1B- For n = 1 decompose B as a sum of
indecomposable modules B = ]J[=1 Bt and let ht: B[ —• Bt be minimal
right almost split. Then let C\ = JJ[=1 B\ and let / i = h\ ]J h2 \J ''' U h-
Then clearly ImHomA(I J i ) = v?idA(X,B) for all A-modules X. For
the inductive step assume we have proved the statement for n for all
modules in mod A and want to prove the claim for n + 1. So assume
/ „ : Cn -> B is such that ImHomA(I , /M) = rad^(X,5) for all X in mod A
and let h\Y - • Cn be such that ImHomA(I, / i) = mdA(X,Cn) for all
X in mod A. Let Cn+\ = Y and fn+\ = fnh. Then we clearly have
ImHomA(X,/B + i) c r a d ^ + 1 ( ^ ^ ) for all X in mod A.

For the converse inclusion let X be arbitrary in mod A and let
a G rad^+1(X,£). Then there is some Y in mod A, some a' E radA(X, Y)
and a" G rad^(Y,l?) with a = a"a'. Hence there is by induction hy-
pothesis some P:Y -> Cn with a" = fnp. Since a! e radA(X, 7) ,
we have fix' G radA(X, Cn). Hence there is some ft'\X —• Cn+\ with
fcjS' = pot'. But then a = a V = / ^ a 7 = /̂ fcjS' = fn+iP', which shows
that rad^+1(X, B) a ImHom A ( I , / n + i ) . This completes the proof of the
lemma. •

We are now ready to prove Proposition 7.9. Assume B is in mod A with
SuppHoniA( ,B) infinite. Since the support of HomA( ,£)/radA( ,B)
is finite for all n, we have that rad^( ,B) =£ 0 for all n. Hence the
modules Cn and the morphisms fn:Cn —• B from Lemma 7.10 such that
ImHom A ( I , / n ) = mdn

A(X,B) for all X in mod A are nonzero and we
have /„ G mdn

A(Cn,B). Then according to I Theorem 2.2 there exists a
decomposition of each Cn as a sum C'n\[C^ such that fn\c>; = 0 and
fn\cn is right minimal. If we write fn = fn\cn, we claim that the image
fn G mdn

A(Cn,B)/rsid11^1 (Cn,B) of f'n G mdn
A(Cn,B) is nonzero. Otherwise

we have fn e rad^+1(C^B) = ImHomA(Cn + i , /n + i) . Hence there is
some g:C'n -+ Cn+i such that / ; = fn+1g. However fn+x = fnh with
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h € radA(Cw+i, Cn) and therefore f'n = fn+\g = fnhg. Using the projection
p of Cn onto Cn according to the decomposition Cn = Cn\[C£' we get
that f'n = fnphg. But since f'n was right minimal, phg is an isomorphism.
This contradicts that h € radA(Cw+i,Cn). So our claim follows and the
proof of the proposition is complete. •

As an immediate consequence of Proposition 7.9 we have the following
result.

Corollary 7.11 For a A-module B in mod A the following are equivalent.

(a) The support O/HOIIIA( ,J5) is infinite.
(b) rad^( , fl)/rad£+1( ,B) + Ofor all n G N.
(c) The support o/HomA( ,£ ) / r ad^( ,B) is infinite. •

Exercises

1. Let A be an artin algebra such that every indecomposable A-module
has a simple socle.

(a) Show that each indecomposable projective A-module is uniserial.
(b) Show that the length of C/xC is less than or equal to 2 for each

indecomposable A-module C.
(c) Show that C /socC is either uniserial or the sum of two uniserial

modules for each indecomposable A-module C.
(d) Show that the number of indecomposable summands of the middle

term of any almost split sequence is at most two.
(e) Give an example of an algebra A satisfying these properties without

being Nakayama.

2. Let A be an artin algebra and let / be an indecomposable injective
nonprojective A-module.

(a) Show that the following are equivalent.

(i) There is an irreducible epimorphism f:P—>I with P inde-
composable projective noninjective.

(ii) DTrl is simple and the middle term P of the almost split se-
quence 0—»DTrJ —> P —> I —•Ois indecomposable projective
with Z(socP) = 2.

(iii) / ~ P/S\ where P is an indecomposable projective module,
Si is simple, xP = Si ]JX with X =£ 0 and Ext\(A/r,Si) is a
simple A-module.
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(b) Suppose / satisfies the equivalent conditions of (a) and let P and Si
be as above with socP = S\]JT. Show that the middle term M of
the almost split sequence 0 —• P —• M —> TrDP —> 0 is isomorphic
to I]JP/T and that TrDP ~ P / s o c P .

3. Let A be an artin algebra and S a simple projective A-module of
injective dimension 1.

(a) Show that HomA(TrDS, A) = 0 and that pdTrDS = 1.
(b) Show that EndA(TrDS) is a division ring.

4. Let P be an indecomposable projective noninjective nonsimple module
and let 0 —> P —> B —> Tr DP —• 0 be an almost split sequence. Show
that B is indecomposable if and only if xP is indecomposable and P is
not a summand of r.

5. Let A be an artin algebra and a an ideal in A. For each A-module
M consider the quotient module M/aM and the submodule aM = {m e
M\am = 0} of M.

(a) Prove that (A/a) ®A M ~ M/aM and that HomA(A/ct, M) ~ aM for
all M in mod A.

(b) Let C be an indecomposable A-module with aC = 0 and C not a
/ g

summand of A/a and let 0 —» A -> B —• C —> 0 be an almost split
sequence.

(i) Show that the induced sequence 0 —• HomA(A/a,y4) —>
HomA(A/a,£) - • HomA(A/a,C) - • 0 with HomA(A/a,C) ^ C
is exact.

(ii) Show that HomA(A/a,g) is right almost split in mod(A/a).
(iii) Let Pi —• Po —• C —> 0 be a minimal projective presentation of

C as a A-module. Prove that Pi/aPi -» Po/aPo - • C - • 0 is

isomorphic to a sequence Qo LJ 6i -* P0/&P0 -+ C —>• 0 with
<2i ^> Po/ciPo - > C - > 0 a minimal projective presentation of C
as a (A/a)-module and Qo a projective (A/a)-module.

(iv) Prove that the induced sequence 0 —• HomA(A/a,yl) —>
HomA(A/a,5) —> C -> 0 is isomorphic to a sequence

(aTTl) (#0)

0^DTrA/aC1J£><25 i i ^ U ^ e S ^ C ^ 0 where 0 ^
D TrA/a C - • J5r -> C - • 0 is almost split in mod A/a and Dg^ is
an injective (A/a)-module (Here * is used for HomA/a( , A/a).)
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(v) Prove that D TrA/a C is a submodule of D TrA C.

(c) Let A be an indecomposable A-module with aA = 0, A not an
injective (A/a)-module and let 0 —> A —• B —> C —• 0 be an almost
split sequence.

(i) Prove that 0 —• A —• £/<*£ —• C/aC —• 0 is exact and isomor-

phic to a sequence 0 -> A H Bf JJ Q ( ^ U 1 G ) C" JJ 6 -> 0 with

0 —> ,4 -> 5 ' —• C" —• 0 an almost split sequence in mod A/a
and Q a projective (A/a)-module.

(ii) Prove that T rD A / a ^ is a quotient of Tr DAA.

(d) Let a be an ideal in A such that A/a is a projective right A-module.
Let C be as in (b). Prove then that Qo in (b)(iii) is zero or equivalently
that D TrA/0 C ^ HomA(A/a, D TrA C).

(e) Let a be an ideal in A such that A/a is a projective left A-module and
let A be as in (c). Prove then that Q in (c)(ii) is zero or equivalently
that TrDA/a,4 ~ (A/a) ®A A.

(f) Assume A is a selfinjective algebra and a is an ideal with a cz soc A.
Prove that for each indecomposable (A/a)-module C with C not pro-
jective we have D TrA/a C ~ D TrA C and for each indecomposable
noninjective (A/a)-module A we have that TrDA/a^4 ~ TrDAA

/ g
6. Let 0—>,4—•£—>C—>0bean almost split sequence over an artin
algebra A and let Pi —• Po —• C -^ 0 be a minimal projective presentation
of C Show that the following statements are equivalent.

(i) A is simple.

(ii) The morphism B —> C is an essential epimorphism.

(iii) 0 -» Pi/rPi —• Po/h(xP\) —> C —> 0 is an almost split sequence.

7. Let A and 5 be indecomposable modules over an artin algebra A and
X an arbitrary module.

(a) Prove that radA(^,^l) = rEnd(^).

(c) Prove that radA(^4,X) = {/ G HomA(v4,X)|/ is not a split mono-
morphism} and that radA(X,5) = {/ € HomA(X,B)|/ is not a split
epimorphism}.
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8. Let A be an artin algebra and let A be in mod A.

(a) Prove that if A is indecomposable, then radA(̂ 4,̂ 4) =
where radA denotes the radical in mod A.

(b) Decide for which A in mod A we have radA (A, A) ^= rad

9. Let A be an artin algebra such that D Tr C ~ Q2C for all C in mod A.

(a) Prove that A has no simple injective nonprojective modules. (Hint:
Use information on almost split sequences whose right hand term is
simple injective.)

(b) Prove that all simple A-modules are torsionless.

(c) Prove that socP ~ P /xP for each projective A-module P.

(d) Prove that A is selfinjective.

10. Let M be a module over an artin algebra A.

(a) Show that for each A-module X, the abelian group ExtA(M,X) has
a natural structure as an EndA(M)op-module with the property that
the two-sided ideal 0>(M,M) of EndA(M)°P annihilates Exti(M,X)
and hence each ExtA(M,X) is an EndA(M)op-module.

(b) Show that the functor F: mod A -» mod EndA(M)op given by F(X) =
Exti(M,X) for all X in mod A and F(f) for all / in HomA(X, Y)
is Ext\(M,/):Extjv(M,X) - • Ext^M, Y) for all X and Y in mod A
has the following properties.

(i) If Exti(M, A) = 0, then there is an X in mod A such that F(X)
is a generator for EndA(M)°P, i.e. EndA(M)°P is in addF(X).

(ii) If ExtA(M,M[JA) = 0, then F is dense, i.e. given any
EndA(M)op-module Z there is an X in mod A such that F(X) ~
Z.

(iii) Show that if Extj^M, M ]J A) = 0, then the functor F: mod A - •
mod EndA(M)op induces a surjective map from the isomor-
phism classes of indecomposable A-modules to the isomor-
phism classes of indecomposable EndA(M)op-modules. Hence
EndA(M)op is of finite representation type if A is of finite
representation type.
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Notes

The existence of almost split sequences, also called Auslander-Reiten
sequences, was first observed around 1971 for artin algebras of finite
representation type in connection with describing the projective presen-
tations of simple modules over Auslander algebras, a class of algebras
we discuss in Chapter VI. Two very different approaches to proving that
right and left almost split morphisms (also called sink maps and source
maps [Rin3]) existed for arbitrary artin algebras were then pursued. One
approach was showing that for arbitrary artin algebras A the simple
functors from mod A to abelian groups are finitely presented [AuR2].
The other approach, which gave the existence of almost split sequences,
not just almost split morphisms, was based on the guess that the ends of
an almost split sequence 0 -> A —• B —• C were related by A ~ D Tr C
and a careful homological algebra study of Ext\(C,DTrC) including

its description as DEndA(C) [AuR4]. There then followed a series of
papers [AuR5] [AuR6] [AuR7] where most of the notions and results in
this chapter were established. In particular, it was here that irreducible
morphisms were first discussed, including a connection with radical series
of functors. The bimodule Irr(̂ 4,J5) of irreducible morphisms was inves-
tigated by Bautista and Ringel (see Chapter VII). Recently the theory of
irreducible maps has been further developed through the notion of the
degree of an irreducible map [Liul].

Although almost split sequences now play a fundamental role in the
representation theory of artin algebras, it took several years after their
introduction before their significance began to be appreciated. It was es-
sentially the notion of an Auslander-Reiten-quiver, a device for studying
all left and right almost split morphisms simultaneously (see Chapter VII
for details), that made the difference. For example much of the early work
on hereditary algebras and selfinjective algebras of finite representation
type was concerned with describing their Auslander-Reiten-quivers, or
equivalently, their almost split sequences (see [Rin2], [Rie]). And this
interest persists to this day.

Existence theorems for almost split sequences have been proved also
in certain subcategories of mod A for an artin algebra A [AuS2], and in
contexts other than artin algebras (see [AuRll]). It is worth noting that
the notion of almost split sequences has proven to be useful in such diverse
fields as modular group representations, the theory of orders, algebraic
singularity theory and model theory of modules. The construction we
give for almost split sequences for group algebras is taken from [AuC].
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190 Almost split sequences

The fact that there is always an almost split sequence with indecompos-
able middle term was proved in [AuR5] for finite representation type and
in [M2] in general. The construction given here is taken from [ButR].
For an algebra A of finite representation type one has that a(A) < 4
[BauB]. This result has been further generalized in [Liu3] [Kra2].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.006
https://www.cambridge.org/core


VI
Finite representation type

The artin algebras of finite representation type are in some sense the
simplest kinds of artin algebras, and a lot of effort has been put into
understanding and classifying various classes of algebras of finite repre-
sentation type. Often these algebras serve as a test case and inspiration
for what might be true more generally. For example existence of almost
split sequences was first proved in this context.

This chapter is devoted to studying algebras of finite representation
type. We start by giving a criterion for finite type in terms of irreducible
morphisms, which we apply to describe all indecomposable modules
over Nakayama algebras. Using the special features of group algebras
developed in Chapter III, we describe which group algebras over fields
are of finite representation type. A criterion for finite representation type
is also given in terms of generators and relations for the Grothendieck
group of artin algebras. The chapter ends with a discussion of the
endomorphism algebra of a A-module M containing all indecomposable
modules as a summand when A is of finite representation type. These
algebras are called Auslander algebras.

1 A criterion for finite representation type

In this section we use almost split morphisms to give a criterion for an
artin algebra A to be of finite representation type. Using this criterion
we show that A is of finite type if there is a bound on the length of the
indecomposable A-modules.

Denote as before by ind A a fixed full subcategory of mod A whose
objects consist of a complete set of nonisomorphic indecomposable A-
modules. We first define an equivalence relation on the objects of ind A.
Two modules A and B in ind A are said to be related by an irreducible

191

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.007
https://www.cambridge.org/core


192 Finite representation type

morphism if there exists an irreducible morphism f\A^>B. We call an
equivalence class under the equivalence relation generated by this relation
a component of ind A. Then A and B are in the same component if and
only if there exist a natural number ft, indecomposable modules Xt, for
i = 1, • • •, ft, and for each i either an irreducible morphism /,•: Xt —> Xi+\
or an irreducible morphism gi'.Xi+\ —• Xt with X\ = A and Xn = B.
We prove that if an indecomposable artin algebra A has a component #
where all the modules are bounded in length by some number t, then A
is of finite representation type and ind A consists of a single component.

If A and B are indecomposable modules and mdn
A(A,B) ^= rad^+1(A,5),

there is by V Proposition 7.4 a chain of n irreducible morphisms between
indecomposable modules from A to B. Hence we get the following.

Lemma 1.1 Let A be in ind A. If B is in Supp(Hom( ,A)/md%( ,A)) or
in Supp(Hom(y4, )/ rad^(^4, )), then A and B are in the same component
of ind A. •

When A is of finite representation type, there is, as noted in V Sec-
tion 7, a bound on the lengths of chains of nonisomorphisms with
nonzero compositions between indecomposable modules. The follow-
ing useful technical lemma shows that there is a similar result under
the more general assumption that the indecomposable modules involved
have bounded length.

Lemma 1.2 Let n G M and for each i e TL, let At be an indecomposable
module with /(A) < n, and let ft'.Ai —> At+i be nonisomorphisms. Then
/(Im(/i+2m-2 " ' fij) < max {ft — m, 0} for each m £ N.

Proof The proof of this goes by induction on m. If m = 1, consider the
morphism ft'.At —• Ai+i. Since / , is not an isomorphism, then either ft

is not a monomorphism or / , is not an epimorphism. In the first case
l(lmfi) < l(At) — 1 and in the second case /(Im/;) < l(Ai+i) — 1. Hence
we have l(Im/,) < n — 1 < max{ft — 1,0}.

Assume now that the lemma is proved for m and consider

fi+2m+1-2 ' ' ' fi+2mfi+2m-lfi+2m-2 ' ' ' fi '• M ~* ^i+2m+1-l-

Writing / = /i+2»-i, g = fi+2™-2 '"ft and h = /(l-+2-)+2--2 *" "/i+2™ we
have the sequence of morphisms

A g A f A k A

At —> Ai+2m-l —• Ai+2m —• Ai+2m+i_i.

Assume that l(lm(hfg)) ^ max{ft—m—1,0}, that is l(lm(hfg)) > n—m > 0.
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We will prove that this implies that / = /,-+2m-i is an isomorphism, which
is a contradiction.

By the induction assumption we have /(Img) < max{n — m,0} and
l(lmh) < max{n — m,0}. Further we obviously have

/(Im(fefg)) <

< max{n —m,0}.

Hence we get

l(lm(hfg)) = l(lm(hf))
= n — m>0.

Now /i|im(/g):Im(/g) —> Im(/i) is an isomorphism, since Im(hfg) c l m l i
and the modules have the same length. Hence we have A\+2m —
Im(/g)] jKer/ i . Since by assumption Ai+2m is indecomposable and
/(Im(/g)) = n — m > 0, we must have Ker/i = 0. Therefore we
get Im(/g) = Ai+2m, so that / is an epimorphism. Next consider
^/limg-Inig —• Im(ftf). Again since lm(hfg) cz lm(hf) and the modules
have the same length, we have that hf\\mg is an isomorphism. Therefore
we get Ai+2m-\ = Img U Ker(/i/). Since /(Img) = n—m > 0 and Ai+2m-i is
indecomposable, it follows that Ker(/*/) = 0 and hence / is a monomor-
phism. Hence we get that / = fi+2™-i is an isomorphism, contradicting
the hypothesis. We can now conclude that l(lm(hfg)) < max{n—(m+l),0}
and this completes the induction proof. •

As an immediate consequence of this lemma we get the following.

Corollary 1.3 If fi'.Ai —> At+\ are nonisomorphisms between indecom-
posable modules At for i = 1,...,2" — 1 and l(At) < n for all i, then
/ 2 - - i " 7 i = 0 . •

We can now prove the main result of this section.

Theorem 1.4 Let A be an indecomposable artin algebra and %> a component
of ind A such that the length of the objects in <€ is bounded. Then A is of
finite representation type and %> = ind A.

Proof Let n be a positive integer such that l(C) < n for all C in #,
and let A be in c€. If for some B in ind A we have rad^(^4,2?) ^ 0,
there is by V Proposition 7.4 a chain of 2n nonisomorphisms between
indecomposable modules with nonzero composition from A to B. This
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194 Finite representation type

is a contradiction to Corollary 1.3, so we have m&j{(A, ) = 0, and sim-
ilarly rad^( 9A) = 0. Then it follows by V Lemma 7.6 and Lemma 1.1
that Supp(v4, ) and Supp( ,A) are finite and contained in (€. Hence
we have HomA(y4,5) = 0 = HomA(B,A) if B is in indA and not in (€.
In particular there is some indecomposable projective module P with
HomA(P,̂ 4) T̂= 0, and hence P is in (€. Let Pi,...,Pn be the projective
modules in indAn^ . Then HomA(PhQ) = HomA(G,P,-) = 0 for all i
and all projective modules Q in indA-^7. Since A is indecomposable, it
follows that all indecomposable projective A-modules are in # (see II
Section 5). Hence Supp(g, ) is finite for each indecomposable projective
module g, and consequently Supp(A, ) is finite. Since Supp(A, ) contains
all indecomposable modules and all modules in Supp(A, ) are in #, we
have that A is of finite representation type and # = ind A. •

The following result, confirming the first Brauer-Thrall conjecture, is
now a direct consequence.

Corollary 1.5 An artin algebra A is of finite representation type if and only
if there is a bound on the lengths of the indecomposable A-modules. •

For an artin algebra A the easiest types of indecomposable modules
are the simple, projective and injective ones. Starting with these modules
we can try to construct new indecomposable modules. If after finding
a finite set of indecomposable modules we are convinced that we have
found all, it may not be easy to prove that this is actually the case.
However, Theorem 1.4 provides a method for giving such a proof when
we have a finite set of indecomposable modules which is a candidate for
being all. This involves computing almost split sequences and minimal
right and left almost split morphisms for the modules in our finite set.
Here it is important that, as we have seen in V Section 2, there are
criteria for deciding whether an exact sequence is almost split without
knowing all the indecomposable modules. In addition the information
on almost split sequences with simple end terms given in V Section 2
is useful. Note also that if in carrying out this procedure we encounter
indecomposable modules which were not in our original list, we modify
our list accordingly.

We illustrate this method on two concrete examples. Another illustra-
tion is given in the next section.
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Example Let A = feF, where k is a field and T is the quiver •<—•—••.

We have for the three vertices 1, 2, 3 the simple modules Si,S2 and
S3, the indecomposable projective modules Pi = Si,P2,P3 = S3 and
the indecomposable injective modules Ji,J2 = S2 and 73. Computing
DTr for the nonprojective modules in these lists one gets DTr / i ~ 53,
D Tr/3 ~ Si, D Tr/2 ^ P2. We have exact sequences

0 - • Si - • P 2 - > h -> 0,

and

They are all not split and the left hand term is obtained by applying
D Tr to the right hand term. Further we see that EndA(Si), EndA(S2) and
EndA(S3) are all isomorphic to the field k. Then by V Corollary 2.4 the
above sequences are almost split. Considering in addition the minimal
right almost split morphism Si ]J S3 —> P2 and the minimal left almost
split morphisms I\ —> S2 and J3 —• S2 we see that our six modules
constitute a component ^ of ind A. Since A is clearly an indecomposable
algebra, we have ^ = ind A by Theorem 1.4.

Example Let T = k[X]/(X2) and let S = k[X]/(X) be the simple T-
module. Let i:S —• T be a monomorphism, p: T —• S an epimorphism
and f:T -» T a morphism with I m / = S. For the triangular ma-
trix algebra A = (^ £) consider the set of indecomposable A-modules
{(T, T, l r ) , (0, T,0), (T,0,0), (0,S,0), (S,S, 15), (S, T,i), (T9S,p), (S,0,0),
(T, T , / )} . By first computing DTr for the indecomposable nonpro-
jective modules in the set, it is not hard to see that the following are
almost split sequences.

0 ->
0 - •

0 - •

0 - » •

0 ->•

0 - >

0 - » •

(T,T,f)
(0,5,0)
(0,7,0)
(S, T, i)
(S,S,ls)
(S,0,0)
(T,S,p)

^ (S,T, OH (7,0,0)
-> (7,S,p)n (0,7,0) -»
-»• (7,7,/) -»•
-» (o,s,o)n(s,o,o)n(7,7,iT) -»
^> ( S , 7 , 0 -»•

-»• (T,S,p) -*
-• (S,S,ls)n(7,7,f) ^

(S.0,0)
(T,T,f)
(7,0,0)
(r,s,p)
(0,S,0)

(S,S,1S)
(S, 7, i)

-• o,
-> o,
-»• o,
- o,
-» o,
-»• 0,

- > 0.

The indecomposable projective A-modules are (T, T, I7) and (0, T,0)
and we have minimal right almost split morphisms (S, T, i) —• (T, T, l j )
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and (0,5,0) —> (0, T,0). The indecomposable injective A-modules are
(T, T, I T ) and (T,0,0), and we have minimal left almost split morphisms
( T , T , l r ) -> (T,S,p) and (T,0,0) -> (5,0,0).

Since A is an indecomposable algebra, and we have a finite set of in-
decomposable modules closed under irreducible morphisms, we conclude
that there are no other indecomposable A-modules.

The second Brauer-Thrall conjecture says that for an artin algebra A
of infinite representation type over an infinite field there is an infinite
number of positive integers n such that there is an infinite number of
indecomposable modules of length n. This result has been proven for A
an algebra over an algebraically closed field, but it is beyond the scope
of this book to give a proof of this result. However, the following partial
result follows from the material we have developed.

Proposition 1.6 Let A be an artin algebra, x an infinite cardinal and assume
there are x nonisomorphic indecomposable modules of length n. Then there
exists an infinite number of integers m > n such that there are at least x
indecomposable modules of length m.

Proof Let / be a set of cardinality x a n d Mil1' e /} a set of noniso-
morphic indecomposable A-modules of length n. Since there is only a
finite number of indecomposable projective modules and x is a n infinite
cardinal, there are a subset J of / of cardinality x and an indecomposable
projective A-module P such that HomA(P,^4i) ^ 0 for all i e J. It fol-
lows by V Lemma 7.6 that HomA(P,^i)/ rad^ (P,A) ^ 0 for only a finite
number of the modules At. Hence there is a subset K of / of cardinality
X such that rad^ (P,At) =̂= 0 for all i e K. Choose a morphism ft ^ 0
in rad^(P,^4i) for i G K. By V Proposition 7.4 we have for each i that
ft = E / U gi/2» • ' ' gnu where each guj'.Xuj - • Xuv+i) is a morphism be-
tween indecomposable modules and Xm = P and Xmn = At for all / with
1 < / < U, and guj with 2 < j < n can be chosen to be irreducible. Since
all the fi are nonzero, there is for each i e K some / with 1 < / < tt such
that the composition g,/2« • • • gm of 2n — 1 nonisomorphisms is nonzero.
Then it follows by Corollary 1.3 that there is some j such that writing
Bt = XUJ we have l(Bt) > n. Since all guj'.Xuj —• ^/(;+i) are irreducible
for 2 < j < 2n and X^n is equal to Au which has length n, it follows
from V Proposition 6.6 that the XUJ with 2 < j < 2n are bounded in
length, say by no. By V Corollary 6.8 there is only a finite number
of nonisomorphic indecomposable modules which can be reached by at
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VI.2 Nakayama algebras 197

most 2n irreducible morphisms starting at a given J3j. This shows that
an indecomposable module X can be isomorphic to some Bt for only
a finite number of i. Hence we have x nonisomorphic indecomposable
modules B\ with n < l(Bt) < no, and consequently there is some m with
n < m < no such that / of them have length m. •

2 Nakayama algebras

In this section we show how to use Theorem 1.4 to obtain the struc-
ture of the indecomposable modules over a Nakayama algebra. Using
this structure we investigate HomA(A,B) as a module over EndA(^4)op

and over End\(B) where A and B are indecomposable modules over a
Nakayama algebra A.

We have the following main result in this section.

Theorem 2.1 We have the following for a Nakayama algebra A.

(a) Every module in ind A is uniserial, and hence a factor of an indecom-
posable projective module.

(b) A is of finite representation type.

Proof Assume that A is an indecomposable Nakayama algebra and let
^ be the set of uniserial modules in ind A. We want to show that ^ is a
component of ind A and hence %> is ind A by using Theorem 1.4. We know
from IV Lemma 2.5 that a uniserial module C over a Nakayama algebra
is uniquely determined up to isomorphism by its top C/xC = S and its
length l(C) = t. We denote this module by S(t). Let {SO,SU- • -,Sn_i} be
a Kupisch series for A. We then have for each i and t, where the lower
index is calculated modulo n, a natural inclusion ff^: S$i -> S?+1) and
a natural epimorphism pf+1):Sf+1) - • S?\ For each i and t such that SJt]

is not projective consider the sequence

(~D(t+l) f(t~l))

+1 > bt - > U.

It is not hard to see that this is an exact sequence by considering
lengths. Further, IV Proposition 2.6 gives s£\ ~ DTrS/r), and every
nonisomorphism from S?) to itself factors through ff+i\ hence through
(—pf+1\ff^). Therefore 8 is an almost split sequence by V Proposi-
tion 2.2. We now prove that # is a component of ind A.
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198 Finite representation type

Let f:A —• B be an irreducible morphism between indecomposable
A-modules with A or B uniserial. We want to prove that then both are
uniserial. By duality it is enough to consider the case that B is uniserial.
We have two cases to consider. If B is projective, then A ~ xB and is
uniserial. If B is not projective, then B ~ S® for some i and t and from
the above discussion A is either isomorphic to s/'+1) or SJ^. In both
cases A is uniserial. This finishes the proof that ^ is a component as well
as the proof of the theorem. •

The above theorem and its proof give explicit information about the
indecomposable modules and the almost split sequences for Nakayama
algebras. We now interpret some of the concepts and results we have
discussed so far for this class of algebras.

By Theorem 2.1 a Nakayama algebra A is of finite representation
type. From the structure of the almost split sequences we see that for
a nonprojective indecomposable A-module C we have cc(C) = 1 if C is
simple and a(C) = 2 if C is not simple. This shows that a(A) = 1 if
and only if A is not semisimple and each nonprojective indecomposable
module is simple, which is the case if and only if A has Loewy length
2. In view of the last comment in V Section 6 we have now proved that
for an arbitrary artin algebra A, we have a(A) = 1 if and only if A is a
Nakayama algebra of Loewy length 2. If A is a Nakayama algebra of
Loewy length greater than 2, we have a(A) = 2.

When A and B are modules over an artin algebra A, then Hom\(A,B)
is in a natural way an EndA(v4)op-module and an EndA(£)-fnodule. In
general it is, nevertheless, hard to describe the structure of the module
Hom\(A, B). It is, however, possible for Nakayama algebras to use our
description of the modules to get some information on HomA(^4, B) when
A and B are indecomposable.

We start with the following preliminary observation.

Lemma 2.2 Assume that A is a Nakayama algebra.

(a) Let f:A^>C and h:A^>Ebe epimorphisms between indecomposable
modules. Given a morphism g:E —> C there is a morphism g:A -+ A
such that gh = fg, and g is an epimorphism if and only if g is an
isomorphism.

(b) Let f . C ^ B and g:E —> B be monomorphisms between indecom-
posable modules. Given a morphism h:C —> E there is a morphism
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VI.2 Nakayama algebras 199

h:B —> B such that hf = gh, and h is a monomorphism if and only if
h is an isomorphism.

Proof (a) If n denotes the length of the uniserial module A, then A is
a uniserial module of maximal length over the Nakayama algebra A/r".
Since A is a factor of an indecomposable projective module, A is then a
projective (A/rn)-module and C and E are (A/rn)-modules, so we have
that f:A —• C and h:A —> E are projective covers over A/r". The claim
follows by using this fact.

(b) This follows from (a) by duality. •

The next result gives explicit information about the EndA(,4)op-sub-
modules and EndA(£)-submodules

Proposition 2.3 Let A and B be indecomposable modules over a Nakayama
algebra A, and let T = EndA(v4)°P and I = EndA(B).

(a) For f and g in Hom\(A,B) the following are equivalent.

(i) r g c i y .
(ii) Imgc Im/.

(iii) Zg <= Z/.

(b) For f e UomA(A,B) we have Tf = Z/ = {g e HomA(^,B) | Img c
Im/}.

(c) Sending Tf to I m / giues a one to one inclusion preserving correspon-
dence between the T-submodules o/HoniA(v4,J3) (which is the same
as the 2,-submodules of Hom\(A, B) ) and the A-submodules X of B
with the property that X/xX ^ A/xA and l(X) < l(A).

Proof (a) If Tg a Tf we have g = fs for some s e EndA</l) and hence
Img cz I m / . If Img cz I m / there is by Lemma 2.2 a morphism h:A —• A
with g = fh, so that Tg cz Tf. The second part follows similarly.

(b) This is a direct consequence of (a).
(c) Since B is a uniserial A-module, part (a) shows that all T-

submodules and all E-submodules of HomA(v4,£) are of the form
Tf = 1 / for some / e HomA(,4,£). It is clear that if X = I m / for
some / G UomA(A,B), then X/xX ^ A/xA and l(X) < l(A). If conversely
X is a submodule of B with this property, then we have an epimorphism
f.A-^X since the indecomposable A-modules are uniserial modules de-
termined by their top and length. Then / induces a morphism f'.A^>B
with!m/ = X. •
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We state explicitly the following direct consequence.

Corollary 2.4 Let A and B be indecomposable modules over a Nakayama
algebra A. Then we have the following.

(a) Hom\(A,B) is uniserial both as an End\(A)op-module and as an
EndA(B)-module, and its length is the number of times A/xA occurs
as a composition factor of socn B where n = l(A).

(b) End\(A) is a Nakayama algebra.

Proof (a) For a submodule X of the uniserial module B we have
l(X) < l(A) = n if and only if X a socn B. Further, it is easy to see
that the submodules X of socn B with X/xX ~ A/xA are in one to
one correspondence with the simple composition factors isomorphic to
A/xA in the composition series for soc" B. Our claim now follows from
Proposition 2.3.

(b) This follows directly from (a). •

3 Group algebras of finite representation type

In the previous section we illustrated how to use the criterion for an artin
algebra to be of finite representation type by showing that Nakayama
algebras are of finite representation type. This section is devoted to
showing how a different technique for proving finite representation type
can be used. In particular, we prove that if G is a finite group and k a
field of characteristic p > 0 dividing the order of G, then kG is of finite
representation type if and only if the Sylow p-subgroups of G are cyclic.

Our results in this section are all based on the following observation.

Lemma 3.1 Let A be an R-subalgebra of the artin R-algebra F.

(a) Suppose A is a two-sided summand of F, i.e. T = A\JC as a two-
sided A-module. Then A is of finite representation type ifY is of finite
representation type.

(b) Suppose X is a Y-summand ofY®\X for all X in modF. Then F is
of finite representation type if A is of finite representation type.

Proof (a) Let F be of finite representation type, and let Y be an
indecomposable A-module. Then F ®A Y = (A ®A 7) ] J (C ® A 7 ) as
A-modules, so Y is a A-summand of F ®A Y viewed as a A-module.
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Suppose {Ai,...9At} is a complete set of nonisomorphic indecompos-
able F-modules. Then F ®\ Y = \J\=1 ntAi and so Y is a summand of
A\ viewed as a A-module for some i — l , . . . , t . Therefore the noniso-
morphic indecomposable A-summands of all the A\ give a complete set
of nonisomorphic indecomposable A-modules. Therefore A is of finite
representation type.

(b) Let {B\,...,Bt} be a complete set of nonisomorphic indecompos-
able A-modules. Suppose X is an indecomposable F-module. Then
viewing X as a A-module, we have that X ~ U j = 1 rijBj and sor®\X ~
JJ^=1(n7T ®A Bj). Since X is a F-summand of F ®A X, we have that X
is a F-summand of F ®A 5,- for some i. Therefore the nonisomorphic
indecomposable F-summands of all the F ®A Bt give a complete set of
nonisomorphic indecomposable F-modules. Since this set is obviously
finite, F is of finite representation type. •

As our first application of this lemma we prove the following.

Proposition 3.2 Let AG be a skew group algebra with G a finite group
whose order is invertible in A. Then AG is of finite representation type if
and only if A is of finite representation type.

Proof We have already shown in III Lemma 4.5 (b) that A is a two-sided
summand of AG. Therefore by Lemma 3.1, if AG is of finite represen-
tation type then A is of finite representation type. We also showed in
III Lemma 4.8 that if the order of G is invertible in A, then X is a
AG-summand of AG ®A X for all AG-modules X. Hence by Lemma 3.1
we have that AG is of finite representation type if A is of finite represen-
tation type. •

Throughout the rest of this section we assume that k is a field of
characteristic p > 0 and all groups are finite groups. Our main aim now
is to prove the following.

Theorem 3.3 Suppose G is a finite group whose order is divisible by p. Then
kG is of finite representation type if and only if every Sylow p-subgroup of
G is a cyclic group.

Our proof of this theorem goes in two steps. Let P be a Sylow p-
subgroup of G. We first show that kG is of finite representation type if
and only if kP is of finite representation type. We then finish the proof
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by showing that if H is a p-group, then kH is of finite representation
type if and only if H is cyclic.

Lemma 3.4 Let H be a subgroup of G. Then the k-subspace k[G — H]
of kG with basis G — H is a two-sided kH-submodule of kG such that
kG = kH]\k[G-H] as a two-sided kH-module.

Proof This follows from the fact that H(G-H) = G-H = (G-H)H. U

As an immediate consequence of this lemma and Lemma 3.1 (a) we
have the following.

Proposition 3.5 Suppose kG is of finite representation type. Then kH is of
finite representation type for all subgroups H of G. •

We investigate next which subgroups H of G have the property that
X is a feG-summand of kG <S>kH X for all X in modkG. To this end it is
convenient to have the following general result.

Proposition 3.6 Let A be an R-subalgebra of the R-algebra F. Then the
following are equivalent for a Y-module X.

(a) X is a T-summand of F ®A X.
(b) If0—*A—>B—>C-*0isan exact sequence of T-modules

which splits as an exact sequence of A-modules, then Homr(X,B) —•
Hom r(X, C) - • 0 is exact.

(c) If 0 —> A —> B —• X —> 0 is an exact sequence of T-modules which
splits as an exact sequence of A-modules, then it splits as an exact
sequence of Y-modules.

(d) The epimorphism m:T ® A X -> X of T-modules given by the multipli-
cation map splits as a T-epimorphism.

Proof (a) => (b) Suppose 0—>;4—•£-»C—>0isan exact sequence of
F-modules which splits as an exact sequence of A-modules. Using that the
bimodule Y^A gives rise to the pair of adjoint functors F®A-niodA —•
mod F and Homr(F, ): mod T —> mod A we get the exact commutative
diagram

0 -> Homr(r®AX,A) -> Hom r ( r® A I ,5 ) — Hom r(r®AI ,C)
\l \l \l

0 - • HomA(X,A) -> HomA(X,£) -> HomA(X,C) ->0.

Hence it follows that Hom r(F <8>A X,B) - • Hom r(F ®A X,C) - • 0 is
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exact. Since X is a F-summand of T®\X, it follows that Homr(X,£) —•
Homr(X, C) —• 0 is exact because the functor Homr(, Y) commutes with
sums.

(b) => (c) Since the exact sequence of F-modules 0—>v4—•£—>X—•()
splits as an exact sequence of A-modules, we have that Homr(X, B) —>
Homr(X,X) —> 0 is exact. Therefore there is a F-morphism f\X—>B
such that gf'.X —• X is the identity. This means that 0 —• A —> 5 —>
X —* 0 splits as an exact sequence of F-modules.

(c) => (d) The A-morphism f:X -> F ®A X given by /(x) = 1 ® x for
all x in X has the property that mf = lx. Therefore F ®A X - • X is
a F-epimorphism which splits as a A-epimorphism. Hence it splits as a
F-epimorphism.

(d) => (a) This is trivial. •

Suppose A is an K-subalgebra of the i^-algebra F. A F-module X
is said to be relatively projective over A if it satisfies the equivalent
conditions of Proposition 3.6.

Our aim now is to establish the following.

Proposition 3.7 The following are equivalent for a subgroup H of G.

(a) The trivial kG-module k is relatively projective over kH.
(b) [G:H], the index of H in G, is not divisible by p.
(c) H contains a Sylow p-subgroup of G.
(d) Every kG-module is relatively projective over kH.

Proof (a) => (b) We first observe the following. Let {1 = (TI,O"2,...,<TJ

be a set of left coset representatives of H in G. Then G is the disjoint
union H U a2H U • • • U atH and so kG = kH]}k[o2H] ]}•-]Jk[otH]
as a right fc/f-module, where each k[atH] is the fc-subspace of kG with
basis the elements in OiH. But for each i we have k\p[H\ ~ kH as a
right kH -module. Therefore kG ®kH X ^ tX as a fc-vector space, and so
dimfc(fcG <%# X) = t dim^ X. We will use this fact shortly.

Let k[G/H] be the fc-vector space with basis the left cosets of H in G.
Then the operation of G on G/H given by T(OH) = xoH gives fc[G/H] a
left fcG-module structure. Unless stated to the contrary, this is the only
way we will consider k[G/H] as a fcG-module.

Consider now the map /:fcG ®kH k —> k[G/H] given by
f(52aeG l°G ®b) = b(^2aeG taoH). It is not difficult to see that this
is an epimorphism of fcG-modules. By our previous remark
dim/c(fcG ®kH fc) = [G:/f]dimfefc = [G:H] which is clearly the same as
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c k[G/H]. Therefore f:kG<S>kHk —> k[G/H] is an isomorphism. More-
over, if we define g:k[G/H] -> k by g(J2aHeG/H ^HOH) = J2aHeG/H t*H
and m:kG ®kH k —• k is the multiplication map, then g is a morphism of
fcG-modules such that the diagram

kG®kHk -4

commutes. Therefore m is a split epimorphism if and only if g is a split
epimorphism. Since kG = fe, g is a split epimorphism if and only if there
is some x in fc[G///]G such that g(x) = 1. But ^2aHeG/Ht^HGH is in
fc[G/iJ]G if and only if all the taH are the same. So g(/c[G/#])G) consists
of the elements [G:H]t for all t in fc. Hence g is a split epimorphism if
and only if p does not divide [G:H].

(b) o (c) This is trivial.
(b) => (d) This proof requires some preliminary considerations of a

fairly general nature.
Let H be an arbitrary subgroup of G and let 1 = o\,...,ot be left

coset representatives of H in G. Suppose X and Y are fcG-modules
and / : X -» 7 is a kH-module morphism. Define / : X —• Y by f(x) =
E*=i °if(GTlx) f°r a^ * m ^- Suppose we change coset representatives
to a\h\,...,otht with the hi in f/. Then we have Yl\=\ Gihf{{^ihi)~xx) =
E L <Jihitth-loTlx) = E!=i Oihih-'f{oi'x) = H = i ^ r 1 * ) for all x in
X. Thus / is independent of the particular coset representatives used to
define it.

We now show that / is a fcG-morphism. For let c~l be in G. Then
{a~1(Ji,...,G~1Gt} is also a set of left coset representatives of H in G,
and we have f(x) = J2\=i <*~lGif{pYlGX) = Yl\=\ Gif(Gilx)- Hence we
get J((JX) = £ L i (Jifid^ax)) = a £{= 1 a^Gifia^ax) = of{x) for all x
in X, which shows that / is a feG-morphism.

We now return to proving (b) => (d). Suppose t = [G:H] and 1/t G k.
Let X be a fcG-module. Define / : X >̂ kG®kH^ to be the /cH-morphism
defined by f(x) = l/t(l ® x). Then we get /(x) = 1/t £ L ^/(ffr1 W) =
! A E U ^'(l ® ^ r l(^)) = 1 A E L ( ^ ® ^irlW) for all̂ x in X. Therefore
we have mf(x) = 1 A E / = I ^ r H * ) = x ' s o ^ a t m^ = ^x anc* ^ e n c e

m: F ®A X —• X is a split F-epimorphism.
(d) ^> (a) This is trivial. •

Assume that kP is of finite representation type for each Sylow p-
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subgroup P of G. Then every fcG-module is relatively projective over
kH by Proposition 3.7, and hence kG is of finite representation type
by Lemma 3.1. Since kP is of finite representation type if kG is, by
Proposition 3.5, it only remains to prove that if G is a p-group, then kG
is of finite representation type if and only if G is cyclic, in order to finish
the proof of Theorem 3.3.

Proposition 3.8 Suppose G is a cyclic p-group of order pn. Then the k-
algebras kG and k[X]/(Xpn) are isomorphic, so kG is of finite representa-
tion type.

Proof Let o be a generator of the cyclic group G. Define f:k[Y] —• kG
by / ( 2 X o aiY0 = XXo aioi- lt i s n o t difficult to see that / is a surjective
fc-algebra map with Ker / = (Yp" — 1). Since k is of characteristic p > 0
we know that (Y?" - 1) = (Y - \fn. Now k[Y - 1] = k[Y] so we have
that k[Y]/((Y - iyn) = k[Y - l]/((Y - if). Letting X = Y - 1, we
have that kG ~ k[X]/(Xy". Since k[X]/(Xyn is a Nakayama algebra it
follows that kG is of finite representation type. •

In order to show that if G is a noncyclic p-group, then kG is of infinite
representation type, we will first consider the quotient group of G by its
commutator subgroup [G, G]. For this we need the following result about
p-groups.

Lemma 3.9 Let G be a p-group of order pn and let [G, G] be the commutator
subgroup of G. If G/[G, G] is cyclic, then G ~ Z/pnZ.

Proof We use induction on n. If n = 1, then G ^ Z/pZ and we
are done. Suppose the order of G is p"+1. Since G is a p-group,
we know that the center Z of G is not {1}. Therefore there is a
subgroup H of Z of order p which is of course a normal subgroup
of G. Let f:G —> G/H be the canonical surjective homomorphism
of groups. Then / induces a surjection [G, G] —• [G/H, G/H] of the
commutator subgroup of G to the commutator subgroup of G/H. Thus
/ induces a surjection h:G/[G9G] -* (G/H)/[G/H,G/H] which implies
that (G/H)/[G/H, G/H] is cyclic. Since the order of G/H is p", we know
by the induction hypothesis that G/H is cyclic.

Let a in G be such that / (a) generates G/H. We claim that (a) => /f. If
not, then we have (a) Pi if = {1}. Since / / is contained in the center of G,
then the subgroup J of G generated by (<r) and / / is the product (a) x / /
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which is abelian and not cyclic. But J = G since the order of J is pnp.
Hence G/[G, G] = G is not cyclic, which is a contradiction. Therefore we
get H cz (a) which means that G = (a), i.e. G is cyclic. •

We are now ready to finish the proof of Theorem 3.3. Suppose
now that G is a noncyclic p-group. Then G/[G,G] is not cyclic by
Lemma 3.4 and hence G/[G, G] ~ (Z/pniZ) x • • • x (Z/pn<Z) with t > 2.
Therefore there is a surjection G —• (Z/pZ) x (Z/pZ). This induces a
surjection kG —• k[(Z/pZ) x (Z/pZ)] of fc-algebras. Now we have the
fc-algebra isomorphisms k[(Z/pZ) x(Z/pZ)] ~ k[X, Y]/(XP-1, Y?-1) ~
fc[X, 7]/((X - 1)^,(7 - 1)P) ~ fc[S, T]/(S^, TP) where 5 = (X - 1) and
T = (Y - 1). Since (Sp, Tp) c: (5, T)2, we have the surjective fe-algebra
morphism k[S, T]/(SP, Tp) - • k[S,T]/(S,T)2. So we have a surjection
of fc-algebras fcG - • fe[5, T]/(S, T)2 which shows that fcG is of infinite
representation type since fe[S, T]/(S, T)2 is of infinite representation type.
The fact that k[S, T]/(S, T)2 is of infinite representation type was shown
in IV Section 1. This finishes the proof of Theorem 3.3. •

4 Grothendieck groups

In I Section 1 we discussed the Grothendieck group Ko(f.1. A) of finite
length modules over a ring A. In this section we show how almost split
sequences can be used in the study of the Grothendieck group when A
is an artin algebra and hence f .1. A = mod A .

Denote by Ko(modA,0) the free abelian group with ind A as basis.
For each A in ind A let [A] denote the corresponding basis element of
Ko(mod A, 0) and for M ^ \JieI ntAi with ni € N and Ai e ind A, let
[M] denote Z W G / ^ M

 m Ko(modA,0). For each short exact sequence
( 5 : 0 - > , 4 - > £ - > C - > 0 i n mod A consider the element [A] - [B] + [C]
in Ko(modA,0) which we shall denote by [5]. Let H be the subgroup
of Ko(mod A, 0) generated by the elements [d] where d runs through all
short exact sequences of mod A. The main result in this section is that H
is generated by the elements [d] where d runs through the almost split
sequences if and only if A is of finite representation type.

Recall from IV Section 4 that for an artin .R-algebra A we denote by
(A,B) the i^-length of Hom^A^B) for each pair of A-modules A and
B. Now ( , ):indA x ind A —> Z determines a bilinear form from
Ko(mod A,0) x Xo(mod A,0) to Z which we also denote by ( , ). With
each C in ind A let 3[Q in Ko(mod A,0) denote the following elements.
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(i) If C is not projective 8[c\ = [$c] where dc is the almost split
sequence 0—>;4—•£—•C—»0.

(ii) If C is projective then <5[c] = [C] - [rC].

We have the following elementary result where lc denotes the length of
EndA(C)/ rad(EndA(C)) as an K-module.

Proposition 4.1

(a) For each X in indA we have ([X]9S[C\) = 0 if X cf± C, and

(b) For each x G K0(mod A,0) we have x = £ C G M A ( M [ C ] > / I C ) [ C ] .

(c) { [̂C]}ceindA is linearly independent in Ko(modA,0).

Proof (a) Let C be a nonprojective module in indA and let (5c-0 —>
^ 4 — • £ — • C — » 0 b e a n almost split sequence. Then the contravariant
defect 8*c of (5c satisfies d*c(X) = 0 for each X in indA with X qk C
and (5c(Q is a simple EndA(C)op-module according to V Proposition 2.2.
Letting as usual (S*C(X)) denote the length of S*C(X) as an K-module
we obtain ([X],(5[C]) = (8*c(

x)) = 0 if X is in indA and X cf± C and
([C],S[c]) = (<5c(C)) = 'c- Hence (a) holds if C is nonprojective.

Now let C be projective. Then for all X in indA with X qk C
we have HomA(X,C) = HomA(X,rC) and so ([X],8[c\) = 0. Further
HomA(C,rC) = rad(EndAC) and therefore ([C],8[C\) = lc.

Parts (b) and (c) follow directly from (a). •

As a direct consequence of this result we obtain the following criterion
for two modules A and B to be isomorphic.

Theorem 4.2

(a) The following are equivalent for x and y in Ko(mod A, 0).

(i) x = y.

(ii) (x, [C]> = (y, [C]) for all C in indA.

(iii) <[C],x) = ([C],y)for all C in indA.

(b) The following are equivalent for A and B in mod A.

(i) A~B.
(ii) {A, C) = (B, C) for all C in ind A.
(iii) (C,A) = (C,B) for all C in indA.
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208 Finite representation type

Proof (a) If x = y then we obviously have (x, [C]) = (y, [C]). Conversely,
if (x, [C]) = (y,[C]) for all C in indA, then (x9S[C]} = {y,d[c]) for all
C in indA. Hence we get (x — y,S[c]) = 0 for all C in indA. But
Proposition 4.1(b) gives that x-y = £C € i l l d A((x ~ y>&[C])/k)[C] which
is then 0. The second equivalence follows by duality.

(b) This is a direct consequence of (a). •

Using Ko(mod A,0) and S[Q we have the following characterization of
finite representation type.

Theorem 4.3 The following are equivalent for an artin algebra A.

(a) A is of finite representation type.
(b) {(5[C]}ceindA generates X0(mod A,0).
(c) {d[C]}ceindA is a basis for X0(modA,0).

Proof Since {S[c]}cemdA is linearly independent according to Proposi-
tion 4.1(c), we have that (b) and (c) are equivalent.

We next prove that (a) implies (b). So assume A is of finite repre-
sentation type. Then Ko(modA,0) is a finitely generated free abelian
group with basis {[C]}ceindA- For x in Ko(modA,0) we have that
y = Y,ceindA(([c]>x)/lc)<>[C] is an element of K0(modA,0) since lc di-
vides ([C], [X]) for all X in indA. But then

([Cly) = (([C],x)//c)<[C],<5[c]) = <[C],x)

for all C in ind A. Hence we get x = y by Theorem 4.2. This shows that
{<5[q}ceindA generates X0(mod A,0).

Conversely, assume that {<5[c]}ceindA generates Ko(modA,0). In par-
ticular [DA] = ]CceindAac<5[C] with #c =h 0 for only finitely many C in
indA. Since (X,DA) is nonzero for all X in indA and (X,DA) = axlx
one has that ind A is finite. •

As a consequence of this we prove our desired result on the relations
for the Grothendieck group. As usual we let ^(A) denote the full
subcategory of mod A of projective modules.

Theorem 4.4 For an artin algebra A the following are equivalent, where

</>:Ko(mod A, 0) —•JKo(modA) is the natural map.

(a) A is of finite representation type.
(b) {5[C]}ceindA-^(A) generates Kerc/>.
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VI.5 Auslander algebras 209

(c) {<5[C]}ceindA-̂ (A) is a basis for Ker</>.

Proof Parts (b) and (c) are equivalent since {<5[c]}ceindA-<̂ (A) is a linearly
independent set by Proposition 4.1(c).

Assume first that A is of finite representation type. Recall from I The-
orem 1.7 that Ko(mod A) is a free abelian group with basis {</>([S])}se&9

where 5£ denotes a set of representatives from each of the isomorphism
classes of simple A-modules, and that </>[C] = J2sescms(l)[^] where C
has a composition series with ms composition factors isomorphic to
S for S in <£. Therefore (/> maps the subgroup K of Ko(modA,0)
generated by {<5[q}ce (̂A) isomorphically onto Ko(modA). By Theo-
rem 4.3 it follows that {<5[c]}ceindA-<̂ (A) forms a basis for a complement
of K in Ko(modA,0) which is obviously contained in Ker(/>. Hence
{<5[C]}ceindA-̂ (A) generates Kerc/>.

Conversely, assume {<5[c]}ceindA-̂ (A) generates Ker(/>. Since Ker0 is
a complement to K, where K is as above, then {S[c]}cemd\ generates
Ko(modA,0). But then A is of finite representation type by Theorem 4.3.

•

5 Auslander algebras

In studying artin algebras of finite representation type, it has proven use-
ful to consider another class of artin algebras called Auslander algebras.
An artin algebra F is an Auslander algebra if it satisfies the following
conditions: (a) gl.dimF < 2 and (b) if 0 —• F —> Jo —> I\ —> h -» 0 is a
minimal injective resolution of F, then Jo and I\ are projective F-modules.
This section is mainly devoted to showing how to construct Auslander
algebras from artin algebras of finite type and the other way around.
These constructions give an inverse bijection between the Morita equiv-
alence classes of artin algebras of finite representation type and Morita
equivalence classes of Auslander algebras. As will become apparent, the
module theories of artin algebras of finite representation type and their
associated Auslander algebras are intimately related and it is this module
theoretic as well as ring theoretic relationship which has proven to be of
use in studying algebras of finite representation type.

Let A be an artin algebra. A A-module M is said to be an additive
generator for A if addM = mod A. Clearly a module M is an addi-
tive generator for A if and only if every indecomposable A-module is
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210 Finite representation type

isomorphic to a summand of M. From this it follows that A is of fi-
nite representation type if and only if A has an additive generator. In
particular, let {Mi, . . . ,Mj be a complete set of representatives of the
isomorphism classes of indecomposable modules for an artin algebra A
of finite representation type. Then M = ]J'=1 Mt is an additive generator
for A and a A-module Mf is an additive generator for A if and only if
M is isomorphic to a summand of M'.

Suppose now that M is an additive generator for an artin algebra A of
finite representation type and let TM = EndA(M)op. It then follows from
II Proposition 2.1(c) that the functor HoniA(M, ):modA —> modFM

induces an equivalence between mod A and the full subcategory ^(TM)
of modFM consisting of the projective rM-niodules. Hence if Mr is
another additive generator for A, then the categories of projective TM-
and TM' -modules are equivalent, which means that the algebras TM and
Fjvf are Morita equivalent. Thus associated with the artin algebra A
of finite representation type are the unique, up to Morita equivalence,
algebras TM with M an additive generator for A. Our main aim in
this section is to show that these algebras F M are exactly the Auslander
algebras. These results form the basis for using Auslander algebras to
study artin algebras of finite representation type.

For an artin algebra A and a module M in mod A we will throughout
this section denote by F M the artin algebra EndA(M)op. We begin by
pointing out some crucial homological facts concerning the algebras
TM when A is an artin algebra of finite representation type and M is an
additive generator for mod A. First we give a description of the projective
resolutions of TM -modules.

Lemma 5.1 Let A be an artin algebra of finite representation type, M an
additive generator and let X be in mod FA* • Then we have the following.

(a) Suppose P\ —> Po —• X —> 0 is a projective TM-presentation for X.
f g

Then there is an exact sequence 0 —> Ai —• A\ —• A$ of ^-modules
such that the induced exact sequence of projective TM-modules 0 —•
TT / U ^ HomA(M,/) HomA(M,g) .

H o m A i M , ^ ) —• HomA(M,^4i) —• HomA(M,^4o) gives
a TM-projective resolution of X with the morphism HoniA(M,g) iso-
morphic to the morphism h.

(b) p d r M X < 2 .

Proof (a) Since HoniA(M, ):modA —• modFM induces an equivalence
g

between mod A and ^{TM), there is a morphism A\ —• AQ in mod A such
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VI.5 Auslander algebras 211

that the induced morphism HoniA(M,g) is isomorphic to h. Then the
exact sequence of A-modules 0 -> Kerg —> A\ -> Ao has our desired
properties.

(b) This follows directly from (a). •

Applying Lemma 5.1 we obtain the following.

Proposition 5.2 Let A be an artin algebra of finite representation type and
M an additive generator for mod A.

(a) If A is semisimple, then TM is semisimple and Morita equivalent to A.

(b) If A is not semisimple, then gl.dim TM = 2.

Proof (a) If A is semisimple, then M is a projective generator, and hence
TM is Morita equivalent to A and consequently also semisimple.

(b) Assume A is not semisimple. Then there is some simple A-module
S such that the projective cover f:P —• S is not an isomorphism. Then
Hom(M,/):HoniA(M,P) —• YLom\(M,S) is a nonzero morphism be-
tween indecomposable projective rM-modules which is not a monomor-
phism. From this it follows that gl.dim TM > 2, and consequently
gl.dim TM = 2 by Lemma 5.1. •

Throughout the rest of this discussion we will be mainly concerned
with nonsemisimple artin algebras of finite representation type. It is
convenient to make the following definition.

Let Z be an artin algebra. The dominant dimension of a Z-module A,
which we denote by dom.dimx A, is the maximum integer t (or oo) having
the property that if 0 —• A —> Jo —> I\ —• • • • —• It —• • • • is a minimal
injective resolution of A, then J7 is projective for all j < t (or oo).

Our aim now is to show that if TM is obtained from a nonsemisimple
artin algebra A of finite representation type, then dom.dimr TM = 2. To
this end we point out the following.

Lemma 5.3 Let A be an artin algebra of finite representation type and M
an additive generator for mod A.

(a) If I is an injective A-module, then HoniA(M,J) is an injective TM-
module.

(b) Let 0 —• A —> Jo —• h be a minimal injective copresentation in mod A
of the A-module A. Then 0 —• HomA(M,A) —• HoniA(M,Jo) —•
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HOIIIA(M, Ji) is a minimal injective TM-copresentation for the protec-
tive TM-module Hom\(M,A).

(c) A TM-module is a protective injective module if and only if it is iso-
morphic to HOHIACM,/) for some injective A-module 7.

(d) The functor HOUIACM, ): mod A —> mod TM induces an equivalence
between the category J(ts) of the injective A-modules and the category
of projective injective TM-modules.

Proof (a) Let / be an injective A-module. We now show that HoniA(M,7)
is an injective FM-module by showing that ExtpM(X,HoniA(M,/)) = 0
for all i > 0 and X in mod EM- We have already seen in Lemma 5.1
that if X is in mod EM, then there is an exact sequence 0 —> A —>
B —• C of A-modules such that we have a projective rM-resolution
0 -> HomA(M,A) -> HomA(M,5) - • HomA(M, C) - • X - • 0 of X. This
gives rise to the sequence

HomrM(HomA(M,C),HomA(M,/)) -> HomrM(HomA(M,£),HomA(M,/)) ->

(*) HomrM(HomA(M,yl),HomA(M,/)) -> 0

which is isomorphic to the sequence

(**) HomA(C,/) -+ HomA(fl, J) - • HomA(A,7) -> 0

since HomA(M, ):modA —> 3P{T) is an equivalence of categories. Since
/ is an injective A-module, the sequence (**) is exact. This means that
the sequence (*) is exact, so that ExtpM(X,HomA(M,/)) = 0 for i > 0.
Hence HoniA(M, J) is an injective rM-module.

(b) If 0 —• A —• Jo —• I\ is a minimal injective copresentation of the A-
module A, it follows from (a) that 0 —• HoniA(M,,4) -> HoniA(M,/o) -^
HomA(M,/i) is an injective TM-copresentation of HomA(M,^4). That it
is also minimal follows easily from the facts that 0 —> A —• 7Q -^ h
is a minimal injective A-copresentation and that HoniA(M, ):modA —>
^(TM) is an equivalence of categories.

(c) By part (a) we know that the projective FM-modules HoniA(M,7)
with 7 an injective A-module are also injective. Suppose now that
P is a projective injective rM-module. Since P is projective we have
that P ĉ  HoniA(M,,4) for some A-module A. Let A —• I be a A-
injective envelope of A. Since Hom\(M,A) is injective, the monomor-
phism Hom\(M9A) —> HoniA(M,7) of rM-modules splits. But this means
that the monomorphism A —> I splits. Hence the monomorphism A —> 7
is an isomorphism since it is an essential split monomorphism. Thus we
get P ^ HoniA(M,7), our desired result.
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(d) This is a trivial consequence of (c). •

Continuing our discussion we obtain the following.

Proposition 5.4 Let A be a nonsemisimple artin algebra of finite represen-
tation type and M an additive generator for mod A. Then we have the
following.

(a) gl.dimrM = 2 = dom.dimrM, so that TM is an Auslander algebra.
(b) Let Q be a protective injective TM-module such that addQ is the

category of all protective infective Yu-^odules. Then EndrM(Q)op is
Morita equivalent to A.

Proof (a) We have already seen that gl.dimrM = 2. Let 0 -> M —•
/o —> h be part of a minimal injective A-resolution of M. Then
by Lemma 5.3 we have that 0 —• Hom\(M,M) —> HoniA(M,Jo) —•
HoniA(M, Ji) is part of a minimal injective rM-resolution of F M . Hence
we get dom.dimp TM > 2. Because gl.dim TM = 2, we have that Coker a
is injective. Since it cannot be projective because of the minimality of the
injective resolution of F M , we conclude that dom.dimr F M = 2.

(b) By Lemma 5.3 we have that addHoniA(M,D(A)) is the category of
all projective injective TM-modules. Therefore add Q = add HoniA(M,D(A))
which means that EndrM(Q) and EndrM(HoniA(M,DA)) are Morita
equivalent. But EndrM(HomA(M,DA)) ~ EndA(D(A)) ^ A°P. There-
fore EndrM(Q)op a n d A are Morita equivalent. •

In view of Proposition 5.4 it is natural to ask if an artin algebra £ sat-
isfying gl.dim E = 2 = dom.dim£ £ is necessarily isomorphic to some TM

obtained from a nonsemisimple artin algebra A of finite representation
type with M an additive generator for A. Our aim is to show that this is
indeed the case. Our proof depends on the following general result.

Lemma 5.5 Let E be an arbitrary artin algebra.

(a) Suppose A is a H-module with pd^A = n < oo. Then we have

(b) Suppose gl.dim E = n < oo. Then we have the following.

(i) i d s ! = gl.dim E.
(ii) Let O - > I ^ / o - > / i - > " < - > / n - ^ O ( ) e a minimal injective

resolution of E. If I is an indecomposable injective H-module,
then I is isomorphic to a summand of Ij for some j .
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Proof (a) Let 0 -> Pn 4 Pn_x - • • • • - • Px -> Po
 f-X A -> 0 be

a minimal projective resolution of a E-module ,4 with pdz ,4 = n.
Suppose Ext£(,4,L) = 0. Then Extl(A,P) = 0 for all projective I -
modules P. In particular we have Ext^(A,Pn) = 0 which implies that
Hom(/n,Pn):Homs(Pn_i,Pn) —• Honi£(Pn,Pn) is an epimorphism. Thus
there is a morphism g: Pn_i —> Pn such that the composition g/w: Pn —• Pn

is the identity. This means /„ is a split monomorphism, which contradicts
the hypothesis that pdz A = n.

(b)(i) Since gl.dimL = n < oo, we know that id^D < n. We also know
that there is a simple E-module S such that pdz S = n. Hence we get
Ext^S, £) 7̂  0 by part (a), and consequently id^E = n.

(ii) Let / be an indecomposable E-module. Then / is the injective
envelope of a simple E-module S. Since pdE S = m < n, we know by
part (a) that Ext£(S,L) ^ 0. From this it follows that Homz(5,/m) ^ 0.
Therefore there is an indecomposable injective summand V of Im such
that Homx(SJ') ^ 0. Hence V is an injective envelope of S which means
that / - / ' . •

We are now ready to give a positive answer to our previous question.

Proposition 5.6 Let £ be an artin algebra satisfying gl.dimZ = 2 =
dom.dimxS. Let Q be a H-module such that addg is the category of
projective injective H-modules. Then we have the following.

(a) A = Ends(Q)op is of finite representation type.

(b) Z is isomorphic to EndA(M)op, where M is an additive generator for
A.

Proof (a) Since gl.dimZ = 2, we have by Lemma 5.5 that id^Z = 2.
Moreover, since dom.dimE = 2 we know that the minimal injective ir-
resolution 0 —• £ —• Jo —• h —• h —• 0 of £ has the property that 7o and
I\ are projective modules. Now by Lemma 5.5 we know that if / is an
indecomposable injective module, then / is a summand of Jo ] J / i Ylh> If
I is projective, then I must be isomorphic to a summand of Jo ]J ^i s i n c e

it is not a summand of I2. So add(Jo]J^i) *s ^ e category of projective
injective E-modules. If I is not projective, then I is isomorphic to a
summand of J2. From this it follows that if Pi —• Po —• I —• 0 is a
minimal projective presentation of J, then Po and Pi are in add(JoIi^i)-
Therefore, if ^ is the subcategory of mod S consisting of the modules
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VI.5 Auslander algebras 215

whose projective presentations consist of projective injective modules,
then <g => J{A).

On the other hand, suppose X is in c€. Then there is an exact sequence

Pi —• Po —> X —> 0 with Pi and Po projective injective modules. Since
ids Ke r / < 2 and Pi and Po are injective, it follows that X is an injective
Z-module, and so # = ./(A). Hence # has only a finite number of
nonisomorphic indecomposable E-modules.

Suppose now that addg is the category of projective injective E-
modules. Then addQ = add(/o]J/i) , so ./(A) consists of the X in
mod A such that there is a projective presentation Q\ —• Qo —• X —• 0
with Qi and Qo in addQ. Therefore letting A = Ends(6)op, w e know
by II Proposition 2.5 that the functor Honing, ):modZ —• mod A in-
duces an equivalence Hom^Q, ):^(E) —• mod A. Therefore A is of
finite representation type and the A-module Hom^(Q9D(L)) = M has
the property that add M = mod A. Moreover, the equivalence of cat-
egories Homs(6> ): . /(£) - • mod A gives an isomorphism EndA(M) ^
Endz(D(Z)). Since Endz(Z)(5;)) - S°P, it follows that Z - EndA(M)°P =
r M , where A is of finite representation type and M is an additive gener-
ator for A. •

Summarizing our results so far we have the following.

Theorem 5.7 For each artin algebra A of finite representation type choose
an additive generator M(A) and for each Auslander algebra T choose a
projective injective module Q(T) such that add Q(T) is precisely the cate-
gory of projective injective T -modules. Then the maps A\-> EndA(M(A))op

and T h-> Endr(2(r))op induce inverse bijections between the Morita equiv-
alence classes of nonsemisimple artin algebras of finite representation type
and the Morita equivalence classes of nonsemisimple Auslander algebras.

•

For an Auslander algebra TM the module theory is closely connected
with the module theory for the triangular matrix algebra Ti{A). In
particular we have the following relationship.

Proposition 5.8 Let A be an artin algebra of finite representation type and
M an additive generator for mod A. Then the Auslander algebra TM is
of finite representation type if and only if T2(A) is of finite representation
type.
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216 Finite representation type

Proof Denote as in Chapter IV by Morph^ ( r M ) the category of mor-
phisms f:Pi - • P2 in ^ ( F M ) and by 01 the relations on Morph^(FM )
given by, for f:Px -* P2 and f\P[ -> P^ @(fjf) being the pairs
(gi>g2) with gi'.P\ -> P[ and g2^2 —• ^2, s u c ^ ^ a t there is some
h:P2 - • P{ with /'/z = g2. Then by IV Proposition 1.2 the functor
C o k e r : M o r p h ^ ( r M ) / ^ -> modF M defined by sending / : P i - • P2

to Coker/, induces an equivalence of categories G:Morph^(FM) —•
m o d r M . Further we have an equivalence HoniA(M, ):modA —> gP{TM),
which clearly induces an equivalence HoniA(M, ):modT2(A) —>
Morph^(FM ) .

The objects of the form lp : P —• P and P —• 0 go to zero via the
functor Coker: Morph^(F M ) -> modFM- Denote by ^ the full additive
subcategory of Morph^(FM) containing all indecomposable objects in
Morph^(FM) not isomorphic to an object of the form l p : P —• P or
P -> 0 with P indecomposable in ^ ( r M ) . Let / : P i —> P2 be an inde-
composable object X in #. Since / : Pi —> P2 is not a split epimorphism,
it follows directly from the definitions that lx is not in ^ ( / , / ) . Hence
we have &(f9f) <= radEnd^(X), so that EndrM(GX) is a local ring and
consequently GX is indecomposable. Hence there is induced a one to
one correspondence between the indecomposable objects in # and the
indecomposable rM-modules. Since there is only a finite number of
indecomposable modules P in ^ ( r M ) , there is only a finite number of in-
decomposable objects in Morph^ ( r M ) of the form lp :P —> P or P —• 0.
Hence F is of finite representation type if and only if Morph^(FM) has
only a finite number of indecomposable objects, which is the case if and
only if T2(A) is of finite representation type. •

The functor HoniA(M, ):modT2(A) —• Morph^(FM ) associates
with a morphism f:A —• B in mod A a projective presentation
HomA(M,,4) Uom!¥J) HomA(M,#) -> Coker Hom(MJ) ^ 0 of
Coker Hom(M,/) in modF M . We show that this way we get a con-
nection between right almost split morphisms in mod A and projective
presentations of simple TM -modules.

Our discussion is based on the following general observation. Let S be
an arbitrary artin algebra. A morphism f\P-+P"'m 0>(L) is said to be
right almost split in 0>(Z) if the morphism / is not a split epimorphism
and any g:Pf —> P" in 0*(L) which is not a split epimorphism factors
through / .
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VI.5 Auslander algebras 217

Lemma 5.9 Let Z be an arbitrary artin algebra. Then the following are
equivalent for a morphism f:P-+Qin ^(L).

(a) The morphism f.P^Qis right almost split in 0>(L).
(b) Q is an indecomposable module and I m / = xQ.

Proof (a) => (b) Let X be a maximal submodule of Q with projective
cover p : Po -» X. Then ip : Po —> Q is not a split epimorphism and hence
factors through / . Therefore X c Im / . Thus all maximal submodules of
Q are equal to I m / and hence Q is indecomposable and xQ = Im/ .

(b) => (a) This is left as an exercise. •

Applying these general observations we obtain the following.

Lemma 5.10 Let TM be an Auslander algebra for a nonsemisimple artin
algebra A of finite representation type. Then the following are equivalent
for a morphism f:B^>C in mod A.

(a) The morphism f:B^>C is right almost split in mod A.
(b) The YM-morphism Hom(M, / ) : HomA(M, B) - • HomA(M, C) of pro-

jective TM-modules is right almost split in ^(TM).
(c) HoniA(M, C) is an indecomposable projective TM-module and

I m H o m ( M J ) = rHomA(M,C).

Proof This follows easily from Lemma 5.9 using the equivalence of
categories HoniA(M, ): mod A

These results give us the following connections between minimal pro-
jective resolutions in Auslander algebras and minimal right almost split
morphisms and almost split sequences for algebras of finite representation
type.

Proposition 5.11 Let TM be an Auslander algebra for a nonsemisimple artin
algebra A of finite representation type. Let S be a simple TM-module and
let C be the unique, up to isomorphism, A-module such that HoniA(M, C)
is a projective cover for S.

(a) The following are equivalent.

(i) p d r M 5 = 0 .
(ii) HomA(M, C) = S.
(iii) C is a simple projective A-module.
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218 Finite representation type

(b) The following are equivalent.

(i) pd r M S = l.
(ii) C is a nonsimple projective A-module.
(hi) 0 - • HomA(M,rC) - • HomA(M,C) -+ S -* 0 is a minimal

projective resolution of S.

(c) pd rM S = 2 if and only if C is not projective.
(d) If C is not projective and 0 —• v4 —• £ —• C —• 0 is an almost split

sequence, then 0 —> HomA(M,^4) —• Hom\(M,B) —• HomA(M, C) —•

S —• 0 is a minimal projective resolution of S.

Proof (a) Clearly S is a projective rM-module if and only if S ~
HomA(M, C), or equivalently, HomA(M, C) is a simple projective F M -
module. But HoniA(M, C) is a simple FM-module if and only if any
nonzero morphism P —• HoniA(M, C) with P a. projective FM-module is
an epimorphism and hence a split epimorphism. This is equivalent to C
having the property that any nonzero morphism B —• C in mod A is a
split epimorphism. It is easy to see that the only indecomposable C in
mod A with this property are the simple projective A-modules.

(b), (c) and (d) Suppose C = P is a nonsimple indecomposable pro-
jective module. Then we know that the inclusion xP —• P is minimal
right almost split. Therefore by Lemma 5.10 we have that the inclusion
HoniA(M,rP) —• HomA(M,P) is right almost split in ^{TM) so its image
is rHoniA(M, P). Therefore we have the minimal projective FM-resolution
0 - • HomA(M,rP) - • HomA(M,P) - • S -> 0, and so pdrM 5 = 1.

Assume now that C is not projective, and consider the almost split
/ g

s e q u e n c e 0 — • v 4 — > £ — • ( ! ? — • 0. T h e n we h a v e t h e exac t s equence o f
• •• i - ^ i A T T tx/r A \ H o m W ) XT t\M D \ H o m ( M > s )projective rM-niodules 0 —• HomA(M,yl) —• HomA(M,5) -+

Hom\(M,C). Then Hom(M,g) is a right almost split morphism in
^ ( F M ) , SO we get ImHom(M,g) = rHomA(M, C) and hence
CokerHom(M,g) ~ S. Consequently we obtain the rM-projective reso-
lution

(*) 0 -> HomA(M,A) - • HomA(M, B) -+ HomA(M, C) -> S -+ 0

which is minimal since HomA(M,^4) and HoniA(M, C) are indecompos-
able projective FM-modules. Hence we get pdrM 5 = 2 when C is not
projective. Therefore the proof of the proposition is finished. •

In III Section 1 we defined the associated quiver for a finite dimen-
sional algebra over an algebraically closed field fe, and more generally
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a quiver with valuation for any artin algebra. Using the previous dis-
cussion we give a description within mod A of the quiver with valuation
associated with an Auslander algebra TM of an artin algebra A of finite
representation type.

The vertices of the quiver of TM are by definition in one to one
correspondence with the isomorphism classes of simple FM-modules,
hence with a complete set of isomorphism classes of indecomposable
A-modules. For an indecomposable A-module X denote by [X] the
associated vertex in the quiver, and by Sx the corresponding simple
TM-module. There is then an arrow from [X] to [Y] if and only if
ExtpM(Sjr,Sy) =fc 0, that is if and only if in the minimal projective
presentation P -> HoniA(M,X) —• Sx —• 0 we have that HoniA(M, Y) is
a summand of P. By Proposition 5.11 this is the case if and only if there
is an irreducible morphism Y —> X.

For the associated valuation (a,b) of the arrow from [X] to [Y], we
know from III Section 1 that b is the multiplicity of HoniA(M, Y) as a
summand of P. Hence b is in our case the multiplicity of Y in E when
E —> X is minimal right almost split. In the next chapter we show that a
is the multiplicity of X in F when Y —> F is minimal left almost split.

We illustrate with the following concrete example.

Example Let A be the Nakayama algebra with admissible sequence
(3,3,3). Then the quiver of TM looks as follows where the dotted lines
are identified.

Exercises

1. Let A be an artin algebra of finite representation type.

(a) Prove that A/a is of finite representation type for each ideal a in A.
(b) Give an example of an artin ^-algebra A of finite representation

type where all artin i^-subalgebras are also of finite representation
type and give an example where this is not true.
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220 Finite representation type

2 Let A be as in V Exercise 2. Prove that A is of finite representation
type.

3 Let A be an artin algebra. Assume that for each indecomposable
injective A-module / there exists an i e N with (D Trfl projective and
for each indecomposable summand C of 7 / soc / there is an i e N with
(D TrfC projective.

(a) Prove that for each indecomposable A-module A in a component
containing a projective module there is an i e N such that (D TrfA
is projective.

(b) Prove that for each indecomposable A-module A in a component
containing an injective module there is an i e N such that (TrD)U
is injective.

(c) Prove that A is of finite representation type.

4 Let A be an artin algebra such that each indecomposable projective
left A-module is uniserial. Let M be a sum of uniserial modules.

(a) Prove that any indecomposable submodule of M is uniserial. (Hint:
Prove that if N a M and the radical length rl(M) is n, then N
contains a projective A/r"-summand.)

(b) Prove that if A is a Nakayama algebra then all indecomposable
A-modules are uniserial.

(This exercise gives an alternative proof of the fact that all indecompos-
able modules over a Nakayama algebra are uniserial.)

5 Let A be an artin ^R-algebra and denote by (X) the length of a
finite length i^-module. Let M and N be in mod A and assume
(HomA(M,X)) = (HomA(iV,X)) for all modules X in mod A. Show
the following without using almost split sequences.

(a) Prove that if M =£ 0 then N ^ 0 and HomA(M, N) ± 0.
(b) Prove that if M ^ 0 there is an exact sequence 0 —• K —• nM —• N

such that 0 - • HomA(M,K) -> HomA(M,nM) - • HomA(M,N) -» 0
is exact.

(c) Prove that for the sequence 0 -> K -> nM - • N in (b) 0 -»
UomA(N9K) -> HomA(AT,nM) - • UomA(N,N) - • 0 is also exact,
and conclude that iVisa summand of nM.
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(d) Now prove by induction on the number of indecomposable sum-
mands in N that M ~ N.

(This gives an alternative proof of Theorem 4.2(b).)

6. Let A be an artin algebra which is a sum of uniserial modules. Prove
that dom.dim A > 1 if and only if A is a Nakayama algebra.

7. Show that an artin algebra A is of finite representation type if and
only if for each A-module M the artin algebra TM = EndAM has the
following property. There are a finite number of indecomposable TM-
modules Ui,...9Ut such that (a) ]J[=1 I/,- is in addQ2(Y) for some Y
in modFM and (b) for each rM-module X we have that Q2(X) is in
add(UU I/,-).

Notes

The study of artin algebras of finite representation type splits naturally
into three different but connected parts; one is determining which artin
algebras have finite representation type, another is describing the in-
decomposable modules, up to isomorphism, for artin algebras of finite
representation type and the last is finding the module theoretic conse-
quences of an artin algebra having finite representation type. Prior to
1970 there were few classes of nonsemisimple artin algebras of finite rep-
resentation type for which this program had been carried out. Amongst
these were the Nakayama algebras and the modular group algebras, i.e.
the group algebras of finite groups over fields of characteristic p ^ 0
dividing the order of the group. The complete story for Nakayama
algebras was given in [Nak]. The fact that a modular group algebra
is of finite representation type if and only if the p-Sylow-subgroups of
the group are cyclic where p is the characteristic of the field was proven
in [Hi]. The determination of the indecomposable modules over group
algebras of finite type, at least over an algebraically closed field, was
given independently in [Ku2] and [J],

In this same period Brauer and Thrall posed two problems about
finite representation type for arbitrary finite dimensional algebras which
were known as the first and second Brauer-Thrall conjectures. In this
connection it is perhaps of some historical interest that Brauer insisted
in private conversation that these were just problems suggested by what
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was known for group algebras, not conjectures. Conjectures or not,
their solution occupied a great deal of attention in the beginning of the
contemporary study of the representation theory of artin algebras. The
first Brauer-Thrall conjecture was proven for finite dimensional algebras
in [Roi] and subsequently for artin rings in [Au4]. The proof presented
here is a modification of the proof in [Ya] based on Corollary 1.3, the
Harada-Sai Lemma, which is valid in any abelian category with the
same proof [HarS]. The second Brauer-Thrall conjecture says that for
a finite dimensional algebra over an infinite field, there is an infinite
number of dimensions which have an infinite number of nonisomorphic
indecomposable modules when the algebra is of infinite representation
type. That it suffices to show only that there is some dimension with an
infinite number of nonisomorphic indecomposable modules was proven
in [Sm]. The conjecture was established in [Bau3] for the case that k
is an algebraically closed field. This proof, which is the culmination of
many people's work, in particular the fundamental work in [BauGRS],
together with [BoO][Bo3], is much too involved to be presented here.
Somewhat simplified proofs can be found in [BretT] and [Fi].

This chapter is devoted primarily to giving various module theoretic
descriptions of when artin algebras are of finite representation type,
not with the problem of which algebras are of finite representation
type. The fact that there is a connection between an algebra being of
finite representation type and the structure of the relations defining the
Grothendieck group of the artin algebras was observed first in [Bu] where
it was shown that the almost split sequences generate the relations for
the Grothendieck group when the artin algebra is of finite representation
type. The converse was proven in [Au8].

The criterion given in Theorem 1.4 for an indecomposable artin algebra
to be of finite representation type is essentially the criterion given in
[Au6]. The criterion has been extended and applied to other situations
such as Cohen-Macaulay modules over isolated singularities [AuRlO],
[So]. Based on the theory of coverings and lists of algebras of infinite
type in [Bo2], [HapV] there is now a nonroutine procedure for deciding
whether an algebra is of finite type, provided the algebra is given in an
appropriate form, as a path algebra modulo relations which are either
zero relations or commutativity relations.

The algebras known now as Auslander algebras were first introduced in
[Au3] where their connections with artin algebras of finite representation
type were studied. The homological properties of Auslander algebras
have served as an inspiration for parts of the theory of coverings [BoG]
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and hammocks [Brenl]. The analogue of Auslander algebras has also
been established for orders [AuRo].

The fact that two modules M and N over an artin algebra are isomor-
phic if (X, M) = (X, N) for all indecomposable A-modules X was proven
in [Au7]. Exercise 5 is modelled on an entirely different proof which is
valid in much more general settings than finitely generated modules over
an artin algebra is given in [Bo4]. For instance, this result is true for
coherent sheaves over projective varieties defined over fields.
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VII
The Auslander-Reiten-quiver

In this chapter we introduce a quiver called the Auslander-Reiten quiver,
or for short the AR-quiver, of any artin algebra A. The definition is
motivated by the interpretation of the ordinary quiver of an Auslander
algebra in terms of the associated algebra of finite representation type
given at the end of the previous chapter.

We start by giving the construction of the AR-quiver and a criterion
which can be read off directly from the AR-quiver ensuring that the
composition of some irreducible morphisms in mod A is not zero. The
AR-quiver often decomposes into a union of infinite components and
the possible structures of such components and other full subquivers of
the AR-quiver are studied. Here combinatorial results play a crucial role
and these combinatorial results will also be applied in the next chapter
dealing with hereditary artin algebras.

1 The Auslander-Reiten-quiver

In this section we introduce the Auslander-Reiten-quiver of an artin
algebra and give some of its basic properties. We illustrate with several
examples, and give the connection between the Auslander-Reiten-quiver
of an algebra of finite representation type and the ordinary quiver of its
Auslander algebra.

In VI Section 1 we introduced for an artin algebra A an equivalence
relation on indA. The equivalence relation is generated by M being
related to N if there is an irreducible morphism from M to N or from N
to M. On the other hand we have seen in VI Section 5 that the quiver
of the Auslander algebra F of an artin algebra A of finite representation
type has vertices in one to one correspondence with indA. Denoting
the vertex corresponding to a module M by [M], there is an arrow

224

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.008
https://www.cambridge.org/core


VILI The Auslander-Reiten-quiver 225

[M] —> [N] between two vertices if and only if there is an irreducible
morphism M —> N. If (a,b) is the valuation of the arrow [M] —• [N],
then a is the number of copies of M in a sum decomposition of E into
indecomposable modules, where E —• A/" is minimal right almost split.

Motivated by these observations we define for any artin algebra A an
associated valued quiver FA as follows. The vertices of FA are in one to
one correspondence with the objects of ind A, and are denoted by [M]
for M in ind A. There is an arrow [M] —• [N] if and only if there is an
irreducible morphism M —> N. The arrow has valuation (a, b) if there is
a minimal right almost split morphism aM \\ X —• N where M is not a
summand of X, and a minimal left almost split morphism M —• bN \J Y
where N is not a summand of Y. The vertices corresponding to projective
modules are called projective vertices and those corresponding to injective
modules are called injective vertices. Then D Tr induces a map from the
nonprojective vertices to the noninjective vertices. This map is called the
translation of FA, and is denoted by D Tr or by T. The valued quiver FA
together with the translation T is called the Auslander-Reiten quiver of
A, or the AR-quiver of A for short.

We illustrate the concept of an AR-quiver with some concrete exam-
ples.

Example Let A be the quiver •—••—•• and let k be a field. The path
algebra fcA is a Nakayama algebra with admissible sequence (3,2,1). We
know from VI Theorem 2.1 what the indecomposable /cA-modules look
like and how they are tied together to form almost split sequences. There
are six indecomposable modules: the three projective modules P3, P2
and Pi of length 1, 2 and 3 respectively, the two simple nonprojective
modules Pi/rPi , P2AP2, and the sixth module is P\/x2P\.

The almost split sequences are

0 - • P2 -> Pi IIP2AP2 -> PiA2Pi -> 0,

0 - • P2 / rP2 -» Pi/r2Pi -> Pi/rPi - • 0 and

0 -> P3 -> P2 -> P2 /rP2 -> 0.

Hence we get that the AR-quiver F^A is
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226 The Auslander-Reiten-quiver

where the broken arrows indicate the translation.

Example For an indecomposable Nakayama algebra A we know the
structure of the indecomposable modules and the almost split sequences,
so we can easily construct the AR-quiver.

Note that the AR-quiver for these algebras depends only on their
admissible sequences. For example the AR-quivers of the algebra
and the algebra k[X]/(X3) where k denotes a field are the following.

Example Let A be the path algebra of the quiver •<—•—•• over a field
k. As computed in VI Section 1 the indecomposable A-modules are the
simple modules Si, S2, S3 corresponding to the vertices 1, 2 and 3, the
projective cover P2 of S2 and the injective envelopes I\ of Si and I3 of
S3. The almost split sequences are of the form

0 -»•
0 ->
0 - > •

S3

Pi

s.

- • Pi

-> /1IIJ3

-> Pi

-> h
- > Si

-> h

- > • 0

- • 0

-»• 0.

Hence the AR-quiver is

[h]

[Si]

Example Let A = ( ™ ) with T = k[X]/(X2) where k is a field. Using
the description of the indecomposable A-modules and the almost split
sequences given at the end of VI Section 1, we get that the AR-quiver
FA is the following quiver where we again indicate the translation by a
broken arrow.
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[(T,7\lr)]

/

[(5,0,0)] -« [(5,5,1)] -« - / - [(0,5,0)]
\

y
[(0,5,0)]

Here the modules (0, T,0) and (T, T, l r ) are projective and (T,0,0)
and (T, T, I T ) are injective. The full subquiver of FA obtained by
removing these vertices lies on a Moebius band.

There is another interesting structure on the AR-quiver FA of an artin
algebra A, given by a partially defined map a on the valued arrows of FA
called the semitranslation of FA. Let a: [M] —• [N] be an arrow in FA, and
assume that N is not projective. Since we have an irreducible morphism
M —• AT, there is then by V Proposition 1.12 and V Theorem 5.3 an
irreducible morphism DTvN —> M. Then o(a) is defined to be the
corresponding arrow [DTriV] —• [M].

Clearly o is one to one on the arrows ending in nonprojective vertices,
and the image under o consists of the arrows starting in noninjective
vertices. Hence o~l is defined on the arrows starting in noninjective
vertices. Note that since there is never an irreducible morphism from
an indecomposable injective module to an indecomposable projective
module, we have for any arrow a that either o(<x) or cr"1^) is defined.

If (a9b) is the valuation of the arrow a and (c,d) the valuation of
(j(a), we have an almost split sequence 0—•DTrN—•£—>]V—>0 with
E ^ aM \J X where M is not a summand of X and E ~ dM ]J Y where
M is not a summand of Y. Hence it follows that a = d. In order to
show b = c we shall need a different interpretation of the valuation of
an arrow in the AR-quiver.

We have in V Section 7 given an interpretation of the existence of
irreducible morphisms in terms of the radical of the module category.
We now exploit this connection further. For A and B in ind A, we shall
see that we can view the abelian group Irr(^4, B) = radA(^4, B)/ md\(A9 B)
as a TVT^-bimodule in a natural way, where Tx denotes the division
algebra EndA(X)/rEndA(X) for each X in ind A.

If A and B are indecomposable A-modules, then for each natural num-
ber n we have that md\(A,B) is an EndA(#)-EndA04)op-subbimodule
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of the EndA(£)-EndA04)op-bimodule HomA(A,B). Further, for each
A-module M, the radical of EndA(M) as a ring and the radical of
HomA(M,M) in the category mod A coincide, and therefore we could
have used the same notation for these two radicals. However, when we
are taking powers of these radicals it would lead to confusion.

We have for each n that xEndA{B)^dn
A(A9B) a rad^+1(^,5) and

rad^(^,5)rEndA(^) c rad£+1(,4,B). Hence r adJU^BJ / r adJ^B) be-
comes a TB -T£p-bimodule. In particular, when A and B are indecom-
posable modules, the interesting group radA(̂ 4, B)/ md\(A, B) = Irr(̂ 4, B)
becomes a TB-T£p-vector space.

In order to investigate the TB -Tjj^-bimodule Irr(^4,B) more closely, it
is convenient to introduce the following notation. For /, e HOHIAC4, B),

i = 1,..., n, we write nA -» B to denote the morphism given by (/0(^i) =
(f)tr

Z^=i fi(ai) f° r (at) € nA and A -U nB to denote the morphism given by
(fi)tT(a) = (bj) with bj = //(a) for 7 = l , . . . ,n. Our aim is now to prove
that if the arrow [̂ 4] —• [B] has valuation (a, b) then a is the dimension
of Irr(A,B) as a T£p-vector space and fo is the dimension of Irr(^4,B) as
a TB -vector space.

We shall need the following.

Lemma 1.1 Let A and B be indecomposable nonisomorphic A-modules and
let f\->f2->"">fn be A-morphisms from A to B and let ft denote the coset in

^4,B) of the element ft.

(a) If the induced A-morphism nA —^ B is irreducible, then { / 1 , /2 , . . . , /«}
is a linearly independent set of elements of the T°^-vector space

(J.)tr

(b) If the induced A-morphism A —> nB is irreducible, then {fuf2,--9fn}
is a linearly independent set of elements of the TB-vector space
mdA(A9B)/md2

A(A,B).

Proof We prove (a), and then (b) follows by duality. Assume that
the induced A-morphism nA —U> B is irreducible, and that ai / i +
02/2 + • • • + cinfn = 0 with each a, in T^p. NOW lift the elements a,
in EndA(^4)op/tEndA(A)op to morphisms a, from A to A. Then the relation
above states that the morphism /i<xi + /2OC2 + • • • + fn^n from A to B
is in vad\(A,B). However, if there is some i such that at is nonzero,
then the corresponding oct is an isomorphism, and therefore the mor-
phism a = (oCi)tT:A -> nA induced by the a,- is a split monomorphism.
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Since nA —U B is irreducible there exists by V Theorem 5.3 a morphism

g: Af —• B such that nA \J A1 —̂ > 5 is a minimal right almost split mor-
phism. But this implies that there also exists a morphism h\A" —> 2?

where A" ~ ,4'IJCokera, such that ^ I J A " —• B is
a minimal right almost split morphism. Therefore by V Theorem
5.3, f\cc\ H- /2OC2 + ••• + fnoin\A —• B is irreducible and this contra-
dicts the fact that f\a\ + /2OC2 + • • • + fn%n is in radA(^4,£). Therefore
{ /1 j /2J • • • J /« } is a linearly independent set of elements in the Tjp-vector
space radA(^, B)/ rad^(^, B). •

We next establish the converse of this result. Let g.X —> B be
a minimal right almost split morphism ending in B. Decompose X
as mA U X' where X' has no indecomposable summand isomorphic to
A. Let g; for i = l ,2, . . . ,m be the elements of the T£p-vector space
md\(A,B)/md2

A(A,B) corresponding to the coordinates of g using this
decomposition of X. Dually, let h: A —> Y be a minimal left almost split
morphism starting in A. Decompose Y as nB\jYf where Yr has no
indecomposable summand isomorphic to B. Let hi for i = 1,2,...,n be
the elements of the Tg-vector space md\(A,B)/ md\(A,B) corresponding
to the coordinates of h with respect to this decomposition of Y.

Lemma 1.2 Let the notation be as above. Then we have the following.

(a) The set {gi,g2>--->Im} generates the T^9-vector space

_
(b) The set {h\,h2,...,hn} generates the Ts-vector space

mdA(A,B)/md2
A(A,B).

Proof We only prove (a) since (b) follows from (a) by duality. Let / be
any element of the T£p-vector space md\(A,B)/ rad\(A,B\ where / is a
morphism from A to B. Then since g is right almost split and / is not an
isomorphism we have that f = gh for some h:A —• X. Considering the
fixed decomposition of X as mA ]J X1 as described above, we get that
/ = (g\mA)ph + (g\x')qK where p is the projection onto the submodule mA
of X and q is the projection onto the submodule X' of X according to
the decomposition of X. Since X' has no summands isomorphic to A, the
map qh is in radA(^4,X') and therefore (g\xf)qh is in r&d2

A(A,B). Hence
we get / = (g\mA)ph. Using the decomposition mA = A\JA\J- • \JA
the map ph corresponds to a set of elements { a, }f=i a EndA(^4)op such
that f = J2 oiigi- This completes the proof of part (a). •
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230 The Auslander-Reiten-quiver

Combining the last two lemmas, we now get the following connection
between the valuation of the quiver FA and the dimensions of ln(A,B)
as a TB-vector space and as a T£p-vector space.

Proposition 1.3 Let A and B be indecomposable A-modules, and assume
there is an irreducible morphismfrom A to B. Then we have the following.

(a) The multiplicity of A as a summand of M when there is a minimal
right almost split morphism f'.M^>Bis equal to the dimension of
\xx(A,B) as a T^-vector space.

(b) The multiplicity of B as a summand of N when there is a minimal left
almost split morphism g:A —• N is equal to the dimension of!xx(A,B)
as a Ts-vector space. •

Let B be a nonprojective indecomposable module and a an arrow from
[A] to [B] in FA. In order to prove that the valuation of the arrow G(OL)
from [DTr B] to [,4] in FA is (b,a) if the valuation of the arrow a in FA
is (a, b) we also need the following result.

Lemma 1.4 Let A be an artin R-algebra.

(a) For each nonprojective indecomposable A-module B we have that D Tr
induces an R-isomorphism between TB and TDJTB-

(b) For each noninjective indecomposable A-module A we have that TrD
induces an R-isomorphism between TA and TJTDA-

(c) If A and B are indecomposable modules with B not a projective mod-
ule, then the dimension of!xx(A,B) as a TB-vector space is the same
as the dimension oflxx(DTxB,A) as a T^TvB-vector space.

Proof We know from IV Proposition 1.9(b) that D Tr: mod A —• mod A is
an equivalence of categories. Therefore D Tr induces a ring isomorphism
DTr:EndA(#) —> EndA^TrE). Since B is an indecomposable module
we have that End\(B) is local and since B is nonprojective the ideal
£P(B,B), consisting of the morphisms from B to B factoring through
a projective module is contained in rEndA(B)- Similarly, since DTxB
is a noninjective indecomposable module, the ideal J(DTxB,DTxB),
consisting of the morphisms from DTxB to DTxB factoring through
an injective module, is contained in rEndA(DTrB)- Hence DTr induces
an isomorphism from TB to TDTTB. Further, this isomorphism is an
^-isomorphism.
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Statement (b) is the dual of statement (a). In order to prove (c), let
IR(X) as usual denote the length of the module X over R and let for a
division algebra S dims V denote the dimension of V as a vector space
over S. We have from Proposition 1.3 that

dimToP (lrr(A, B)) = dimTA (Irr(D Tr B,A)).

Therefore we have

IR(ITT(A,B)) = dimTB(Irr(A, B))lR(TB)

= lR(T°»)dimT7(lTr(A,B))

= lR(TA)dimTA(lrr(DTvB,A))

= lR(In(DTrB,A))

This shows that dimTB (Irr(^, B)) = dimToP (Irr(D Tr B, A)). •
DTT B

As an immediate consequence of this result we have the following.

Proposition 1.5 If a is an arrow in T\from [B] to [C] with valuation (a9b)
and C is nonprojective then (b, a) is the valuation of the arrow a(a) from
[DTrC] to [B] in TA. •

Before giving the connection between the AR-quiver of A and the
ordinary valued quiver of the Auslander algebra associated with A when
A is an artin algebra of finite representation type, we need the concept
of the transpose of a valued quiver. Let A be a valued quiver. Then the
transposed valued quiver Atr has the same underlying quiver as A, and if
an arrow a has valuation (a, b) in A, it has valuation (fc, a) in Atr.

Theorem 1.6 Let A be an artin algebra of finite representation type and
let F be the associated Auslander algebra. Then the ordinary quiver of T
is the opposite of the transpose of the Auslander-Reiten-quiver of A.

Proof As in VI Section 5 let M be in mod A such that add M = mod A.
For each indecomposable module B in mod A let SB be the associated
simple F-module where T = EndA(M)op is the Auslander algebra asso-
ciated with A. Let [SB] denote the vertex in the quiver of F associated
with the simple module SB. For two indecomposable modules B and A in
mod A we have already observed in VI Section 5 that Extf(SB,SU) ^ 0 if
and only if there is an irreducible morphism from A to B in mod A. Hence
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the underlying nonvalued quiver of the AR-quiver is the same as the op-

posite of the underlying nonvalued quiver of F. Recall that if [SA] <^ [SB]

is an arrow with valuation in the quiver of F, then by definition we have

b = dimEndr(s^)Extf(5'B,SrA) and a = dimEndr(5B)op E x t f ( ^ , ^ ) . The cor-

responding valued arrow in the AR-quiver of A is [A] A [B], where
we have seen in VI Section 5 that b = d. We have a! = dimToP Irr(A,B)
and bf = dimTB Irr(^4,£). Note that TA ~ Endr(SU) for the following rea-
son: Since HoniA(M, ):modA —• ̂ (F) is an equivalence of categories,
EndA(^4) and Endr(HomA(M,^4)) are isomorphic. P = HoniA(M,,4) is
an indecomposable projective F-module with P / rpP ^ SA. Since for any
f:P —> P we have f(xP) a xP, there is induced a natural ring homo-
morphism Endr(P) —• Endr(SU), which is surjective since P is projective.
Hence Endr(SU) is the unique division algebra which is a factor of the
local algebra End r(P), and consequently we have Endr(SU) ^ TA as R-
algebras. We then have lR(Ext^(SB,SA)) = blR(EndTSA) = alR(EndrSB)
and lR(In(A9B)) = af(lR(EndrSA)) = V(lR(EndTSB)). Since b = a\ it
follows that a = b'. This shows that the AR-quiver of A is the opposite
of the transpose of the valued quiver of F. •

We remark that it is often possible to reconstruct an artin algebra of
finite representation type from its AR-quiver. This can be accomplished
through the following construction. For let FA be the AR-quiver of a
basic algebra A over a field fc, and assume that all valuations are trivial.
For each nonprojective vertex x in FA we have a relation mx on the quiver
FA, called the mesh relation, and defined by mx = Z {̂aG(rA)i|e(a)=x} ao"(a)
where a is the semitranslation. It can be proved that if k is an algebraically
closed field of characteristic different from 2, then the path algebra of
FA over k modulo the mesh relations is isomorphic to the opposite of an
Auslander algebra for A.

2 Shape of Auslander-Reiten-quivers and finite type

We have seen in Chapter VI that if for an indecomposable artin algebra
A there is a finite component with respect to irreducible morphisms, then
A is of finite representation type. In this section we illustrate how the
structure of the AR-quiver together with the semitranslation helps in
applying this criterion. We end the section with some information on the
structure of the AR-quiver.
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We start by formulating our criterion for finite representation type in
terms of AR-quivers.

Theorem 2.1 The following are equivalent for an indecomposable artin
algebra A.

(a) A is of finite representation type.

(b) FA is a finite connected quiver.

(c) FA has a finite component. •

We now proceed to give examples of how to compute components of
AR-quivers without knowing all almost split sequences to start with. In
our examples the components turn out to be finite, showing that the
algebras are of finite representation type.

The computations are based on the following principles. Assume
that we have computed a full subquiver of the AR-quiver and assume
that there is a vertex [A] such that each immediate predecessor [B]
of [A] in the AR-quiver is in the full subquiver, along with the part
corresponding to the almost split sequence with B on the left if B is not
injective, and corresponding to the minimal left almost split morphism
for B if B is injective. If we have an irreducible morphism A —•
C where C is indecomposable nonprojective, there is an irreducible
morphism DTrC —• A, and by assumption the part corresponding to
the almost split sequence with left hand term DTrC is already in our

full subquiver. In particular the valued arrow [A] A [C], corresponding

to the valued arrow [DTrC] A [A], is there. We know that there is
an irreducible morphism A —• P with P indecomposable projective if
and only if A is a summand of rP, which we can check from knowing

the structure of the projective modules. For a valued arrow [A] A [P],
a is the number of copies of A in a decomposition of xP into a sum
of indecomposable modules, and b is computed from a and IR(TP)

and IR(TA) where we recall that Tx = ^^d\(X)/xEndA(x)- This way we
obtain all valued arrows starting at [A], The corresponding irreducible
morphisms from A are induced from the almost split sequences starting
at the immediate predecessors. Based on this information we compute the
minimal left almost split morphism A —• E. If A is not injective, we get
the almost split sequence 0 -> A —> E —• TrD^4 —• 0 and hence induced
irreducible morphisms from the summands of £ in a sum decomposition
into indecomposable modules, and corresponding valued arrows.

Assume that we obtain a full subquiver where each vertex [A] has
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all its immediate predecessors in the subquiver, together with the part
corresponding to the minimal left almost split morphism from A and the
whole almost split sequence with left hand term A if A is not injective.
Then we have a whole component of the AR-quiver.

We can sometimes get started with a full subquiver having the desired
properties in the following way. If S is a simple projective noninjective
A-module, we know from V Section 3 that in the almost split sequence
0 —• S —• E —> Tr DS -> 0 the middle term E is projective. Hence we
can compute this almost split sequence from knowing the structure of
the projective modules, and get the corresponding valued arrows in the
AR-quiver. For an indecomposable summand P of E we can compute
the immediate predecessors [X] of [P] since they are determined by xP.
If we can compute the almost split sequence with each possible X as
left hand term, we can proceed as above with A = P. Note that the
main problem in carrying out this procedure arises each time we reach
a new projective module, since it may not be so easy to deal with its
(immediate) predecessors.

Example Let k be a field and let A be the fe-algebra given by the quiver

with relation {/?a — dy}. Then we know the projective

modules and their radicals. We have P4 = S4, P2 with XP2 ^ S4, P3
0

with XP3 ~ 54 and Pi with xP\ given as the representation *
1 \x 1

of the quiver. Since S4 is simple projective we have an almost split
sequence 0 —> 54 —> P2IIP3 —• *Pi -» 0. Since no indecomposable
module X qk S4 has an irreducible morphism to P2 or to P3, and neither
P2 nor P3 is a summand of some xQ for Q projective, we get almost
split sequences 0 - • P2 -> rPi -> TrDP2 - • 0 and 0 -> P2 -> rPi - •
TrDP3 —• 0. Since xP\ is a summand of the radical of exactly one
indecomposable projective module, namely Pi, we have an almost split
sequence 0 - • rPi - • T r D P 2 U T r £ ) ^ 3 l J ^ i ~> TrD(rPi) - • 0. We see
that TrDP2 ^ S3, Tr DP3 ^ S2 and TrD(rPi) ~ P i / socPi . We further
calculate TrDS3 ^ J2, TrDS2 ^ J3 and TrD(Pi/socPi) ^ S4 to get the
almost split sequence 0 —• Pi /socPi —> hUh —• S\ -^ 0. There is no

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.008
https://www.cambridge.org/core
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irreducible morphism from J2 or I3 to any module X not isomorphic to
Si. Hence we now have the AR-quiver

[Pi\

[Si]

Note that we here omit the valuation since it is (1,1) for each arrow.

Example For the triangular matrix algebra A = ( ^ ^ ) where C is the
complex numbers and R the real numbers we have two indecomposable
projective modules Pi = (0,R,0) and P2 = (<C,(C, l<c) with R and <C
as endomorphism rings. Since rP2 ~ Pi I JP i , we then have the valued

arrow [Pi] A [P2]. p1 is simple projective, so we have an almost
split sequence 0 —> Pi —> P2 —• TrDPi —> 0. From this exact sequence
we see that TrDPi — (C,R, / ) where / : C —• R is nonzero. From
III Section 2 we know that we have an indecomposable injective module
(HomR(C,R),R,g) where g: C ®c HomR(C, R) - • R is the natural
morphism. Since (C ®c HomR((C,R) ^ C and g is not zero, we have that
this injective module is isomorphic to TrDPi, using that HomR(C,R) is

a one-dimensional (C-module. Since we have the valued arrow [P2] A
[TrDPi], we have an almost split sequence 0 —• P2 —• 2TrDPi —•
Tr DP2 - • 0. By calculating dimensions we see that Tr DP2 ^ (<C,0,0),
which is injective. Hence we obtain the AR-quiver

[P2] * — — [TrDP2]
(2,1) S* \ (1,2) (2,1 W

[Pi] •<- — — — [TrDPi]

Example Let fe be a field and A the path algebra of the quiver
a / \ y

with relation {jSa}. We list the simple modules, the indecomposable pro-
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jective modules and their radicals, the indecomposable injective modules
and the indecomposable injective modules modulo the socle. We view all
these modules as representations of the quiver with relations.

o ^ 3 . o

Si: ° \ } ° P2: \}° xP2~S4

0 k

0

" k xP3~S4 P4: .

/c k

k
1

)

Since S4 is simple projective, we have the almost split sequence 0 —> S4 —>
Pi UP3 -^ TrDiSr4 -^ 0. From this sequence we calculate that TrD&i has

0

to be the module corresponding to the representation k * . I f

X qk S4 there is no irreducible morphism from X to P2 or P3. Since P2 is
not a summand of the radical of any projective module, we get the almost
split sequence 0 -> P2 -> Tr DS4 - • Tr DP2 -> 0, and hence TrDP2 ^ 53.
P3 is a summand of the radical of Pi, and dim^ HoniA(P3,Pi) = 1. Hence
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we get the almost split sequence 0 - • P3 -» TrD54 U
p i - • TrDP3 -> 0.

A not too hard calculation then shows that TrDP3 is given as the

representation

Since xP\ = P3]JS2, and S2 is not a composition factor of r/socr,
it follows from V Theorem 3.3 that the middle term of the almost split
sequence starting at S2 is projective. Since S2 is a summand of xP
with P indecomposable projective only for P ~ Pi, we have the almost
split sequence 0 —• S2 —• Pi —> T r D ^ —• 0 where TrD^2 is given by

the representation . Further we have an almost split

sequence 0 - • Pi -> TrDP3 \jTrDS2 - • TrDPi -> 0, and from this
we can compute TrDPi ~ 14. And we have the almost split sequence
0 -> Tr DS2 -+ 14 -+ (Tr D)2S2 -^ 0, so that (TrD)2S2 ^ S2. Similarly

we get that (TrD)2S4 corresponds to the representation

and that TrDS3 ~ I2, (TrD)2P3 ^ I3 and (TrD)354 ^ Si. Collecting our
information we get that the entire ^.R-quiver of A is

[(TrD)2S4]- r [Si]

JTrDP3] ^

[Pi] U

[S2] „ [TrDS2] [S2]

where the two copies of [S2] are to be identified.
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We now give some conditions on the structure of an AR-quiver.

Proposition 2.2 If A is an artin algebra of finite representation type then no

arrow in the Auslander-Reiten-quiver of A has valuation (n, m) with n>2

and m>2.

Proof Assume A and B are indecomposable and that there is an arrow
in FA from [A] to [B] of valuation (n, m) with n > 2 and m > 2. We want
to prove that then there is no bound on the length of the indecomposable
modules in mod A.

If / : A —> B is irreducible, then the lengths of A and B cannot be the
same. By duality we may assume that the length of A is bigger than the
length of B. Hence B is not projective. From the almost split sequence
0 -> DTrB -> M -• B -• 0 we get l(DTrB) > l(A) by using that the
multiplicity of A as a summand of M is n > 2. Hence A is not projective

and we have the valued arrow [DTrB] -4 [A], Since m > 2 we can
repeat the argument to get l(DTvA) > l(DTvB). By induction we then
conclude that there is no bound on the length of the indecomposable
modules (D TxfA, showing that A is not of finite representation type. •

We get the following direct consequence of Proposition 2.2.

Corollary 2.3 If A is an artin algebra of finite representation type over an
algebraically closed field, then all arrows in the Auslander-Reiten-quiver
have trivial valuation.

Proof Since k is algebraically closed, all the division fc-algebras TA for
A in indA are isomorphic to k. Since the valuation is given by the
dimensions of Irr(,4,2?) as T^p-vector space and as Te-vector space, we
get that they are all of the type (n, n). Hence our claim follows from
Proposition 2.2. •

We now give some sufficient conditions for a composition of irreducible
morphisms between indecomposable modules to be nonzero. These
conditions may be read off directly from the AR-quiver and will also be
used to give more information on the structure of the AR-quiver.

Let / be the integers in one of the intervals (—oo,n], [n,oo), [m,ri\

for m < n or {l , . . . ,n} modulo n. Let ••• —• At -> Ai+\ - • • • •—>

Aj —> Aj+\ —> • • • be a sequence of irreducible morphisms between
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indecomposable modules with each index in /. The sequence is said to
be sectional if D TrAi+2 ^ At whenever i and i + 2 are both in /, and the
corresponding path in the AR-quiver is said to be a sectional path.

We have the following main result about composition of a sectional
sequence of irreducible morphisms.

/l fn

Theorem 2.4 If A\ —> A2 —• • • • —• An —• An+\ is a sectional sequence of
irreducible morphisms between indecomposable modules, then the composi-
tion f = fn' " fi is nonzero.

This is a direct consequence of the following.

Lemma 2.5 Let A be an artin algebra and A\ —» A2 —> • • • —• An -A
An+\ a sequence of irreducible morphisms between indecomposable modules.
Suppose the composition fn

m " fi either is 0 or factors through a morphism
g\B —> An+\ with B indecomposable, such that (fn9g):An\\B —• An+\ is
irreducible. Then we have D TvAi ^ A[-i for some i with 3 < i < n + 1.

Proof We prove this by induction on n, and start with the case n = 2.

Let A\ -+ Ai -* As be a sequence of irreducible morphisms between
indecomposable modules such that /2/1 = 0 or /2/1 = gh where g: B -»

A3 is such that A2 ]J B -* M is irreducible. If /2/1 = 0, then f2 cannot
be a monomorphism. Hence it is an epimorphism, and therefore A3 is
not projective. Consequently there exists an almost split sequence

0 -> DTr^43 -» A2 \ \ X -» A3 -» 0.

Therefore there is some h\A\ —• D T r ^ with (fyh = ({j). But this
implies that f'2h = f\. Now f\ and f2 being irreducible implies that h is
a split monomorphism, and therefore h is an isomorphism since D T r ^
is indecomposable.

In case f2f\ = gh we consider A\ ^ A2\JB ^ A3 and get that
(f2>g)(-n) = 0. Hence (f2,g) is not a monomorphism, and consequently
an epimorphism. Therefore A3 is not projective. Consider an almost split
sequence
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We get a morphism h'.A^DTr^3 with (*; )fi' = ( ^ ) , i.e. / i = / ^ ' .
Again by the irreducibility of/ i and /£, we have that hf is an isomorphism.

For the inductive step assume the claim holds for n > 2. We want
to prove that the claim holds for n + 1. Let f = fn'"fu and assume
first fn+if = 0. If / = 0 we are done by induction. But / ^ 0 implies
that / n + i is not a monomorphism, hence it is an epimorphism since it is
irreducible, and therefore An+2 is not projective. Considering an almost
split sequence

\s) A

and using that / n + i / = 0, we see that there exists some h\A\
and an irreducible morphism g:DTrAn+2 —• An+\ with gh = / . Now if
DTvAn+2 —An we are done. Otherwise (fn,g):AnY[DTrAn+2 —• ^«+i is
irreducible and we are done by induction.

If f n + j = gh for s o m e h:Ax ^> B and g:B ^> A n + 2 w i t h (fn+ug):
An+i ]JB —> An+2 irreducible, then ( / J \A\ -> ^4n+i ] J 5 composed with
(fn+ug) is zero. Hence there exist a morphism h'\A\ —> DTr^ln+2 and
an irreducible morphism g':DTri4n+2 ^^ ^4n+i with / = g'h'. If An is iso-
morphic to DTxAn+2 we are done. If An is not isomorphic to DTxAn+2,
then (/n,gr):v4n]J[DTry4n+2 —• ̂ 4n+i is irreducible and we are done by
induction. •

We have the following consequence of Theorem 2.4 on the structure
of the AR-quiver.

Corollary 2.6 There is no sectional cycle in the Auslander-Reiten-quiver of
an artin algebra A.

Proof Assume that A\ -> A2 —> • • • —> An -A A\ -> ^2 is a cycle of
irreducible maps between indecomposable modules. The composition
/ = fn'" /1 is clearly not an isomorphism, and is hence nilpotent in
End\(A\) since EIKIAC^I) is a local ring. Since (/„ • • - f\f = 0 for some

/l fn

t, it follows from Theorem 2.4 that the cycle A\ —> A2 -^ • • • —> An —>
i4i - i ^2 is not a sectional sequence of irreducible morphisms and hence
there are no sectional cycles in the AR-quiver. •
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3 Cartan matrices and subadditive functions

In the last section we gave some constraints on the structure of the AR-
quiver. In this section we characterize Dynkin diagrams and Euclidean
diagrams in terms of the existence of subadditive and additive functions
and use this to get more information on the shape of the AR-quiver in
the next section.

A handy way of representing a valued graph without loops and mul-
tiple edges is through the associated Cartan matrix, a notion we now
introduce.

Let / be a set. A Cartan matrix C on / is a function C:I x I —• Z
satisfying the following properties, where we write C(iJ) = ctj.

(a) c« = 2.
(b) ctj < 0 for all i9 j with i =£ j9 and for each i we have that ctj < 0 for

only finitely many j e I.
(c) Cij ^ 0 if and only if cp ^= 0.

There is a close connection between Cartan matrices and valued graphs.
Here a valued graph V on an index set / is given by a function d:I xl —> N
such that (where we write d(i,j) = dtj)

(i) dn = 0 for all i e / ,
(ii) dtj ± 0 if and only if djt j= 0,
(iii) for each i e I there is only a finite number of j with d,7 ^ 0.

When representing a graph V in the plane, the set / is identified with
vertices called Vo and there is an edge connecting i and j if d\j j= 0. We
then write i • ̂ ^ • j .

If C is a Cartan matrix on a set / there is associated a graph V with
Vo = / , such that d:I x I —> N is defined by da = 0 and dtj = \ctj\ for
i ^= j . Conversely, a valued graph V gives rise to a Cartan matrix C on
the set Vo where cu = 2 for i e Vo and ctj = —dtj for i ^= j in Vo.

A Cartan matrix C on a set / is said to be indecomposable if for all
proper partitions of/ as I\ U/2 there exist i in I\ and j in I2 with ci; =fc 0.
This is clearly the same as saying that the associated valued graph is
connected. Observe also that the transpose Ctr of a Cartan matrix C on
a set / given by c-j = cjt for all (ij) € / x / is also a Cartan matrix on / .

Let C be a Cartan matrix on a set / . A subadditive function for C is a
function d:I —> Z+ such that dC.I -+TL given by dC(j) = Y^tei dicij has
its image in N, where we write dt for d(i)9 and d is said to be additive if
dC = 0. Note that if the index set / is finite and we fix a total ordering of
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/, we can write C as an ordinary matrix and d as a vector. The product
dC can then be interpreted as a product of matrices and viewed as a
vector.

We shall see that the existence of a subadditive or additive function
for a Cartan matrix C imposes heavy restrictions on the valued graph
associated with C. In order to describe exactly when such functions
exist we need to list the diagrams known as Dynkin diagrams and the
diagrams known as Euclidean diagrams. In the second case it is easy to
see that there is always an additive function, and we list one for each
diagram.

Dynkin diagrams

An: 1 2
n> 1

Bn :
% (1,2)

1 2
n>2

n>3

Dn : n>4

E6: 1 2 4 5 6

1 2 4 5 6 7

1 2 4 5 6 7

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.008
https://www.cambridge.org/core


VII.3 Cartan matrices 243

F4:
(1,2)

2 3 4

G2:
(1,3)

Euclidean diagrams

An: r
1 2

(1,2)

n n + l

(2,1)
D . « * « . . . #

" ' 1 2 3 n - 1 n n + l

(2,1) (1,2)

Cn:

Dn:

1 2 3 n - 1 n n + l

1 n + l

V-
4 n-2 n-1

1

Additive functions

1 2 2 • • • 2 2 1

An-

(1,4)

(2,2)

(1,2) (1,2)

1 2 3 n-1 n n+l

1 2 3 2 1

2

1 2 3 4 3 2 1

3

2 4 6 5 4 3 2 1

2 1

1 1

2 2 2 • • • 2 2 1
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BDn: •

n+l

(1,2)
( 2 2 2 2 2 \2 3

CDn: .

n+l

(2,1)

(1,2)

(2,1)
^ 4 2 : • • •

(1,3)
G21: • •

r •

We start with the following result on subadditive functions.

Lemma 3.1 Let C be the Cartan matrix of a Euclidean diagram. Then any
subadditive function for C is additive.

Proof We have listed an additive function for each Cartan matrix of the
Euclidean diagrams in the table. Observe that if C is the Cartan matrix
of a Euclidean diagram, then also C tr is the Cartan matrix of a Euclidean
diagram. Now let V be a Euclidean diagram with Cartan matrix C and
let d be a subadditive function for C. Let e be the additive function for
C tr in the table and consider s(dC)tT = (sCtv)dtT = 0. Since all values of e
are strictly positive and all values of (dC)tT are nonnegative, we conclude
that (dC)tT = 0. This shows that d is an additive function for C. •

Given two indecomposable Cartan matrices C and C on the index sets
/ ' and / respectively we say that C is smaller than C if there exists an
injection o.V —• / such that |c-;| < l ^ ^ l for all ij e V. We say that C
is strictly smaller than C if either a(V) =/= I or there exist i and j in J' with
\cij\ < \c<T(i)<j(j)\' We investigate the relationship between subadditive func-
tions for two Cartan matrices when one is strictly smaller than the other.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.008
https://www.cambridge.org/core


VII.3 Cartan matrices 245

Lemma 3.2 Let C and C be indecomposable Cartan matrices on V and I
respectively and let a.V —> / be an injection such that C is strictly smaller
than C.

(a) Let d:I - • Z+ be a subadditive function for C. Then do\V - • Z+ is
a subadditive function for C which is not additive.

(b) Let dr'.r - • Z+ be an additive function for C and let d:I - • N be
given by

(2dj ifi = o{j\
dt = <1 if i $ G{V) with ctj i= 0 and j e o{V\

v 0 otherwise.

Then (dC)t < 0 for all i e / , with (dC)t < 0 for at least one i with dt j= 0.

Proof We first prove (a). Letting dr = do we have

jel'

0.

Hence df is a subadditive function for C. Further, using that C is
indecomposable we have that if o.V —• / makes C strictly smaller than
C, either there exists i E V and j E I such that CjG^ ^ 0 and j not in
the image of a, or there exist ij E V with \cfjt\ < \ca{j)(7{i)\. In the first
case the second inequality above is strict and in the second case the first
inequality above is strict. This completes the proof of (a).

For part (b), clearly (dC)t < 0 for i not in o(V) since C is indecompos-
able. For i = a(j) we have

0 = (2d'Cf)j = 4j;- +
Hi
lei'

lei

= (dC)t.

The inequality is clearly strict if ca(m)a(j) > c'mj for some (m,j) e / ' x / '
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or if there exists an m G / with m ^ o(V) and cmi ^ 0. Hence the proof
of part (b) of the lemma is complete. •

From these two lemmas we get the following conclusion.

Theorem 3.3 Let C be an indecomposable Cartan matrix on the finite index
set I with underlying valued graph V and assume d is a subadditive function
for C. Then we have the following.

(a) V is either a Dynkin diagram or a Euclidean diagram.

(b) If d is not additive, then V is a Dynkin diagram.

(c) If d is additive, then V is a Euclidean diagram.

Proof If V is a finite connected valued graph without loops which
is neither a Dynkin nor a Euclidean diagram, it is not hard to see
that V will contain a proper valued subgraph V which is a Euclidean
diagram. But then the associated Cartan matrix C of V' will be strictly
smaller than C. Let d be a subadditive function for C and let d' =
d\y. Hence d' will be a subadditive function for C which can not be
additive according to Lemma 3.2 (a). However, Lemma 3.1 gives that
all subadditive functions for the Cartan matrices with underlying valued
graph a Euclidean diagram are additive. This is our desired contradiction.

Part (b) follows directly from (a) and Lemma 3.1 which says that all
subadditive functions on a Euclidean diagram are additive.

To verify (c) we observe that the Cartan matrices C for the Dynkin
diagrams are all nonsingular, and hence they have no additive functions.

•

We shall also investigate subadditive and additive functions for the
following list of five infinite diagrams closely related to the Dynkin
diagrams. We also give an additive function for each of them.

AQQI • • • ' ' ' • • ' * ' 1 2 3 • • • n w+1 • • •

(1.2)
B^: • • • • • • • • • • • • I 2 2 - - - 2 1---

(2,1)
C « • • • • • • • • • • • 1 1 i . . . l 1 • • •

oo • i i I i i
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" " ' / • • • • " , / H

A%: ••• • • • • l 1

The Cartan matrix of A^ admits subadditive functions which are not
additive, but in the four other cases all subadditive functions are additive,
and they are in fact bounded.

We start by considering A00

•oo*

Lemma 3.4 Let d'.(A^)o —> Z + be a subadditive function. Then d is con-
stant and therefore additive.

Proof Let a G 04^)o be a vertex such that the minimum of d is obtained.
Then 2da — da+\ — da-\ > 0. But we have da+\ > da and da-\ > da. Hence
da = da+\ = da-u and therefore d has to be a constant and is hence
additive. •

Lemma 3.5 If d:Ao —> Z + is a subadditive function with A = £00, C^ or
Doo, then d is a multiple of the function listed in the table.

Proof We consider each case separately. One checks that if

do

*\di d2

is a subadditive function for D^, then

d2 dx do+d_x

is a subadditive function for A™, which by Lemma 3.4 is constant.
Further

(dC)0 = 2do-di > 0,
(dCU = 24-i-dx > 0,
(dC)i = 2di-do-d-i-d2 = 0.

But d\ = ^2, so from the third equality we obtain d\ = do — d-\.
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Substituting this value for d\ in the two inequalities gives d-\ — do > 0
and do—d-i > 0. Hence do = d-\ and therefore dt = 2do for i > 1 showing
that d is a multiple of the given additive function. This completes the
case DQQ.

d0 (1,2) d{ dn dn+l

If . * * • • • . . • • • is a subadditive function for B^
dj d^ 2dfi d^ dj

then • • • . . . . • • • is a subadditive function for A™
and the same analysis as above applies to conclude that d is a multiple
of the additive function given in the table above.

To treat the last case C^ observe that if . ^— -—-^ • • •

dj d\ dr\ d\

is a subadditive function for C^ then • • • . . . . . • • • is a
subadditive function for A™ and hence we get that this is a constant by
Lemma 3.4. •

4 Translation quivers

In Section 1 we introduced the AR-quiver associated with an artin alge-
bra. The AR-quiver often consists of several components, and consider-
ing each component leads us to the more general notion of a translation
quiver, which we introduce in this section. Combinatorial aspects of
these translation quivers will be explored and used to give results about
full subquivers of the AR-quiver consisting of vertices where DTr is
everywhere defined. These combinatorial results will also be used in the
next chapter dealing with hereditary artin algebras.

Let F be a valued quiver with vertex set To and arrow set Fi where T
is locally finite, that is for each i G To there is only a finite number of
arrows entering or leaving i. Let T be an injective map from a subset of
To into To. For x G Fo let x~ denote the set of immediate predecessors
of x. It is defined by x~ = {y G FQ| there is an arrow y —• x}. Dually
let x+ denote the set of immediate successors of x. It is defined by
x+ = {y G Fo| there is an arrow x —> y}. The pair (F,T) is called a
valued translation quiver if the following three conditions are satisfied.

(a) F has no loops and no multiple arrows.
(b) Whenever x G FQ is such that T(X) is defined then x~ = T(X)+.
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(c) If a is an arrow from x to y with valuation (a, b) and x(y) is defined
then the arrow from x(y) to x has valuation (b, a).

We say that a translation quiver (F, T) is a proper translation quiver if
in addition we have

(d) If x G To is such that x(x) is defined, then x~ is nonempty.

Note that associated with a translation quiver (F, T) there is always a
proper translation quiver (F, T) obtained by restricting x to the vertices x
where x~ is not empty.

The partially defined map x: Fo —• Fo is called the translation of the
translation quiver (F, T).

Any AR-quiver of an artin algebra is a translation quiver when we let
x be the map defined by DTr.

Other finite concrete examples are

(i)

where we have inserted a broken arrow for the translation.
Neither the example represented in figure (i) nor the example repre-

sented in figure (ii) is the AR-quiver of an artin algebra. It is easy to see
this for case (ii) since there are no projective vertices.

If case (i) were an AR-quiver, vertex 1 would correspond to a simple
projective module. Then vertex 2 would correspond to an indecomposable
projective module, which would have length 2. But then vertex 3 would
correspond to a simple module, and also to the middle term of an almost
split sequence, which is impossible.

Let (F, T) be a translation quiver. In analogy with the situation for the
AR-quiver of an artin algebra, we call a vertex x G Fo a projective vertex
if x is not in the domain of x and we call a vertex x G Fo an injective
vertex if x is not in the image of T. AS for AR-quivers, x also induces
a partially defined map on Fi. More precisely, if cc:y —• x is an arrow
with x not a projective vertex, there is a unique arrow x(x) —• y in Fi
which we denote by cr(a). The partially defined map a on Fi obtained
in this way is called the semitranslation of the translation quiver. It is
completely determined by x.
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We now give a way of constructing families of translation quivers. Let
A be a valued quiver without loops (possibly infinite). We now construct
the translation quiver ZA. The set of vertices in ZA is (ZA)o = Z x A 0 .
The translation in TLA is given by i(n,x) = (n — l,x). The arrows in TLA
are as follows. For each arrow a with valuation (a, b) from x to y in A
form arrows an from (n,x) to (n,y) with valuation (a,b) and arrows cr(an)
from (n — l9y) to (n,x) with valuation (b,a). In this way ZA becomes a
translation quiver.

If the underlying graph of A is a tree and the valuation is trivial
then the translation quiver TLA is independent of the orientation in A.
Otherwise it may depend on the orientation.

Example
(-1,3;) (0,y)

(2,x)

Example

(0,x0) (l,x0) (2,x0)

We now consider maps between translation quivers (V, %') and (F, T). A
translation quiver morphism / : (Fr, xr) -+ (F, T) is a pair of maps /o: FQ —•
Fo and / 1 : F^ -> Fi such that the following two conditions are satisfied.
(a) / is a morphism of valued quivers, i.e. if a in F^ is an arrow from x

to y with valuation (a,b), then /i(a) in Fi is an arrow from fo(x) to
fo(y) with valuation (a, b).

(b) /O(T'(X)) = T ( / O M ) for all nonprojective vertices x of FQ.

A translation quiver morphism f:(V,Tf) —• (F ,T) is called a covering if
the following conditions hold.
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(a) If x is projective in P , then f(x) is projective in F.
(b) If x is injective in F', then f(x) is injective in F.
(c) For each vertex x in FQ, / induces a bijection from x~ to /oM~ and

from x+ to /o(x)+ preserving the valuation of the arrows.
Example Let (F, T) be the translation quiver

(*)

Then there is a covering / : ( F ' , T ' ) —• (F,T), where (F',T') is the following
quiver.

(**)

There is a theory of coverings of translation quivers, but we will not
discuss this here. We will mainly use it for illustrational purposes and to
deduce some more structural properties of AR-quivers.

A group G of translation quiver morphisms on a translation quiver
(F, T) is said to act admissibly if each orbit of G meets {x} Ux~ in at most
one vertex and meets {x} U x+ in at most one vertex for each x in Fo.

Let ZA be as in the first example and let G be the group operating on
ZA by the automorphism 0 where (/>(rc, x) = (n + 2, x). Then G is a cyclic
group which acts admissibly.

Having a translation quiver F and a group G of translation quiver
morphisms acting admissibly on F one can form the quotient F/G,
which is a translation quiver. We have the natural morphism F —• F/G
which is a covering of translation quivers.

If A is an artin algebra of infinite representation type and ^ is a
component of the AR-quiver containing neither projective nor injective
vertices, then the translation and its inverse are everywhere defined.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.008
https://www.cambridge.org/core


252 The Auslander-Reiten-quiver

Generalizing this to arbitrary translation quivers we call a translation
quiver where the translation and its inverse are everywhere defined a
stable translation quiver. Examples of stable translation quivers are the
translation quivers ZA where A is a quiver with no loops, and quotients
of such quivers by an admissible group of automorphisms. We show
that there is a strong limitation on stable subtranslation quivers of the
AR-quiver of an artin algebra of the form ZA/G where G is a group
of automorphisms acting admissibly and containing some power of the
translation T. Here we use the results on additive and subadditive
functions from Section 3.

Theorem 4.1 Let A be a quiver without loops. If the Auslander-Reiten-
quiver of an artin algebra contains a subtranslation quiver of the form
ZA/G where G is a group of automorphisms ofZA acting admissibly and
containing xn for some n, then either

(i) A is a Dynkin diagram and hence ZA/G is finite or

(ii) A is Aoo.

Proof Let A be a quiver without loops, n a natural number and assume
ZA/G is contained in the AR-quiver of an artin algebra A where G
is a group of automorphisms of ZA acting admissibly and containing
Tn. For each a e Ao let [Xo], [DTrX0],...9 [DTrn~lX0] be the vertices,
possibly with repetition, in the AR-quiver corresponding to a. Then
define d: Ao -» N by d(a) = Y^Io l(D Tr1 Xo) where l(Y) as usual denotes
the length of the A-module Y. Using that if X is a summand of B in the
exact sequence 0 - > , 4 - > £ - > C - » 0 , then l(X) < l(A) + l(C) we obtain
that d is a subadditive function for A. Theorem 3.3 implies that if A is
finite then A is either Euclidean or Dynkin. By the same theorem, if A is
Euclidean then d is additive. But then for each [U] in ZA/G there can be
no additional neighbors in the AR-quiver than those already in ZA/G.
Hence ZA/G is a complete finite stable component of the AR-quiver of
A. Then ZA/G would be the whole AR-quiver by Theorem 2.1, which is
impossible since there are no projective vertices in ZA/G. This finishes
the proof when A is finite.

Assume next that A is infinite. Then the underlying graph A cannot
contain any Euclidean diagrams and hence A has to be either A^, A™,
Boo, Coo or Doo- But A™, Boo, Coo and Doo only admit subadditive functions
which are additive and bounded. Additivity again implies that ZA/G is a
whole component of the AR-quiver of A. It follows as before that ZA/G
can not be finite. But in any infinite component of the AR-quiver of an
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artin algebra A there is no bound on the length of the indecomposable
modules. This excludes A™, B^, C^ and D^. We are then left with the
diagram A^. •

We shall see in the next chapter that translation quivers of the form
ZAoo/G actually occur as components of an AR-quiver, by showing that
for the path algebra of the quiver • =£ • over a field k we have components
of the form ZA^/l^z).

If A is a selfinjective algebra, then we get a stable subtranslation quiver
denoted by F^ of the AR-quiver FA of A by removing the projective
vertices. For applying DTr or TrD to an indecomposable nonprojective
module we always obtain an indecomposable nonprojective module. We
get the following consequence of Theorem 4.1.

Corollary 4.2 Let A be an indecomposable selfinjective algebra of finite
representation type. If the stable Auslander-Reiten-quiver TA is of the form
ZA/G where the quiver A has no loops and G is a group of automorphisms
of ZA acting admissibly and containing xn for some n, then A is a Dynkin
diagram.

Proof By Theorem 4.1 it is sufficient to show that A is not A^. Since
each g e G is an automorphism of ZA, we must have that for x and g(x)
in ZA the minimal length of a path from a vertex y with only one arrow
leaving y must be the same for x and g(x). Hence A can not be A^ when
ZA/G is finite. •

Note that if A is an indecomposable selfinjective Nakayama algebra
with n nonisomorphic simple modules and of Loewy length m + 1,
then it follows from our computations of almost split sequences for
Nakayama algebras that TS

A is lEAaQ/{Tn). Actually it can be shown that
for indecomposable selfinjective algebras of finite representation type, TA

must be of the form ZA/G.

Exercises

1. Let V = (Vo, Vi) be a finite graph without loops. Define q: ZVo —> Z by

<?(/) = EieVo ff ~ E/GVI /«(')/>(/) w h e r e a(0 a n d P(!) a r e t h e e n d vertices
of / G Vi. Recall that q is positive definite if q(x) > 0 for x =/= 0 and
positive semidefinite if q(x) > 0 for all x.
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(a) Prove that q is not positive definite if V contains a cycle.
(b) Prove that q is not positive definite if V contains a subgraph of the

form

(c) Prove that if V contains a subgraph of the form

ar ar-\ a\ x c\ ct-i ct

then q is not positive definite i f ^ j + ^Y + ^ Y < l .
(d) Prove that q is positive definite if and only if V is one of the Dynkin

diagrams An, Dn, E6, E7 or £8.
(e) Prove that q is positive semidefinite but not positive definite if and

only if V is one of the Euclidean diagrams An,DmE^Ej or Eg.

2. Let A and A' be selfinjective algebras such that A/ soc A ~ A'/ soc A'.

(a) Prove that A is of finite representation type if and only if A' is of
finite representation type.

(b) Prove that TA ~ TA'.
(c) Prove that the algebras given in III Exercise 8(b) are selfinjective and

that (fcr/(p))/soc(fer/(p)) ~ (kT/(pf))/soc(kT/(pf)) for all fields k.
(d) Prove that kT/(p) from III Exercise 8(b) is of finite representation

type.
(e) Prove that kY/{p') and kT/(p) from III Exercise 8(b) have the same

AR-quiver but that the Auslander algebra of these two examples are
not isomorphic in characteristic 2.

(f) One of the Auslander algebras in (e) is given by the mesh relations.
Determine which one.

3. Let A be an artin algebra and A and B indecomposable A-modules. Let
/ i , . . . , / „ : A —• B be irreducible morphisms. Prove that (/i, . . . , / „ ) : nA —•
B is irreducible if and only if / i , . . . , / n are T^-linearly independent
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elements of In(A,B) and that (/i,...,/n) tr:,4 —• nB is irreducible if and
only if f!,...,fn are T5-linearly independent elements of

4. Consider the translation quivers

(i)

Prove that the translation quiver in (i) is not the AR-quiver of an artin
algebra and that the one in (ii) is the AR-quiver of an artin algebra.

5. Consider the translation quivers
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256 The Auslander-Reiten-quiver

Decide for each of the translation quivers above whether it is the AR-
quiver of an artin algebra or not.

Notes
Auslander-Reiten quivers were considered by Ringel in the mid seven-
ties. Since then they have become one of the main objects of study
in the representation theory of artin algebras. Translation quivers, an
abstraction of AR-quivers, played a central role in the classification of
selfinjective algebras of finite representation type [Rie]. More generally,
they play a basic role in covering theory as developed in [BoG].

The result that there exist no sectional cycles in an AR-quiver is due
to [BauS]. The proof given here is taken from [Bol]. The fact that there
are no double arrows in the AR-quiver of finite dimensional algebras of
finite representation type over algebraically closed fields is due to [Bau2].
The proof given here is due to Bongartz (see [Rie]).

The characterization of additive and subadditive functions on graphs
is found in [V]. The importance of such functions on AR-quivers was
first observed in [To] and subsequently exploited in [HapPR].

AR-quivers have appeared in settings other than artin algebras. For
example, they are used in an essential way in the classification of two-
dimensional orders of finite representation type in [ReV] and are closely
related to the resolution graphs of rational double points as shown in
[Au9], [AuR9]. Other examples can be found in [Yoshin].

The idea of sectional paths appeared in [Rie] and [Baul], and several
related concepts have been investigated. Information on which translation
quivers occur as AR-quivers is found in [BoG] and [Brenl]. The fact that
any basic fe-algebra over an algebraically closed field k of characteristic
different from 2 can be recovered from its AR-quiver follows from
[BauGRS].

For more illustrations of the use of AR-quivers we refer to [Ben], [Er],
[Rin3].
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VIII
Hereditary algebras

The representation theory of hereditary artin algebras is one of the most
extensively studied and best understood theories developed to date. The
theory has served not only as a model for what might be expected of
the representation theory of other types of artin algebras, but also as a
source of conceptual insights and technical information which have often
proven useful in dealing with questions about the representation theory
of related but not necessarily hereditary artin algebras, for example tilted
algebras.

Our purpose in this chapter is to give an introduction to this extensive
theory. While some of the general theory of preprojective, preinjective and
regular components of hereditary algebras is developed, we concentrate
mainly on hereditary algebras of finite representation type. A bilinear
form and its associated quadratic form are given on the Grothendieck
group of artin algebras of finite global dimension which is used to
give not only a classification of the hereditary artin algebras of finite
representation over an algebraically closed field, but also a classification
of their modules.

By way of an introduction to the theory of hereditary artin algebras
of infinite representation type, the last part of the chapter is devoted to
the study of the representation theory of the Kronecker algebra which
is the simplest, at least in some respects, of the hereditary artin algebras
of infinite representation type. A classification of all modules over the
Kronecker algebra is given using the Auslander-Reiten-quiver of the
algebra.

257
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258 Hereditary algebras

1 Preprojective and preinjective modules

This section is devoted to deriving basic properties of two important
types of modules over hereditary algebras. These results are then used to
give a description of the components of the AR-quiver of a hereditary
artin algebra which contain either projective or injective modules.

We begin by pointing out some distinctive features of modules over
hereditary algebras which play a crucial role in our discussion of prepro-
jective and preinjective modules. In this connection we remind the reader
that an artin algebra A is hereditary if and only if Aop is hereditary. We
now recall and elaborate on the properties of modules over hereditary
algebras given in IV Section 4.

Let A be a hereditary artin algebra. As usual, mod^A denotes the
subcategory of mod A consisting of those A-modules with no indecom-
posable projective summands and mod,/A denotes the subcategory of
mod A consisting of those A-modules with no indecomposable injective
summands. Since 0>(A,B) = 0 for all A and B in mod^ A by IV Propo-
sition 1.15, we have that mod^ A = mod^» A. Since J>{A, B) = 0 for all A
and B in mod,/ A, we have that mod/ A = mod/ A. Therefore the inverse
equivalences DTrimod^A —> m o d / A and TrZ):mod/A —• mod^A
give inverse equivalences D Tr: mod^ A —• mod/ A and Tr D: mod/ A —•
mod^> A. We now point out some other properties of these functors on
which the theory of preprojective and preinjective modules is built.

For each nonnegative integer n define mod^ A to be the subcategory of
mod^> A consisting of all A-modules A such that for all indecomposable
summands Af of A we have that (D Tr)Mr is not projective. Similarly,
define mod/ A to be the subcategory of mod/ A consisting of all A-
modules B such that for all indecomposable summands Bf of B we
have that (TvD)nBf is not injective. It should be noted that we have
mod^» A = mod^ A 3 mod^ A 3 • • • 3 mod|> A =» mod^ 1 A ID • • • and
mod/ A = mod/ A => mod/ A => • • • 3 mod/ A 3 mod^ 1 A =>•••. From
the easily verified fact that D((D Tr)M) ~ (TrD)n(DA) for all A in mod A,
it follows that a A-module A is in mod^ A if and only if the Aop-module
DA is in mod^ A. Therefore the duality D:modA —• mod(Aop) induces
a duality D:mod^ A —• mod^r(Aop). We will usually state our results for
the categories mod^ A and leave it to the reader to give the dual results
for the categories mod/ A.

The following result is our main reason for introducing the subcate-
gories modj, A of mod A.
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VIILI Preprojective and preinjective modules 259

Lemma 1.1 Let A be a hereditary artin algebra and n a nonnegative in-
teger. Then the functor (D Tr)n+1: mod^ A -> modjr A has the following
properties.

(a) The functor (D Tr)n+1 is full and faithful.
(b) A module A in mod^> A is indecomposable if and only if (D Tr)n+1^4

in mods A is indecomposable.

Proof (a) We proceed by induction on n. If n = 0, then mod̂ > A =
mod^ A and then we have the functor DTr:mod^ A —• mod^A which
we know is full and faithful. Suppose the statement in (a) is true
for n — 1 > 0. Let A and B be in mod^ A. Then A and B are
in m o d ^ A and so (DTr)n:HomA(A,B) -• HomA((D Tr)M, (D Tv)nB)
is an isomorphism. But (DTr)"(^4) and (DTr)n(B) are in mod^»A by
definition of mod^A. Therefore DTr:HomA((DTr)M,(DTr)n£)) -•
HomA((DTr)n+1,4,(DTr)n+1£) is an isomorphism. This implies that the
composition (DTr)"+1:HomA(,4,E) -• HomA((DTr)"+U,(2)Tr)w+1£) is
an isomorphism.

(b) This is a trivial consequence of (a). •

An indecomposable module A over a hereditary artin algebra A is said
to be preprojective if there is a nonnegative integer n such that (D Tr)M
is a nonzero projective module.

It is not difficult to see that for an indecomposable preprojective
module A there is only one nonnegative integer n such that (D Tr)M is a
nonzero projective module. We denote this uniquely determined integer
by v(A). If A is not preprojective, we define v(A) to be oo. We also remark
that if A is an indecomposable preprojective module, then (D Tr)v^^4
is an indecomposable projective module. We denote by ^(A) (or £P for
short) the indecomposable objects of ind A which are preprojective, and
sometimes we also view ^(A) as the corresponding full subcategory of
ind A. That a A-module A is an indecomposable preprojective module
will often be denoted by saying that A is in £P. An arbitrary A-module is
said to be a preprojective module if it is isomorphic to a sum of modules
in 0>. It is easy to see that an arbitrary module A is preprojective if and
only if (D Tr)M = 0 for some nonnegative integer n.

An indecomposable module B over a hereditary artin algebra A is
said to be preinjective if there is a nonnegative integer n such that
(TrD)nB is a nonzero injective module. It is not difficult to see that for
an indecomposable preinjective module B there is only one nonnegative
integer n such that (Tr D)nB is a nonzero injective module. We denote this
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260 Hereditary algebras

uniquely determined integer by ji{B). If B is not preinjective we define
n(B) to be oo. We also remark that if B is an indecomposable preinjective
module, then (TvDY^B is an indecomposable injective A-module. The
set of objects in ind A which are preinjective is denoted by ./(A), or by
«/ when it is clear with which hereditary artin algebra A we are dealing.
Sometimes ./(A) is viewed as the corresponding full subcategory of ind A.
That a module B is an indecomposable preinjective module will often be
denoted by saying that B is in «/. An arbitrary A-module is said to be
a preinjective module if it is isomorphic to a sum of modules in «/. It
is easy to see that an arbitrary module B is preinjective if and only if
(TrD)nJ5 = 0 for some nonnegative integer n.

We now show that preprojective and preinjective modules are dual
notions.

Proposition 1.2 Let A be a hereditary artin algebra. Then the duality
D:modA —• mod(Aop) induces a duality between the full subcategory of
mod A consisting of the preprojective A-modules and the full subcategory
o/mod(Aop) consisting of the preinjective A^v-modules.

Proof We only have to show that if A is a A-module, then A is pre-
projective if and only if the Aop-module DA is preinjective. But we have
already observed that D(D Tr)M ~ (TrD)n(DA). Therefore (D Tr)M = 0
if and only if (TrD)n(DA) = 0. This gives our desired result since A is
preprojective if and only if (D Tr)M = 0 for some nonnegative integer n
and a Aop-module B is preinjective if and only if (Tr D)nB = 0 for some
nonnegative integer n. •

In light of this result, we will usually concentrate on the preprojective
modules and leave it to the reader to give the dual statements for
preinjective modules.

We begin our study of the preprojective modules over a hereditary
artin algebra A with the following basic facts about

Proposition 1.3 Let Abe a hereditary artin algebra.

(a) A and B in £P(A) are isomorphic if and only if v(A) = v(B) and
the indecomposable projective modules (D Trf^A and (D Trf^B are
isomorphic.

(b) Let n be a nonnegative integer. Then the subset of^(A) consisting of
those A with v(A) < n is finite.

(c) The cardinality of 0>(A) is at most KQ.
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VIII.1 Preprojective and preinjective modules 261

Proof (a) We only have to show that if v(A) = v(B) and (DTrf^A ~
(DTvy^B, then A ~ B. But this follows from the fact that
(Tr D)^A\{D Tr)v^U) ~ A and (Tr D)^B\{D Tr)v^£) ~ B.

(b) Let n b e a fixed nonnegative integer. Suppose P is an indecompos-
able projective module. Then by (a) there are at most n nonisomorphic
modules A in & such that v(A) < n and (DTrf^A ~ P. Since there
are only a finite number of nonisomorphic indecomposable projective
modules, we have our desired result.

(c) This follows directly from (b). •

As an easy consequence of Proposition 1.3 we have the following.

Corollary 1.4 Let A be in £P.

(a) IfB is in SuppHomA( ,A), then B is in 0> with v(B) < v(A).
(b) SuppHomA( ,A) is finite.

Proof (a) To prove (a) it suffices to show the following. If B is in
SuppHoniA( 9A) with (DTrfB not projective for i < v(A) — 1, then
(D Tr)v{A)B is projective. Since B and A are in mod^ ) - 1 A, we have by
Lemma 1.1 that (D Tr) v ^: HomA(£,,4) -> HomA((D Tr)v^B, {D Tr)v^U)
is an isomorphism. Therefore there is a nonzero morphism h:
(D Trf^B -> (D Tr)v^U. Since (D Trf^A is projective and (D Trf^B
is indecomposable, it follows from III Lemma 1.12 that (DTr)v^B is
projective.

(b) By part (a) we have that SuppHomA( ,A) is contained in the subset
of & consisting of all X with v(X) < v(A), which we know is finite by
Proposition 1.3. •

We now apply our previous observations to show that ^(A) has a
natural structure as a partially ordered set. Consider the relation on

given by B < A if there is a finite sequence B = AQ -X A\ -* • • • -4 An = A
of nonzero morphisms between modules in ^(A). Since this relation is
obviously transitive and reflexive, it defines a partial order on ^(A) if it
is antisymmetric. That this is indeed the case is shown in the following.

Proposition 1.5 Let A be in 0>(A) for some hereditary artin algebra A.

(a) Suppose A = Ao —> A\ -> • • • -3. Am = A is a sequence of nonzero
morphisms between indecomposable modules. Then all the /,• are iso-
morphisms.
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262 Hereditary algebras

(b) EndA(^4) is a division algebra isomorphic to End\((D Tr

Proof (a) Since Am-\ is in SuppHomA( ,A) we have by Corollary 1.4
that v(Am-i) < v(A). Therefore it follows by induction on m that v(A) <
v(A\) < < v(At) < < v(A). Letting n = v(A)9 we have that
v(At) = n for all i = 0, l , . . . ,m. If n = 0, i.e. A is projective, then by
III Lemma 1.2 we have that all the A\ are indecomposable projective
modules and all the /,- are monomorphisms. But that means all the ft

are isomorphisms since Ao = A = Am.
Suppose n > 0. Then all the D Trn At are indecomposable projective A-

modules and so the A\ are in mod^"1 A. Since by Lemma 1.1 the functor
D Trn: mod^"1 A - • mody A is full and faithful, we have that (D Tr)M =

(Z)Tr)M0
 {DT-^h (DTrfAi -> ••• (DT^fm (DTr)nAm = ( D T r ) M is a se-

quence of nonzero morphisms between indecomposable projective mod-
ules. Hence all the (DTr)n/, are isomorphisms as in the case n = 0.
Therefore all the ft are isomorphisms since (D Tr)n: mod^"1 A —• mod,/ A
is a full and faithful functor.

(b) This is a trivial consequence of part (a). •

From now on we consider ^(A) for a hereditary artin algebra A as a
partially ordered set by means of the ordering given above, i.e. B < A if
there is a finite sequence of nonzero morphisms B = Ao —• • • * —• An = A
in ^(A). The following is an easily verified but nonetheless important
property of the ordering on

Proposition 1.6 Let A be in 0>(A). Then we have the following.

(a) IfB<A, then v(B) < v(A).

(b) The set of all B in 0>(A) with B <A is finite.

Proof (a) Suppose B < A and let B = Ao -* • • • -4 Am = A be a sequence
of nonzero morphisms in ^(A). Since fm:Am-\ —• Am is not zero, we
have that Am-\ is in SuppHoniA( 9Am) and so v(Am-\) < v(Am) = v(A) by
Corollary 1.4. Proceeding by induction on m, we have that v(B) < v(A).

(b) By (a) we have that the set of all B in ^(A) such that B < A is a
subset of the set of all X in ^(A) with the property v(X) < v(A). This is
a finite set by Proposition 1.3(b). •

We now apply Corollary 1.4 to obtain the following criterion for when
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VIILI Preprojective and preinjective modules 263

ExtJv(C,^) ± 0 for C in ^(A). Recall that SuppExt\(C, ) consists of all
indecomposable A-modules A in ind A such that ExtA(C,^4) ^ 0.

Proposition 1.7 Let A be a hereditary artin algebra and let C be in 0*.
Then we have the following.

(a) Supp Ext\(C, ) = Supp HomA( , D Tr C).

(b) SuppExtA(C, ) is a finite subset of 0* with the property that if A is
in SuppExt\(C, ), then v(A) < v(C) - 1.

(c) Exti(C,C) = 0.

Proof Since the proposition is clearly true for C projective, we may
assume that C is not projective.

(a) Let A be an indecomposable A-module. Since the projective
dimension of C is less than or equal to 1 we have by IV Corol-
lary 4.7 that /#ExtA(C,,4) = /RHomA(yl,DTrC). Therefore we have
that Extj^C, A) + 0 if and only if HomA(,4, D Tr C) ^ 0.

(b) Since C is in & and is not projective, D Tr C is in & with v(D Tr C) =
v(C)— 1. Therefore by Corollary 1.4 we have that SuppHomA(,D Tr C) is
finite and if A is in Supp HomA(, D Tr C), then v(,4) < v(D Tr C) = v (C) -
1. Our desired result now follows from the equality SuppExtA(C, ) =
SuppHomA( ,DTrC).

(c) This is a direct consequence of part (b). •

We now apply our results about preprojective and preinjective modules
to obtain information about the components of the AR-quiver of a
hereditary artin algebra containing projective or injective vertices. Since
the structure of the AR-quiver of an artin algebra A is determined by
the irreducible morphisms in mod A, it is natural to first investigate how
irreducible morphisms and preprojective and preinjective modules are
connected. The following is our first result in this direction.

Lemma 1.8 Let A be a hereditary artin algebra. Suppose B —• A is an
irreducible morphism between indecomposable A-modules. Then we have
the following.

(a) A is in 0> if and only if B is in 9.

(b) Suppose B is in 0>.

(i) If A is projective, then B is projective.

(ii) If A is not projective, then 0 < v(A) — 1 < v(B) < v(A).
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264 Hereditary algebras

Proof Suppose A is in &. Then B is in SuppHoniA( 9A) and so B is in
& with v(B) < v(A)^by Corollary 1.4.

Suppose B is in 3P. If A is projective, then A'\s'm0> and B is projective
by III Lemma 1.12. Suppose A is not projective. Then there is an irre-
ducible morphism DTrA —> B. So we have by our previous argument
that DTvA is in 0> with v(DTvA) < v(B). Therefore A is in & and we
have 0 < v(A) - 1 < v(B) < v(A) since v(DTrA) = v(A) - 1 when A is
not projective. This finishes the proof of the lemma. •

For an indecomposable preprojective module A we call the correspond-
ing vertex [/I] in the AR-quiver a preprojective vertex, and we identify the
set of objects & with the preprojective vertices in the AR-quiver. Then
Lemma 1.8 shows that if one vertex of a component of the AR-quiver
of a hereditary artin algebra is preprojective, then all the vertices in the
component are preprojective. Such components are called the preprojec-
tive components of the AR-quiver. We also have that & is the union of
the vertices in the preprojective components of the AR-quiver.

Dually we identify the objects J with the corresponding vertices in
the AR-quiver which we call preinjective vertices. If one vertex of a
component of the AR-quiver is preinjective, then all the vertices in the
component are preinjective. Such components are called the preinjective
components of the AR-quiver. We also have that «/ is the union of the
vertices in the preinjective components of the AR-quiver.

We now want to identify the preprojective components more precisely
as the components containing projective modules. Dually, the preinjective
components are the components containing injective modules. This
follows from the following more general result.

Proposition 1.9 Let A be an indecomposable module over a hereditary artin
algebra A. Then the following are equivalent.

(a) A is preprojective.

(b) SuppHomA( ,A) is finite.

(c) There exist a natural number m and a chain of irreducible morphisms

between indecomposable modules P = Co -* C\ - i • • • -+ Cm = A
with P projective and the composition fm • • • /2/1 not zero.

(d) There exist a natural number m and a chain of irreducible morphisms

between indecomposable modules P = Co —• C\ —• • • • —• Cm = A
with P projective.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.009
https://www.cambridge.org/core


VIII.1 Preprojective and preinjective modules 265

Proof (a) => (b) This is proven in Corollary 1.4(b).
(b) => (c) Since SuppHoniA( ,A) is finite we know by V Lemma 7.6(b)

that there is some n in N such that rad^( 9A) = 0. This implies by
V Proposition 7.4(b) that each nonzero morphism f:B^>A with B
indecomposable can be written as a sum of nonzero compositions of
irreducible morphisms between indecomposable modules. Since A =£ 0
there is some indecomposable projective module P in SuppHoniA( ,A).
Therefore there is a chain of irreducible morphisms between indecompos-

/l h fm
able modules P = Co —> C\ —> • • • —• Cm = A with nonzero composition.

(c) => (d) This is trivial.
(d) => (a) If A is projective, there is nothing to prove. Suppose A is

not projective and proceed by induction on m. If m = 1, then there is an
irreducible morphism P -» A. Then by Lemma 1.8 we have that A is in

Suppose m > 1. Then by the induction hypothesis we know that Cm-\
is in 3P. Since there is an irreducible morphism Cm_i —• A and A is not
projective, we have by Lemma 1.8 that A is in £P. This shows that (d)
implies (a). •

As an immediate consequence of this proposition we have the following.

Corollary 1.10 Let A be a hereditary artin algebra.

(a) A component of the AR-quiver of A is a preprojective component if
and only if it contains some projective vertices.

(b) A component of the AR-quiver of A is a preinjective component if and
only if it contains some injective vertices. •

From this it follows that a hereditary algebra has only a finite number
of preprojective components and a finite number of preinjective com-
ponents. Naturally, one would like to know their precise number. The
answer to this question is based on the description given in II Propo-
sition 5.2 of when an arbitrary artin algebra is indecomposable as an
algebra.

Suppose that A is a hereditary artin algebra and Q is an indecompos-
able projective module. Since xQ is a projective module, an indecompos-
able projective module P is a summand of the projective cover of xQ if
and only if it is a summand of r<2, or equivalently, there is an irreducible
morphism from P to Q.

Combining this remark with II Proposition 5.2 we obtain the following.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.009
https://www.cambridge.org/core


266 Hereditary algebras

Proposition 1.11 For a hereditary artin algebra A the following are equiv-
alent.

(a) The algebra A is indecomposable as an algebra.
(b) All the indecomposable protective A-modules belong to the same com-

ponent of the AR-quiver of A.
(c) The AR-quiver of A has only one preprojective component. •

As an immediate consequence of this result we obtain the following
answer to the question about the number of preprojective components
of the AR-quiver of a hereditary artin algebra.

Corollary 1.12 Let A be a hereditary artin algebra. Then we have the
following.

(a) Two indecomposable protective A-modules belong to the same block of
A if and only if they belong to the same preprojective component of
the AR-quiver of A.

(b) The number of preprojective components of the AR-quiver of A is the
same as the number of blocks of A. •

We now describe in terms of preprojective and preinjective modules
when a hereditary artin algebra is of finite representation type.

Proposition 1.13 The following are equivalent for a hereditary artin algebra
A.

(a) The algebra A is of finite representation type.
(b) All A-modules are preprojective.
(c) All injective A-modules are preprojective.
(d) All A-modules are preinjective.
(e) All projective A-modules are preinjective.
(f) All A-modules are both preinjective and preprojective.

Proof (a) o (b) We know by V Theorem 7.7 that A is of finite represen-
tation type if and only if SuppHoniA( ,A) is finite for all indecomposable
A-modules A. But by Proposition 1.9 we know that an indecomposable
module A is preprojective if and only if SuppHomA( ,A) is finite. This
gives the equivalence of (a) and (b).

(b) o (c) That (b) implies (c) is trivial. Assume now that D(A) is
preprojective. By Corollary 1.4 we have that SuppHoniA( ,D(A)) consists
only of preprojective modules. But every indecomposable module is in
SuppHomA( ,D(A)), so (c) implies (b).

(a) o (d) This is the dual of (a) o (b).
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VIII. 1 Preprojective and preinjective modules 267

(d) o (e) This is the dual of (b) o (c).
(a) o (f) This is a trivial consequence of previous implications. •

We now prove a stronger version of this proposition.

Proposition 1.14 Let A be a hereditary artin algebra which is indecom-
posable as an algebra. Then A is of finite representation type if and only
if there is an indecomposable A-module A which is both preprojective and
preinjective.

Proof If A is of finite type then all preinjective modules are preprojective
so then there exist indecomposable modules which are both preprojec-
tive and preinjective. Assume next that there exists an indecomposable
preinjective module A which is preprojective. Since A is indecomposable
as an algebra there is only one component of the AR-quiver containing
preprojective modules and only one component containing preinjective
modules. Since they have [A] in common, they have to coincide. There-
fore all injective A-modules are preprojective, which by Proposition 1.13
implies that A is of finite representation type. •

Having described the preprojective components and the preinjective
components of the AR-quiver of a hereditary artin algebra abstractly we
now want to describe them geometrically.

Recall from Chapter III that for any artin algebra A we defined the
valued quiver of A in the following way. Let {Si,...,Sn} be a complete
list of the simple A-modules up to isomorphism. Let {l, . . . ,n} be the
vertices of the quiver of A, and let there be an arrow from i to j if and
only if Ext\(Sj, Sj) =f=- 0 and give such an arrow valuation (a, b) where
b = dimEndA(s.)op Ext\(Sj, Sj) and a = dimEndA(S.)Exti(5I,57). Let Pt be
the projective cover of St for i = l , . . . ,n. We know that if there is an
arrow from i to j there is a nonzero morphism from Pj to Pu and if A is
hereditary there are no oriented cycles in the quiver by III Lemma 1.12.
Recall also that Extj^S,-, Sj) ^ 0 if and only if Pj is a summand of the
projective cover of xPi9 which for a hereditary algebra is equivalent to
the existence of an irreducible morphism from Pj to Pt. Hence if A is
hereditary, there is an arrow from i to j in the quiver of A if and only if
there is an irreducible morphism from Pj to Pt in the AR-quiver.

Consider the valued arrows • A • in the quiver of A and P, +- Pj

in the AR-quiver of A when A is hereditary. By definition we have b =
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>Ext\(S/,S/) and a = dimEndA(S/)Ext\(Si,S/), and from Chap-
ter VII we have d = dimEndA(s.)oP IrrfP^P,-) and b' = dimEndA(S/) Irr(P;-,Pj).
Since both a and br give the multiplicity of Pj as a summand of xPt by
III Proposition 1.14 and VII Proposition 1.3, and a/b must be equal to
a'/b', we have (b,a) = (d,bf). Hence the preprojective component of
an indecomposable hereditary artin algebra A contains a full subquiver
isomorphic to the transpose of the quiver of the opposite algebra of
A. Since the valued quiver A of a hereditary artin algebra contains no
oriented cycles we can form the translation quiver ZA which also has no
oriented cycles. We denote by NA the subtranslation quiver of ZA with
vertices (n, i) with n > 0 and i e Ao. Identifying the set of isomorphism
classes of indecomposable projective modules {[Pi],..., [Pn]} and the set
of vertices in A we obtain the following result.

Proposition 1.15 Let A be an indecomposable hereditary artin algebra and
A the transpose of the valued quiver o/Aop. Then <j>\0P —> (NA)o defined by
c/)([A]) = (v(A), [(D Trf^A]) gives an injective translation quiver morphism
from the preprojective component of A to NA.

Proof We only have to verify that </> behaves nicely with respect to

the valued arrows in the preprojective component. So let [A] A [B]
be a valued arrow in the preprojective component of A. If v(A) = v(B)

we have the valued arrow [(D Tr)v^U] ( ^ [(D Tr)v(*>fl] between projec-
tive vertices in 0>. Hence there is an arrow from (v(A), [(DTrf^A]) to
(v(B), [(DTr)v<*>fl]) in NA. If v(A) = v(B) - 1 we have an arrow from
(DTv)v{B)B to (DTr)v{A)A with valuation (b,a). Hence there is a unique
arrow from (v(A), [(DTr)v^U]) to (v(B), [(DTrf^B]) in NA with valu-
ation (a, b). •

We now use the translation quiver morphism (j> to give a different
characterization of finite representation type.

Proposition 1.16 Let A be an indecomposable hereditary artin algebra and
let (j) be as above. Then A is of infinite representation type if and only if
(p is a bijection.

Proof If (j) is surjective then there are infinitely many preprojective
modules and hence A is of infinite representation type.

Conversely if A is of infinite representation type, then (Tr D)nPt =fc 0
for all n. Hence for each n e N and Pt projective we have that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.009
https://www.cambridge.org/core


VIII.2 The Coxeter transformation 269

4>[(TvD)nPt] = (n, [P;]), which shows that 4> is surjective. The map (/>
is always injective by Proposition 1.15 so we have that </> is a bijection. •

The quiver A of the opposite algebra of an indecomposable hereditary
algebra A is called the type of the preprojective component of A. It
follows from III Proposition 1.4 that any finite nonvalued quiver without
oriented cycles is realized as the type of a preprojective component of
a hereditary algebra. In Section 6 we describe exactly which valued
quivers are realized as the type of a preprojective component for an
indecomposable hereditary artin algebra.

2 The Coxeter transformation

In this section we introduce the Coxeter transformation on the
Grothendieck group Ko(modA) of A when A is an artin algebra of
finite global dimension. We show that this transformation is closely
related to DTr for hereditary algebras and use this to prove that the
indecomposable preprojective and preinjective modules over a hereditary
artin algebra are determined by their composition factors.

Recall from I Section 1 that the Grothendieck group Ko(modA) of
an artin algebra A is the abelian group F(mod A)/.R(mod A), where
^(modA) is the free abelian group on the isomorphism classes [M] of
finitely generated A-modules M and K(mod A) is the subgroup generated
by expressions [̂ 4] + [C] — [B] whenever there is an exact sequence of
A-modules 0 - > , 4 - > £ - > C - » 0 .

Throughout this section we let {Si,..., Sn} be a complete set of noniso-
morphic simple A-modules. Then [Si],..., [Sn] form a basis for Ko(mod A)
by I Theorem 1.7. Let Pj be the projective cover of S; and Ij the injective
envelope of Sj for j = l,...,n. Recall that / ; ~ DHom\(Pj,A) for all
j = 1,..., n by II Proposition 4.6.

The definition of the Coxeter transformation depends on the following.

Lemma 2.1 Let A be an artin algebra of finite global dimension and S;-, Pj
and Ij as above. Then the sets { [Pj] }"=1 and { [Ij] }"=1 are both bases for
Ko(modA).

Proof We prove that the set {[Pj] }n
j=1 is a basis for X0(mod A). The

other half follows by duality. Since this set has n elements it is enough
to prove that it generates Ko(mod A), since Ko(mod A) is a free abelian
group of rank n. Let S be a simple A-module. Since A has finite global
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dimension there exists a finite projective resolution of 5,

o -> Qm -> • • • -> Q2 -> 2i -> 6o -> s -> o.

Then [S] = $Xo(—iy'tQi] i n ^o(mod A), hence [S] is in the subgroup of
Ko(mod A) generated by { [PJ] }"=1 and therefore Ko(mod A) is generated

by {[Pj] }nj=v D

Let A be an artin algebra of finite global dimension and define
c:Ko(mod A) —• Ko(mod A) by c([Pj]) = —[//], where S/,P/ and Ij are as
before. This is clearly an isomorphism since c takes a basis to a basis
according to Lemma 2.1, and it is called the Coxeter transformation.
Observe that c[P] = — [Z>HoniA(P, A)] for any projective A-module P.

We now specialize to A being a hereditary artin algebra. We fix the basis
$ = { [Si],.. . , [Sn]} of Ko(modA). A nonzero element x e Ko(modA)
is called positive if all its coordinates with respect to & are nonnegative,
or equivalently x = [M] for a module M in mod A. A nonzero element
x e Ko(mod A) is called negative if all its coordinates with respect to $
are nonpositive, or equivalently x = — [M] for a module M in mod A.
We have the following result.

Proposition 2.2 Let Abe a hereditary artin algebra and let c be the Coxeter
transformation. We then have the following.

(a) IfM is in mod A, then c[M] = [DExtj^M, A)] - [D HomA(M, A)].
(b) If M is an indecomposable nonprojective A-module, then c[M] =

[DTrM].
(c) Let M be an indecomposable A-module. Then M is projective if and

only if c[M] is negative.
(d) If M is an indecomposable module, then c[M] is either positive or

negative.
(e) IfM is in mod A, then c~l [M] = [Extj^DM, A)] - [HomAoP(DM, A)].
(f) If M is an indecomposable noninjective A-module then c~l [M] =

[TvDM].
(g) Let M be an indecomposable A-module. Then M is injective if and

only if c~l[M] is negative.
(h) If M is an indecomposable A-module, then c~l [M] is either positive

or negative.

Proof We only prove statements (a), (b), (c) and (d) since statements
(e), (f), (g) and (h) are duals of (a), (b), (c) and (d) respectively.

In order to prove statement (a), let M be in mod A and let 0 —•
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VIII.2 The Coxeter transformation 111

P\ —• Po —• M —> 0 be a minimal projective resolution of M. Applying
HomA(, A) and writing X* for HomApf, A) we obtain the exact sequence

0 -> M* -» Po* -> p ; -» Ext\(M, A) - • 0.

Next, applying the duality we get the exact sequence

0 -> D Ext\(M, A) -> DP; - • DPQ -> DM* -> 0.

From this we deduce that [D Extj^M, A)] - [DM*] = [DP{] - [DPQ] =
-c[P,] + c[P0] = c([P0] - [Pi]) = c[M].

(b) We know that if M is an indecomposable nonprojective module,
then HoniA(M, A) = 0 since A is hereditary. Therefore we have c[M] =
[D Ex t^M, A)] according to (a). But for a hereditary artin algebra A, the
functor Tr is isomorphic to Ext\( ,A), and hence c[M] = [DTrM].

The statements (c) and (d) are direct consequences of (a) and (b). •

As an immediate consequence of this proposition we have the following
results about indecomposable modules over a hereditary artin algebra A.

Corollary 2.3 Let M and N be indecomposable modules over a hereditary

artin algebra A with [M] = [N] in Ko(modA) and let c be the Coxeter

transformation.

(a) M is projective if and only if N is projective.
(b) If M is projective, then M ~ N.
(c) M is preprojective if and only if there exists a natural number n with

cn[M] negative.
(d) If M is preprojective, then M ~ N.
(e) M is injective if and only if N is injective.
(f) If M is injective, then M ~ N.
(g) M is preinjective if and only if there exists a natural number m with

c~m[M] negative.
(h) If M is preinjective, then M ~ N.

Proof Again we only prove the statements (a), (b), (c) and (d). The
other statements are duals of these statements.

(a) Let M and N be indecomposable modules. From Proposition 2.2 (c)
we have that M is an indecomposable projective module if and only if
c[M] is negative. But since c[M] = c[N] and N is indecomposable, we
get that N is projective if and only if M is projective.

(b) Let M and N be indecomposable modules with [M] = [N] and M
projective. From (a) it follows that both M and N are projective. Since
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M is projective and [M] = [N] there exists a nonzero homomorphism
/ : M —> N. But since A is hereditary and N is an indecomposable pro-
jective module and M is indecomposable, / has to be a monomorphism.
Finally [M] = [N] implies that M and N have the same length and
therefore / has to be an isomorphism.

(c) Let M be an indecomposable module. We know that M is pre-
projective if and only if there exists a nonnegative integer n such that
(D Tr)"M is projective. Using Proposition 2.2(b) and (c) we have that the
last statement is equivalent to the existence of a nonnegative integer m
such that cm[M] is negative.

(d) Let M and N be two indecomposable modules with [M] = [N]
and let M be preprojective. We know from (c) that there exists a positive
integer m such that cm[M] = cm[N] is negative. Let m be the least such
number. Then [(DTr)™"1^ = cm-l[M] = ^[N] = [(DTr)™"1^ is
positive and hence (DTr)m - 1M and (DTr)m~1AT are both indecompos-
able projective and therefore isomorphic according to (b). Hence M is
isomorphic to N. •

In the next chapter we will come back to the problem of when over ar-
bitrary artin algebras indecomposable modules M are determined by [M]
in Ko(mod A), as we have just shown for preprojective and preinjective
modules over a hereditary artin algebra.

Since by Proposition 1.13 we have that all modules over an hereditary
artin algebra of finite representation type are preprojective, the following
is an immediate consequence of the above result.

Corollary 2.4 Suppose A is a hereditary artin algebra of finite representa-
tion type. Then two indecomposable A-modules M and N are isomorphic
if and only if [M] = [N] in K0(mod A). •

3 The homological quadratic form

When a hereditary artin algebra A is of finite representation type, then
all indecomposable A-modules are preprojective and preinjective. We
shall see however that if A is of infinite representation type, there is
always some indecomposable A-module which is neither preprojective
nor preinjective, and such modules and their components of the AR-
quiver will be investigated in the next section. We obtain this result as
a consequence of introducing a homological quadratic form associated
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with any artin algebra of finite global dimension, and showing that for
a hereditary algebra A this form is positive definite if and only if A is of
finite representation type.

Let A be an artin K-algebra of finite global dimension n. For each short
exact sequence 0 —• N' —• N —• N" -> 0 in mod A and each M in mod A
we obtain the long exact sequence 0 —> HoniA(M, Nf) —• HoniA(M, N) —>
HomA(M,AT) -> Ext\(M,AT) - • •• • - • Extn

A(M,Nf) -> Ext\(M,N) ->
Ext\(M,N") —> 0. Hence by counting lengths we get

1=0 ;=o

Similarly, if 0 —> Mf —> M —> M" —> 0 is an exact sequence and N is a
A-module we obtain

/ U M", N)).
n

i=0

Therefore defining

B(M,

M,

N)

N)) =

n

i=0

n

i=0

for each pair of modules M and JV in mod A we get a bilinear form from
Ko(mod A) x Ko(mod A) to Z, which we also denote by B. Associated
with this bilinear form is the quadratic form q:Ko(modA) —> TL where
q(x) = B(x,x) for x in Ko(modA), and which we call the homological
quadratic form. Recall that q is positive definite if q(x) > 0 for all x ^ 0..

We now restrict our consideration to hereditary algebras and prove
that q is positive definite if and only if A is of finite representation type.

We first prove the following.

Proposition 3.1 Let A be a hereditary artin algebra and q the associated
homological quadratic form. If A is of infinite representation type, then q
is not positive definite.

Proof Let A be a hereditary artin .R-algebra of infinite representation
type which we without loss of generality may assume is indecomposable
as an algebra. Then the preprojective component of the AR-quiver FA
is infinite. Hence for each indecomposable projective A-module P and
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each natural number n we get that

q([(TrD)nP]) = lR(EndA((TrD)nP))-lR(Exti((TiD)nP9(TTD)nP»

= /*(EndA((TrD)wP))

since E x t j ^ T r D f P ^ T r D f P ) = 0 by Propositionl.7. Further, for hered-
itary artin algebras we have that EndA((TrD)nP) is a division ring
isomorphic to EndA(P) by Proposition 1.5. Hence q assumes the value
Zfl(EndA(P)) for infinitely many different elements x in Ko(mod A). How-
ever, if q is positive definite q extends by linearity to a positive definite
form on Q ®% Ko(mod A). Further, q extends to a continuous quadratic
form on R <g>% Ko(mod A). However, if q is positive definite, q ex-
tends by linearity to a positive definite form on Q ®z Ko(mod A) and
by continuity to a quadratic form on R ®% Ko(mod A) which we also
denote by q. Considering the associated symmetric bilinear form B1 on
Q® zK0(modA)xQ® zK0(modA) given by Bf(x,y) = \(B(x,y)+B(x9y)),
there is by the Gram-Schmidt process an orthogonal basis {v\9...9vn} of
Q (g)z^o(modA) relative to B'. Let v = J ^L i 'W ^ 0 be an element
of R<g>zKo(modA). Then we have that q(v) = YM=I ocfB\vt, vt) > 0
and hence the extension of the quadratic form to R ®% Ko(mod A) is
positive definite. Hence the extension of q to a quadratic form on
R ®z Ko(mod A) is positive definite. But it is well known that for a
positive definite quadratic form q on a finite dimensional vector space
V over the real numbers, the set {x G V\q(x) < r} is a bounded set for
each real number r. Hence for each real number r there is only a finite
number of lattice points z in R <g>z .Ko(flK)d A) which satisfy q(z) < v.
Especially this holds for v = lR(End\P). This finishes the proof of the
proposition. •

In order to prove the converse of Proposition 3.1 we will need the
following lemma which also has some other applications.

Lemma 3.2 Let A be an artin R-algebra and let Nf and AT" be A-modules.
IfO^>N'^>N^>N"-*Oisa nonsplit extension, then lR(EndA(N)) <
lR(EndA(N'UN"))-l.

Proof Let A be an artin R-algebra, N' and N" modules and assume
0 —> Nf —• N —• N" —> 0 is a nonsplit extension. We then obtain the
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following exact commutative diagram with / nonzero.

0 0 0

1 I 4
0 -> HomA(N",Ar') -> HomA(N",A0 -> HomA(JV", N")

4 I 4
0 - • HomA(JV,JV') -> HomA(iV,JV) - • HomA(JV,N")

I 4 1
0 -> HomA(N',iV') - • HomA(JV',JV) -> HomA(AT,iV")

Since / is nonzero we have

fc(HomA(JV, AT')) < lR(HomA(N",N')) + lR(HomA(N'9N')) - 1.

Hence we get

/R(HomA(JV, N)) < lR(HomA(N, N')) + lR(HomA(N9 N"))

< lR(HomA(N", Nf)) + /R(HomA(iV/, JV')) - 1

+ lR(HomA(N",N")) + lR(HomA(N',N"))

= lR(EndA(NfUN"))-L

D

In order to establish the converse of Proposition 3.1 as well as proving
that there exist modules which are neither preprojective nor preinjective
for an artin algebra of infinite representation type we need the following.

Lemma 3.3 Let A be a hereditary artin algebra with q the homological
quadratic form. Then q([M]) > 0 for all nonzero M in mod A if and only
tf <l(x) > 0 for att nonzero x in Ko(modA).

Proof We only have to prove that if g([M]) > 0 for all nonzero M in
mod A, then q(x) > 0 for all nonzero x in Ko(mod A). Assume therefore
that g([M]) > 0 for all nonzero M in mod A and let x e Ko(modA)
be nonzero. Then there exist M and JV in mod A without common
composition factors such that x = [M] — [N]. Calculating q(x) we get

q(x) = B(x,x)

= B([M], [Ml) + B{[N], [N]) ~ B([M], [N]) - B([N], [M])

= q([M]) + q([N])-lR(HomA(M9N))

+lR(Extx
A(M9 N)) - lR(HomA(N, M)) + lR(Ext{(N, M)).
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However, HomA(M,JV) = 0 = Hom\(N,M) since M and N have no
common composition factors, so q(x) > q([M]) + q([N]). Since at least
one of the modules M and N is nonzero, we get q(x) > 0. •

The next result shows that the homological quadratic form not being
positive definite implies the existence of a certain type of indecomposable
modules.

Proposition 3.4 Let A be a hereditary artin algebra with homological
quadratic form q. If q is not positive definite then the following hold.

(a) There exists an indecomposable module M with Ext\(M,M) ^ 0.

(b) There exists an indecomposable module which is neither preprojective
nor preinjective.

(c) A is of infinite representation type.

Proof (b) follows from (a) since the indecomposable preprojective and
preinjective modules have no selfextensions by Proposition 1.7 and its
dual.

In order to establish (a), let A be an artin algebra where the homolog-
ical quadratic form q is not positive definite. Then there exists a nonzero
element x e Xo(mod A) with q(x) < 0. But this happens if and only if
there is a nonzero module M in mod A with q([M]) < 0 by Lemma 3.3.
Choose now M nonzero such that lR(End\(M)) is minimal and such that
q[(M)] < 0. We claim that there exists an indecomposable module N in
mod A with l(N) < l(M) such that Extj^JV, AT) ^ 0.

If M contains an indecomposable summand N with Extj^iV, JV) =£ 0
we are finished. So without loss of generality we assume that all indecom-
posable summands N of M have the property that Extl

A(N,N) = 0. We
show that this implies that M is indecomposable with Ext\(M, M) =£ 0.

Since q([M]) < 0 it follows that Ext\(M,M) ^ 0. Then there ex-
ists an indecomposable summand M\ of M with Ext^M^M) ^ 0.
Decompose M as Mi]jM2. Since by assumption Ext\(Mi,Mi) = 0
we have Ext\(Mi,M2) =£ 0. So we have a nonsplit exact sequence
0 - • M2 - • M' - • Mi - • 0. But then lR(EndA(M')) < /*(EndA(Mi ]J M2))
by Lemma 3.2. Since [Mf] = [M], we get a contradiction to our choice of
M. Hence M has an indecomposable summand N with Extĵ JV îV) ^ 0.

Part (c) follows from (b) since for a hereditary artin algebra of fi-
nite representation type every indecomposable module is preprojective or
preinjective. •
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We have the following immediate consequence of Proposition 3.1 and
Proposition 3.4.

Corollary 3.5 If A is a hereditary artin algebra of infinite representation
type, there is some indecomposable A-module which is neither preprojective
nor preinjective. •

We also get the following characterization of finite representation type
in terms of the homological quadratic form using Proposition 3.1 and
Proposition 3.4.

Theorem 3.6 Let A be a hereditary artin algebra with homological quad-
ratic form q. Then A is of finite representation type if and only if q is
positive definite. •

4 The regular components of the Auslander-Reiten-quiver

In the first section of this chapter we were considering the components
of the AR-quiver of a hereditary artin algebra containing projective and
injective vertices. This gave the description of the preprojective and
preinjective modules and the preprojective and preinjective components
of the AR-quiver. For hereditary artin algebras of finite representation
type this gives a description of all indecomposable modules, and of the
whole AR-quiver. However, if A is of infinite representation type, then
there exist by Corollary 3.5 indecomposable A-modules which are nei-
ther preprojective nor preinjective. Such modules will be called regular
modules, and the components of the AR-quiver containing regular mod-
ules will be the main object of study in this section. These components
are called the regular components of the AR-quiver. Also a module M
which is isomorphic to a sum of regular modules will be called a regular
module.

In V Section 6 we associated to each indecomposable nonprojective
A-module C the number of summands in a decomposition of B into
indecomposable modules when there is a minimal right almost split
morphism f:B —• C. This number was denoted by <x(C) and is, as
mentioned in V Section 6, in a sense a measure of the complexity of
morphisms to C. It is also a measure of the complexity of FA in a
neighbourhood of the vertex [C] associated with C. We will in this
section prove that a(C) < 2 for each C corresponding to a vertex in
a regular component of the AR-quiver of a hereditary artin algebra.
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Further we prove that if / : B\ \J #2 —• C is a minimal right almost split
morphism with B\ and £2 nonzero, then one of the morphisms / l ^ and
f\s2 is an epimorphism and the other one is a monomorphism. This
has the consequence that the valuation on the regular component of the
AR-quiver of a hereditary artin algebra is always (1,1) and may therefore
be omitted.

Before starting the discussion of the regular modules we need some
preliminary results. As usual, let mod^ A denote the full subcategory of
mod A consisting of all A-modules with no nonzero projective summands.
We have the following description of irreducible morphisms in mod^ A
when A is hereditary.

Proposition 4.1 Let Abe a hereditary artin algebra. A morphism f:A-+B
with A and B in mod^> A is irreducible if and only if in any commutative
diagram

with Y in mod^» A either g is a split monomorphism or h is a split epimor-
phism.

Proof Let X be in mod A. Write X as Y ]J P with Y in mod^> A and P
projective. Then any commutative diagram

can be written as

g

A -

A •

X

f

YUP

h

• B

+- B

Since A is in mod^» A and P is projective, we have that g2: A —• P is zero,
so that the diagram
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commutes. Since A is in mod^ A we have that g\ is a split monomor-
phism if and only if (gl) is a split monomorphism and since B is in
mod^> A we have that h\ is a split epimorphism if and only if (/n,/^) is
a split epimorphism. Our desired result is a trivial consequence of this
observation. •

Applying this lemma we obtain the following important connections
between irreducible morphisms and the functors DTr and TrD.

Corollary 4.2 The following statements are equivalent for a morphism
f.A^B in mod^>A when A is a hereditary artin algebra.

(a) The A-morphism f:A-*B is irreducible.
(b) The A°P-morphism Tvf.TvB -> TvA is irreducible.
(c) The A-morphism DTrf:DTrA-+DTrB is irreducible.

Proof (a) o (b) This equivalence follows immediately from the fact
that Tr:mod^»A —• mod^Ao p is a duality and the criterion given in
Proposition 4.1 for a morphism in mod^ A to be irreducible.

(b) <=> (c) This equivalence follows from the fact that a morphism / in
mod A is irreducible if and only if D(f) in mod(Aop) is irreducible. •

The following is the dual of Corollary 4.2.

Corollary 4.3 The following statements are equivalent for a morphism
f.A^B in mod^ A where A is a hereditary artin algebra.

(a) The morphism f:A^>B is irreducible.
(b) The morphism TrD(f):TrDA - • TrDB is irreducible. •

In IV Corollary 1.14 we showed that for a hereditary algebra A, the
functors Tr:modA - • mod(Aop) and Extjv( , A): mod A - • mod(Aop) are
isomorphic. So the functor Tr is right exact, i.e. if 0 -> A —> B —>
C —> 0 is an exact sequence, then TrC —> TrB —> Tr,4 —• 0 is exact.
Therefore the functor D Tr: mod A —• mod A is left exact and the functor
TrD:modA —• mod A is right exact. We now want to refine these
observations a bit.

Lemma 4.4 Let 0—>A-+B^>C-+0bean exact sequence for a
hereditary artin algebra A. Then we have the following.

(a) If A is in mod^A, then 0 - • TrC - • TrJ5 - • T r ^ - • 0 and 0 ->
DTr,4 —>DTrJ3 —>DTrC —> 0 are exact sequences.
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(b) IfC is in mod/ A, then 0 - • Tr DA -» TrDB - • TrDC -> 0 is

Proof (a) Applying the functor HoniA( ,A) to the exact sequence 0 —•
4̂ —• B —> C —• 0 we get the exact sequence HomA(^4, A) —• Ext\(C, A) —•

Ext^(5,A) - • Ext\(i4,A) -> 0. Since A is in mod^A, it follows that
Hom\(A9 A) = 0, which gives the first part of (a). The second part of (a)
follows trivially from the first part.

(b) Since C is in mod^ A, we have that D(C) is in mod^(Aop). Then
we have by (a) that 0 -> TvDA - • Tr DB -> TrDC - • 0 is exact. •

We now apply these general remarks to the category ^(A) of all regular
modules over a hereditary artin algebra A of infinite representation type.

It follows from Section 1 that ^(A) has the following properties.

(a) If there is an irreducible morphism A —• B between indecomposable
modules, then A is in J*(A) if and only if B is in 0t{S).

(b) If A is in #(A), then DTvA and Tr DA are in
(c) J>(A) is contained in mod^ A Pi modjr A.

Combining these properties of ffi(k) with our previous results about
D Tr and Tr D we have the following.

Proposition 4.5 Let Abe a hereditary artin algebra of infinite representation

type. Then the functors DTr:^(A) -> 9t(S) and TrD:^(A) -> St{K) are

inverse equivalences which preserve

(a) exact sequences,
(b) irreducible morphisms,
(c) almost split sequences. •

We are now ready to start our investigation of the structure of the
regular components of a hereditary artin algebra A of infinite representa-
tion type. For the sake of brevity, we make the convention in this section
that when we speak about regular A-modules we are assuming that A is
a hereditary artin algebra of infinite representation type.

We start with the following general remark.

Proposition 4.6 Let M and N be in <M(A).

(a) If there is a proper monomorphism f:M^>N, then there is no proper
monomorphism g:N -> Tr DM.

(b) If there is a proper epimorphism f:M^>N then there is no proper
epimorphism g.TrDN —> M.
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Proof (a) Assume that there is a proper monomorphism f:M —>
N. Since DTr:^(A) —• J*(A) is an exact equivalence of categories,
(Z> Tr)n: J>( A) —• &(A) is an exact equivalence of categories for all
positive integers n. Therefore (DTr)n/:(DTr)"M -> (DTr)nN is a
proper monomorphism for all positive integers n. Suppose now that
g:N^> Tr DM is a proper monomorphism. Then (D Tr)ng: (D Tr)nN ->
( D T r f " l M is a proper monomorphism for all positive integers n. Then
we get the infinite sequence of proper monomorphisms

lN v ~ ^ 6 D T r M ~^J DTrN ~ ^ 6 M ±> N,

which contradicts the fact that N has finite length. Therefore g is not a
proper monomorphism.

(b) This is dual of (a). •

As an immediate consequence of this result, we have the following.

Corollary 4.7 Let f:M—>N and g: N —• Tr DM be irreducible morphisms
with M and N in &(A). Then f is a monomorphism if and only if g is an
epimorphism. •

We now apply this corollary to obtain the following result about
irreducible morphisms in

Lemma 4.8 Let A be a hereditary artin algebra and M an indecomposable
module in

(a) Let (fufi)'-X]\Y —> M be an irreducible morphism. If f\ is an
epimorphism, then fi is a monomorphism.

(b) Let ( gl j : M - > I [ j y be an irreducible morphism. If g\ is a mono-

morphism, then g2 is an epimorphism.

Proof As usual we prove (a) and the proof dualizes to establish (b).
Assume (fuf2)-X]jY —> M is irreducible with f\ an epimorphism.
Then there exist a module Z and a morphism fy.Z —• M such that

is an almost split sequence. Since f\ is an epimorphism, (h
h
2) : D Tr M —>

Y ]\Z is an epimorphism by I Corollary 5.7. This implies that hi is an
epimorphism. Therefore fi is a monomorphism by Corollary 4.7. •
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The next lemma is needed to prove that if M is an indecomposable
module in &(A), then a(M) < 3, which is a step towards proving our
desired result that a(M) < 2.

Lemma 4.9 Let A be a hereditary artin algebra and M an indecomposable

A-module in M{A). If there exists an epimorphism / : JV —> M which is

irreducible and ( / , g) : N \J B —• M is irreducible for some g:B —• M,

either B is indecomposable or zero.

Proof Let / : N —• M be an irreducible epimorphism and let

V X 7

be an almost split sequence. Since / is an epimorphism, h is a monomor-
phism by Corollary 4.7. Hence (fufi) is a proper monomorphism
and (jj1 j is a proper epimorphism by I Corollary 5.7. Therefore

TrD ( M :M -> TrD(Bi]J^2) is a proper epimorphism by Proposi-
tion 4.5. Then we have that l(M) > /(TrDBi) + l{TrDB2) and l(M) >
l(Bi) + l(B2). Hence we get 2/(M) > /(TrDBi) + /(J5i) + /(TrDB2) + /(B2).
However, if both B\ and 52 are nonzero they contain indecomposable
summands B[ for i = 1,2 with almost split sequences

such that M is a summand of Q for i = 1,2. Hence we get l(M) <
l(B<) + l(TrDB[) < l(Bi) + l(TrDBi) for i = 1,2. Therefore 2/(M) > 2/(M)
if both B\ and B2 are nonzero, which gives a contradiction. Hence either
B\ or B2 is zero, which completes the proof of the lemma. •

We now prove that a(M) < 3 for any indecomposable module M in

Proposition 4.10 Let Abe a hereditary artin algebra and M an indecom-
posable module in &(A). Then we have the following.

(a) a(M)<3.

(b) If <x(M) = 3 and

()
0 -> DTrM V-̂ 4 Bi U^211^3 ( / ^ 3 ) M -> 0
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is an almost split sequence, then each gt is an epimorphism and each
ft is a monomorphism.

Proof Consider the almost split sequence

0 -• D Tr M ^ U"=iBi -^> M -> 0

where B\,B2,...,Bn are indecomposable modules. Assume n > 2. Then
it follows from Lemma 4.9 that none of the /,- are epimorphisms. Con-
sider the map (fuf2):B\ \JB2 -» M. If (fuf2) is an epimorphism,
then U?=3^i is either indecomposable or zero by Lemma 4.9. Hence
n < 3 in this case. If (fufi) is not an epimorphism, it is a monomor-
phism and hence (gl j is an epimorphism by Corollary 4.7. Therefore
(/3,--,/n):£3lI -U^n -» M is an epimorphism and consequently B\
or B2 is zero. This contradicts the indecomposability of B\ and B2, and
completes the proof of (a) as well as (b). •

We now want to exclude the possibility that a(M) may be 3. In order to
do this we have to analyze more closely what happens in case a(M) = 3
for an indecomposable module M in

Proposition 4.11 Let A be a hereditary artin algebra, let M be an inde-
(h
I f2

V 3

composable A-module in M(A) with a(M) = 3 and let 0 —• D Tr M —

#i IJ B2 ]J B3 ^-4 M —> 0 be an almost split sequence with Bi indecom-
posable for i = 1,2,3. Then we have the following.

(a) For i = 1,2,3 there are sequences of irreducible monomorphisms

oc(Bij) = 2 for j < tt.
(b) For i = 1,2,3, there are sequences of irreducible epimorphisms

M -> Tr DBt = Tr DBU1 -> (TrD)2£I>2 - • • • • - > (Tr DfB^ where
a({TrDyBij) = 2 for j < tt and a((TrD)uBiM) = 1.

(c) Each indecomposable module A where the corresponding vertex [A]
is in the connected component ofT\ determined by M is isomorphic
to (TrD)SX for some s e Z and X e {Buj \ i = 1,2,3, 1 < j <
U}U{M}.

Proof (a) Let 0 -^ DTrM - ^ J5i I J ^ I I ^ vg^J ; M ^ 0 be an
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almost split sequence. By Proposition 4.10(b), each ft is an epimorphism
for i = 1,2,3. Hence Lemma 4.9 states that a(£,) < 2 for each i = 1,2,3.

We now complete the proof for i = 1. If oc(B\) = 1 we are done. There-

fore assume OL{BX) = 2 and let 0 -> DTrEi —> D T r M U ^ u —4
5i —• 0 be an almost split sequence. Since / i is an epimorphism, h\^
is also an epimorphism, so a(l?i,2) < 2. Further, again since j \ is an
epimorphism, it follows by Lemma 4.8(a) that /i?2 is a monomorphism.
Continuing this way, we get our desired chain of monomorphisms.

Statement (b) is the dual of (a) and follows by duality.
To prove (c) we deduce directly from (a) and (b) that the set of modules

« = {(DTr)n(By), (DTxfM \ n e Z, 1 < i < 3, 1 < j < u;} has the
property that if / : X —> Y or g: Y —• X is an irreducible morphism with
X in #, then Y is isomorphic to a module in c€. •

Using this result in combination with results from Chapter V we deduce
the following.

Proposition 4.12 Let A be a hereditary artin algebra and C an indecom-
posable A-module in a regular component <$ of T\ such that there exist
infinitely many n with l((DTr)nC) < s for a fixed number s. Then we have
the following.

(a) <x(X) < 2 for all X in the component %>.

(b) There exists some X in %> with oc(X) = 1.

Proof (a) If ^ contains some X with a(X) = 3, we have by Proposi-
tion 4.1 l(b) and (c) that there exist an m and irreducible monomor-
phisms C = Ct -4 • • • —• C\ -* (D Tr)mX where t is bounded by
max{ti|i = 1,2,3}, and where tt is as in Proposition 4.1 l(a). By V Propo-
sition 6.6 we have that

where p < /(A). Therefore l((D Tr)m+nX) < l((DTv)nC)(p2 + 1)' <
s(p2 + If = s' for infinitely many n by assumption. Hence we can
organize it in such a way that there are 2s' modules of length bounded by
s' of the form (Tr DfY with Y in the D Tr-orbit of X and p > 0. From

the almost split sequences 0 -> (TrD)^7 {fuf^3f BiU^U^ ^ ^
—• 0 we have that each gt is a monomorphism. Therefore
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we get monomorphisms (TvD)qY - • 3((TrD)^+17) for all q, which pro-
duce monomorphisms Y —• 3(TrDY) —> 9(TrDTY) —• ... where each
morphism is in the radical of mod A. This gives rise to nonzero composi-
tions of 2s' nonisomorphisms between indecomposable modules of length
bounded by s'. But we know from VI Corollary 1.3 that the number
of morphisms in such a composition is bounded by 2s' — 1, giving the
desired contradiction. This shows that <x(X) < 2 for all X in ^ .

(b) Choose X in <€ such that 1{X) < l(Y) for any Y in #. Sup-
pose a(X) + 1. Then by (a) we have a(X) = 2. Let 0 - • DTrX - •

X\ U Xi -̂ » X —> 0 be an almost split sequence with the X,- indecom-
posable. Then by Lemma 4.8 we have that either f\ or fi is a monomor-
phism. Suppose f\\X\ —> X is a monomorphism. Then /(Xi) < /(X)
which is a contradiction since X\ is in #, and hence a(X) = 1. •

Recall from V Section 7 that rad^( ,£) = f \eN r a dA( ^ ) is a
subfunctor of HoniA( ,B), and by V Corollary 7.11 we have that
SuppHoniA( ,B)/rad(£( ,B) is infinite if and only if SuppHoniA( ,B)
is infinite. Further, if X is in SuppHoniA( ,B)/md(£( ,B) for an inde-
composable A-module B, then according to VI Lemma 1.1 we have that
X and B are in the same component of FA-

We also have the following result.

Lemma 4.13 Suppose that A is an arbitrary artin algebra, not necessar-
ily hereditary. Let f'.X^Bbea morphism between indecomposable A-
modules with f ^ r a d ^ X , B). Then I m / contains a summand Y such that
Y is in the same component ofT\ as X and B.

Proof Let f:X —> B be a morphism with X and B indecomposable
and / £ rad^(X,#). Then clearly i : Im/ - • B is not in rad^(Im/ ,£)
and therefore also at least one of the indecomposable summands Y of
I m / has the property that i\y: Y -» B is not in rad^(Y,B) since radjf
is a relation on mod A. Hence, by VI Lemma 1.1, Y is in the same
component of FA as B. •

With these preliminary remarks we are able to prove that for a heredi-
tary artin algebra a regular component with an indecomposable module
X with a(X) = 3 satisfies the conditions of Proposition 4.12, which then
leads to a contradiction.
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Lemma 4.14 Let A be a hereditary artin algebra and C an indecomposable
A-module in a regular component ^ ofT\. If tx(C) = 3, then there exist a
natural number s and infinitely many n G IN such that l((TrD)nX) < s for
some module X in c€.

Proof Let # denote the component containing C with a(C) = 3. Then
according to Proposition 4.11 there exist BQ for i = 1,2,3, and 1 < j < tt

where tt depends only on #, such that each module in # is either of the
form (D Tr)n(Bij) for some n, i and j or of the form (D Tr)nC for some n.

Choose one of the (D Tr)nBiti of smallest length in # and denote this
module by X. Since HoniA(A,X) 7̂  0 and # contains no projective mod-
ule, we have that rad^(A,X) =/= 0. But then SuppHomA( 9X) is infinite,
and hence also SuppHoniA( ,X)/radA( ,X) is infinite by V Corol-
lary 7.11. Therefore we can find infinitely many nonisomorphic modules
Yt in ^ with a nonzero morphism fi'.Yi —• X with /,- ^ ra.d™(Yi,X).
Hence each Im/ , has a summand in # according to Lemma 4.13. But
since X was among the modules in %> of minimal length, Im/ ; = X for
all i. Therefore each /,- is an epimorphism. Since # contains a module
C with a(C) = 3 we have from Proposition 4.11(c) that # contains only
finitely many orbits under the translation DTr. We therefore conclude
that there exists some Z G { Buj \ i = 1,2,3, 1 < j < t} U { C} such that
infinitely many of the Yt are of form (DTr)"Z. Applying (TvD)n we get
an epimorphism from Z to (TrD)nX for infinitely many n, showing that
there are infinitely many n such that l((TrD)nX) is less than /(Z). This
completes the proof of the lemma. •

We have now established the following result.

Theorem 4.15 Let A be a hereditary artin algebra of infinite representation
type and let ^ be a regular component of Y\. Then the following hold.

(a) There exists an infinite chain of irreducible monomorphisms Co —>

C i i c 2 i - ^ C B i - i n « such that a(C0) = 1 and a(Q) = 2
for i > 1.

(b) For each n G Z and i G N, t/zere is an almost split sequence 0 —•
{DTr)n+1Ci - • (DTr)w + 1C I + iU(^Tr)nQ_i -> (DTr)"Q -> 0, wfcere
C_i = 0.

(c) 77ie set {(DTv)nQ\n e ZJ e N} constitutes a complete set of inde-
composable modules in <$ up to isomorphism.
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(d) If h:(DTr)nQ+i -> (DTr)"- 1 ^ is any irreducible morphism, then
Ker/ i~(DTr)nC0 .

(e) / / (DTrfQ ~ Q for some neZandie N, tfien (DTr)"C;- - C ; /or
all j G N.

(f) The translation quiver %? is isomorphic to rEAao/{Tn) where n is the
smallest positive integer with (DTr)nCo ~ Co.

Proof (a) By Proposition 4.12 and Lemma 4.14 there exists some C in
# with a(C) = 1. Let C = Co and consider the almost split sequence

0 —• Co —> C\ -^ TrDCo —• 0. The module C\ is then indecomposable
and in ^ and a(Ci) = 2 since /o is not an epimorphism. Consider the

almost split sequence 0 -> Ci ^ C 2 U T r D C o (g^o) TrDCi - • 0. Since
go is an epimorphism, ho is a monomorphism by Corollary 4.7, and
therefore / i is a monomorphism. Proceeding by induction on i we get
our desired sequence of irreducible monomorphisms together with almost

split sequences 0 - • Q ^ Ci+\ \JJrDQ-i - • TvDQ -* 0.
(b) Applying (D Tr)n to the sequences constructed in the proof of (a)

we obtain (b).
(c) This is a direct consequence of (b) since (b) shows that the set of

isomorphism classes of the modules {(D Tr)"C;|n e Z, i € N} give rise to
a whole component of the AR-quiver of A.

(d) Clearly (d) holds for i = 0. The rest of (d) follows by induction on
i.

Parts (e) and (f) follow readily. •

From Theorem 4.15 we get the following geometric picture of a regular
component of the AR-quiver:

Here there is a possibility that (DTr)nCo — Q) for some n e N. Then
(D Tr)"C, ^ Q for all i and we obtain what is called a stable tube.
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5 Finite representation type

In this section we consider hereditary artin algebras of finite representa-
tion type and prove that the associated AR-quivers of such algebras are
all obtained from the Dynkin diagrams. We prove this by applying the
results from VII Section 3 on additive functions.

Let A be an indecomposable hereditary artin algebra of finite repre-
sentation type and let FA be the AR-quiver of A. Then FA is a finite
quiver where the vertices are in one to one correspondence with the
isomorphism classes of indecomposable A-modules. Further, since A is
hereditary, we know from Proposition 1.15 that the preprojective compo-
nent of the AR-quiver of mod A is a translation subquiver of NA where
A is the transpose of the quiver of Aop.

Now let C be the Cartan matrix of the underlying graph A of the
quiver A of Aop. We identify the vertices Ao of A with the D Tr-orbits
in the preprojective component. Then we let d:Ao —> Z + be given by
d(x) = J2MEX l(M) for each D Tr-orbit x, where l(M) denotes as usual
the length of the A-module M.

Lemma 5.1 Let A be a hereditary artin algebra of finite representation
type, and let A be the transpose of the underlying valued graph of the
valued quiver o/Ao p . Let further C be the Cartan matrix of A and let d
be the function defined above. Then each coordinate of dC is equal to 2.

Proof Let x b e a D Tr-orbit and consider the xth coordinate of dC,
which is

Mex y Ney

where the y ranges over the neighbors of x in A. But for each noninjective
module M in x we have the almost split sequence

0 -> M -> LLyC^JV -> Tr DM -> 0

where N runs through the modules corresponding to the immediate
predecessors of TrDM in FA . Hence we have that /(M) + /(Tr DM) =
J2cyxl(N), where N runs through the modules corresponding to the
immediate predecessors of Tr DM in FA- We use these equalities to
simplify the expression for the xth coordinate above, so that what is left
is the length of the projective module Px and the injective module Ix in
the D Tr-orbit x, and for the neighbors only the length of the radical of
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Px and the length of Ix/ soclx are left. Hence we get

- l(Ix/ soclx)

289

Mex y Ney

= l(Px) - l(xPx) + l(

= 2. •

Lemma 5.1 implies that the function d is a subadditive function on A
which is not additive. Hence A is a Dynkin diagram by VII Theorem 3.3.

As an immediate consequence we get the following.

Proposition 5.2 If A is an indecomposable hereditary artin algebra of finite
representation type, then the underlying valued graph of the quiver A of A
is a Dynkin diagram.

Proof Since the underlying valued graph of a valued quiver and its
opposite quiver are the same and a valued graph is Dynkin if and only
if its transpose is Dynkin, the result follows directly from the above. •

In order to prove that if the underlying valued graph of the quiver of
A is a valued Dynkin diagram then A is of finite representation type, we
need the following list of valued Dynkin diagrams together with their
inverse Coxeter matrices and the orders of these matrices which are all
finite.

Dynkin diagram: Inverse Coxeter matrix: Order
of
matrix:

An'. MA =

/ - 1 1 0 0
- 1 0 1 0
- 1 0 0 1

- 1 0 0 0
\ - 1 0 0 0

1
0/

Bn:

/ - 1 2 0 0
- 1 1 1 0
- 1 1 0 1

- 1 1 0 0
\ - 1 1 0 0

1
o/

In
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Cn:
% (2,1) ^

1 2

/ - 1 1 0 0
- 2 1 1 0
- 2 1 0 1

- 2 1 0 0
\ - 2 1 0 0

1

o/

Dn: MDn =

/ - 1 0 1 0 0
0 - 1 1 0 0

- 1 - 1 1 1 0
- 1 - 1 1 0 1

- 1 - 1 1 0 0
\ —1 —1 1 0 0

o\
0
0
0

E6: 1 2 4 5 6

0 0 0 0 '
0 1 0 0

- 1 1
- 1 0

0 0 - 1 1 0 0
- 2 0 - 1 1 1 0
- 1 0 - 1 1 0 1
- 1 0 - 1 1 0 0

12

E7:

i

1 2 4 5 6 7
MEl •

/ - I 1
-1 0

0 0

0 0 0 0 0 \
0 1 0 0 0 X

0 0 0
1 0 0

- 1 1
- 2 0 - 1 1
- 1 0 - 1 1 0 1 0
- 1 0 - 1 1 0 0 1

\ - 1 0 - 1 1 0 0 0 /

18

1 2 4 5 6 7

FA'
^(U) ^

1 2 3 4

( - l

' - 1
0

- 1
- 1
- 1

. - 1
V- i

( - i
- l
- i

^ - l

I
0
0
0
0
0
0
0

1
0
0
0

0 0 0
0

—1
- 1
- 1
- 1
- 1
- 1

0 0 >

2 0
1 1
1 0

L 0
L 0
L 1
L 0
L 0
L 0
L 0

\
\

/

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0 )

30

12

G2:
(1,3)

MG, -(-• i)
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We give a proof that the matrices M^n, MBn, Mcn and MDn have the
given orders but leave to the reader to verify the result for ME6, ME19

M£8, Mf4 and MQ2, which can be done by direct calculations.

Proposition 5.3 The matrices MAK, MBn, Mcn and M#n are all diagonaliz-
able with roots of unity as eigenvalues and have the orders n + 1, 2n, 2n
and 2(n — 1) respectively.

Proof The characteristic polynomial of MAH is det(A/ — MAJ = ]CLo^-
But the roots of YM=O ^ a r e a^ distinct (n+ l)-th roots of unity. Therefore
MAH is diagonalizable and has order n + 1.

Consider the matrix MBn. Conjugating with the matrix

G =

/ 1 0 0
- 1 1 0

V - 1 0 0

o \
0

1 J
gives the matrix

GMBnG~l =

1
0
0

0
- 1

2
- 1
- 1

- 1
- 1

0
1
0

0
0

0
0
1

0
0 0\

Hence the characteristic polynomial of MBn is (A —
(—l)n"12(—I)""1 = ln + 1. This polynomial has distinct roots being 2n-th
roots of unity and it has a primitive 2n-th root of unity. Therefore MBn

is diagonalizable of order In.
For the matrix Mcn conjugate with the same matrix G as above and

obtain the matrix

/ 0 1 0 ••• 0 \
0 0 1 ••• 0

0 0 0
\ - 1 0 0

1
0 /

Hence MCn has characteristic polynomial Xn + (-l)"-^-!)""1 = kn + 1.
The same argument as for MBn applies, showing that Mcn is diagonaliz-
able of order In.
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For MDn conjugate with the matrix

G =

/ 1 0
1 1
0 0

o \
0
0

11

to obtain

GMDG~l =

\ o o o

I -1 0 1 0
0 - 1 2 0
0 - 1 1 1

0 - 1 1 0
0 - 1 1 0

Hence the characteristic polynomial of MDn is (A + lXchar.pol.M^) =
(A + \)(Xn~l + 1). If n is odd then n — 1 is even and therefore —1 is
not a root of Xn~l + 1. Therefore MDn has distinct eigenvalues and is
therefore diagonalizable with 2(n — l)th roots of unity as eigenvalues,
and it also contains a 2(n — l)th primitive root of unity as an eigenvalue.
Hence the order of MDn is 2(n — 1) when n is odd. For n even —1 is a
multiple eigenvalue. However then the vector (1,0,... ,0)tr and the vector
(0,1,0,1,0,..., l) t r are eigenvectors of the matrix GMDnG~l correspond-
ing to the eigenvalue —1, showing that in this case the matrix is also
diagonalizable and of order 2(n — 1). •

In order to apply the table of Dynkin quivers and Coxeter matrices
we need one more notion which is also of interest in its own right. This
notion is geometrically inspired as a cross section meeting each D Tr-orbit
once.

Let A be an artin algebra with AR-quiver FA. A section in FA is
a valued connected subquiver Hf of FA such that the following two
properties are satisfied.

(1) Whenever an arrow a is in Sf then o(a) is not in 5^, where o is the
semitranslation in FA-

(2) If an arrow a in £f has valuation (5, t) in £f and (a, b) in FA, then
s < a and t < b.
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Example: Let k be a field and let A be the matrix algebra

293

/aOO\
I fee 0 I
\def)

a,b,c,d,e,f

Then FA is as follows.

Here
53

• and •
6 4

• are sections, but • is not.

Let Zf and 3~ be two sections in the AR-quiver FA of an artin algebra
A. We say that Sf < 3~ if the following two properties are satisfied.

(1) The underlying graph of £f is a subgraph of the underlying graph
ofiT.

(2) If (5, s') is the valuation of an arrow a in ^ and (t, t') is the valuation
of the same arrow in ZT then 5 < t and s1 <t'.

This relation is a partial ordering on the sections in FA-
A section which is maximal in this ordering is called a full section in

FA- TWO sections Sf and ZT are called parallel if there exists some n eZ
such that ZT is obtained from Sf by using the translate to the nth power,
i.e. the vertices of ZT are images of the vertices in £f by the translate in
FA to the nth power, the arrows in 3~ are the images of the arrows in Sf
by the semitranslate in FA to the 2nth power, and the valuation of each
arrow in ZT is the same as the valuation of the corresponding arrow in
Sf.

If we now consider an indecomposable hereditary artin algebra A,
we know from Proposition 5.2 that the preprojective component is a
subtranslation quiver of ZA, where A is the transpose of the opposite
quiver of A.

We are now in a situation where we can prove the converse of Propo-
sition 5.2 and establish the following result.

Theorem 5.4 Let A be an indecomposable hereditary artin algebra with
associated quiver A. Then A is of finite representation type if and only if
A is a Dynkin diagram.
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294 Hereditary algebras

Proof We only have to prove that if A is a Dynkin diagram then A is
of finite representation type. Let A be a hereditary artin algebra with
quiver A which is Dynkin. Assume that A is of infinite type. Then the
preprojective component 0* of the AR-quiver FA is isomorphic to NA*
by Proposition 1.15 where A* is the transpose of the opposite of the
quiver A. Therefore 3P contains infinitely many parallel neighbouring full
sections of one of the valued quivers A from the list on page 289-290. So
we can consider N^ a subtranslation quiver of NA* (up to shift). Letting
l(x) denote the length of the module x, we get the element (l(x))xenx&
of N^ corresponding to one such full section in 0>. Then the element
(I(x))xe(»+i)xA is given by M~A(l(x))xenxA by just counting lengths. How-
ever, as listed on page 289-290, the matrices MA all have finite order,
and therefore the modules in 0* are of bounded length. Since this im-
plies that A is of finite type by VI Theorem 1.4 we have a contradiction. •

As a direct consequence of Theorem 5.4 we have the following clas-
sification of elementary hereditary artin algebras of finite representation
type. See page 65 for the definition of elementary.

Theorem 5.5 Let A be an elementary hereditary artin algebra over a field
k. Then the following are equivalent.

(i) A is of finite representation type.
(ii) A ~ fcA with A one of the Dynkin quivers An, Dn, E^, Ej or Eg.

Proof Assume first that A is of finite representation type. Then the
quiver A of A is one of the Dynkin quivers. Since A is elementary, the
valuation of the quiver is symmetric. Hence the quiver A is in the list An,
Dn, E6, E7 and E8. From III Proposition 1.13 it follows that A ~ fcA.

Conversely if A ~ fcA for A one of the quivers An, Dn, E^, E1 or Eg,
then Theorem 5.4 implies that A is of finite representation type. •

6 Quadratic forms and roots

In Section 2 we showed that the indecomposable preprojective and prein-
jective modules over a hereditary artin algebra are uniquely determined
by their composition factors. In particular this is the case for all inde-
composable modules over a hereditary algebra of finite representation
type. We have seen that if X is indecomposable nonprojective in mod A
we can compute [DTrX] in Ko(modA) as c[X]. In this section we give
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a description of which elements of the Grothendieck group Ko(mod A)
come from indecomposable modules for elementary hereditary algebras
of finite representation type, in terms of the homological quadratic form.
We also show how to define this quadratic form directly from the asso-
ciated valued graph of the hereditary algebra, and prove that the form is
positive semidefinite if and only if the valued graph is Euclidean.

Assume that A is a hereditary algebra of finite representation type
and let q be a quadratic form from Ko(modA) to TL. The elements x
in Ko(mod A) with q(x) = 1 are called roots of the quadratic form, and
a root x is positive if x = [M] for some M in mod A. Let now q be
the homological quadratic form. If P is an indecomposable projective
A-module, then q([P]) = lR(EndA(P)) since ExtJv(P,P) = 0. Hence if
there is a positive integer r such that q([M]) = r for all indecomposable
modules M in mod A, then lR(End\(P)) must be equal to the same
number r for all indecomposable projective A-modules P. On the other
hand, assume that lR(End\(P)) is equal to a fixed number r for each
indecomposable projective A-module P. This is for example the case for
an elementary hereditary algebra over a field /c, with r = 1, in particular
it holds when A is a hereditary algebra over an algebraically closed field
k. We have the following preliminary results.

Lemma 6.1 Let A be a hereditary algebra of finite representation type
such that lR(End\(P)) is equal to a fixed integer r for each indecomposable
projective A-module P. If q is the homological quadratic form and X is an
indecomposable A-module, then q([X]) = r.

Proof Since A is hereditary of finite representation type, each inde-
composable A-module X is preprojective. Hence X is isomorphic to
(TrD)v(x)P for some indecomposable projective A-module P. Then
we have EndA(X) ~ EndA(P) by Lemma 1.1, and therefore g([X]) =
<l([P]) = r since Extx

A(X,X) = 0 for each indecomposable preprojective
module X by Proposition 1.7. •

We have the following converse of Lemma 6.1.

Lemma 6.2 Let Abe a hereditary artin algebra of finite representation type
with homological quadratic form q and such that lR(End\(P)) is equal to
a fixed integer r for all indecomposable projective A-modules P. Then we
have the following.

(a) For any x in Ko(modA) we have that r divides q(x).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.009
https://www.cambridge.org/core
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(b) If x is a positive element of Ko(mod A) with q(x) = r, there exists an
indecomposable A-module M with [M] = x.

(c) Ifx is an element ofKo(mod A) with q(x) = r, then x is either positive
or negative.

Proof Let A be a hereditary artin algebra of finite representation
type with homological quadratic form q and such that there exists an
integer r with lR(End\(P)) = r for all indecomposable projective A-
modules P. Then we know by Lemma 6.1, since A is of finite type, that
lR(End\(M)) = r for each indecomposable A-module M and therefore
also r divides IR(X) for any EndA(M)-module X, especially r divides
Zfl(ExtA(JV, M)) for any modules M and N and all i. This gives statement
(a).

In order to prove (b), let x be a positive element of Ko(mod A) with
q(x) = r . Let M be a A-module such that lR(End\(M)) is minimal
among lR(End\(X)) for all A-modules X with [X] = x. We claim that M
is indecomposable.

If M is decomposable, we have that lR(End\(M)) > 2r since the
endomorphism ring of each indecomposable module has length divisible
by r. Since q[M] = q(x) = r we then get that Ext\(M,M) ^ 0. But
since Ext\(X,X) = 0 for each indecomposable module X, there is a
decomposition of M into a sum of two modules M' and M" such that
Ext\(M',M") ^ 0. Hence we have a nonsplit extension 0 —• M" —•
N —> M' —> 0. But then Lemma 3.2 implies that /^(EndA(iV)) is smaller
than lR(End\(M)). This gives the desired contradiction. Hence M is
indecomposable, completing the proof of statement (b).

For the last statement let x ^= 0 be neither positive nor negative. Then
there exist nonzero modules M and N without common composition
factors such that x = [M] - [JV]. Then HomA(M, N) = 0 = HomA(iV, M),
and we get q(x) = q[M]+q[N] + lR(Ext\(N,M)) + lR(Ext{(N,M)) > 2r,
which completes the proof of (c). •

As a consequence of these lemmas we have the following result.

Theorem 6.3 Let A be a hereditary artin algebra of finite representation
type with homological quadratic form q.

(a) If there exists an integer r with lR(End\(P)) = r for all indecompos-
able projective A-modules P, then there is a one to one correspondence
between the positive elements x e Ko(modA) with q(x) = r and the
indecomposable A-modules.
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(b) If A is an elementary k-algebra there is a one to one correspondence
between the indecomposable A-modules and the positive roots of q. •

The valued quiver A of a hereditary artin algebra A contains infor-
mation on the length of Extj^S;, S/) over EndA(S,). Hence it is not so
surprising that we can show that the homological quadratic form of
a hereditary artin algebra A can be defined directly on the associated
valued graph. Before doing this we discuss which valued graphs are
associated with hereditary algebras.

Let C be the Cartan matrix associated with a finite valued graph V,
which then can be viewed as an n x n matrix when n is the number of
elements in Vo with a fixed ordering. Then C is said to be symmetrizable
if there exists an invertible diagonal matrix T with positive integral
coefficients such that CT is symmetric. We shall show that the finite
valued graphs associated with hereditary artin algebras are exactly those
with symmetrizable Cartan matrices.

Proposition 6.4 Let A be a hereditary artin R-algebra with valued quiver
A. Then the associated Cartan matrix C is symmetrizable.

Proof Let {Si,...,Sn} be the nonisomorphic simple A-modules and
{l, . . . ,n} the corresponding vertices of A. Let C = (c -̂) be the Cartan

matrix and let tt = lR(End\(Si)). If a:i- '̂ V' j is a valued arrow, we
then have

CjtU = /EndA(5I)°p(Exti(^,5;))/K(EndA(5/))

= lR(Ext{(SuSj))

{Sh Sj))lR(EndA(Sj))

This shows that if T = (U), then CT is a symmetric matrix, and hence C
is symmetrizable. •

In order to show that conversely each symmetrizable Cartan matrix is
realized by a hereditary artin K-algebra we first need some preliminary
observations.

Lemma 6.5 Let V be a finite connected valued graph without loops and
multiple edges, and let C be the associated Cartan matrix. If T and T'
are two invertible diagonal matrices with rational coefficients such that C T
and CT1 are symmetric, then T and T' are linearly dependent over Q.
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Proof Let T = (ti)ieVo and V = (t^,. Since T and V are invertible,
U and t\ are nonzero for all i in Vo- We now show that if i and j are
connected by an edge in the graph V then ti/ft = tj/t'p which proves
the lemma. Letting C = (Ci/)ijGV0

 w e have the equations cytj — cptf
and ctjt'j = Cjitf

t so that tj/fj = crfi/c^ = Cytj/cijifj = tj/tfj. Since V is
connected, this shows that T and T" are linearly dependent over Q. •

Lemma 6.6 On any finite valued graph without loops there is an orientation
such that there are no oriented cycles.

Proof The proof goes by induction on the number of vertices. If there
is one vertex, there is nothing to prove. Assume the statement holds for
graphs with n > 1 vertices, and let V be a graph with n + 1 vertices.
Remove one vertex i e Vo and all edges connected to i. By the induc-
tion hypothesis the remaining graph has an orientation without oriented
cycles. Now add the vertex i and all edges connected to i and let i be
the start of all those edges. If V is given this orientation, there are no
oriented cycles. •

We can now give the converse of Proposition 6.4.

Proposition 6.7 Let V be a finite valued graph with the associated Carton
matrix symmetrizable. Then there exists a finite hereditary algebra A such
that the underlying valued graph of the valued quiver of A is V.

Proof Let V be a finite valued graph with the associated Cartan matrix
C = (cjy)ijeVo symmetrizable and let T = (ti)iev0 be a diagonal matrix
with positive integral coefficients which symmetrizes C. By Lemma 6.6
choose an orientation on V such that the corresponding quiver A has no
oriented cycles. Let p be a prime number and let F be GF(p), the field
with p elements, and for each i e Ao let Ft = GF(pu), the field with pu

elements. For each arrow a in A let as usual s(a) be the start and e(a)
the end of a. Further let Ma = GF(pCiJu) where i = s(a). Since c^tj = c^U
it follows that both Ft and Fj can be considered as subfields of Ma, and
we fix such an embedding. This makes Ma a FrFy-bimodule. Now let
Z be the semisimple F-algebra ILeAo ^ w ^ h central simple idempotents
et for i G Ao and let M be the abelian group HaeAi Ma. We now make
M a E-bimodule in such a way that the tensor algebra A = T(L,M)
of M over E is finite dimensional with A as its valued quiver. For
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(ft) e Z and (ma) e M let (/,-)(ma) = (/e(a)ma) and (ma)(/0 = (ma/s(a)).
Now it is easy to show that this makes M a Z-bimodule and that
0 = Mn = M ®£ M (g)̂  • • • ®% M where n is the cardinality of Ao-
Therefore A is a finite dimensional algebra with M ]J M2 ]J " ' I I Mn~l

as the radical r, A/r ~ E, r/r2 ~ M a s E-bimodules, and {e,-|i € Ao}
a complete set of primitive orthogonal idempotents of A. Further we
have that EndA(Sj) — Ft for the simple A-module S,- = Ae^/re,-. Now it
is easy to see that ejMet ^ 0 if and only if there is an arrow a from i
to j and that ejMet ~ Ma. This shows that if S,- and S7- are two simple
modules corresponding to the idempotents et and e7 then Ext\(S,-, S,) is
isomorphic to Ma and hence has dimension ciy over Fj and dimension cl-
over Ft. It follows that the valued quiver of A is A.

It only remains to prove that A is hereditary. By I Proposition 5.1
it is enough to prove that r is projective. An element of A =
I [ J M [ J . . . [ J M""1 is of the form (mo, mi, . . . , mn_i) with mt G M\ where
M° = Z. Consider the map </>:M ®L A - • M ] J M 2 U • • • ] JM" given by
(/>(m® (mo,mi,...,mn-\)) = (mmo,m®mi,...,m®mn_i). Then ^ is clearly
a right A-isomorphism. Since Z is semisimple and M is finitely generated,
M is a finitely generated projective E-module. Therefore M ®i A is a
projective right A-module. Hence A is hereditary since A is an artin
algebra. •

Let now C be an n x n symmetrizable Cartan matrix on a finite valued
graph V with vertices { l , . . . ,n} , and let T be an invertible diagonal
matrix such that CT is symmetric. Identifying the free abelian group
of functions from Vo to Z with Zn we have a symmetric bilinear form
Bx\TLn x U1 -> Z by defining Bx(x,y) = xCTyx\ where the elements
of 7Ln are viewed as row vectors. Let q\: W1 —• Z be the associated
quadratic form given by gi(x) = B\{x,x) which we call the Tits form.
Recall that the quadratic form q\ is positive semidefinite if gi(x) > 0 for
all x in Zn, and q\ is indefinite if there are x and y in V with q\{x) > 0
and q\{y) < 0. The question whether the quadratic form q\ associated
with CT is positive definite, positive semidefinite or indefinite is clearly
independent of the choice of the diagonal matrix T with positive integer
coefficients by Lemma 6.5.

Let A be a hereditary artin i^-algebra with associated valued graph
V. We now show that identifying Ko(modA) with Z", the homological
quadratic form q coincides with the quadratic form qi when choosing
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T = (ti)ieVo t o be the diagonal matrix given by U = lR(End\Si) for S,- the
simple A-module corresponding to the vertex i.

Proposition 6.8 Let A, V, C and T be as above and let q be the homological
quadratic form of A.

(a) The symmetric matrix (qtj) of q given by qtj = \(q([Si] + [Sj])—q([Si] —
[Sj])) relative to the basis {[Si],..., [S,,]} in X0(modA) is CT.

(b) The homological quadratic form q coincides with the Tits form q\
given by CT.

Proof (a) We have

= -(/REndA(S,) + /RHomA(S,,S,)

+/R(HomA(S,,S,)) + fe(EndA(S/)) - fe(ExtA(S,, S,)) - /R(ExtA(S,,Sj))

-/R(ExtA(S,,S,)) - lR(Ext{(Sj,Sj)) - /R(EndA(S;)) - lR(EndA(Sj))

+/R(HomA(S,,S,)) + /R(HomA(S,-,S,)) + /R(ExtA(S,-,S,)) -

-/j,(ExtA(S,, St)) + /«(ExtA(S;> Sj))

• 2/R(EndA(S,)) for i = j ,
,)) + /R(ExtA(S,, SO) for i ± j ,

(b) This is a direct consequence of (a) which shows that the quadratic
forms q and q\ have the same associated symmetric matrices. •

If a graph V is a tree, then the associated Cartan matrix is clearly
symmetrizable, and this is also the case if the graph is of type An. In
particular the Cartan matrices associated with the Dynkin diagrams and
the Euclidean diagrams are all symmetrizable. Hence they all occur
as underlying valued graphs for hereditary artin i^-algebras. We can
now give the following characterization of the Dynkin diagrams and
Euclidean diagrams in terms of the quadratic form q\.

Theorem 6.9 Let V be a finite connected valued graph with symmetrizable
Cartan matrix C, let T be an invertible diagonal integral matrix with pos-
itive coefficients such that CT is symmetric and let q\:TR.n —• R be the
quadratic form defined by q\(x) = xCTxtT. Then the following hold.

(a) q\ is positive definite if and only if V is a Dynkin diagram.
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(b) q\ is positive semidefinite but not positive definite if and only if V is
a Euclidean diagram.

Proof (a) Let A be a hereditary artin algebra such that V is the
underlying valued graph of the quiver A of A. Then by Proposition 6.8
the form q\ coincides with the homological quadratic form q. But from
Theorem 3.6 we have that q is positive definite if and only if A is of finite
representation type, which happens if and only if V is a Dynkin diagram
by Theorem 5.4. Hence (a) follows.

To prove (b) we start by assuming that the quadratic form is positive
semidefinite but not positive definite. According to (a) V is then not
Dynkin. If V is not Euclidean, there is a Cartan matrix C less than
C such that the valued graph of C is Euclidean. Then according to
VII Lemma 3.2(b) there is a some d G R+° where R+° denotes the
functions from Vo to R+, such that (dC)(i) < 0 for all i and dC is
properly negative for at least one i in the support of d. Hence we get
dCTdtT < 0 showing that q is not positive semidefinite. Hence the first
half of (b) is proven.

Assume now that V is a Euclidean diagram. We first prove that
q\(x) > 0 for all x e R+°. Let x e R+°, and let d be an additive function
for the Cartan matrix C. Then qx(x - ad) = (x - <xd)CT(x - (xd)tr =
xCT(x - ad)iv = qi(x) - axCTdtT. However (ocxCTdtr)tT = ad{CTfxx\
but CT is symmetric, showing that ocdCT = 0. Therefore we get q\(x —
ad) = q\(x). By subtracting an appropriate multiple of d we therefore get
that q\(x) = q\(x) with at least one coordinate of x being zero. However,
then q\ corresponds to the associated form of a disjoint union of Dynkin
diagrams and hence qi(x) > 0 by (a). We then get that q\(x) > 0 for all
x ^ O o n the coordinate hyperplanes and q\ assumes the value zero in
the positive cone.

Now let x e RVo and assume ^(x) < 0. Then dCTxtr = 0 where
d is the additive function for C and hence for t and s in R we have
qi(tx + sd) = (tx + sd)CT(tx + sd)tr = t2qi(x) < 0 for t =fc 0. However,
since q\(x) < 0, x and d are linearly independent. Therefore the subspace
generated by x and d intersects any of the coordinate hyperplanes non-
trivially, contradicting that q\{y) < 0 for all y in the subspace spanned
by x and d. Therefore ^(x) > 0 for all x e RVo. •

The hereditary algebras with a positive semidefinite quadratic form are
the tame hereditary algebras. For these algebras it is possible to classify
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the indecomposable modules, and we illustrate this through an important
special case in the next section.

7 Kronecker algebras

In addition to algebras of finite representation type, the tame hereditary
artin algebras have been studied extensively. One of the reasons for the
interest in these algebras is that their indecomposable modules can be
described even though there is an infinite number of isomorphism classes
of such modules. This section is devoted to classifying the indecomposable
modules, up to isomorphism, over the Kronecker algebras, a particular
class of tame hereditary algebras. This not only gives the flavor of the
general theory of tame hereditary artin algebras, but also provides results
useful in the development of the general theory.

Let k be an algebraically closed field. Then the Kronecker algebra over
k is the finite dimensional fc-algebra A which is the subalgebra of Mi(k)
consisting of all matrices of the form

with a, b9 c and d arbitrary elements of k. It is not difficult to see that
this algebra A is isomorphic to the path algebra of the quiver

A : l - zj -2
P

over the field k. Hence mod A is equivalent to the category of finite

dimensional representations of A over k. The associated Cartan matrix

is (I2~2r a n d ^ e Quadratic form is positive semidefinite.

The algebra A has two nonisomorphic simple modules Si and Si
corresponding to the vertices 1 and 2 in the quiver A. Fixing the basis
{ [SiL [S2] } of Ko(mod A) we identify Ko(mod A) with Z x Z by this choice
of basis. The elements in Ko(mod A) corresponding to the projective cover
Pi of Si and P2 of S2 and the injective envelopes I\ of Si and I2 of S2
are the elements (l,2),(0, l),(l,0) and (2, l ) i n Z x Z respectively.

Direct calculations show that the Coxeter transformation c is given by

the matrix ( 2 1 1 ) = ^ + ( 2 - 2 ) w* t n i n v e r s e J ~ (2 -2 ) w n e r e J *s t n e

2 x 2 identity matrix. From this we get that cn = I + n ( \ z\ ) for all n
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in Z. Therefore, by this identification of Ko(mod A) with Z x Z, we get

J) +
and

For each natural number n consider the following representations of

the quiver A over the field k. Let Qn be the representation kn =| fc"+1

fp

where /a = (o) a n d fp = (/ ) with / the n x « identity matrix. We leave
as an exercise for the reader to verify that each Qn is indecomposable.
Further, for n = It, we have [Qn] = [(Tr DyP2] and for n = It + 1,
we have [Qn] = [(TrDfPi]. Hence from Corollary 2.3(d) we get that
Q2t ~ (Tr DfP2 and Q2t+i ^ (TrD)'Pi. Similarly, for each natural

number n, let Jn be the representation of the quiver A given by fen+1 =£ fcn

where / y = (7,0) and f$ = (0,7) with 7 the n x n identity matrix. Then by
duality we obtain the isomorphisms J2t ~ (D Trfli and J2t+\ ^ (D Tryi2.
This gives a complete list of the preprojective and preinjective A-modules.

Next consider the representations of the quiver A corresponding to
the element (1,1) in Xo(mod A). These correspond to the representations

a

Raj, :kz$k with (a, b) G k x k. Then it is easy to see that Raj, is inde-
b

composable if and only if (a, b) =£ (0,0). Direct calculations show that
Rajb is isomorphic to Rjp if and only there exists some t G k — { 0 } with
(ta, tb) = (a!, br). Hence the nonisomorphic indecomposable representa-
tions of A over k corresponding to the element (1,1) in Ko(mod A) are
indexed by the projective line P^fe) over k. For each p G IP^fc) let Rp be
the corresponding module.

We have the following result about the family {Rp \ p G P^fc)}.

Proposition 7.1 Let Rp be as above, and let p and q be in P^fc). Then the
following hold.

(a) EndA(Rp)~kforallp.
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(b) HomA(Rp,Rq) = 0forp±q.

(c) dim/, Ext{(Rp, Rp) = 1 for all p.

(d) Ext1
A(Rp9Rq) = Oforp±q.

(e) DTrRp~Rpfor all p.

Proof Statements (a) and (b) follow easily by direct calculations.
To prove (c) and (d), consider the minimal projective resolution

of Rp which is of the form 0 - • P2 - • Pi -> Rp -> 0. Apply-
ing HomA( ,Rq) we get the exact sequence 0 —> Hom\(Rp,Rq) —>
HomA(PuRq) -> HomA(P2,Rq) - • Ext\(Kp,l^) - • 0. From (a) and
(b) we have dim^ HomA(-Rp,i^) = dPA, where bVA is the Kronecker delta.
In general we have dimfcHomA(Pi,i^) = 1 and dimfcHomA(P2,i^) = 1,
and hence dim/c Ext^Rp.Rq) = dPA.

(e) We know from Proposition 2.2(b) that [DTrRp] = c[Rp] = c (\) =

( j j . Hence DTvRp is isomorphic to one of the representations Rq.

However Ext{(Rp,D Tr Rp) =£ 0, so D TrRp ~ Rp according to (d). •

Since Ext^i^p, Rp) ^ 0, we know by Proposition 1.7 that Rp is a regular
module. Therefore we can use the structure theorem for the regular
components of the AR-quiver to analyze the component containing Rp.
By Theorem 4.15 we have that for each p e TPx(k), the component of the
AR-quiver containing Rp has the form

with possibly some identifications. We know that DTrRp ^ Rp by
Proposition 7.1(c). From this it follows that all vertices on any given
dotted horizontal line in the above picture are to be identified. Such
a component is called a tube of rank 1. In this way we obtain a
list of nonisomorphic indecomposable A-modules which we denote by
RptuRp,29'-,Rpj,--» We now show that Rp = Rp\. Since the simple
module Si is injective and the other simple module S2 is projective, they
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are not regular modules. Therefore all the modules in the components
containing Rp have length at least 2. Since l(Rp) = 2 and by Theorem
4.15 all the morphisms going up are irreducible monomorphisms, we
have that Rp = RPti.

Letting Rp$ = 0 we have that there is an almost split sequence 0 —•
Rpj —• Rpj+i U Rpj-i ~* Rpj ~~> 0 for j > 1. This determines the modules
Rpj uniquely.

We have the following analogue of Proposition 7.1 for the modules

Proposition 7.2 Let Rpj and Rqt for p,q G JP{(k) and i,j e N be as
described above. Then the following hold.

(a) HomA(Rpj9 Rqj) = 0 = Ext{(RpJ, ^ ) for p ± q.

(b) dim/c HomA(RPj, RP,i) = dimfe Ext\(Rpj, RPti) = min{ i, j}.

Proof The proof of this goes by induction on i and j separately. We
start by proving the statements for j = I and i arbitrary. Proposition 7.1
states that the claims in (a) and (b) hold for i = 1 which is the start of
the induction. Assume now the statements hold for i < n. We want to
prove that they hold for i = n + 1.

Consider the almost split sequence 0 —> Rq,n —> Rq,n+i LJ Rq,n-i ~>
Rqn —> 0. Applying HoniA(#p,i, ) gives the long exact sequence 0 —•

^ ) -> 0. If
p ^ q we have by induction that the first, third, fourth and sixth groups
are zero. Hence the two remaining groups in the exact sequence are also
zero, showing that the claim in (a) is also valid for 7 = 1 and i = n + 1.
Hence by induction we have that (a) holds for y = 1 and i arbitrary.

We now give the induction step of (b) for j = 1. So let p = q and assume
that (b) holds for 1 < i < n. We want to show that it holds for i = n + 1.
Since the sequence 0 -> Rpn -> Rpn+iY[Rpn-i -» Rpn -> 0 is almost
split, the image of the connecting homomorphism H o m A ^ i , ^ ) —•
Ext^iR^i, RPiTl) has dimension 1 if n = 1 and dimension zero other-
wise. We get that dimfcHomA(£p,i,£p,H+i) = 2dimkUomA(Rp,uRp,n) -
dim/, HomA(^1 ,Kp ,n_i) - 5U = 2 - 1 = 1 and dimfc E x t ^ ^ ^ R ^ + i ) =
2dimfe E x t i ^ i , ^ ) - dimfe Ext{(Rp,u Rp,n^) - Sln = 2 - 1 = 1. Hence
we have established (a) and (b) for 7 = 1 and i arbitrary.

In order to complete the proof one proceeds by induction on j , fixing
the index i. The inductive step here is obtained by using the functor
HomA( ,Rp,t) on the almost split sequence 0 —> Rpj —> Rpj+\
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Rpj —• 0. We leave to the reader to work out the details of this induction.
•

From our discussion so far we have obtained the following set of
nonisomorphic indecomposable A-modules: the preprojective modules
{Qn | n e N } , the preinjective modules {Jn \ n € N } and the modules
{Rpj | p e IP1 (&)>./ e N } . We now want to show that there are no
other finitely generated indecomposable modules in the case when k is
algebraically closed. In the proof of this we need the following result.

Lemma 7.3 Let A and the notation be as before. Let X be indecomposable
in mod A and let [X] = s[S\] + t[S2] in X0(mod A).

(a) If s < t then s = t — 1 and X is preprojective.
(b) If s> t then s = t+l and X is preinjective.
(c) If X is regular, then s = t and there exists some p G P^fc) with Rp a

submodule of X.

Proof (a) If s < t then applying the Coxeter transformation c to the

power s gives cs(s
t) = Q + 5 (212) (0 = (?) + Ml-l) w h i c h i s negative.

Hence X is preprojective by Corollary 2.3(c). Therefore X is one of the
preprojective modules Qn and hence s = t — 1.

(b) If 5 > t then applying the Coxeter transformation c to the power
—s gives that X is preinjective. Therefore X is isomorphic to one of the
preinjective modules Jn and hence s = t + 1.

(c) From (a) and (b) it follows that if X is regular, then s = t.
U

Considering the corresponding representations V\ =$ V2 in Rep(feA) we
fp

obtain that one of the following two cases has to occur: either / a is an
isomorphism or Ker / a ^ 0. In the first situation f~l fp: V\ —> V\ has an
eigenvalue X in k since k is assumed to be algebraically closed. Let v be an

1 U
associated eigenvector. Define (g, h) from k =$ k to V\ =£ V2 by g(x) = xv

* fp
and h(x) = xfa(v) for x e k. Then (/ag)(x) = fa(xv) = xfa(v) = h(x) and

7 l 0 = h{Xx).

_
Hence (g,h) is a monomorphism from R^JT to X, where (1,A) is the
element of !Pl(k) corresponding to (1, X). This takes care of the case when
fa is an isomorphism.

If Ker / a ± 0, consider the representation ita-jr- Let 0 ^ v G Ker/ a
0 /«

and define (g, h) from fc =£ fe to Fi =$ V2 by g(x) = xt; and ^(x) = xfp(v)
1 //*
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for all x in k. Then (g, h) is a nonzero morphism. Further, if (g, h) is
not a monomorphism, then Im(g,/i) ~ Si, which is injective. Hence Si is
a summand of X, but then X is isomorphic to Si since X is indecom-
posable. However X is not preinjective since it is regular. From this we
conclude that (g, h) is a monomorphism. This finishes the proof of the
lemma. •

We now complete the classification by proving the following.

Proposition 7.4 Let the notation be as before. Then every finitely generated
indecomposable regular A-module is isomorphic to Rpj for some p G W1(k)
and j G N.

Proof The proof of this goes by induction on the length of the module X.
We have already noticed that each indecomposable A-module of length
2 is in the set {Rp\ \ p G IP^fc)}. Let X be an indecomposable regular A-
module of length n > 2. Assume by induction that each indecomposable
regular module of length less than n is of the form Rpj for some p G 1Pl(k),
and j G N. By Lemma 7.3 there exist some p G lPl(k) and an inclusion
g:Rp,i -> X. Fix this p and g and let Xr = Cokerg. If X' = 0 then
X ~ Rp,i and there is nothing to prove. We may therefore assume that
X' =£ 0. Decompose Xr into a sum of indecomposable summands X[ and
consider the short exact sequence 0 —• RPi\ —• X —• ]JX- —• 0. Since
X is not preprojective, none of the summands X[ of X' is preprojective.
Therefore [Xt] = 5,-[Si] +tt[S2] has by Lemma 7.3 the property that st > tt

for all i. However J2si = J2 ^ s o w e ^ a v e equality for all i. Therefore
none of the X[ are preinjective. Hence by the induction assumption each
X[ is isomorphic to Rqj for some q G P^/c) and j G N.

We next show that each q is equal to p. By Proposition 7.2 we have

\ , i ) = 0 for q ^= p, so the sequence 0 —• HomA(i^J,JRAi) —̂ >
) —• H o m A ^ j , ^ ) —• 0 is exact for q ^= p. Hence if Rqj is

a summand of X' for q =£ p, then i ^ j would also be a summand of X,
which contradicts the indecomposability of X. Therefore each summand
of X' is of the form Rpj for some j G N.

In the rest of the proof we choose j in N such that Rpj is a summand
of X'. For convenience we suppress the first index p in Rpi for all i.
From Theorem 4.15, the structure theorem for regular components for
a hereditary artin algebra A, we have the exact sequence e:0 —• R\ —•

y
Rj+i —• Rjr —• 0 with y irreducible. Applying HoniA( ,#i) we obtain the
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exact sequence

Ext\(fyKi) E X ^ ° Exti(ty+i,Ki) -> E x t ^ R i , ^ ) -> 0.

It follows from Proposition 7.2(b) that each of these vector spaces has
dimension 1, and hence Ext\(y,R\) is zero. Using this we want to
prove that X is isomorphic to Rj+\. Considering the exact sequence
0 —> #i —» X —> X —> 0 and combining this with the sequence e above,
we get the following exact commutative diagram

X') U

Let o.Rj —* X' be a split monomorphism and consider ay in HomA(<R/+i,
X'). Since Ext\(y,Ri) = 0, we have that the connecting morphism dj+\
in the bottom sequence applied to ay is zero. Hence there exists some
v G Hom\(Rj+u X) such that /zv = ay. Now letting p be a left inverse of
a we get that p/iv = y. However, y is an irreducible morphism and p\i is
not a split epimorphism. Therefore v is a split monomorphism. Now X
was assumed to be indecomposable and is therefore isomorphic to Rj+\.

This finishes the proof of the lemma as well as completing the classifi-
cation of all finitely generated indecomposable A-modules. •

We end this section by summarizing our findings about the finitely
generated indecomposable A-modules and their morphisms and exten-
sions.

Theorem 7.5 Let k, A, and the notation be as before in this section. Then
we have the following.

(a) The sets {Qn | n G N } , { Jn \ n G N } and {RpJ \ p G P 1 (£),./ G N }
constitute a complete set of nonisomorphic indecomposable A-modules.

(b)

m a x { 0 , n - m + l } = dimfe HomA(gm, Qn\

max{ 0, m - 1 - n } = dimfe Extjv(Qm, Qn),

max{ 0, m - n + 1} = dini/c HomA(Jm, Jn\

max{ 0, n - 1 - m } = dimfe Ext\(Jm, Jn\

j = dim/, HomA(Qm, RpJ) = dimfe HomA(,Rpj, Jm)
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= dimfc Ext^CRpj, Qm) =

0 = HomA(

= Exti(en, Jm) = Exti(eB, Upj) = Exti(«pj, Jm),

min{ i, j } = di

is the Kronecker delta.

Exercises

1. Prove that the center of an indecomposable hereditary artin algebra
is a field.

2. Let F c K be a finite field extension.

(a) Show that the subring A = j (^) |a G F, b, c e K j of the 2 x 2 matrix

ring over K is hereditary.
(b) Find the preprojective component of FA and prove that A is of finite

type if and only if [K:F]< 3.
(c) Show that the subring of the n x n matrices over K with n > 3 given

by the matrices (a^) with a^ = 0 for j > i, anj G K, atj G F for i < n
is a hereditary artin algebra.

(d) Find the preprojective component of the algebra in (c) and determine
when the algebra is of finite representation type.

(e) Give examples of hereditary artin algebras of finite representation
type where the underlying graphs of the valued quivers are the
Dynkin diagrams different from the ones given in (a) and (c).

1 5
3. Let k be a field and A be the quiver 1- —• • <— -3 and consider the

representation M given by

TGI)
k
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with (£) 7̂  0 for i = 1,2,3,4. Let a*/ be the determinant of the matrix

(a) Prove that if ai; = 0 for four sets of indices i, j with 1 < i < j < 4
then ai; = 0 for all i, j where 1 < i < j < 4, and the representation
M decomposes into a sum of a simple projective and an injective
representation.

(b) Prove that if oty- = 0 for exactly three sets of indices i9j with
1 < i < j < 4, then there is one q with 1 < q < 4 such that
the representation M decomposes into a sum of the projective rep-
resentation associated with q, and DTrSq where Sq is the simple
representation corresponding to the vertex q.

(c) Prove that if a*,- = 0 for exactly two sets of indices (ij) and (p,q)
then {f,./}n{p,g} = 0 and the representation decomposes into a sum
of two indecomposable representations Ntj and Npq where Ntj(s) = k
for s G {i,y, 5} and 0 otherwise and all maps are the identity. This
gives a total of six indecomposable modules which come in three
pairs.

(d) Use the Coexter transformation to prove that D Tr Ntj ~ Npq when
(ij) and (/?, q) are connected as in (c). Further prove that End(Ntj) ~
k.

(e) Prove that if aj; = 0 for exactly one pair of indices i,j, then the
representation M given is indecomposable and determined up to
isomorphism by (i,j). Further M which we then denote by M i ; con-
tains the representation Ntj from (c) and there is an exact sequence
0 -> Ntj - • Mtj - • Npq - • 0 where {hj}n{p,q} = 0. Prove that this is
an almost split sequence (Hint: End(iVM) ĉ  k and Ny ~ D Tr(N"M).)
Also prove that D Tr M i ; ^ Mp^ where {p,^} n {ij} = 0.

(f) Prove that if k has only two elements the representations given up to
now give all representations of the quiver A of the given dimension.

(g) Prove that if a*, =̂ 0 for all (i,j) then the representation M is
indecomposable with D Tr M ^ M, End(M) ~ fc and is isomorphic
to a representation of the form

k

(A}

T
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where b4 $ {0,1}.
(h) Conclude that the components of the AR-quiver containing the mod-

ules from (c) and (e) are of form ZV4QO/(T2) and that the components
containing the modules from case (g) are of the form ZAOO/(T).

(i) Prove that if k is an algebraically closed field, then any indecompos-
able representation of A which is neither preprojective nor preinjec-
tive contains a submodule from the lists in (c) and (g) and finally
show that any indecomposable module belongs to one of these
components.

4. This exercise gives an alternative way of proving Theorem 6.9(a) by
using Jacobi's criterion.

(a) (Jacobi's criterion) Let M be a real symmetric n x n matrix and
q.W1 —• ]R the quadratic form defined by q(x) — xMxtT. Prove that
q is positive definite if and only if all principal minors of M are
positive, i.e. the subdeterminants formed by the i first columns and
i first rows are positive for i = 1,2,..., n.

(b) Prove that the zth principal minor of the Cartan matrix CUn of the
Dynkin diagram An is i + 1.

(c) Prove that the zth principal minor of the symmetrized Cartan matrix
C TBn of the Dynkin diagram Bn is 4 (if the diagonal matrix T is
chosen minimal).

(d) Show that the zth principal minor of the symmetrized Cartan matrix
CTcn of the Dynkin diagram Cn is 21 (when T is chosen minimal).

(e) Show that the zth principal minor of the Cartan matrix Q>n of the
Dynkin diagram Dn is 4.

(f) Show that the zth principal minors of the symmetrized Cartan matrix
are all positive for A G {E^,£7,E^F

Notes
The starting point for the study of the representation theory of hered-
itary artin algebras was [Gal] in which the hereditary algebras over
algebraically closed fields of finite representation type and their modules
are classified. This was done by showing that over an algebraically closed
field the indecomposable representations of a connected finite quiver are
of finite type if and only if the underlying graph is a Dynkin diagram
of type An, Dn, £6, £7 or E%, in which case there is a natural bijection
between the positive roots of the Tits quadratic form associated with
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the Dynkin diagram and the isomorphism classes of the indecomposable
representations of the quiver. This result was applied in [Gal] to classi-
fying radical square zero algebras over algebraically closed fields of finite
representation type, correcting earlier work in [Yoshii]. The generaliza-
tion to arbitrary hereditary and radical square zero artin algebras was
given in [D1R1], [D1R2]. Other references along these lines are [BerGP],
[Km] and [AuP].

The approach to proving Gabriel's theorem in [BerGP] uses the Coxeter
functor C+, which is related to the Coxeter transformation c, and also
closely related to the functor D Tr (see [BrenBl], [Ga2]). C+ is defined as
a composition of so-called partial Coxeter functors (see [BerGP]), which
have a module theoretic interpretation [AuPR]. Here are the origins of
tilting theory, developed in [BrenB2], [HapR].

The distinction between preprojective, preinjective and regular modules
has its origin in [BerGP]. Our development of the preprojective and
preinjective modules and the Coxeter transformation is based on [AuP].
In [AuP] the homological quadratic form was used, and the equivalence
of the homological and Tits quadratic form was given in [Rinl]. There
is a more general theory of preprojective modules over an arbitrary artin
algebra developed in [AuSl], and a more general notion of preprojective
components introduced in [HapR].

The structure of the regular components of a hereditary algebra was
conjectured by Ringel and proved in [Rin2]. Our approach follows the
independent proof in [AuBPRS].

The classification of the indecomposable modules over the Kronecker
algebra was essentially done in [Kro]. The Kronecker algebra is a special
case of tame hereditary algebras, and for a classification of these algebras
and their indecomposable modules we refer to [DoF], [Naz], [D1R2]. A
short recent proof using more machinery is given in [Rin4].

As examples of recent work on wild hereditary algebras we refer to
[Ke] and [PeT].
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IX

Short chains and cycles

One of the main problems in the representation theory of an artin
algebra A is determining when two modules M and N in mod A are
isomorphic. A completely general answer to this problem was given in
Chapter VI in terms of ^-lengths of the ^-module of morphisms from
each indecomposable module to the given module M. At first sight it
seems hopeless to ever use this criterion for proving that two modules are
isomorphic. Our use of it in this chapter shows that this is not entirely
true. Nonetheless, it is obvious that it is desirable to have other criteria
which are more manageable, even if they are not as general.

In this chapter we concentrate on giving conditions on a pair of
indecomposable A-modules which guarantee that they are isomorphic
in terms of such familiar invariants as their composition factors, their
projective presentations or their tops and socles. The basic assumption
is that one or both of the modules do not lie on certain types of cycles
of morphisms in mod A, namely short cycles. We start the chapter by
discussing these types of modules.

1 Short cycles

In this section we introduce and study the notions of short cycles and
short chains.

A path from an indecomposable module M to an indecomposable

module N in mod A is a sequence of morphisms M -* M\ —• M2 —>
• • • -^ Mt-\ -4 N between indecomposable modules, where t > 1 and
each ft is not zero and not an isomorphism. Note that a morphism
f:X—>Y between indecomposable modules is not an isomorphism if
and only if / e radA(X, Y). A path from M to M is called a cycle in

313
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314 Short chains and cycles

mod A, and the number of morphisms in the path is called the length of
the cycle. M is said to lie on a cycle if there is a cycle from M to M.

Using results from Chapters VII and VIII we get the following rela-
tionship between cycles in mod A and cycles in the AR-quiver FA of A.
For M in indA we here let M denote also the corresponding vertex in
the AR-quiver.

Proposition 1.1 Let A be an artin algebra and M an indecomposable A-
module.

(a) If M lies on a cycle in the Auslander-Reiten-quiver T\, then M lies
on a cycle in mod A.

(b) If A is of finite representation type, then M lies on a cycle in mod A
if and only if M lies on a cycle in T\.

Proof (a) Assume that M lies on a cycle in the AR-quiver. This means

that there is a sequence of irreducible morphisms M -» M\ -X M2 -»

• • • -̂ » Mt-\ -4 M between indecomposable modules. Hence M lies on a
cycle in mod A.

(b) If A is of finite representation type, it follows from V Theorem 7.8
that if g: X —> Y is a nonzero morphism between indecomposable mod-
ules which is not an isomorphism, then there is a sequence of irreducible

?1 I?*} 2 ^ 2 1 2"

morphisms X -> X\ —• X2 —> • • • -^ Xs-\ —> Y between indecomposable
modules. Hence a cycle in mod A gives rise to a cycle in FA in this case. •

It has been known for some time that the nature of the cycles an
indecomposable module lies on has considerable impact on the properties
of the module. For instance the directing modules, those indecomposable
modules not lying on any cycle, are determined up to isomorphism by
their composition factors. Further evidence along these lines is given,by
the fact that over the Kronecker algebra an indecomposable module is
directing if and only if it is either preprojective or preinjective. In fact,
this is true for any hereditary fc-algebra over an algebraically closed field
k. It turns out that indecomposable modules not lying on very short
cycles have some properties reminiscent of directing modules. This leads
to the concept of modules not lying on short cycles.

We say that a cycle of length at most 2 is a short cycle. Note that an
indecomposable module M does not lie on a cycle of length 1 if and only
if every nonzero morphism / : M —• M is an isomorphism, or equivalently

is a division ring.
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The following example shows that not lying on a short cycle is a
proper generalization of directing, and not lying on a cycle of length 1 is
a proper generalization of not lying on a short cycle.

Example Let A be a Nakayama algebra over a field k with admissible
sequence (2,2). Denote by S\ and S2 the simple A-modules, and by Pi
and P2 their projective covers. Then Si, S2, Pi and P2 are the only
indecomposable A-modules. The module Si does not lie on a short cycle
since Pi is the only indecomposable module having a morphism to Si
which is not zero and not an isomorphism, and HoniA(Si,Pi) = 0. Since
we have a cycle Si —• P2 -» Pi —• Si, the module Si is not directing.

We have a short cycle Pi —• P2 —• Pi, and EndA(Pi) is a division ring.
Hence Pi lies on a short cycle but not on a cycle of length 1.

Closely related to the concept of short cycles is the concept of short
chains for an artin K-algebra A. This notion is motivated by the formula
(X, Y) - (Y,DTrX) = (P0(X), Y) - (Pi(X), 7 ) from IV Corollary 4.3,
where X and Y are in mod A and Pi(X) —• Po(X) —• X —• 0 is a minimal
projective presentation. It is obvious that this formula is easier to deal
with when one of the terms on the left hand side is zero. This observation
leads to the following definition.

/ g

A sequence of morphisms X —> Y —• D TrX where X is indecompos-
able and / and g are nonzero is said to be a short chain. If we have
such a short chain, we say that Y is the middle of the short chain. If
in addition Y is indecomposable we say that X is the start and DTvX
the end of the short chain. If Y is not the middle of a short chain, we
have by definition (X, Y) = 0 or (7 ,DTrX) = 0 for all indecomposable
modules X in mod A.

There is the following relationship between short cycles and short
chains.

Theorem 1.2 Let M be an indecomposable module over an artin algebra
A. Then M does not lie on a short cycle if and only if M is not the middle
of a short chain.

f g
Proof: Let M be an indecomposable A-module and X —> M —• D TrX

a short chain. We want to show that M lies on a short cycle. Consider

the almost split sequence 0 —> D Tr X A £1 ]J • • • ] j £ r -A X —• 0, where
the Et are indecomposable. Since (ai)tr is a monomorphism, there is some
i such that the composition M ^ DTrX ^> Et is not zero.
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If Pi: £;; —• X is a monomorphism, then also the composition M —>

DTTX -^ £/ -4 X is nonzero. Since the composition /i:M —• X is not

an isomorphism we get a short cycle M -* X ^> M, where t = / if / is
not an isomorphism and t = fhf otherwise.

If Pi : Et —• X is not a monomorphism, it is an epimorphism since it

is irreducible. Hence the composition £*\ -+ X —> M is not zero, so that

we get a short cycle M -^> Et -* M. This shows that if M does not lie on
a short cycle, then M is not the middle of a short chain.

In order to prove the converse we need the following.

Lemma 1.3 Let g:B —> C be a right minimal morphism. Then for each
indecomposable summand X o /Kerg we have Hom\(Tr DX,C) ^ 0.

i g

Proof Consider the induced exact sequence 8:0 —^ Kerg -» B —> Img —•
0. Let X be an indecomposable summand of Kerg and p:Kerg —• X a
split epimorphism. Since g:B —> C is right minimal, and consequently
also g:B —• Img is right minimal, it is easy to see that p does not
factor through i:Kerg —• B. This shows that 8*(X) =£ 0, where d* is
the covariant defect of 8, and hence 8*(TTDX) is not zero by IV Theo-
rem 4.1. It then follows that HoniA(TrDX,Img) is not zero, and hence

)^0. •

We now return to the proof of Theorem 1.2. Assume that M lies on
/ g

a short cycle M —• N —• M. We want to show that M is the middle of
a short chain. We first observe that we can assume gf = 0. For since /
and g are not isomorphisms, gf:M —• M is not an isomorphism, and
is hence nilpotent in EndA(M). If gf =/= 0, we can then choose i with

(g/y ^ 0 and (g/y+ 1 = 0, to get a short cycle M igM' M^M where the
composition of the morphisms is zero.

/ g
Assume now that we have a short cycle M —> N —• M with g / = 0.

Then we have I m / c Kerg and hence HomA(M,Kerg) =̂ 0. There is
then an indecomposable summand X of Kerg such that HoniA(M,X) ^
0. Since N is indecomposable and g is nonzero, g:N —• M is right
minimal. Hence we get HoniA(Tr Z)X,M) =/=• 0 by Lemma 1.3, so that M
is the middle of a short chain. •

Even though the concepts of lying on a short cycle and being the
middle of a short chain are equivalent for an indecomposable module, it
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is still useful to have both concepts available. For example if EIKIA(M) is
not a division ring, it is immediate from the definition that M lies on a
short cycle, but it is not obvious from the definition that M is the middle
of a short chain.

Since the notions of modules being faithful or sincere play an impor-
tant role in studying modules not lying on short cycles, we introduce
these concepts before stating our next result. A A-module M is faithful if
the annihilator amiA(M) is 0, and M is sincere if each simple A-module
occurs as a composition factor of M. Choose mi,...,mn in M such

n
that P| annA(mj) = arniA(M), and define the A-morphism / : A —> nM by

1=1

/ ( I ) = (mi,...,mn) in nM. Then Ker / = amiA(M), so / is a monomor-
phism if and only if M is a faithful A-module. From this it follows that
if M is faithful then it is sincere. For A = k[x]/(x2) the simple A-module
is an example of an indecomposable module which is sincere and not
faithful.

Our aim now is to show that even though in general an indecomposable
sincere module M need not be faithful, it is faithful if it does not lie
on a short cycle. This will require several steps, and we start with the
following.

Lemma 1.4 For an artin algebra A we have the following.

(a) For each right A-module A and left A-module M we have the ad-
jointness isomorphisms 4>r:D(A ®A M) —• Hom\oP (A, D(M)) and
(j)i:D(A <g)A M) - • KomA(M,D(A)) given by (f)r(f)(a)(m) = f(a ® m)
and (f)i(f)(m)(a) = f(a ® m) for f e D(A ®A M), ae A and me M.

(b) For each projective A-module P and A-module M we have
D(HomA(P,M)) - HomA(M,D(P*)).

(c) For each projective A-module P and A-module M we have (P,M) =

Proof (a) is a standard homological fact and is therefore left to the
reader.

(b) From II Proposition 4.4 we have the isomorphism P* ®A M ~
HomA(P, M). Using the duality D we get that D(HomA(P, M)) ^ D(P*®A

M) which is isomorphic to Hom\(M,D(P*)) by (a).
(c) is a direct consequence of (b). •
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Before stating our next preliminary result about indecomposable mod-
ules which are not on short cycles, we state a property which the cor-
responding representations (F,/) have when A is a finite dimensional
algebra over an algebraically closed field k with associated quiver T.
Namely, for / = (/aWn we have that each / a is either an epimorphism
or a monomorphism. That Proposition 1.5 really implies this is left to the
reader to verify (see exercise 7). Hopefully this remark will help illustrate
the significance of the following.

Proposition 1.5 Let A be an artin algebra and M a A-module which is not
the middle of a short chain. If f.P -> Q is a nonzero morphism between
indecomposable projective A-modules, then HoniA(/,M):HomA(2,M) —•
HoniA(P,M) is either a monomorphism or an epimorphism.

Proof Assume that there is some nonzero morphism / : P —• g be-
tween indecomposable projective A-modules such that HoniA(/,M) is
neither a monomorphism nor an epimorphism. Let X = Coker/. Since
HomA(/,M) is not a monomorphism, we have Hom\(X,M) ^ 0. By
Lemma 1.4 combined with the isomorphism P* ®A M ~ HoniA(P,M)
from II Proposition 4.4 we have a commutative diagram

DHomA(P,M)
\l

UomA(P\DM)

1*. \J 7 / j - ^ T T /

\x
[omA(/',DM)

- • Hom A (Q '

Q,M)

,DM),

where /* = HomA(/,A). Since HomA(/,M) is not an epimorphism,
DHomA(/,M) is not a monomorphism and therefore HomA(/*,DM) is
not a monomorphism. This implies that HomAoP(Coker/*,DM) =£ 0.
Since P and Q are indecomposable, P - > < 2 - > X - > 0 i s a minimal
projective presentation of X. Hence we have Coker/* ~ TrX, so that
HomAop(TrX,DM) ^ 0, and consequently HomA(M,DTrX) ^ 0. We
have already seen that HomApCM) ^ 0. Since X is indecomposable
because Q is, we get that M is the middle of a short chain. Hence if M
is not the middle of a short chain, Hom(/, M) is either a monomorphism
or an epimorphism for all nonzero f:P->Q when P and Q are inde-
composable projective A-modules. •

We are now ready to prove our promised result.
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Theorem 1.6 Let A be an artin algebra and M a A-module which is
not the middle of a short chain. Then M is sincere if and only if it is
faithful.

Proof Let M be a sincere A-module which is not the middle of a short
chain. Write 1 = e\ + \-em where the et are primitive orthogonal idem-
potents. If annM ^ 0, there are some i9j with ^ (annM)^ =̂ 0. Choose
X e ann M such that etkej =f= 0. Then X induces by right multiplication a
nonzero morphism \i\ Aet —• Ae7. Since M is sincere, HomA(Aei,M) ^ 0
and Hom\(Aej,M) ^ 0. By the choice of \i it is easy to see that
HomA(ju,M) = 0, and HomA(//,M) is hence neither a monomorphism
nor an epimorphism. This gives a contradiction to Proposition 1.5, so
that M is faithful. This finishes the proof of the theorem since we know
that M being faithful implies that M is sincere. •

When an artin algebra A has a sincere indecomposable directing
module, we shall see that there are several A-modules of projective
dimension at most 1 and of injective dimension at most 1. We say that
an indecomposable module M is before the indecomposable module X
in mod A if M = X or there is a path from M to X in mod A and
M is after X in mod A if M = X or there is a path from X to M
in mod A. Note that this does not in general define a partial order in
indA.

Proposition 1.7 Let A be an artin algebra and M an indecomposable A-
module. Then we have the following.

(a) pdA M < 1 if and only if HomA(D(A), D Tr M) = 0.

(b) idAM < 1 if and only if(TxDM)* = 0.

(c) Let X be a sincere indecomposable directing module. If M is before
X, then pdA M < 1 and if M is after X, then idAM < 1.

Proof (a) This is just a restatement of IV Proposition 1.16.
(b) This follows from (a) by duality.
(c) Assume that M is before the sincere indecomposable directing A-

module X. If pdA M > 1 there is by (a) an indecomposable injective
A-module / such that HomA(J,D TrM) ^ 0. Since X is sincere, it is easy
to see that HomA(X,7) ^ 0. Since there is a path from D T r M to M, it
follows that X lies on a cycle. This is a contradiction, and hence we can
conclude that pdA M < 1.
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The second part follows by duality. •

As an application of Theorem 1.6 we prove a similar result for sincere
modules which do not lie on short cycles, which we shall need in Section 3.

Proposition 1.8 Let A be an artin algebra and X an indecomposable sincere
A-module which does not lie on a short cycle. Let M be indecomposable in
mod A.

(a) / / HomA(M, X) ± 0, then pdA M < 1.
(b) / / HomA(X, M) ^ 0, then idAM < 1.

Proof (a) Assume HomA(M,X) ± 0, and let Pi A Po -» M - • 0 be a
minimal projective presentation of M. We have the formula (M,X) —
(X,DTrM) = (P0,X) - (PUX) by IV Corollary 4.3. Since X is not the
middle of a short chain and HomA(M,X) ^ 0, we have (X,D Tr M) = 0.

Consider the exact sequence 0 —• HomA(M,Z) —> HomA(Po,X) A '
HomA(PuX). Then lR(ImHomA(KX)) = (P0,X) -(M,X) = (Pi,X).
Therefore HomA(/z,X) is surjective. Since X is faithful by Theorem 1.6,
we have a monomorphism / : A —• tX for some t > 0. Hence we have
a monomorphism g:Pi —• sX for some s > 0. Because HomA(/z,X) is
surjective we have a commutative diagram

Pi - Po
1* /

sX

Since g is a monomorphism, /i is also a monomorphism, and hence
p d A M < l .

(b) This follows from (a) by duality. •

2 Modules determined by composition factors

We give some general sufficient conditions for indecomposable modules

to be determined by their composition factors, in terms of the notions

introduced in Section 1.

Theorem 2.1 Let M and N be indecomposable modules having the same
composition factors. If M does not lie on a short cycle, then M ~ N.
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Proof Let Pi —• Po —> X —• 0 be a minimal projective presentation for
a A-module X, and let M and AT be indecomposable A-modules. We
have by IV Corollary 4.3 the formulas (X, M) - (M, DTrX) = (Po, M) -
(Pi,M) and(X,iV)-(iV,DTrX) = (PO,N)-{PUN). Since M and N have
the same composition factors, we have (Po,N) = (Po,M) and (P\,N) =
(Pi,M). Hence we get (X,M) - (M,DTrX) = (X,N) - (N9DTrX).
Letting X = M, we have (M, M) - (M, Z) Tr M) = (M, iV) - (N, D Tr M).
Since M does not lie on a short cycle, it is not the middle of a short
chain by Theorem 1.2. Therefore we get (M,DTrM) = 0, so that
(M,N>^0.

Since DM also does not lie on a short cycle in mod(Aop), and DM
and DN have the same composition factors, we get similarly that
(DM, DAT) ^ 0 and hence (N,M) £ 0. Since HomA(M,A0 ^ 0 and
HomA(N,M) ^ 0 and M does not lie on a short cycle, we conclude that
M~N. •

We have the following immediate consequences.

Corollary 2.2 Let M and N be indecomposable A-modules having the same
composition factors. If M is directing, then M ~ N. •

Corollary 2.3 If there are no short cycles in mod A, then the indecompos-
able A-modules are determined by their composition factors. •

It follows from VIII Proposition 1.5 and its dual that the indecom-
posable preprojective and preinjective modules over a hereditary artin
algebra are directing. Hence Corollary 2.2 is a generalization of the result
proven in VIII Corollary 2.3 that these modules are determined by their
composition factors.

We show that EndA(M) being a division ring is not a sufficient condi-
tion for M to be determined by its composition factors and that M not
lying on a short cycle is not a necessary condition.

Example Let A be a Nakayama algebra with admissible sequence (3,3)
over an algebraically closed field k. Let Si and 52 denote the simple
A-modules and Pi and P^ their projective covers. Then Pi/socPi and
P2/SOCP2 have the same composition factors and their endomorphism
rings are division rings, but they are not isomorphic.
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P2 —• Pi, and Pi is determined byFurther we have a short cycle Pi
its composition factors.

We know that an indecomposable artin algebra is of finite represen-
tation type if we have a finite component of the AR-quiver. We have
illustrated on examples in Chapter VII that we can sometimes compute
the AR-quiver by starting with a simple projective module. The method
is easier to carry out in practice if we can replace the indecomposable
module corresponding to a vertex by its composition factors. In order to
do this we need to recognize from the composition factors when we have
reached an indecomposable summand X of xP for some indecomposable
projective module P . In particular, we need to know that such X are
determined by their composition factors. We point out that we can rec-
ognize from the composition factors if we have an injective module, since
for a minimal left almost split morphism g:A —• B we have l(B) < l(A)
if and only if A is injective.

We illustrate this principle on an example already treated in Chap-
ter VII.

Example Let k be a field and F the quiver w with relation

p = {Pec — dy}. Denote by S* and Pt the simple and projective module
corresponding to the vertex i for i = 1,2,3,4. Then S4 = P4 and
XP2 ^ S4 ~ rP3 and rPi is indecomposable.

It is not hard to see that rPi does not lie on a short cycle (see
Exercise 5), so that rPi is determined by its composition factors by
Theorem 2.1.

If [M] = ai[5i] +a2[52] +a3[S3] +a4[S4] in X0(mod A), we denote [M]
by (ai,a2,03,04)- We then have that the AR-quiver of this algebra looks
like the following, using additivity.

(0,1,0,1)

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)

(1,1,0,0)

(1,0,0,0)
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3 Sincere modules and short cycles

We have seen that for indecomposable modules, not lying on a short cycle
is a proper generalization of being directing. It is sometimes possible to
reduce questions about modules not lying on short cycles to questions
about directing modules, as we shall illustrate in the next section. This
is based on the fact that the two concepts coincide for sincere modules,
which is the main result of this section.

We start with the following preliminary results.

f g
Lemma 3.1 Let (5:0 —• X —> Y —• Z —• 0 be an exact sequence in mod A.

If f € r a d A ( X , Y) and p : X —> M is a split epimorphism and

o - > x - 4 y - ^ > z - > o
I ' l « II

0 - > M ^ C - * Z - > 0

is a pushout diagram, then f € radA(M, C).

Proof Choose j:M —> X such that pj = 1M- Then we have qfj = / ' .
Since / e radA(X, Y) we have that / ' E radA(M, C). •

Lemma 3.2 Let M and N be indecomposable A-modules with rad (M, N) =
f g0. Let M —> X -> N be a path in mod A with l(X) smallest possible. Then

Kerg is indecomposable.

Proof Let K = Kerg and assume that K = K\\JK2 where K\ is
indecomposable. We denote by f the morphism M —• K induced
by f:M -> X. Since f:M —• X is not zero, we can assume that
pxf

r ^ 0 where p\: K —> K\ is the projection map according to the above
decomposition. We have the exact sequence 0^>K-+X-+Z-+0
where Z = Img. Consider the pushout diagram

5: 0 -> K - i X -^ Z - • 0

I * i II
€: o — Xi A Y A Z -> 0.

Since s:X —• X is a nonzero monomorphism which is not an epimor-
phism and X is indecomposable, we have that s € radA(K,X). Then
a G radA(Ki,7) by Lemma 3.1, and hence the sequence e does not
split. Since a:K\ —> Y is a monomorphism, there is a decomposition
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Y = Y\ \\ Y2 with Y\ indecomposable and q\(xp\fr\M —> Y\ nonzero,
where q\: Y —> Y\ is the projection map according to the above decom-
position. If P{Y\) = 0, we have Y\ c <x(K\). Hence Y\ would be a
summand of OL(K\), and consequently Y\ = a(K\) since Y\ is not zero and

OL(K\) is indecomposable. But then the sequence 0-»Ki—>7—>Z—•()
would split. Consequently we have P{Y\) i= 0. Now we have a path
M - • Yi - • N with /(7i) < l(X) - l(K2). By the assumption on X we
have that K2 = 0. Therefore we have that K = Ker g is indecomposable.

•

The crucial part of the main theorem is the following.

Proposition 3.3 Let M be a sincere indecomposable module over an artin

algebra A and assume that M does not lie on a short cycle. If N is inde-

composable and there is a path M^X^Y^Nin mod A, then there

is some path M —> A —> N in mod A.

Proof Let M be a sincere indecomposable module over an artin algebra

A and assume that M does not lie on a short cycle. Let M —• X —• Y —• N
be a path from M to N in mod A, and assume that l(X) + l(Y) is smallest
possible for a path from M to N with three morphisms. We can clearly
assume that HoniA(M, Y) = 0 = HomApC N), since otherwise we would
easily get a shorter path from M to N. Since HomA(M, Y) = 0 and the

/ g
path M —> X —• 7 has Z(X) smallest possible, it follows from Lemma 3.2
that Kerg is indecomposable. Since in addition HoniA(M,K) ^ 0,
where we write K = Kerg, and M is a sincere indecomposable module
which is not the middle of a short chain, it follows that id\K < 1 by
Proposition 1.8. Writing Z = Img and C = Cokerg we have an exact

sequence 8:0 —> Z —• Y —• C —• 0. The exact sequence 0 -> K —> X —•
Z —• 0, where g':X -> Z is the morphism induced by g:X —• 7 , gives
rise to an exact sequence Exti(C,iC) -> Ext\(C,X) - • Ext\(C,Z) - • 0.
Considering the element (5 in ExtA(C,Z), it follows from the surjection

C,X) —• ExtA(C,Z) that we have an exact commutative diagram

c
1 g'

z
I
0

A y
1
0
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Let B = Y[s
i=1 Bt be a decomposition of B into a sum of indecomposable

modules, and denote by qt'.Bi —> B and pf.B —• Bt the corresponding
monomorphisms and epimorphisms for i = l , . . . , s . Since hg = 0, g is
not an epimorphism and hence C = Cokerg is not zero. Since g ^ O ,
we have that Z = Im g is not zero. It then follows that 0 -> Z —• Y ->
C —• 0 does not split since Y is indecomposable. Hence the sequence

0 - > X ^ > # A c - > 0 does not split. If follows that pt0L:X - • Bt is not
an isomorphism for any i.

Consider the sequence £:0 - • X -4 £ ] J Z - > Y - > O induced by the
above diagram which is exact by I Proposition 5.6. Since gf = 0 we
have that g: X —• Y is not a monomorphism, and hence g': X —• Z is a
proper epimorphism. Then gf:X^>Z is not a split monomorphism, so
that g' G radA(X,Z) since X is indecomposable. Since a:X —• 2? is also
not a split monomorphism, we have a e radA(X,J3), and consequently
(_a

g0
 G r ad A (X ,£ ] jZ ) . Hence £ does not split. Since both X and Y

are indecomposable, pt(x:X —• £, and vqt'.Bt —> Y must then be nonzero
nonisomorphisms for all i. Since OL.X —• 5 is a monomorphism and
/ : M —> X is not zero, there is some i with ptocf:M —• 5j not zero. Since
f : 5 —• Y is an epimorphism and h:Y —• iV is not zero, there is some 7
with /zi;̂ - :Bj ^> N not zero.

If f = ^ we then have a path M —> Bt -^ N. If i ^ 7 con-
sider the paths M - • X - • B ; -> AT and M - • Bi ^ Y - • Z.
From the exact sequence 0 —• X —• B\JZ —> Y —> 0 it follows
that /(X) + /(£,) + /(Bf) + /(Y) < 2(/(X) + /(Y)). Hence we have
l(X) + /(B;) < l(X) + /(Y) or /(X) + l(Bt) < l(X) + l(Y). This con-
tradicts our choice of path M ^^ X —• Y ^^ JV. Hence there is some path
M —• 4̂ -> iV in mod A. •

As a consequence we obtain the following.

Theorem 3.4 Let M be a sincere indecomposable module over an artin
algebra A. Then M is not directing if and only if M lies on a short cycle.

Proof If M lies on a short cycle, then obviously M lies on a cycle and

is hence not directing.

Assume conversely that M is not directing and choose a cycle M -+

X\ - i X2 -* • • • ^ Xn-i ^+ Xn = M, where n is smallest possible. If

n < 2 we have a short cycle, and we are done. If n > 3 we apply Propo-

sition 3.3 to the path M h Xx h X2 %> X3 to get a path M -^ Y A X3.
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Then we get a shorter path from M to M, which is a contradiction.
Hence M lies on a short cycle. •

4 Modules determined by their top and socle

Closely related to the question of whether an indecomposable module M
is determined by its composition factors is whether it is determined by the
pair (topM, socM) where topM = M/rM, or by the pair (Po(M),Pi(M))
when P\(M) -» Po(M) —> M —> 0 is a minimal projective presentation of
M. Again not lying on a short cycle plays a crucial role.

We first investigate when M is determined by its top and socle, that is
by the pair of semisimple modules (M/rM, soc M). We start out with M
being directing, and use Theorem 3.4 to generalize to the case when M
does not lie on a short cycle.

Proposition 4.1 Let M and N be indecomposable modules over an artin
algebra A, where M is directing. Assume that each simple A-module is
a summand of (M/rM) ]J soc M and that M/xM ~ N/xN and soc M ~
soc AT.
Then we have that M ~ N.

We need the following lemmas, where M and N satisfy the assumptions
of the proposition.

Lemma 4.2

(a) (P(5),M) > (P(S)9N) for all simple modules S which are summands
of soc M, where P(S) denotes the projective cover of S. We have
equality if Ext\(soc M, N) = 0.

(b) (M,I(S)) > (N,I(S)) for all simple modules S which are summands
of soc M where I(S) denotes the injective envelope of S. We have
equality if Ext\(soc M, N) = 0.

(c) (MJ(T)) > (N,I(T)) for all simple modules T which are summands
of M/xM, where I(T) is an injective envelope of T. We have equality
i /Exti(iV,M/rM) = 0.

Proof (a) We prove this by induction on l(P(S)), where S is in socM.
If l(P(S)) = 1, we have P(S) ~ 5, and (P(S),M) = (S,socM) =

Assume now that l(P(S)) > 1. Since M is sincere directing and
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) ^ 0, we have pdAS < 1 by Proposition 1.7. Hence xP(S) is
the sum of indecomposable projective modules PCS'), where Sf is simple.
Since we have a chain of nonzero morphisms S' —• xP(S)/x2P(S) —•
P(S)/x2P(S) —> iS —• M between indecomposable modules and M is
directing, it follows that Sf is not a summand of M/xM. Hence S' is a
summand of socM. The exact sequence 0 —> rP(S') —> P(5) —> S —• 0
gives rise to the exact sequences 0 —> HomA (S,M) —• HomA(P(S),M) —•
HomA(rP(S),M) - • Ext\(S,M) -> 0 and 0 -> HomA(S,A0 - •
HomA(P(S),iV) -> HomA(rP(S), AT) -> Ext\(S, N) -> 0. If E x t j ^ M ) ^
0, we would have a nonsplit exact sequence 0 - » M — • £ — • £ — • ( ) ,
and hence a cycle S —• M —> Er -+ S where £ r is an indecomposable
summand of E. Since M is directing, it follows that EXIA(S ,M) =
0. Since 1{P{S')) < l(P(S))9 we have by the induction assumption
that (xP(S),M) > {xP(S),N}. Hence we get (P(S),M) = (S,M) +
(rP(5),M) = (S,N) + <rP(S),M> > (5, AT) + (xP{S)9N) > (P(S)9N).

If Ext^soc M,N) = 0, the induction assumption gives (rP(S),M) =
<rP(S),N), so that we get (P(S),M) = (S9M) + (rP(5),M) = <S,AT) +

(b) This follows directly from (a) by using Lemma 1.4(c) which implies
that (P(S)9X) = (XJ(S)) for each X in mod A and each simple A-
module S.

(c) This follows from (a) by duality. •

Lemma 4.3 We have Extj^socM, N) = 0 or Ext^iV, M/xM) = 0.

Proof Assume that Ext\(S, N) ^ 0 and Extl
A(N, T) ± 0 where S is a

summand of soc M and T is a summand of M/xM. Then we would have
a chain of nonzero nonisomorphisms M^T^>E^>N-+F^S-+M
between indecomposable modules, contradicting the fact that M is di-
recting. •

We are now ready to prove Proposition 4.1. By Lemma 4.3 we have that
either Exti(socM, N) = 0 or Ext̂ AT, M/xM) = 0. If Ext^N, M/xM) =
0, then Ext\oP(D(M/xM),DN) = Extj^socDM, DN) = 0. Further DM
and DAT satisfy the hypothesis of Proposition 4.1 for the artin algebra
Aop. Hence it is enough to consider the case EXIA(SOCM,A0 = 0. We
will then prove that HomA(iV, M) =̂  0 and HomA(M, N) =/= 0, giving our
desired result. Since M is directing and sincere we have by Proposition 1.7
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that idAM < 1. Let

(*) 0 -» M -> Jo -* h -> 0

be a minimal injective resolution. Since M is directing Ex t j ^^M) =
0 for all submodules X of M, especially for X = socM. Conse-
quently 11 is in addJ(M/rM) since all semisimple A-modules are in
add(soc M ]J(M/rM)) where I(M/xM) denotes the injective envelope of
M/xM.

Applying HoniA(M, ) and HomA(N, ) to the exact sequence (*)
gives the exact sequence 0 —• HoniA(M,M) —• HoniA(M,Jo) —>
HomA(M,Ji) —• 0 since ExtA(M,M) = 0 and the exact sequence 0 —>
HomA(N,M) -* HomA(N,Jo) - • HomA(N,Ji). This gives that (N,M) >
(iV,J0) - <N,Ji> > <JV,Jo> - (M,Ji) = (M,J0) - (M,Ji> = (M,M) > 0
where the second inequality follows by Lemma 4.2 (c) and the first
equality follows since (NJ0) = (MJo) by Lemma 4.2 (b) using that we
have assumed ExtA(soc M,N) = 0. Hence HoniA(iV,M) =£ 0. But then
ExtA(N, Y) = 0 for all quotients 7 of M since otherwise we get a path
M -> 7 -> £ - • AT - • M in indA. In particular Ext\(JV, M/rM) = 0.
Using the duality we then get that ExtA(socDM,DAr) = 0. Hence by
our previous argument we get that HoniA(DN, DM) ^ 0 showing that
HomA(M, N) ^= 0. This then gives M ~ N completing the proof of the
proposition. •

Let P be a projective module over an artin algebra A, and let T =
EndA(P)op. In order to investigate modF it will be useful to view modF
as an appropriate subcategory of mod A. We have already shown in
Chapter II that if mod P denotes the full subcategory of mod A whose
objects are the X in mod A such that the first two terms Po(X) and
P\(X) in a minimal projective presentation of X are in addP, then
epImodP'modP —> modF is an equivalence of categories. Here it is
useful to deal with another subcategory of mod A. Denote by ts(P) the
full subcategory of mod A whose objects are the M in mod A with M/xM
and socM in a d d P / r P . The following result will allow us to investigate
questions about modF by studying ts(P).

Proposition 4.4 Let P be a projective module over an artin algebra A, let
F = EndA(P)op and ts(P) be as defined above. Then the evaluation functor
ep = HomA(P, ):modA —> modF induces an equivalence of categories
from ts(P) to modr .

Proof We know that ep|modp:modP —> modF is an equivalence of
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categories by II Proposition 2.5. Let / : I ^ 7 b e a morphism in ts(P).
Since by assumption there is an epimorphism ft: Q —• X with Q in addP,
it follows that if / =f= 0, then eP(f) =/= 0. Hence eP\ts{P):ts(P) - • modF is
faithful.

For X in ts(P) consider the exact sequence 0 —• QX —> P(X) -̂ > X —> 0
where u:P(X) —> X is a projective cover, and define X = P(X)/rp(QX),
where tp(QX) denotes the submodule of QX generated by all images
of morphisms from P to QX. Then X is in modP and we have an
exact sequence 0 —• QX/rp(QX) —• X —> X -> 0. Since socX is in
add(P/rP), we have that Q X / T P ( Q X ) is the largest submodule of X
where no simple composition factor is a summand of P / r P . We have an
induced isomorphism eP(X) —• eP(X) since HoniA(P,QX/Tp(QX)) = 0.

Let now X and 7 be in ts(P) and let o: eP(X) —> eP(Y) be a morphism
in modF. Since ep|modp:niodP —• modF is an equivalence, there is a
morphism a>:X —> 7 such that the diagram

eP(X) ^

commutes. Using that Q7/rp(Q7) is the largest submodule of 7 where
no simple composition factor is a summand of P/rP and consequently
HomA(P,Q7/ip(Q7)) = 0, we get a commutative diagram

0 - •

0 - •

QX/xp(QX) —>
1

Q7/TP(Qy) - .

X —•

7 -^

X

7

- • 0

^ 0.

It then follows that a = eP(v\ so that eP\ts(P)'.ts(P) —> modF is full.
Let now C be in modF and let Z be in modP with eP(Z) ~ C. Let

K be the largest submodule of Z with HomA(P,K) = 0. Then soc(Z/X)
is in add(P/rP), so that Z/K is in ts(P) and eP(Z) ~ eP(Z/K). This
shows that eP\ts(P)\ ts(P) —> modF is dense, and finishes the proof that
we have an equivalence. •

We shall need the following additional information about this equiva-
lence.

Proposition 4.5 Let P be a projective module over an artin algebra A, and
let T = EndA(P)°P. Let M be in ts(P).

(a) M is a simple A-module if and only if eP(M) is a simple Y-module.
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(b) ep (soc M) ~ soc ep (M).

(c) eP (M/xM) ~ eP (M)/xreP (M).

Proof (a) Let / : ! -> 7 be a morphism in ts(P). Since socX is
in add(P/rP), we have that soc(Ker/) is in add(P/rP) and therefore
HomA(P,Ker/) ^ 0 if Ker/ ^ 0. Further, HomA(P,Coker/) ^ 0 if
Coker/ ^ 0 since (Coker/)/(rCoker/) is in add(P/rP). Hence / is a
monomorphism in mod A if and only if ep(f) is a monomorphism in
modF, and / is an epimorphism in mod A if and only if ep(f) is an
epimorphism in modF. It follows that a module M in ts(P) is simple in
mod A if and only if ep(M) is simple in modF.

(b) If we have a monomorphism X —• ep(M), then X ~ ep(N) for
some N in ts(P) and we have a monomorphism N —> M inducing the
monomorphism ep(iV) —> ep(M). Since by (a) ep(N) is a semisimple
F-module if and only if N is a semisimple A-module and soc M is in
ts(P) we get ep(socM) ~ socep(M).

(c) If we have an epimorphism ep(M) —• 7, then 7 ~ ep(N) for some
N in ts(P) and we have an epimorphism M —> AT inducing the epimor-
phism ep(M) —• ep(N). It follows from (a) that ep(N) is a semisimple
F-module if and only if AT is a semisimple A-module. Since M/xM is in
ts(P), we get ep(M/x\M) ~ ep(M)/xrep(M) by using that M/x\M is the
largest semisimple factor module of M and ep(M)/xreP(M) is the largest
semisimple factor module of ep(M). •

We now prove the main result of this section.

Theorem 4.6 Let M and N be indecomposable modules over an artin al-
gebra A with M/xM ^ N/xN and soc M ~ soc N. If M does not lie on a
short cycle, then M ~ N.

Proof Let P be the projective cover of (M/xM) ]J soc M, and consider
the functor epimodA —> modF where as usual F = EndA(P)op. Then
M and N are in the subcategory ts(P). It follows from the equivalence
between ts(P) and modF that since M does not lie on a short cycle in
mod A, then ep(M) does not lie on a short cycle in modF.

The indecomposable projective F-modules are those of the form eP(Q)
for an indecomposable summand Q of P. Since socep(M) ^ ep(socM)
and ep(M/xM) ^ ep(M)/xr(ep(M)), it follows from the choice of P
that Homr(^p(2),soc(^p(M))U^p(M)/rr(ep(M))) ^ 0 for each inde-
composable projective F-module ep(Q). In particular ep(M) is a sincere
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indecomposable F-module which does not lie on a short cycle, and
is hence directing by Theorem 3.4. Since soc ep(N) = ep(socN) ~
ep(socM) = socep(M) and ep(M)/xrep(N) ~ eP(N/xN) ~ ep(M/xM) ~
ep(M)/trep(M), it follows from Proposition 4.1 that ep(M) ~ ep(N).
Hence we get M ~ N since ep\ts(p): ts(P) —• modF is an equivalence and
both M and iV are in ts(P). •

We now show that short chains also come up in investigating when
an indecomposable module is determined by the first two terms in a
minimal projective presentation.

Theorem 4.7 Let M and N be indecomposable A-modules and P\(M) —>
Po(M) - • M - • 0 and P\(N) - • PQ(N) - • N -> 0 their minimal projective
presentations. If P0(M) ~ Po(N) and P\(N) ~ Pi(M), and M and N are
not the start of any short chain, then M ~ N.

Proof Let M and N satisfy the hypothesis of the theorem. We want to
prove that (M, X) = (N, X) for all indecomposable A-modules X. Then
it follows that M ~ N by VI Theorem 4.2.

For an indecomposable module X we have (M, X) — (X, D Tr M) =
(P0(M),X) - (Pi(M),X) = {N,X) - (X,DTrN), by IV Corollary 4.3. If
(M,X) ± 0, then (X,DTrM) = 0 since M is not the start of any short
chain. Then we must have (N, X) =£ 0, and hence (X, D Tr N) = 0 since
N is not the start of any short chain. Hence we get (M,X) = (N,X)
when (M,X) =£ 0. In the same way we get that if (N,X) =£ 0 then
(M,X) = (N,X). Hence we have (M,X) = (N,X) for all X, and this
finishes the proof. •

We note that for two indecomposable modules M and N9 where M is
directing, it may happen that P0(M) ^ P0(N) and P\{M) ^ Pi(iV), but
M and N are not isomorphic.

Example Let A = fc(F, p) where F is the quiver •—>*Oa and p the relation
{a2}. The simple module Si is injective and is clearly directing. We let
M = Si and let N be the indecomposable representation k —> k O°. Then
P0(M) - Pi - P0(N) and Pi(M) - P2 - Pi(iV).

We end this section by pointing out that the conditions for an inde-
composable A-module M to be determined by its composition factors,
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by its top and socle or by the first two terms in a minimal projective
resolution are all independent.

Let A = k[X]/(X2) where k is a field, and let S be the simple A-
module. Then S and A are the only indecomposable A-modules. A is
determined by its composition factors and by the first two terms in a
minimal projective resolution, but not by its top and socle.

If A is Nakayama with admissible sequence (2,2), and M is indecom-
posable of length 2, then M is not determined by its composition factors.
But M is determined by the first two terms in a minimal projective
resolution and by its top and socle.

Let A be Nakayama with admissible sequence (4,4) and let Si and S2
be the simple A-modules. Let M be the indecomposable A-module of
length 3 with M/xM ~ Si. Then M has the same top and socle as Si,
and the same first two terms in a minimal projective resolution and is
hence not determined by these invariants. But M is determined by its
composition factors.

Exercises

1. Let A be an artin algebra and P a projective A-module. Denote by
comod P the full subcategory of mod A whose objects are the C in mod A
such that if 0 —• C —• Jo —• I\ is a minimal injective resolution we have
that soc/o and soc/i are in add(P/rP).

Show that eplcomodp- comodP —» modEndA(P)op is an equivalence of
categories.

2. Show that there is a functor F:modP —> ts(P) sending X to X, as
defined in Section 4, which is an equivalence of categories.

3. Let A be an artin algebra having a sincere module which is not the
middle of a short chain.

(a) Prove that there are no oriented cycles in the quiver of A.
(b) Prove that gl.dimA < 2.
(c) Prove that if X is an indecomposable A-module with idA^ = 2, then

p d A X < l .

4. Let A be a basic artin algebra and M a A-module which is not the
middle of a short chain. Write A = P ]J Q, where the simple summands
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of P/xP are exactly the composition factors of M. Denote by TQ(A) the
ideal of A generated by all images of all morphisms from Q to A.

Prove that EndA(P)°P ~ A/T 6 (A) and TQ(A) = annM.

VV
5. Let k be a field and F the quiver 2 «x ys with relation p = {yoc—dp}.

Let Pi be the indecomposable projective injective module over the algebra
A = fe(F, p).

Prove that rPi does not lie on a short cycle.

6. Let A be any artin algebra, A and C indecomposable A-modules and
/ g

A —• B —• C a sequence of irreducible morphisms such that gf = 0.
/ g

Prove that 0—>>1—•£—•C—>0isan almost split sequence.

7. Let (F,p) be a quiver with relations, k an algebraically closed field
and A = fc(F,p). Let (V,f) be an indecomposable representation of (F,p)
which is not the middle of a short chain. Prove that for / = (/a)aeri we
have that each fa is either a monomorphism or an epimorphism.

Notes

That indecomposable modules lying on cycles, but only on suitably
restricted types of cycles, could have properties similar to those for di-
recting modules was demonstrated in [AuR8] with the introduction of
short chains. It was shown that indecomposable modules not in the
middle of a short chain are determined up to isomorphism by their
composition factors, generalizing earlier results about directing modules
given in [HapR], [Hapl]. It was shown that indecomposable modules
which are not the start of a short chain are determined up to isomor-
phism by the two projective modules occurring in the minimal projective
presentation of the module. That it is not sufficient that one of the
modules is directing was observed in [Bak].

The theory of short cycles initiated in [ReSSl] gives another way
of viewing indecomposable modules which are not the middle of short
chains. It was shown in [ReSSl] that if an indecomposable module is
not the middle of a short chain, it is not on a short cycle, and that if
two indecomposable modules have the same composition factors and one
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is not on a short cycle, then they are isomorphic. This generalized the
result mentioned from [AuR8], and a similar result on directing modules
in [Rin3]. That an indecomposable module is not the middle of a short
chain if and only if it is not on a short cycle is given in [HapL]. The
proof given here is somewhat different from the original one.

The proof that indecomposable sincere modules not lying on short
cycles are directing is taken from [HapRS]. This is applied in [HapRS]
to showing that indecomposable modules not lying on a short cycle are
determined by their top and socle, by reducing to the case of directing
modules ([BonS] and [BakS]).

Further results along these lines can be found in [ReSS2], [HapL],
[Liu2] and [Ski].
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X
Stable equivalence

The category mod A was introduced in Chapter IV in order to be able
to define the functors Trimod A —• mod Aop and Q:mod A —• mod A.
Another interesting aspect of the category mod A is that mod A and
mod A' can be equivalent categories for seemingly rather different artin
algebras A and A'. This chapter is devoted to giving various illustrations
of this phenomenon. We are particularly interested in the situations
where one of the algebras is either hereditary or Nakayama.

1 Stable equivalence and almost split sequences

We say that two artin algebras A and A' are stably equivalent if there
is an equivalence F: mod A —• mod A' between the associated module
categories modulo projectives. Since we know by IV Proposition 1.9 that
DTr:mod A —• mod A is an equivalence of categories, it follows that
A and A' are stably equivalent if and only if the categories mod A and
mod A' of the module categories modulo injectives are equivalent. In
this section we investigate properties which stably equivalent algebras
have in common, including operations with which a stable equivalence
F: mod A —> mod A' commutes and module theoretic properties pre-
served by stable equivalence. A central role is played by the behavior of
almost split sequences under stable equivalence.

We start with the following easy result, showing that information on
when two algebras are stably equivalent is useful for classifying algebras
of finite representation type. When F: mod A —• mod A' is an equiva-
lence, we also denote by F the induced correspondence between mod^> A
and mod^A7, where as before mod^A denotes the full subcategory of
mod A whose objects are the modules which have no nonzero projective
summands.

335
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336 Stable equivalence

Proposition 1.1 Let A and A' be stably equivalent artin algebras. Then A
is of finite representation type if and only if A' is of finite representation
type.

Proof Let F: mod A —• mod A' be an equivalence. Since for M in
mod^Awe have that 0>(M,M) c radEndA(M), it follows that EndA(M)
is local if and only if EndA/(F(M)) is local. Hence F gives a one to one
correspondence between the nonisomorphic indecomposable nonprojec-
tive objects in mod A and mod A'. Since A and A' have only a finite
number of nonisomorphic indecomposable projective modules, it follows
that A is of finite representation type if and only if A' is. •

We now study the relationship between almost split sequences, ir-
reducible morphisms and AR-quivers for stably equivalent algebras.
DTr operates on objects in mod A, and there is an induced opera-
tion from mod^» A to mod^ A by taking the nonprojective part (D Tr C)&
of D Tr C for C in mod^ A. In connection with the study of almost
split sequences we investigate when for an object C in mod^ A we have
F(D TrA C) ~ D TrA> F(C) in mod^ A'. We refer to this as F commuting
with D Tr. These results will also be applied to decide when F commutes
with Q for selfinjective algebras, that is when F(QC) ~ QF(C) in mod<^ A'
for each object C in mod^ A.

We have the following connection between stable equivalence and the
radical. For each / in mod A we denote by / the image of / in mod A.

Lemma 1.2 Let F:mod A —• mod A' be a stable equivalence between artin
algebras and let X and Y be in mod^ A.

(a) Let f:X -> Y be a morphism in mod A and let f':F(X) -> F(Y) in
mod̂ > A' be such that F(J) = f. Then f e radA(X, Y) if and only if
femdAiF(X),F(Y)).

(b) F(vadn
A(X, Y) + 9(X9 Y)) = rad^(F(X),F(7)) + P(F(X\F(Y)) for

all n>\.

(c) F induces an isomorphism Irr(X, Y) ^ Irr(F(X),F(Y)) when X and
Y are indecomposable in mod^A.

Proof (a) Assume that / ^ radA(X, Y). Then there is some Z in mod A,
which is a summand of X and is hence in mod̂ > A, such that \z = hfg
for some g:Z - • X and h: Y - • Z. Then we get 1F{Z) = h'f'g' + s with
5 € P(F(X),F(Y)) cz TadA,(F(X),F(Y))9 so that / ' g radA>(F(X),F{Y)).
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It follows the same way that if / ' £ radA>(F(X),F(Y)), then / £
radA(X,Y).

(b) This is a direct consequence of (a) and the definition of radA.
(c) This follows from (a) and (b) using that 0>(X,Y) c md\(X,Y),

0>(F(X),F(Y)) c md%(F(X),F(Y)) and that F induces an isomorphism
HomA(X, Y)/&(X, Y) ~ HomAiF(XlF(Y))/0>(F(X)9F(Y)). D

We now apply Lemma 1.2 to get the following.

Proposition 1.3 Let F:mod A —• mod A' be a stable equivalence between
artin algebras. For a morphism f:X-> Y in mod^» A with X or Y inde-
composable, let f':F(X) -> F(Y) be such that F(/) = / ' . Then we have
the following.

(a) f:X -> Y is irreducible in mod A if and only iff:F(X) -> F(Y) is
irreducible in mod A'.

(b) If Y is indecomposable in mod A, then the following are equivalent.

(i) There is a morphism g:P —• Y with P projective in mod A such
that (f,g):X\[P —> Y is minimal right almost split.

(ii) There is a morphism h:Q —> F(Y) with Q projective in mod A'
such that (f\h)\F(X)]\Q - • F(Y) is minimal right almost split.

(c) If X is indecomposable in mod A, then the following are equivalent.

(i) There is a morphism g:X —> P with P projective such that
(*): X —> Y IJ P is minimal left almost split.

(ii) There is a morphism h:F(X) —• Q with Q projective in mod A'
such that (f

h):F(X) -> F(Y)]\Q is minimal left almost split.

Proof All the claims follow directly from Lemma 1.2 and VII Proposi-
tion 1.3. •

In view of Proposition 1.3 it is of interest to know how to construct
the whole middle term of an almost split sequence when we know the
nonprojective part. We have the following result in this direction.

Proposition 1.4 Let Y be an indecomposable nonprojective module over an

artin algebra A, and let f:X —• Y in mod^ A be such that there is some

morphism g:P —> Y with P projective such that (f,g)'X*[[P -> Y is

minimal right almost split. Then we have the following.
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(a) The composition morphism P —• Y —> Y/lmf is a projective cover.
(b) If h:Q -> Y is such that the composition Q -> Y -> Y/lmf is a

projective cover, then (/, h): X JJ Q —> Y is minimal right almost split.

Proof (a) Since (/,g) is an epimorphism, the composition g'.P -> Y —•
Y/lmf is an epimorphism. If g' is not a projective cover, there is a
decomposition P = Pi ] J P 2 such that g'|p2 = 0 and gf\Pl :P\ -» Y/lmf
is a projective cover. Then we have g(P2) <= Im/ . Therefore g|p2: P2 —• 7
factors through / , giving a contradiction to the right minimality of (/,g).
This shows that P2 = 0, and hence g'.P —• 7 / I m / is a projective cover,

(b) Since ( / , / i ) :X]Jg - • 7 is surjective, g:P -> Y factors through
(/,/i), and hence also (/,g) factors through (/,fo). This shows that
(f,h) is right almost split, and it is minimal right almost split since

For an artin algebra A with AR-quiver FA we denote by F^ the
full valued subtranslation quiver obtained by removing the projective
vertices from FA- When A is a selfinjective algebra, then TS

A is clearly a
stable translation quiver. It follows from Proposition 1.3 that if A and
A' are stably equivalent algebras, then F^ and TS

A, are isomorphic as
valued quivers. To investigate when they are isomorphic as translation
quivers, we study what happens to almost split sequences under stable
equivalence. For this we need the following.

/ gLemma 1.5 Let A be an artin algebra and A —• B —> C a sequence
of irreducible morphisms in mod^ A with A and C indecomposable and
gf = 0. Then we have the following.

(a) A~DTrC.
(b) There is a projective module Q and irreducible morphisms g'.Q —> C

andf'.A^Q and a morphism S(f):A -> B with S(f) e 0>(A,B) such
(f+W\ , ,.

that 0-^A -U B ]J Q 4 / C - • 0 is almost split.

Proof Let g': B' - • C be such that 0 - • Ker(g, g') -^ B]\ Bf -^ C -+ 0
is an almost split sequence. Since gf = 0 there exist a projective module
P and morphisms f":A^>P and g":P - • C such that gf = g"f". Since
(g,gf) is surjective, there exists (*):P -^ ^ U ^ with (g,gr)C) = g"-
Hence we get gf = (g,gr)(^)/"- Consider now the morphisms S(f) =
-hf and / ' = -h'f". We then have (g,g')(/+;,(/)) = gf-ghf"-gfh'f" =
0. Hence there exists a morphism a:A —• DTrC = Ker(g,gr) such that
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(£) ( ^ ) But / + 5(f) is irreducible since / is irreducible and

8if) e 0*iA,B) a md2
AiA,B). Hence a is a split monomorphism and con-

\ f> ) (g g)

sequently an isomorphism. It follows that 0 —> A —> B\[Br A C —• 0
is an almost split sequence. Since f = h'f":A —> B' is irreducible and
f":A—>P cannot be a split monomorphism because A is not projective,
it follows that h':P —> B' must be a split epimorphism. Hence Bf is a
projective module. •

As an immediate consequence of this lemma we get the following.

Proposition 1.6 Let Frmod A —> mod A' be a stable equivalence between

artin algebras A and A'. Let 0 —>i A f i J j P ^» C -^ 0 be an almost

split sequence in mod A vv/ẑ re 4̂, 5 and C are in mod^> A, B is not zero

and P is projective.

Then for any morphism g'.FiB) —• F(C) with Fig) = g' there is an almost

split sequence 0 -> F(A) ^ F ( B ) U ^ ' ^ f(C) -> 0 in rnodA7

is projective and F(J) = f.

Proof Choose morphisms g':F(B) - • F(C) and / r / :F(^) - • F(5) such
that Fig) = gr and F{f) = f. Then gr and f" are irreducible by
Lemma 1.2, and we have g'f" = 0 since g / = 0. Since F(v4) and F(C) are
indecomposable and in mod^> Ar, there is by Lemma 1.5 an almost split

sequence 0 -^ F(A) Aj FiB)\jPf {g^ FiC) -+ 0 where Pr is projective
and / ' = /" , and hence F{f) = f. •

Sometimes stable equivalences are induced by exact functors F:
mod A —• mod A' taking projective A-modules to projective A'-modules.
This occurs for example when k is a field of characteristic p and G is
a finite group of order divisible by p but not p2 and N is the nor-
malizer in G of a subgroup of order p. Then the restriction func-
tor modfeG —> mod/cN induces a stable equivalence. When we have
such an exact functor F:modA —• mod A', it follows from our re-
sults that 0 —• FA —• FB —• FC —• 0 is almost split in mod A' when
0—>;4—•#—>C-»0 i s almost split in mod A. But even if we do not
have, or do not know if we have, an exact functor inducing the stable
equivalence, there may be general procedures for constructing almost
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split sequences in mod A' from almost split sequences in mod A when we
have an equivalence F:mod A -> mod A', as we now illustrate.

For example if A is selfinjective we know that Q:mod A —• mod A is
an equivalence. When 0—>;4-»i?—>C—>0is exact, consider the exact
commutative diagram

0
1

O4

4
P(A)

i
A

i
0

0
1

-+ Q.BUQ ->

1
— P(A)UP(C) -+

i
-> B ->

i
0

0
1

QC

4
P(C

i
c
i
0

where P(A) —• A and P(C) —• C are projective covers. If 0 —• A —• B —>
C -+ 0 is almost split it follows that 0 - • £L4 - • Q 5 ] J Q -» QC -> 0 is
almost split, using Proposition 1.3 and the fact that QA and QC are both
indecomposable.

As a consequence of our results we see that the correspondence F be-
tween the objects in mod^> A and mod^ A; induced by a stable equivalence
F: mod A —• mod A' 'usually' commutes with D Tr.

Corollary 1.7 Let F:mod A —> mod A' foe a staWe equivalence between
artin algebras, and let C be indecomposable in mod^A.

(a) Assume that in the almost split sequence 0 -+ A —>E—»C—•() the
module B is not projective. Then the following hold.

(i) D TYA C is projective if and only if DTv^ F(C) is projective.
(ii) If D Tv\ C is not projective then there is an isomorphism of Af-

modules F(D Tr A C) ~ D TrA ' F{C).

(b) If C qk TvDS where S is a simple module which is not a composi-
tion factor ofxl/ soc J for any injective module / , then F(D TrA C) ^
D TrA> F{C) in mod^ A'.

Proof (a) Let 0 — > ^ 4 — • £ — > C — > 0 b e a n almost split sequence
where B is not projective. If A is not projective, the claim follows
from Lemma 1.5. If A is projective, consider the almost split sequence
0 - • Ar - • Br -> F(C) - • 0 in modAr. By Proposition 1.3 Br is not
projective since B is not projective, and if A' ~ D TrA/ F(C) was not
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projective, A = DTr^C would be nonprojective by Lemma 1.5. Hence
A' is projective.

(b) By V Theorem 3.3(b) the middle term B of the almost split sequence
0—>,4—•£—•C—>0is projective if and only if A is a simple module
which is not a composition factor of r / / s o c / for any indecomposable
injective module / . Hence the claim follows from (a). •

The following example shows that the correspondence F induced by a
stable equivalence does not always commute with D Tr.

Example The algebras A = k[X]/(X2) and A' = (* °) are stably equiv-
alent since in both cases there is only one indecomposable nonpro-
jective module, and this module has endomorphism ring k. Then
0 —• A/r —• A —> A/r —• 0 is the only almost split sequence in mod A
and 0 -> (°) - • (*) - • (1)/(I) -> 0 is the only one in mod A'. In the
first case the left hand term is not projective, whereas in the second case
it is.

For selfinjective algebras we can describe when there are no almost
split sequences with projective middle term.

Proposition 1.8 Let A be an indecomposable nonsimple selfinjective artin

algebra. Then the following are equivalent.

(a) There is an almost split sequence with projective middle term.

(b) All almost split sequences have projective middle terms.
(c) A is a Nakayama algebra of Loewy length 2.
(d) A is of Loewy length 2.

Proof If A has Loewy length 2, then we know from V Section 3 that
there are almost split sequences with projective middle term.

Assume that 0—>;4—•#—>C—»0is almost split with B projective.
Since A is selfinjective, B is also injective, and hence A and C must be
simple by V Theorem 3.3. Since A ~ QC, we then get l(B) = 2. Since
Q:mod A —• mod A is an equivalence, there is an almost split sequence
0—•!£—•()—>^4—>0 with Q projective, and hence l(Q) = 2. Continuing
the procedure we get an algebra summand of A where all indecom-
posable projective modules have length 2. Since A is indecomposable,
all indecomposable projective A-modules have length 2. Hence A is a
Nakayama algebra of Loewy length 2, and all almost split sequences
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have projective middle term. We now see that all the conditions are
equivalent. •

As a consequence of Corollary 1.7 and Proposition 1.8 we see what
happens to AR-quivers under stable equivalence.

Corollary 1.9 Let F:mod A —• mod A' be a stable equivalence between
artin algebras.

(a) Let FA be the AR-quiver of A and let %> be a component of YS
A where

all simple modules are composition factors ofxD(A)/ socD(A). Then F
induces a translation quiver isomorphism between <$ and a component
F(^) of TA, where T\> is the AR-quiver of A'.

(b) If A and A' are selfinjective with no block of Loewy length 2 and
Y\ and YJSJ are the corresponding AR-quivers, then TA and TA, are
isomorphic stable translation quivers. •

Note that Ys
k[X]/(x2) is the translation quiver with one vertex v and

zv = v and ^s
k[X]/(x2) and Fs,k Ox are not isomorphic as translation quivers,

but the associated proper translation quivers are isomorphic. Actually,
we have the following general result.

Corollary 1.10 If A and Af are stably equivalent artin algebras, then the
proper translation quivers TS

A and TA, are isomorphic as translation quivers.

Proof By definition TX is defined in TA for a vertex x if and only if
x~ is not empty, that is, if and only if the middle term of the almost
split sequence with the module X corresponding to x on the right is not
projective. Then we get our desired result by applying Corollary 1.7. •

Note that ( r \ , T j can be defined directly in terms of the category
mod A. We have seen that the quiver only depends on mod A, and the
translation T is defined by TX = z if there is a path •—••—•• in the

z y x

quiver such that the corresponding morphisms in mod A can be chosen
to have composition zero.

The fact that the correspondence F:mod^>A —> mod^A' induced by
a stable equivalence F: mod A —> mod A' usually commutes with the
operation D Tr is intimately related with the behavior of almost split
sequences under stable equivalence, and such information is useful when
investigating necessary conditions on algebras to be stably equivalent
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to a given class of algebras. We can also use this fact to show that a
stable equivalence between selfinjective algebras usually commutes with
Q. This is based on the fact that the correspondence F imod^A —>
mod^> A' commutes with TrDQ, when F:mod A —• mod A' is a stable
equivalence between selfinjective algebras. This is a direct consequence
of the following.

Lemma 1.11 Let A be a selfinjective artin algebra and C an indecom-
posable nonprojective A-module. Then the following are equivalent for an
indecomposable nonprojective A-module X.

(a) X is isomorphic to Tr DQC.

(b) There is a nonzero morphism f_\X —> C such that if Y is indecompos-
able and h\Y -» X is not an isomorphism, then fh. is zero.

Proof Let C and X be indecomposable nonprojective A-modules. The
exact sequence 0 —• QC —> P -̂ > C —• 0 where p.P —• C is a projec-
tive cover gives rise to the long exact sequence 0 —• HomA(X,QC) —•
Hom A (X ,P ) - • Hom A (X,C) -> ExtA(X,QC) - • 0. Since it is easy to see
that a morphism g:X -» C factors through a projective module if and
only if it factors through p.P —• C, there is induced an isomorphism

Let Y be indecomposable in mod A and h: Y —> X a morphism such
that ft is not an isomorphism, or equivalently h is not an isomorphism.
Then we have the commutative diagram

HomA(X, C) ^ Exti(X, QC)
I Hom(/i,C) I Ext^(^,QC)

HomA(7,C) ^> ExtJv(7,QC).

We have that g in HomA(X, C) is zero if and only if Sx(g) is zero. Hence
it follows that Hom(ft, C)(g) = gh is zero if and only if Ext\(fc, QC)((5x(g))
is zero.

Let now X = TvDQC and choose / :TrDQC - • C such that dx{f)
is an almost split sequence. Then we have that Sx(f) is not zero and
ExtA(/z,QC)((5x(/)) is zero for all morphisms h:Y —> X where Y is
indecomposable and h is not an isomorphism. It follows that / is not
zero and fh is zero for all h: Y —• X where Y is indecomposable and h
is not an isomorphism. This shows that (a) implies (b).

Assume now conversely that X has the property that there is some
/ : X —• C in mod A such that / is not zero, and fh is zero for
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all h:Y —• X where Y is indecomposable and h is not an isomor-
phism. By using the above commutative diagram again, it follows
that S(f) e Ext\[X, CIC) is an almost split sequence, and consequently
X ~ TrDQC, so that (b) implies (a). •

We now have the following result for selfinjective algebras.

Proposition 1.12 Let F: mod A —• mod A' be a stable equivalence between
selfinjective artin algebras.

(a) If A has no algebra summand of Loewy length 2, then the correspon-
dence F between objects in mod^A and mod^A' commutes with Q.

(b) If A and Af are symmetric algebras, then F commutes with Q.

Proof (a) This is a direct consequence of Proposition 1.8 and Lemma
1.11.

(b) This follows from Lemma 1.11 since TrDQ ~ Qr1 for symmetric
algebras. •

2 Artin algebras with radical square zero

In this section we show that if r2 = 0 for an artin i^-algebra A, then A
is stably equivalent to a hereditary algebra with radical square zero. The
stable equivalence is induced by a functor between the module categories
which takes most almost split sequences to almost split sequences. Using
the classification theorem for hereditary artin algebras of finite repre-
sentation type we get a similar result for algebras with radical square
zero.

Let A be an artin algebra with r2 = 0 and let Z be the triangular
matrix algebra [xX A/XJ- ^ *s hereditary by III Proposition 2.7 since
A/r is semisimple. We define a functor F:modA —• modZ by F(C) =
(C/rC,rC, / ) , where f:x <8>A/X C/XC —> xC is induced by the natural
multiplication morphism r ®A C —> rC, using that r2 = 0. Observe that /
is then an epimorphism. We then clearly have that /(C) = 1{F(C)) for all
C in mod A. If g: B —• C is a morphism in mod A, then g(xB) c rC, so
that we can define gi = g\rB '.xB —> xC and there is induced a morphism
gi:B/xB -> C/rC. We then define F(g) = (gi,g2). It is easy to see that
F is an K-functor. Our aim is to show that F induces an equivalence
between the stable categories mod A and modZ. For this we shall need
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some preliminary results on the functor F. We use the above notation in
all the lemmas.

Lemma 2.1 Let A, Z and F be as above. Then we have the following.

(a) The functor F: mod A —• mod Z is full.

(b) For E and Ef in mod A, the kernel of the epimorphism F:
HomA(£,£ ') -> HomE(£(£), £(£')) is HomA(£,r£'). Consequently
the kernel ofF:End\(E) —• EndA(F(E)) is contained in radEndA(£).

(c) E and Er in mod A are isomorphic if and only if F(E) and F(Ef) in
modZ are isomorphic.

(d) E in mod A is indecomposable if and only if F(E) in modZ is inde-
composable.

(e) Let X = (A,B,t) be in modZ. Then X ~ F(E) for some E in mod A
if and only if t:x ®A/r A -+ B is an epimorphism.

Proof (a) To prove that F:modA —• modZ is full it is convenient to
make some preliminary observations. Let P be a projective A-module.
Then tensoring the exact sequence 0 —> r —• A —• A/r —• 0 with P we
obtain the exact sequence

0 -+x®\P -» P -> P/xP -> 0.

Since r2 = 0, we have that the natural morphism r ® A P —> r ®A/r (P/xP)
is an isomorphism which we will consider as an identification. Suppose
now that f:P —• E is a projective cover. Then we have the exact
commutative diagram

P/xP -> 00 ->

0 - •

r (8)A/r \P/xP)

xE
4
0

-> P
4/

- • £

4
0

where the morphism s is induced by the morphism r ®A P —> E given
by r (g) p i—> r/(p) for all r in r and p in P. From this it follows that the
Z-modules (P / rP , r£ , s ) and F(£) are isomorphic.

Suppose that E and E' are A-modules and let F(E) = (A,B,t) and
F(E') = {A\B\tf). We now show that if (u,v):(A,B,t) -> ( ^ B ' , ^ ) is a
morphism in mod Z, then there is a morphism w: £ —• Er in mod A such
that F{w) = (u, v).

Let / : P —> £ and / ' : P ' —> £ r be projective covers. Then by our
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previous discussion we have the pushout diagrams

0 -> r ® A ( P / r P ) - • P -> P/xP -> 0

i- if H
0 -> 5 _> £ _> 4 _> o

and

0 -> r ® A ( P ' / r P ' ) -> Pr -> P'/xP' -> 0
i*' i/' i*

0 -> £ ' -+ E' -+ A' ^> Q

where (P/xP,B,s) ~ (A9B,t) and ( P ' / r P ' ^ s ' ) - (vl/,5/,t/). Denoting
the composition P/xP ^> A -^ Af ^ Pf/xP' by u' we obtain a commuta-
tive exact diagram

0

0

It is now easily

-> r® A P

checked that

t ®A i"
| *®

t ® A P

commutes. So we obtain the

0 ->

0 ->

Also using that

r®A/.(P/r

* ®A/r (P'A

t®A/r(PA
i*

-> P - • P / r P -> 0

- • P' - • P' /rP' -^ 0.

> >̂ r®A(P/rP)
g 4 x®u'
>f ^ x ®A (P ' /rP')

commutative diagram

P) -> P -> P / r P -> 0

P') -> P r - • P ' / r P ' -> 0

: P ) ^ r® A / r (P7rP / )

commutes, we obtain the commutative diagram

*®K/tP/xP ^ P
\t®«' I
^r®A/tP'AP'— P'

B' — £'
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Using the mapping property of pushouts we obtain the commutative
diagram

from which it is not difficult to check that F(w) = (u\v). From this it
follows that F:HomA (£ ,£ ' ) - • Hom s(F(£),F(£')) is surjective. Hence
F: mod A —• mod X is full.

(b) Let / : E —• Er be a morphism in mod A. Then it is easily seen that
F(f) = 0 if and only if f(E) a xE\ that is

0 -> HomA(£,r£') - • HomA(£,£') -^ Honi2:(F(E),F(E')) - • 0

is exact. From this it follows that Ends(F(£)) ~ EndA(£)/HomA(£,r£)
where HomA(£,r£) is the two-sided ideal in EndA(£) consisting of en-
domorphisms / : £ - • £ such that f(E) a xE. Since HomA(E,r£)2 = 0, it
follows that HomA(£,r£) is contained in radEndA(£).

(c) Suppose E and Er are in mod A such that F(E) ~ F(Ef). Since
F is full we know there are f:E —> E' and g:Ef —> E such that
Hgf) = 1F(£) and F(fg) = l m ) . But then gf:E -> £ and / g : £ ' ^ £ '
are isomorphisms since the kernels of F:EndA(£) —• Ends(F(£)) and
F:EndA(E r) —> Endx(F(E')) are nilpotent. Hence £ and Ef are isomor-
phic.

(d) Since the kernel of F:EndA(£) - • Ends(F(£)) is contained in
radEndA(£), it follows that EndA(£) is a local ring if and only if
Ends(i^li)) is a local ring. Therefore E is indecomposable if and only if
F(E) is indecomposable.

(e) For E in mod A we have that F(E) = (E/xE,xEJ) where the cor-
responding morphism / : r ® A/r (M/xM) —• xM induced by the canonical
morphism r ® M —• xM is obviously an epimorphism.

Let X = (A, B, t) be in mod Z where t: r <8>\/tA —> 5 is an epimorphism.
Let P —> A be a projective cover. Identifying P/xP with A we obtain as
in part (a) the exact sequence 0 —• r ®A/r ,4 —> P -^ A -^ 0. This gives
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the following pushout

0 ->

0 ->

Stable

diagram.

0

1
K

1
r ®A/t A

l>
B

1
0

equivalence

0

i
= K

1

1

i
0

Since P —• £ is an epimorphism, we see that i(B) = r£ so that

Lemma 2.2 Let A, Z and F fee as before. Then we have the following for
C in mod A.

(a) C is projective if and only if F(C) is projective.
(b) C is in mod^A if and only if F(C) is in mod^Z.

Proof (a) It is clear that F(A) = (A/r, r, / ) , where / : r ®A/r (A/r) -> r is
the natural isomorphism. Hence F(C) is projective when C is projective.

Assume now that F(C) is projective. To prove that C is projective
we want to show that the projective cover h:Q —> C in mod A is an
isomorphism. The induced morphism Q/xQ —• C/rC is an isomorphism.
Writing F(C) = (C/xC9xC,s) we get the commutative diagram

r®A/r(GAG) ^ r ®A/r (C/rC)

rQ -^ xC -> 0.

Then 5 is an isomorphism since F(C) is projective, and hence the mor-
phism xQ —> xC induced by h is an isomorphism. It now follows that
ft:Q —> C is an isomorphism, so that C is projective.

(b) Let C be indecomposable in mod A. Then by Lemma 2.1 we have
that F(C) is indecomposable, and it follows from (a) that C is not pro-
jective if and only if F(C) is not projective. •

Lemma 2.3 Let A, Z and F be as above, and let B and C be in mod^ A.
Then we have 0>(B9C) = HomA(5,rC).
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Proof Assume first that f:B - • C in m o d ^ A is in ^(J3,C) . Then we

have a commutative diagram

where Q is projective in mod A. Since B is in mod<^ A, we have g(B) <= xQ.

Then we have hg(B) = f(B) <= xC.
Assume conversely that f:B —• C is in HomA(£,rC) . Then we have

the factorization B - • £ / r £ A rC -̂ > C of f:B -» C. If g : P - • C is

a projective cover, then g induces an epimorphism g'.xP —> rC. Using

that the modules 5 / r B , rC and xP arc semisimple, there is a morphism

h:B/xB —> r P such that the diagram

xP

B/xB — f- ^ xC

commutes. Hence if, and consequently / , factors through g: P —• C, so
that / G 0>(B, C). •

We use these lemmas to give the main result of this section.

Theorem 2.4 Let A be an artin algebra with radical square zero. Let

S = (A
r
A

 A°/r) and let F :modA - • modE be defined as above. Then I is

hereditary and F induces a stable equivalence F: mod A —• modL.

Proof Z is hereditary since A/r is semisimple. It follows from Lemma 2.2
that F induces by restriction a functor F r :mod^A —• mod^Z. Since
X = (A, B, t) is isomorphic to F(M) for some M in mod A if and only if
t:x®\/xA —• B is an epimorphism by Lemma 2.1(e), the indecomposable
X-modules not isomorphic to some F(M) are the simple projective D-
modules (0,,S,0), where S is a simple projective A-module. Hence it
follows from Lemmas 2.1 and 2.2 that F' is dense.

Since F takes projectives to projectives, F1 induces a functor
F: mod A —• modZ, where modZ is equivalent to mod^ Z since Z is
hereditary. Since 0>(B,C) = HomA(£,rC) for B and C in mod^A by
Lemma 2.3, it follows that by Lemma 2.1(b) F:mod A -> modZ is faith-
ful. It is full by Lemma 2.1 (a), and consequently F:mod A -> modZ is
an equivalence of categories. •
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We now investigate how almost split sequences behave under the
functor F. If S is a simple noninjective A-module, then F(S) = (5,0,0)
is an injective Z-module, so applying F to an almost split sequence
0 —> S —• E —> TrDS —• 0 in mod A cannot give an almost split sequence
in mod Z.

Proposition 2.5 Let A be an artin algebra with radical square zero, and let

2 = (A
r
/r

 A°/r) and F :modA - • modZ be as before.

f s
Let 0-+A-+B^>C-+0bean exact sequence in mod A where A and
C are indecomposable and A is not simple. Then this sequence is almost

split if and only if 0 -+ F(A) -» F(B) -4 F(C) -> 0 is almost split in
modZ.

/ g
Proof A s s u m e first t h a t 0 — > ^ 4 — > £ — • € — > 0 i s a n a l m o s t spl i t
s e q u e n c e . S i n c e A is n o t s i m p l e , 0 —• A/xA —> B/xB —• C/xC —• 0 is a n
e x a c t s e q u e n c e b y V L e m m a 3.2(c). S ince xA —• xB is a m o n o m o r p h i s m ,
xB -» xC is an epimorphism, l(F(B)) = l(F(A)) + l(F(C)) and F(g)F(f) =

F(f) F(e)

0, it follows that 0 -> F(A) •%> F(B) - I F(C) -> 0 is an exact sequence.
Then F(g):F(B) —• F(C) is minimal right almost split by Proposition 1.3
since g: B —> C is minimal right almost split. Because A is not simple,
A is not a summand of xP for any projective A-module P . Hence A, B
and C are all in mod^ A, and consequently F(A), F(B) and F(C) are in
mod^ Z by Lemma 2.2. Hence 0 -> F(A) ^ F(B) ^ F(C) -> 0 is an
almost split sequence.

Assume conversely that 0 -> F(A) -» F(B) -> F(C) ^ 0 is an almost
split sequence. Using the equivalence F: mod A —> modZ, it follows sim-
ilarly that 0—>;4—•£—>C—>0is almost split in mod A. •

Let A be an artin algebra and T the associated valued quiver. We
associate with F the following quiver Ts called the separated quiver
of A. If {l , . . . ,n} are the vertices of F, then the vertices of F s are

{l, . . . ,n, l ' , . . . ,n '} . For each valued arrow • A • in F we have by

definition a valued arrow • A • in Fs.

Using this notion and the stable equivalence between radical square
zero algebras and hereditary algebras, we get the following description
of the artin algebras of radical square zero of finite representation type.
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X.2 Artin algebras with radical square zero 351

Theorem 2.6 Let A be an artin algebra with radical square zero. Then A
is of finite representation type if and only if the separated quiver for A is
a finite disjoint union of Dynkin quivers.

Proof Recall that since r2 = 0 the quiver of A is completely determined
by the bimodule structure of A/rrA/r- It is then easy to see that the
separated quiver of A coincides with the quiver of Z = ( A

r
/r

 A^r j . Since
A and Z are stably equivalent by Theorem 2.4, it follows that A is of
finite representation type if and only if £ is of finite representation type
by Proposition 1.1. Since Z is hereditary, our claim follows from the
description of hereditary algebras of finite representation type given in
Chapter VIII. •

Note that for the functor F:modA —• modS we have directly from
the definition that l(C) = l(F(C)) for all C in mod A. In particular, C is
a simple A-module if and only if F(C) is a simple E-module.

We have the following consequence of Theorem 2.6 about the compo-
nents of the AR-quiver.

Proposition 2.7 Let A be an algebra with radical square zero over an
algebraically closed field k. Then each component of the Auslander-Reiten-
quiver which does not contain a simple A-module is of the form TLA^ or
ZAoo/iT") for some n>0.

Proof By Theorem 2.4 there is a hereditary algebra A' stably equiv-
alent to A. Let ^ be a component of the AR-quiver of A containing
no simple modules. Since each indecomposable projective A-module has
Loewy length at most 2, this means that %? also contains no projective
modules. Hence <& is also a component of TS

A, and consequently there is
a translation quiver isomorphism between %> and a component F(^) of
TS

A by Corollary 1.9. Since F(^) contains no simple Z-module because
^ does not, F(#) does not come from the preprojective or preinjective
component, and is hence a regular component for Z. Then we know from
Chapter VIII that F(^), and hence #, is of the form ZA^ or TLA^I{xn)
for some n > 0. •

As a consequence of the functor F: mod A —> mod Z preserving length,
we also have the following.

Proposition 2.8 Let A and A! be stably equivalent artin algebras with rad-
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ical square zero. Then A and A' have the same number of nonprojective
simple modules. •

3 Algebras stably equivalent to symmetric Nakayama algebras

We have seen that if k is a field of characteristic p and G is a finite
group whose order is divisible by p, then the group algebra kG is of finite
representation type if and only if the Sylow p-subgroups of G are cyclic.
If P is a cyclic p-group of order pn, then kP is isomorphic to k[X]/(Xp")
and is hence a Nakayama algebra. Also if p = 3, then the group algebra
kSi is Nakayama where 53 is the symmetric group on three letters. This
follows by IV Theorem 2.14 once we observe that kS^ is the skew group
algebra of kZ^ by the action of Z2 obtained from the semidirect product
S3 ~ Z3 xi Z2. In fact it can be shown that all group algebras of
finite representation type are stably equivalent to a Nakayama algebra.
Motivated by this fact we investigate the algebras stably equivalent to
symmetric Nakayama algebras, and show that their structure is given by
Brauer trees. At the same time these results illustrate how we can get
information on the projective modules over algebras stably equivalent to
a given class of algebras, even though stable equivalence expresses that
we have equivalence only modulo projectives.

An important role is played in this section by the algebras given by
Brauer trees, so we start by introducing this class of algebras.

Let B be a finite tree, that is a finite graph with single edges and no
cycles together with the following structure. To each vertex i there are
associated a positive integer m(i) and a circular ordering of the edges
adjacent to i. This means that we have a labeling {ai,.. . ,an} of the
edges adjacent to i such that a t+i is the unique immediate successor of
OLU where the addition t + 1 is modulo n. We say that an artin algebra A
is given by B if the structure of the indecomposable projective modules
can be described in terms of B in the following way.

(i) The indecomposable projective A-modules Pa and hence the corre-
sponding simple A-modules Sa, are in one to one correspondence with
the edges a of B.

(ii) For an edge • —^— • in B let (a = ai , . . . ,an) and (a = /?i,...,/?r)
i j

be the circular orderings of the edges adjacent to i and j respectively.
Then we have xPa = Ua + Va where l/a Pi Fa ~ Sa, Ua is uniserial with
composition factors SU2,..., S^, Sai, m(i) times from top to bottom, and
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Va is uniserial with composition factors Sp29...9Spn9 Spl9 m(j) times from
top to bottom.

If at most one m(i) is larger that 1, then B is a Brauer tree and an
algebra A given by B is said to be given by a Brauer tree. Note that
soc Pa = 5a, and from this it follows that A is a selfinjective algebra (see
IV Exercise 12). For each Brauer tree B it is easy to see that there is an
algebra given by B. For let k be a field and T the quiver whose vertices
are in one to one correspondence with the edges of B. For a vertex i of B
the circular ordering (ai , . . . , an) of the edges adjacent to i gives rise to an

oriented cycle C,- «» • • «2 . Denote the corresponding path with

\ /

no repeated arrows starting and ending at oct by p®. Then the vertex a

corresponding to the edge • —^— • belongs to exactly two oriented cycles
i J

Q and Cj, and gives rise to the relations (p^)m' — (p^)mj, vu where u is
the arrow in Q with e(u) = a and v the arrow in Cj with s(v) = a, or u
the arrow in Cj with e(u) = a and v the arrow in Q with s(v) = a. The
path algebra kT modulo these relations is easily seen to be given by the
original Brauer tree B.

We illustrate with the following.

Example Let B be the Brauer tree • -^— • • -^— • where m(4) = 2,

and let A be an artin algebra given by B. Then the indecomposable
projective A-modules Pa, Pp and Py have the following structure. Pa

is uniserial of length 3 with composition factors Sa, Sp9 5a from top
to bottom. Further we have xPp/ soc Pp ~ 5a]JiS7 and xPy/socPy ^

We can choose A to be the factor algebra of the path algebra fer for T

the quiver UG- *=> • <=* *OZ modulo the ideal (u — vw, uv, wu, xw, vy, zx, yz,
a w p y y

wv—yx, xy—z2). Note that this ideal is not contained in the ideal J2, where
J is generated by the arrows. If V denotes the quiver obtained by remov-
ing M, we can describe A in the usual way as kV/(vwv, wvw, xw, vy, zx, yz,
wv — yx,xy — z2).

Example Let B be the Brauer tree ^ ^ . I— . ^ with m(i) = 1
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for i = 1,...,6, and where the circular ordering is given by counter-
clockwise direction. Let F be the quiver

with relations p = {wvu — zyx,vuwv,wvuw,yxzy9zyxz,xw,uz}. If k is a
field then the algebra fc(F,p) is given by B.

In order to prove that artin algebras stably equivalent to symmetric
Nakayama algebras are given by Brauer trees we need a series of lemmas.

Lemma 3.1 Let A be a selfinjective algebra. If f:M —> N is a monomor-
phism or an epimorphism between indecomposable nonprojective A-modules,
then f is nonzero in the stable category mod A.

Proof Let A be selfinjective and / : M —> N a monomorphism between
indecomposable nonprojective A-modules. If / = 0, there is a commuta-
tive diagram

M -4 N
4« II
/ X N

where / is injective, and it is easy to see that we can assume that g:M^>I
is an injective envelope. Since / is a monomorphism and g is an essential
monomorphism, we conclude that h:I —> N is a monomorphism. Since /
is injective, h is a split monomorphism, and we get a contradiction. This
shows that / is nonzero.

The proof that / is nonzero when / : M -» N is an epimorphism is
similar. •

Assume now that F is an indecomposable nonsimple symmetric
Nakayama algebra with nonisomorphic simple modules Ti,. . . ,Tw and
corresponding projective covers Q\,..., Qn, where the ordering is such that
Qn(i) is a projective cover of xQi when we write n(i) = i + 1 (modulo n).
This means that {8i,.. . ,Qw} is a Kupisch series. Let A be a symmetric
algebra with no semisimple block and assume A is stably equivalent to
F via an equivalence F: mod A —• mod F, whose inverse we denote by
G. Let Si , . . . , Sm be the nonisomorphic simple A-modules and Pi , . . . , Pm
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their projective covers. We now investigate the structure of the Pt. We
start out by showing that A and F have the same number of noniso-
morphic simple (nonprojective) modules. But first we introduce some
notation which will be useful in what follows.

Since A is selfinjective with no semisimple block, no simple A-module
is projective. Denoting by F also the induced correspondence on the
indecomposable nonprojective modules, we have that FSt is an indecom-
posable F-module for all i, and is hence uniserial since F is Nakayama.
In particular soc(FSt) and FSi/x(FSi) are simple F-modules. We define
the functions \i and v from {1 , . . . , m} to {1 , . . . , n} by soc(FSt) ~ T^ and
FSi/x(FSi) ~ Tv(l). We then have the following.

Lemma 3.2 Let F: mod A —• mod F be an equivalence where A and F
are symmetric algebras, and F is an indecomposable nonsimple Nakayama
algebra. Then \i and v as defined above are bijections, so that A and F
have the same number of nonisomorphic simple modules.

Proof If fi(i) = fi(j) for i and j in {l , . . . ,m}, then socFSt ~ soc FSj.
Since F is Nakayama we can without loss of generality assume that there
is a monomorphism g.FSt —• FSj in modF. Then we have g =f= 0 by
Lemma 3.1, so that G(g):St —• Sj is nonzero where G: modF —• mod A is
the inverse equivalence. Since 5, and Sj are simple A-modules, they must
then be isomorphic, and consequently i = j , so that \i is injective.

To show that \i is surjective, consider the simple F-module Tj. Let St

be a simple A-module such that there is a nonzero map g'.GTj —• S*.
Since g is a monomorphism, we have by Lemma 3.1 that g ^ 0, and
hence we have a nonzero map Tj —> FSi9 so that j = fi(i). Hence we have
shown that \x is bijective, and consequently m = n.

The proof that v is bijective is dual. •

It will be useful to consider permutations p and o on / = {1,• • -,n}
defined by p = pTly and a = v^nfi. We define Ut = G(TV^) and V\ =
QG(TAI(j)). Hence the Ut are the correspondents of the simple F-modules
under the stable equivalence G and the Vt are the correspondents of the
simple F-modules under the stable equivalence QG:modF —• mod A.
We shall prove that these correspondents of simple modules are uniserial.
The next lemma provides a step in this direction, by showing that the
Ui and Vi have simple socle, and in addition gives some more specific
information which will be useful in describing the structure of the Pt.
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Lemma 3.3 With the above assumptions and notation we have exact se-
quences

0 -> Ut: -> Pi %> Va-Ki) -> 0

and 0 - • Vt -> Pl• ^ t/p-i(0 - • 0.

Proof To establish the first exact sequence it is sufficient to show
Q(7ff-i(0) ~ I/,-. By definition we have Ut = G(Tv{i)) and Q(7ff-i(0) =
Q2 6(7^-1 (,-)). Since the stable equivalence GimodF —• mod A commutes
with Q by Proposition 1.12, it is sufficient to show that Q2T^-i(,) ~ Tv^.
We know from IV Section 2 that Q2T^a-i^ ~ Tntm-i^, so we are done
since n\io~l = %iiii~1n~1v = v.

For the second sequence we want to show that QUp-i^ ~ Vt, that is
j), which holds since /z = vp~l and hence Tvp-i^ ^ T ,̂-).

n

The next result is needed for proving that Ut and V\ are uniserial, and
more generally for establishing the structure of the Pt.

Lemma 3.4 With the above notation, let U,M and N be indecomposable
nonprojective A-modules with FU simple and also socM and socN simple.

(a) If M and N are submodules of U and l(FM) < l(FN), then there is
a monomorphism N —> M.

(b) If U has an inclusion into M and N and l(FM) < l(FN), then there
is an inclusion M —• N.

Proof (a) Assume that we have inclusions f:M^>U and g:N -* U.
Then / and g are nonzero by Lemma 3.1, and hence F(f) and F(g) are
nonzero. Therefore we have nonzero maps f'.FM -> FU and gf:FN —•
FU with F{f) = f and F(g) = g'. Since FU is simple, l(FM) < l(FN)
and F is Nakayama, there is an epimorphism t:FN —• FM such that the
diagram

FM £ FU
U ||

FN X FU

commutes. Let t':N -+ M be such that G(t) = t\ Then ft - g:N -> U
factors through a projective module and is hence not a monomorphism
by Lemma 3.1. Since sociV is simple, we have (ftf — g)(socN) = 0.
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Since g(sociV) ^ 0, we must have t\socN) ^ 0, so that t':N - • M is a
monomorphism.

(b) Assume that we have inclusions f:U-+M and g:U —> N. Then /
and g are nonzero, and hence we get nonzero maps f'.FU —• FM and
g'.FU —> FiV, which are monomorphisms since F(7 is simple. Since F is
Nakayama and l(FM) < l(FN), there is a commutative diagram

F(7 £ FM
II 4 *

X FN.

Let s':M - • JV be such that G(s) = sr. Then sff -g:U -^ N factors
through a projective module, and is hence not a monomorphism by
Lemma 3.1. Since socU is simple, we must have (s'f — g)(M) = 0.
Since /(soc U) = soc M we would have s'f (soc 17) = 0 if sf were not a
monomorphism. Then we would have g(soc U) = 0, which contradicts
the fact that g is a monomorphism. We conclude that sf: M —> AT is a
monomorphism. •

The next result is an easy consequence of the existence of a stable
equivalence.

Lemma 3.5 If X is an indecomposable A-module, then any simple module
has multiplicity at most 1 in socX and X/xX.

Proof Let f:S^>X and g: S —• X be monomorphisms, where 5 is a
simple A-module. Since F is Nakayama, we have a commutative diagram

FS £> FX

it ||

FS X FX

where F(/) = / ' and F(g) = g'. Let t ':S - S be such that G(t) = t'.
Then gt' — f:S -> X factors through a projective module, so that gt' = f
since S is simple. This shows that I m / = Img, and hence S must occur
with multiplicity 1 in socX

The claim for X/xX follows by duality. •

As a consequence we get the following uniqueness result for submod-
ules of A-modules with simple socle.
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Lemma 3.6 Let X be a A-module with socX simple. If V and W are
submodules of X with V ~W, then V = W.

Proof If l(V) = 1, then V = W = socX. Assume then that l(V) > 1,
and let M be a maximal submodule of V, which by the induction as-
sumption also is a maximal submodule of W. If V ^ W9 we then have
(V + W)/M ~ (V/M)]1(W/M). Since V/M ~ W/M and 7 + W is
indecomposable because it has simple socle, we get a contradiction to
Lemma 3.5. Hence we conclude that V = W. •

We use Lemma 3.6 to show that the correspondents of simple Y-
modules are uniserial.

Proposition 3.7 If T is a simple T-module then GT is uniserial.

Proof Let M and N be submodules of GT, and assume l(FM) < l(FN).
Since FGT ~ T is simple, it follows from Lemma 3.3 that GT, and
hence M and N, have simple socle. By Lemma 3.4 there is then a
monomorphism h:N —> M. Since Imh ~ N, it follows from Lemma 3.6
that Im/i = N, and hence N <= M. This shows that the submodules of
GT are totally ordered by inclusion, and hence GT is uniserial. •

We can now get explicit information on the structure of the projective
A-modules. Note that by Lemma 3.6, Ut and Vt are uniquely determined
as submodules of Pt.

Theorem 3.8 Let Pt, Ut and V\ be as before. We then have the following.

(a) UinVi = Si.
(b) Ui + Vi = xPi.
(c) Ui/Si and Vt/St have no common composition factors.

Proof (a) Since Ut is a correspondent of a simple module via the equiv-
alence G and V\ via the equivalence GQ, it follows from Proposition 3.7
that Ut and Vt are uniserial.

Let N be a nonzero submodule of £/,- Pi Vt, so that we have M =
soc Ui c J V c Ui n Fi c l/f. If l(FM) < l(FN), we have an inclusion
N ^> M by Lemma 3.4, and hence M = N. If f(FM) > Z(FJV), we
have 1(0.-^ (M)) < / ( Q - 1 ^ ^ ) ) . Considering Af c i V c [/ifiKjC Ft,
we have that F/ corresponds to a simple module via QrlF, so we apply
Lemma 3.4 to get an inclusion N —• M. This shows that Ui nVt = St.
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(b) Let now M be a submodule of xP with Ut c Ut+Vt c M c rP, = N.
If l(FN) < l(FM), it follows from Lemma 3.4, using that [/,- corresponds
to a simple module via F, that there is an inclusion N —• M, which gives
M = AT. If /(FiV) > /(FM), we have /(Q^FiV) < /(Q^FM), so that by
using that Vt is contained in M and iV and the equivalence Q-1F, again
there is an inclusion N —> M, which gives M = N. This shows that

(c) We have r j y $ = (£/,/$) I I ( ^ A ) . If *V$ and 7*/$ have a
common simple composition factor T, then T JJ T would be part of the
socle of a factor module of P. This contradicts Lemma 3.5. •

We now get more information on the length of the I/,- and Vt, and on
the order in which the simple composition factors occur in a composition
series.

Proposition 3.9

(a) The simple composition factors of JJi are from top to bottom
Sp{i),...,Spa{i) and for Vt they are S ^ ) , . . . , ^ ^ , where a = /([/,-),& =
l(Vt) and pa(i) = i = o\i).

(b) l(Ui) = l(Up{i)) and l(Vt) = l(Va{i)).
(c) Either l(Ui) is equal to the size of the p-orbit containing i or l(Vt) is

equal to the size of the o-orbit containing i.
(d) Each p-orbit and o-orbit have at most one element in common.

Proof Consider the exact sequences 0 -> Ua$ - • Pa{i) - ^ V\ - • 0 and

0 -> Vp{i) -> Pp{i) -^ Ut - * 0 from Lemma 3.3. Now Ker(a(T(l)|F(T(.)) = S<j{i)

and aff(i)(Kff(,-)) = xVu showing that l(Vt) = /(F^)) and that the order of
the composition factors for Vt is as claimed. The result for Ut follows
similarly. Since we know St = soc (7, = soc Vu we have pa(i) = i = oh{i).
This proves (a) and (b).

If l(Ui) is larger than the size of the p-orbit, then St is a composition
factor of Ui/Su and if l(Vt) is larger than the size of the a-orbit, then St

is a composition factor of Vj/S,-. It follows from Theorem 3.8 that both
cannot happen, so that (c) follows.

The elements of the p-orbit of i correspond by (a) exactly to the com-
position factors of I/,-, and the elements of the cr-orbit of i correspond
exactly to the composition factors of Vt. It follows from this and the fact
that Ut/Si and Vt/Si have no common composition factors that i is the
only common element of the orbits. •
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We use the information we have obtained to define a graph B\ as-
sociated with A which we shall show gives a Brauer tree. The set of
vertices of the graph B\ is by definition the disjoint union of the set of
all p-orbits and cr-orbits. We denote by [i]p and [i\a the p-orbit and the
cr-orbit containing i respectively. For each i there is an edge connecting

p I o

[i]p and [i\a9 and we write • •. Note that since a cr-orbit and a p-orbit
have at most one element in common, there are no multiple edges. For
each vertex representing a p-orbit the edges connected with this vertex
are in one to one correspondence with the elements of this p-orbit, and
correspond to the composition factors of the associated Ut. A similar
comment applies to cr-orbits and Vt.

We give preliminary results leading up to proving the desired structure
of the graph.

Lemma 3.10

(a) If Sj is a composition factor of Ui/St, there is a nonzero map FSt —>
FSj which factors through a protective module, and hence l(QFSj) <

(b) IfSj is a composition factor ofVt/Su there is a nonzero map QrlFSi —•
Q^FSj which factors through a protective module, and hence l(FSj) <
liOT1 FSi).

Proof (a) When Sj is a composition factor of Ui/Su there is a submodule
Wt of Ui with l(Wt) > 2 and Wt/xWi ~ Sj. Consider the diagrams

U and f U'

Si ^ Wt -?> Sj FSt ^ FWi X FSj,

where f:St —> Wt and h\W\ —• XJ\ are inclusion maps and g:Wt —• Sj is
surjective, F(/) = f and F(g) = gr and F(h) = //. Then £', / ' , and gr are
nonzero by Lemma 3.1. Since FUi is simple, hf:FWi —• FUi must then be
surjective. Since FWt is uniserial, ff:FSt —> FWt must also be surjective,
and hence g'f: FSt —> FSj is nonzero. Further g'f = 0 because gf = 0.
So we have a commutative diagram

Q = Q

t « ,f, I*
FSt - ^ FSJt

where v:Q —> FSj is a projective cover. Clearly l(FSt) > l(Imu), and

by considering the exact sequence 0 —• Q(FSj) -* Q -* FSj —> 0, we see
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X.3 Symmetric Nakayama algebras 361

that Imw <fi Q(FSj) since vu ^ 0. Since Q is uniserial, we then have
Q(FSj) a Imu, so that /(Q(FS/)) < /(Imw) < l(FSt).

(b) The proof is similar to the proof of (a), by replacing Ut by Vt and
F by QrlF. •

Proposition 3.11 Assume that in the graph B\ we have • • • •
with i =£ j and j =£ t. Then we have l(FSt) > l(QFSj) > l(FSt).

Proof We have that Sj is a composition factor of Ut/Si and St is a
composition factor of Vj/Sj. Then we conclude by Lemma 3.10 that
l(FSt) > l(QFSj) = l(QrlFSj) > l(FSt) using that the indecomposable
projective F-modules have the same length. •

Associated with each vertex is a positive integer m in the following
way. We define m([i]p) to be the multiplicity of St in the Ut and md)']^) to
be the multiplicity of S,- in Vt. We shall show that for at most one vertex
can the associated number m be greater than 1.

Proposition 3.12

(a) Ifm([i\p) + 1, then l(FSt) > l(QFSi).

(b) Ifm{[i\a) ± 1, then l(OFSt) > l(FSt).

Proof (a) If m([i\p) ^= 1, then Si is a composition factor of Ui/Su so that
l(FSt) > l(QFSi) by Lemma 3.10.

(b) If m([i\a) ^ 1, then S, is a composition factor of Fj/S,-, so that
l(FSi) < liar1 FSi) = l(Q.FSi\ by using Lemma 3.10. •

Proposition 3.13 The graph B\ associated with A is a tree, and we have
m(x) > 1 for at most one vertex x.

c h P
• •

Proof Assume that we have a cycle l2n/ \ 2
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Then we have l(FSh) > l(FSh) > > / (FS^) > l(FSh) by Proposi-
tion 3.11, so we have a contradiction.

Consider •—— •—— _!!!!_. a nd assume m([i\\a) > 1 and
m([i2n\a) > I- Then we have l(QFSh) > l(FSh) > > l(QFShn) >
l(FSiln) by Propositions 3.11 and 3.12. Since for any indecomposable
X and Y in modT, we have l(X) + l(QX) = l(Y) + /(Q7), we get a
contradiction.

If we have m{[h]G) > 1 and m([i2n-i]p) > 1, we get l{&FSh) > l(FSh) >
- - > liFSt^) > /(QFS/^J, which is impossible. The rest is treated sim-
ilarly. •

As a direct consequence of Theorem 3.8 and Proposition 3.13 we get
the main result of this section.

Theorem 3.14 Let A be a symmetric artin algebra stably equivalent to a
symmetric Nakayama algebra. Then A is given by the Brauer tree B\. •

Exercises
1. Let A' be an artin algebra stably equivalent to a Nakayama algebra
A. Prove that A and A' have the same number of nonisomorphic simple
nonprojective modules.

2. Let A be a finite dimensional nonsemisimple algebra over an alge-
braically closed field k. Prove that T2(T2(A)) is of infinite representation
type.

3. Let k be an algebraically closed field and k(X,Y) the free algebra
over k in two noncommuting variables X and Y. For each t ^= 0 in
k let Ar = k(X,Y)/It where It is the ideal of k(X,Y) generated by
{X2,Y2,XY -tYX}.

(a) Prove that At is a selfinjective finite dimensional fc-algebra with
soc At = (XY) + It and that At ^ At> if and only if t = tf or t = £.

(b) Prove that At/ soc A, - k[X, Y]/(X, Y)2 where k[X, Y] is the poly-
nomial ring in two commuting variables over fc, and hence that
k[X, Y]/(X9 Y)2 is stably equivalent to the Kronecker algebra.

(c) The fc-algebra isomorphism At/ soc At ^ fc[X, Y]/(X9 Y)2 induces a
group morphism from Aut*(At) to Autkk[X,Y]/(X,Y)2 ~ Gl(2,k),
where Autk(T) denotes the group of fc-algebra automorphisms of a
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fc-algebra F. Prove that the image is trivial for t ^ ±1, of order 2 if
t = 1 and charfe 7̂  2 and GL(2,fc) if t = - 1 .

From the stable equivalence between k[X, Y]/(X9 Y)2 and the Kro-
necker algebra we have by VIII Section 7 the following description of
the AR-quiver of At. There is a P^fc) family of rank 1 tubes correspond-
ing to the regular Kronecker modules. For each s = (l,p) € P^fc) we
let MUs be the module At/(X + pY + It) and for s = (0,1) e P(fc) we
let MtiS be the module At/Y +It which constitutes the modules X with
a(X) = 1 in the tubes. For a fixed t we let Ms, 5 G Pi(fc) be the class of
modules just described throughout the rest of this exercise. In addition
to the tubes there is one component containing the projective Armodule
At. This component may be represented in the following way.

DTrr

DTTS S Tr DS

(d) Let t ^ —1. Prove that dim/cHom(M(ij0),M(i)0)) = 2,
dim/cHom(M(o,i),M(o,i)) = 2 and that dim^ Hom(Ms, Ms) = 1 for

(e) Let t ± - 1 and let (l,p) ± (lpf) in P1^) with p ± 0 ^ p'.
Prove that QM^) = M(1_ip) and that dim^ Hom(M(iy), M(i r)) =
JO ifp^-f,'
\1 if ̂  = -f.

(f) For t = - 1 prove that QMS ^ Ms and that dimfcHom(Ms,Ms) = 2
for all s e P!(fe).

(g) Prove that At and A_i are not stably equivalent for t ^ —1.

(h) Now assume t is a primitive 2n-th root of unity. Prove that
there are cycles of modules MSl9MS2,...9MS2n such that
dim/cHom(MSl,Ms.+1) = 1 for i = l , . . . ,2n when MS2n+1 = MSl and
that the maximal length of such a cycle without repetition is In.

(i) Deduce that if t is a primitive 2n-th root and tf is a primitive 2m-th
root of unity with m^= n, then At and Af are not stably equivalent.
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364 Stable equivalence

(j) Prove that Ar and A? are not stably equivalent for t £ {^^}-
(Hint: Use the component of the AR-quiver containing the projective
vertex.)

Notes
Consideration of the subgroups £P(A,B) and factor groups Hom(^4,B) of
HomA(v4,£) predates the formal definition of the category of modules
modulo projectives. The projective homotopy groups of modules [EcH],
the Heller operator [He] and the notion of projective homomorphisms
in group theory and orders are some instances where these notions came
up, either explicitly or implicitly. But the idea of considering the category
of modules modulo projectives as an object of study in its own right
did not seem to gain any prominence until it arose in modular group
representations in connection with the Green correspondence and the
definition of the transpose as a functor establishing a duality between
mod A and mod Aop.

The specific issue dealt with in this chapter of when two artin algebras
are stably equivalent came up in two quite different situations. One was in
modular group representations where the Green correspondence shows
that the restriction morphism sometimes induces a stable equivalence
between a group and some subgroups. It was in this connection that the
problem of whether two stably equivalent artin algebras have the same
number, up to isomorphism, of nonprojective simple modules first came
up.

The other early case where stable equivalence came up was in [AuRl]
where the artin algebras stably equivalent to hereditary algebras are
described. This includes the result shown here that all radical square zero
algebras are stably equivalent to hereditary algebras. The proof given
here is inspired by [Au3]. There is a generalization in [MO], via the
concept of a simple module being a 'node'.

The result that the artin algebras over an algebraically closed field
stably equivalent to the symmetric Nakayama algebras are exactly those
given by Brauer trees was proven in [GaRi]. Our approach follows [Lin].

The material in Section 1 is taken from [AuR6] [AuR7], but most
proofs are different, since we do not use functor categories. For the
use of functor categories in the study of stable equivalence we refer to
[AuRl] and [M3].
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XI

Modules determining morphisms

The basic premise of this book has been that one should study the mor-
phisms between modules as a way of studying the modules themselves.
In this enterprise, two special types of morphisms have played a par-
ticularly important role, split epimorphisms (monomorphisms) and right
(left) almost split morphisms. Whether or not a morphism / : £ —• C
is one of these types is determined by which morphisms X —> C for
arbitrary X can be factored through / . In fact, this situation is not
as special as it seems since all right minimal morphisms / : B —• C are
determined by which morphisms X —> C can be factored through / . A
careful analysis of this observation leads to the notion of morphisms
determined by modules, in terms of which a classification theorem for
right minimal morphisms is given. We also get existence theorems for
morphisms to an indecomposable module C which contain the existence
of minimal right almost split morphisms as a special case.

In Chapter V we introduced the notion of rigid exact sequences and
showed that split and almost split sequences are rigid. We use here our
classification of morphisms to study further when exact sequences are
rigid. In this connection, we introduce the notion of modules with waists,
a notion we further exploit in studying when almost split sequences have
indecomposable middle terms. This problem was also first discussed in
Chapter V.

1 Morphisms determined by a module

In I Section 2 we introduced for a fixed C in mod A the category
modA/C whose objects are the morphisms f:B -> C in mod A and
whose morphisms from f\\B\ —> C to fi:#2 —• C are the morphisms
g:B\ —> B2 such that /1 = /2g. Our purpose there was to show that

365
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366 Modules determining morphisms

given a morphism f:B —• C in modA/C there is a decomposition
B = Bo\jB\ such that f\Bo:Bo —> C is right minimal and / I ^ I U I —•
C is the zero morphism. Our purpose now is to study the category
mod A/C by considering for each module A in mod A the full subcategory
Ker^(modA/C) of mod A whose objects are all the f:B -» C with Ker /
in add A. We first consider the following problem. Given two morphisms
/ i : B \ —• C and ji'.B2-* C, when is Hom(/i,/2) 7̂  0? Our answer leads
to the notion of a morphism being determined by a module.

Suppose / : B —> C is a fixed morphism. Given an arbitrary morphism
/ ' : £ ' — • C we first show how to describe when Hom(/ ' , / ) ^= 0 in terms
of the pullback diagram

B x c 5 ' -H> B'
i if
B U C.

We keep this notation for most of this section.
The reader should observe that a morphism h:X —• B' factors through

p.B xcB
r - • Br, i.e. there is some l.X ^ B xcB' such that pi = n,

if and only if the composition f'h'.X -> C factors through / . This is a
trivial consequence of the mapping properties of pullbacks.

Lemma 1.1

(a) I m / ' c I m / i/ams? on/y if p:B Xc Bf -+ Bf is an epimorphism.

(b) 77ze morphism f factors through f, i.e. Hom(f\f) =/= 0, if and only if
p.B Xc Br —• Bf is a split epimorphism.

Proof (a) Clearly p is an epimorphism if and only if every morphism

g: A —• B! factors through p. Now every g: A —• B' factors through p if

and only if the compositions A -̂ > B' —• C factor through / . But this is

equivalent to I m / ' c I m / .
(b) The morphism p is a split epimorphism if and only if \B> factors

through p. But \B> factors through p if and only if / ' = f\B> factors
through / , giving our desired result. •

We now give a different description of when p.B Xc Bf —• B' is an
epimorphism or a split epimorphism.

Lemma 1.2 Let f'.B^Cbein mod A and let A = Ker/.
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XI.l Morphisms determined by a module 367

(a) Suppose p:B xc Bf —> B' is an epimorphism. Then p is a split epi-
morphism if and only if every morphism Tr DA —• Bf factors through

(b) p:B Xc B' —> B' is a split epimorphism if and only if

HomA(Tr/X4lJ A,B x c B') Hom{™AUA>p) Hom A (TrD^U A,B')
is an epimorphism.

Proof (a) By the basic properties of pullbacks we know that A ~ Kerp,

so we have the exact sequence 0 —> A —• B Xc B' -> B1 —• 0. Therefore
we have that p is a split epimorphism if and only if every morphism
A —• A factors through h. But this is equivalent by IV Corollary 4.4 to
every morphism Tr DA —• B' factoring through p.

(b) This is a trivial consequence of (a) and the fact that p is an epi-

morphism if and only if HomA(A,£ xc B') —•' HomA(A,£') is an

epimorphism. •

Combining Lemmas 1.1 and 1.2 with the mapping properties of pull-
backs we have the following.

Proposition 1.3 Let 0^A-^B^>Cbean exact sequence in mod A.

(a) Suppose ff\Br —> C is a morphism such that I m / ' c Im/ . Then f

factors through f if and only if the composition TrZX4 —• Br —• C
factors through f for all t in Hom\(Tr DA, B').

(b) If f:Bf —• C is an arbitrary morphism, then f factors through f if

and only if the composition T r D ^ J J A —> Br —> C factors through f
for all t in HomA(TvDA]JA,Bf).

This basic result suggests the following definition. We say that a
morphism f:B —• C is right determined by a module X, or just deter-
mined by a module X, if a morphism f:Bf —• C factors through /
whenever ImHoniAfl, / ' ) c ImHoniA(I,/) . It is easy to see that a
morphism f':B' —• C factors through / if and only if ImHomACM,/') c=
ImHoniA(M,/) for all M in mod A. Therefore saying that a morphism is
right determined by a module is a finiteness condition which, as we now
point out, all morphisms enjoy.

Corollary 1.4 Let 0-+A-->B—>Cbean exact sequence. Then f is
always right determined by T r I M ] j A . Further, if f is an epimorphism,
then it is right determined by Tr DA.
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368 Modules determining morphisms

Proof This is an easy consequence of Proposition 1.3 and the definition
of a morphism being determined by a module. •

Before moving on to develop more of the general theory of morphisms
determined by modules, we discuss a few interesting but somewhat more
specific questions suggested by our results so far.

Let 0—>^4—•£—>Cbean exact sequence. Then we know that / is
determined by Tr DA \J A. In view of this result it is natural to wonder
if/ is ever right determined just by A or just by Tr DA. We have already
seen that when / is an epimorphism, then / is right determined by Tr DA.
However, as we shall see, it is not necessary for / to be an epimorphism
in order to be right determined by Tr DA.

We begin this discussion with the following criterion for / to be right
determined by A.

Proposition 1.5 Let f:B-+Cbea morphism in mod A.

(a) / is right determined by A if and only if the induced epimorphism
B —• I m / splits.

(b) If f is right minimal, then f is right determined by A if and only if it
is a monomorphism.

Proof (a) We have already seen that for a morphism g : I ^ C w e have
Img a Im/ if and only if for each morphism h: A —> X, the composition

A —• X -̂ > C factors through / . Hence if / is determined by A, then
the inclusion Im/ —> C factors through / . But this means that the
epimorphism B —• Im/ splits.

On the other hand, suppose B —• Im/ is a split epimorphism. Then
there is a morphism s: Im/ —> B such that fs(z) = z for all z in Im/. Let
/ i : I - > C b e a morphism such that for each t: A -> X the composition
ht factors through / . This means that I m d c Im/. Hence we have that
h = (fs)h, so h factors through / . This shows that / is determined by A.

(b) This is a trivial consequence of (a). •

We now take up the issue of when a morphism / is right determined
by TrD(Ker/).

Proposition 1.6 Let 0—*A—>B^>Cbean exact sequence. Then the

following are equivalent.
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(a) The morphism f:B^>C is right determined by TrDA.

(b) A morphism g :A —• C factors through f if for each morphism

h.TrDA —> A, the composition Tr DA —> A —• C factors through

f.
Proof (a) => (b) This is a trivial consequence of/ being right determined
by TrDA

(b) => (a) Let s: X —> C be a morphism such that for each t: Tr Dv4 —> X
the composition st factors through / . By Proposition 1.3, in order to
show that s factors through / , it suffices to show that I m s c Im/ . Let
u:nA —> X be an epimorphism. Now for each v:TrDA —> ftA the com-
position Tr DA -^ nA-^ X -^ C factors through / . Hence the morphism
su: nA —• C factors through / since for each v: Tr DA —> nA the composi-
tion (su)v factors through / . This combined with the fact that u: nA —> X
is an epimorphism implies that Ims c: Im / . •

We now give an example illustrating these results.

Example Let p be a prime element in a principal ideal domain R and let
A = R/(pn) for some integer ft > 0. Then A is a Nakayama local ring with
Ai = R/ip1), i= 1,.. . , ft, a complete set of nonisomorphic indecomposable
A-modules. Let f:An —> A,- be a morphism such that Ker / ^ 4̂7 with

1 < j < ft. Thus we have the exact sequence 0 —> Aj —> An —> At.
Since A is a local Nakayama algebra, we have that Tr DAj ^ Aj. Using
Proposition 1.6, it is not difficult to see that / is right determined by
Aj. For it is clear that t:An —> A\ can be factored through / if and
only if Kert ^ 4̂M with u > j . Hence t:An -> A,- factors through / if
and only if the composition Aj —> An —> At is zero for all morphisms
g:Aj —• An. But zero is the only morphism Aj —• At factoring through
/ . Therefore t:An —> 4̂, factors through / if and only if the composition
4 / -^ ^4n —• yl, factors through / for all morphisms g : ^ ; —> ̂ n . This
shows by Proposition 1.6 that / is right determined by Aj ^ TrD(Ker/).
We also have

(a) / is an epimorphism if and only if i = n — j and
(b) ImHomA(yl7,/) = 0.

Thus for example if we choose i = ft, then / : An —> An is an example of
a morphism which is right determined by TrD(Ker/) even though it is
not an epimorphism.
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Of course there is a dual theory for morphisms left determined by a
module. We say a morphism g: A —• B is left determined by a module X
if a morphism g': 4 ' —> 2? factors through g whenever /ig' factors through
g for all h:B' —• X, i.e. there is a morphism t:B —• £ ' such that tg = g'.
Then, by duality, we have that a morphism g: ,4 —• B is left determined
by DTr(Cokerg)UD(A) and that it is left determined by DTr(Cokerg)
if it is a monomorphism. We leave it to the reader to develop this dual
theory.

Before returning to the general theory of morphisms determined by
modules we introduce some notation and make some basic observa-
tions which we will use freely in the rest of the chapter. For each
module X in mod A we denote EndApOop by Fx- Then for each Y
in mod A we know that Hom\(X,Y) is a Tx-module. Suppose now
that f:B —• C is a morphism in mod A. We know that the morphism
HomA(X,f):Hom\(X9B) —> Hom\(X,C) is functorial in X. Hence
HoniA(X,/) is a morphism of Ex-modules. Therefore ImHomA(I, / ) is
a Fx-submodule of HoniA(X, C) which, as we shall see, plays a critical
role in the theory of morphisms determined by modules.

2 Modules determining a morphism

Let f:B —• C be a morphism in modA/C. This section is devoted to
exploring the structure of modules X which determine / . We first show
that there is a unique, up to isomorphism, module T(f) which determines
/ and such that T(f) is a summand of X for all modules X determining
/ . We next show that there is a unique, up to isomorphism, module
U(f) in add T(f) such that HOHIACX', U(f)) is a Fx-projective cover of
socrx(HomA(X, C)/ImHomA(X,/)) for all modules X which determine
/ . Finally we show that D Tr U(f) ~ Ker/ .

We begin with the following notion which will play a crucial role in
our discussion of the structure of the modules which determine a fixed
morphism f:B^>C.

Let T be an indecomposable module. A morphism g: T —• C is said
to almost factor through / if it satisfies the following two conditions:

(a) g does not factor through / and

(b) for each module U and each morphism h: U —• T in md\(U, T) the

composition U —• T -^ C factors through / .

We say that an indecomposable module T almost factors through / if
there is a morphism T —• C which almost factors through / .
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Even though the definition of an indecomposable module almost fac-
toring through a morphism f:B-+C has nothing to do with the modules
which determine / , the concepts are nonetheless intimately related, as we
now show.

Lemma 2.1 Suppose the indecomposable module T almost factors through

a morphism f:B —> C. Then T is a summand of X for each module X

which determines f.

Proof Since T almost factors through / , there is a morphism g:T -> C

which almost factors through / . Suppose T is not a summand of X

where X determines / . Then each morphism h:X —> T is in radA(X, T)

and so the composition X —• T —> C factors through / : B —• C for all h

in HOITLACX, T). Therefore g factors through / since / is determined by

X. This contradiction shows that T is a summand of X. •

In view of this result, it is natural to ask which indecomposable
summands of a module determining a morphism / : B —> C almost factor
through / . We will obtain an answer to this question as a consequence
of the following result.

Proposition 2.2 Suppose Y is an indecomposable summand of a

module X which determines the morphism f:B —• C. Then a morphism

g.Y —> C almost factors through f if and only if the image of the

composition of the Tx-morphisms Hom\(X,Y) —> ' Hom\(X, C) —>

C C)/ ImHomA(X,/) is a simple Tx-module, where p is the canon-
ical epimorphism.

Proof Suppose g:Y —• C almost factors through / . Since g does
not factor through / which is determined by X, we have that

Im(HoniA(X,r) A> 'g HoniA(X,C)) is not contained in ImHomA(l,/).
Also we have that Hom\(X,g)(r^d\(X,Y)) a ImHoniA(I,/) since for
each h in radA(X, Y) the composition gh factors through / . Combining
these observations with the fact that Y being an indecomposable sum-
mand of X implies that HomA(X, Y)/ radA(X, Y) is a simple F^-module,
we have that the image of the composition pHom\(X,g) is isomorphic to
the simple F^-module HomA(X, Y)/ radA(X, Y). This proves our desired
result in one direction.

Suppose now that the image of the composition pHoniA(X,g) is a
simple Ex-module. Then HoniA(X,g)(radA(X, Y)) a ImHoniA(X,/) and
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g:Y -> C does not factor through / . Let t:A -> 7 be in radA(^4, 7 ) .
Then for each u:X —> A, the composition X —• A —> 7 is in radApC 7 )
which means that the composition X —> 4̂ —• 7 —> C factors through / .
Hence for each u:X —> 4 , the composition (gt)w factors through / . This
implies that the composition A —> 7 —• C factors through / for all t in
radA^4, 7 ) . Therefore g:Y —> C almost factors through / . •

As an immediate consequence of these results we have the following
result whose proof we leave to the reader.

Corollary 2.3 Let X be a A-module which determines a morphism f.B^C
and let {Si , . . . ,S j be a complete set of nonisomorphic simple Tx-sub-
modules of Hom\(X, C)/ImHomA(X,/). Then the indecomposable non-
isomorphic summands 7 i , . . . , 7 t of X such that HoniA(X, Yt) is a Tx-
projective cover of Si for all i = l , . . . , t are a complete set, up to iso-
morphism, of nonisomorphic indecomposable modules which almost factor
through f. •

Before giving our next result it is convenient to introduce the following
notation. Let {T i , . . . ,T j be a complete set of nonisomorphic indecom-
posable modules which almost factor through a morphism / : B —• C. We
denote by T(f) any module isomorphic to T\ ]J • • ]J Tt. Because of the
following result, we call T(f) the minimal module determining / .

Proposition 2.4 Let f:B^>Cbea morphism and let T(f) be as above.
Then T(f) has the following properties.

(a) The module T(f) determines f.

(b) A module X determines f if and only if T(f) is a summand of X.

Proof (a) Let X be a module determining / . Then by Corollary 2.3
we know that T(f) is a summand of X. Let {T i , . . . ,T j be a complete
set of nonisomorphic indecomposable summands of T(f). To show that
T(f) determines / , it suffices to show that if a morphism g:A —• C does
not factor through / , then there is a morphism h:Tt —• A such that the
composition gh\ Tt —> C does not factor through / .

Let {Si , . . . ,S j be a complete set of nonisomorphic simple r^-sub-
modules of HOIIIA(X, C)/ImHoniA(X,/) labelled in such a way that
HoniA(X, Tt) is a projective cover of Si for all i = l , . . . , t . We know we
can do this by Corollary 2.3. Suppose that g:A —> C is a morphism
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which does not factor through / . Then the composition

HomA(X,v4) Hom4*'g) HomA(X, C) -^ HomA(X, C)/ ImHomA(X,/)

is not zero so there is some St contained in its image. Since HomA(X, Tt)
is a projective cover of Si, there is a morphism w:HomA(X, Tt) —•
Hom\(X,A) such that Im(pHomA(X,g)w) = St. Because Tt is a sum-
mand of X there is a morphism v:Tt —> A such that u = HomA(X,t;).

v z

Then the composition Ti —> A —> C does not factor through / since
ImHomA(X,g£>) is not contained in ImHomA(X,/) and / is determined
by X.

(b) This is a trivial consequence of (a). •

For each morphism / : £ —• C we have introduced the module T(f)
which is an invariant of / . We now introduce another module which is
also an invariant of / .

Let T(f) be a minimal module determining a morphism / : £ —• C.
Define U(f) to be a module in add T(f) such that HomA(T(/), U(f))
is a Fr(/)-projective cover of socrr(/)(HomA(T(/), C)/ ImHomA(T(/),/)).
Since T(f) is uniquely determined by / , up to isomorphism, the module
U(f) is also uniquely determined by / , up to isomorphism. Also we
know there is a morphism g: U(f) -> C such that the composition of
TT(f) -modules

HomA(T(/), U(f)) HomA^(/)'g) HomA(T(/),C)

HomA(T(/), C)l Im HomA(T(/)J)

is a Fr(/)-projective cover of socrT(/)(HomA(T(/), C)/ImHomA(T(/),/)).
We call the A-modules U(f) and the morphisms g: U(f) —> C having
these properties minimal covers of the bottom of the morphism / . It is
an immediate consequence of Corollary 2.3 that T(f) is a summand of
u(f).

It is clear that the minimal covers of the bottom of a morphism are
an invariant of the morphism. We now show how this invariant of a
morphism / is connected to the modules determining / .

Proposition 2.5 Let g: U(f) -> C be a minimal cover for the bottom of the
morphism f\B^>C.IfXisa module determining / , then the composition
of Tx-morphisms
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HomA(X, U(f)) H o m4X 'g ) HomA(X,C) -^ HomA(X,C)/ImHomA(X,/)

is a Tx-projective cover o/socrAr(HomA(X, C)/ImHomA(X,/)) .

Proof It follows from the definition of g: U(f) —• C and
Proposition 2.2 that Im(pHomA(X, g)) is contained in
socrAr(HomA(X, C)/ImHomA(X,/)) . We now show Im(pHomA(X,g)) =
socrx(HomA(X, C)/ImHomA(X,/)) . Suppose that S is a simple Tx-
submodule of HomA(X, C)/ImHomA(X,/) . Let T be an indecompos-
able summand of X such that HomA(X, T) is a projective cover of
S. Then there is a morphism h:T —• C such that the composition
pHomA ( I , f t ) :HomA ( I , T) - • HomA(X,C)/ImHomA(X,/) has S as its
image. From this it follows that h:T —• C almost factors through
/ . Hence there is a morphism £:T —• (7(/) such that gt = h. From
this it follows that S is contained in the image of the composition

HomA(X, [/(/)) H o m4X 'g ) HomA(X,C) -^ HomA(X,C)/ImHomA(X,/) .
Therefore the image of this composition is
socrx(HomA(X, C)/ImHomA(X,/)) . The fact that this composition is a
Tx-projective cover of its image is an easily verified consequence of the
fact that g: U(f) —• C is right minimal. •

Throughout the rest of this section we assume that X is a fixed
A-module. Let f:B —• C be a morphism in mod A. For the sake
of notational brevity we denote the Fx-submodule ImHomA(X,/) of
HomA(X, C) by Hf. Assume now that / is determined by X. Our aim in
the rest of this section is to show that a great deal of explicit information

about the exact sequence 0 —• Ker / —> B —• C can be deduced from
the associated exact sequence of Tx-modules ()—>#/—• HomA(X, C) —•
HomA(X, C)/Hf -> 0, especially when / is right minimal.

We begin our discussion with the following elementary observation.

Lemma 2.6 Let fo'.Bo —> C be a right minimal version of a morphism
f.B^C in modA/C. Then we have the following.

(a) Hf = Hh.

(b) The morphism f:B-+Cis right determined by the module X if and
only if fo'.Bo —• C is right determined by the module X.

Proof (a) This is an obvious consequence of the definitions involved,
(b) This follows easily from (a) and the fact that we have the commu-
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tative diagram

Bo ^ C

I* II
B - 4 C
I* II
Bo ^ C

where i is the inclusion and p is the projection. •

This lemma shows that there is no serious loss of generality if we restrict
ourselves to considering only right minimal morphisms in mod A/C when
studying morphisms determined by the module X. This point of view is
further supported by the following.

Lemma 2.7 Let f\\B\ —> C and fi:#2 —• C be two right minimal mor-
phisms in mod A/C which are determined by the module X. Then f\ and
fi are isomorphic in mod A/C if and only if Hfl = Hf2.

Proof Since it is clear that Hfl = Hf2 if f\ and fi are isomorphic in
mod A/C, we only show that if Hfl = Hf2, then f\ is isomorphic to J2 in
mod A/C.

Suppose Hf{ = Hf2. Since Hf{ a Hf2 and fi is right determined by X,
there is a commutative diagram

Bi f-X C

I ^ II
B2 %> C.

Since Hf{ => Hf2 and f\ is right determined by X, there is a commutative
diagram

£ 2 ^ C

I » II
i>l —• C

Since both / i and fi are right minimal, it follows that the compositions
g2gi and gig2 are isomorphisms, giving our desired result. •

/ gLet 0 — > y l — • # — > C b e a n exact sequence with g a right minimal
morphism determined by X. We know by Lemma 2.7 that, up to isomor-
phism, this sequence is uniquely determined by the rVsubmodule Hg

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.012
https://www.cambridge.org/core


376 Modules determining morphisms

of Hom\(X,C) where Hg = ImHoniA(X,g). In particular, the modules
A and B are determined, up to isomorphism, by the submodule Hg of
HoniA(X, C). While there is no direct way known of describing B in
terms of the F^-submodule Hg of HoniApC C), there is a satisfactory
answer for the module A.

Let Y be in addX such that HoniA(X, Y) is a projective cover of the
Fz-socle of HomA(X, C)/Hg. We will prove that A ~ D Tr Y. The proof
goes in several steps.

For convenience of notation we make the following conventions. Let
3: 0 —• U —• V —> W —> 0 be an exact sequence of A-modules. Then we
view the induced exact sequence

HomA(X, V) -> HomA(X, W) -> Ext^X, (7)

as a sequence of Tx -modules and consider the induced F^-isomorphism
<r(X)-^Im(HomA(X, W) - • Ext\(X, (7)) as an identification.

Proposition 2.8 Let 3:0 -^ A ^ E ^ TrDA ^ 0 be an almost split
sequence and X a module such that Tr DA is in add X.

f g

( a ) Suppose 6 : 0 — > , 4 — • £ — > C — > 0 / s a nonsplit exact sequence. Then
we have e*(X) => 3*(X) ^ 0 .

( b ) The Tx-module 3*(X) is simple and is the Tx-socle of Ext\(X, A).
(c) HoniA(X,TrZM) is a Tx-projective cover of the Tx-socle of e*(X)

which is 3*(X).

Proof (a) Since 3 is not split, 3*(TrDA) ± 0. The hypothesis that Tr!X4
is in addX then implies that 3*(X) =£ 0.

Suppose now that e:0 —> A -^ B —> C -^ 0 is a nonsplit exact
sequence. Then by the basic properties of almost split sequences we have
a commutative exact diagram

3: 0 —> A —> E —> Tr DA —• 0

i i i
6 : 0 —> A —> B —• C —> 0.

This gives rise to the commutative diagram

HomA(X, Tr DA) —• Exti(X, A)

HomA(X,C) —• Extl
A(X,A)

which shows that e*(X) ^ 3*(X).
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(b) Let e:0 - • A - • B - • X -» 0 be a nonzero element of Ext\(X,yl). It
is well known that the coboundary morphism Hom\(X,X) —• Ext\(X9A)
given by e* carries the identity to e. Hence Txe = e*(X) => d*(X) by part
(a). Therefore d*(X) is simple and equal to the socle of Extj^X,^).

(c) By definition we have an epimorphism Hom\(X,TrDA) —• d*(X).
Since Tr DA is an indecomposable A-module in addX, we have that
Hom\(X,Tr DA) is an indecomposable projective F^-module. Therefore
it is the r^-projective cover of <T(X), which is the socle of e*(X) by (b). •

We now prove the following special case of the general theorem we
are aiming for.

f g
Proposition 2.9 Let 0^>A^>B^>C—+0bean exact sequence where
g is right minimal and determined by a module X. Let Y in addX be a
minimal cover for the bottom of g. Then we have Y ^ TrDA

Proof Let A = \JieI At with the At indecomposable modules. Since g
is right minimal we have that the induced monomorphisms At —> B are
not split monomorphisms. Therefore no At is injective and if 0 —• At —>
Et —• TrD^j —• 0 is an almost split sequence, we have a commutative,
exact diagram

dr. 0 —• Ax —> Et —> Tr DAt —• 0

N^ N-' >K

e- 0 —» UieiAi —» B —» C —» 0.

This gives rise to the exact commutative diagram

U * : 0 —> Uie,Ai — Uie,Ei — I le /Tr lM, — . 0

I I 1
e: 0 —> Ute/^J —» ^ —> C ^ 0

from which we obtain the commutative diagram

HomA(X,U l 6 /TrD^) — Exti(X, U,6/ A,)

I I
HomA(X,C) — Ext\(X,UieiAi)'

Using that Extj^X, ) and the socle commute with finite sums, we have
by Proposition 2.8 that (]}ieI di)*(X) = soc Ext\(X, ]JieI At), since T r I H
is in addX for all i. Our desired result now follows from the fact that
soce*(X) = (LLG/<5*)(X) since Ext^X, UIG/ At) ID e*[X) => UieiSi(x)
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and that HoniA(X, ]JieI TrDAi) is a Fx-projective cover for ]JieI S*(X).
D

We are now in position to prove our announced result.

/ gTheorem 2.10 Let 0^>A^>B-*Cbean exact sequence with g right
minimal and determined by a module X. Let Y in add X be a minimal cover
for the bottom of g. Then Y ~ TxDA\\P with P a protective module and
D Tr Y ~ A.

Proof The inclusion Img —> C induces an inclusion HoniA(X,Img) —•
HoniA(X, C). Since Hg a HoniA(X,Img) we obtain the mono-
morphism of Tx-modules 0 —• HoniA(X,Img)/Hg —> Hom\(X, C)/Hg

and hence the monomorphism 0 —• socrx(HomA(X,Img)/Hg) —>
socrx (HOUIA (X9C)/Hg). By Proposition 2.9 we know that
HoniApCTrZM) is a F^-projective cover for socr* Hom\(X,Im g)/Hg.
Therefore to obtain our desired result it suffices to show that if a
simple submodule S of socrx(HoniA(X, C)/Hg) has a projective cover
HoniA(X,Z), with Z in addX and not projective, then
S a socrx(HoniA(X,Img)/Hg).

So let S be a simple submodule of socr^CHoniACX, C)/Hg). Then there
is a morphism h:Z —> C which almost factors through g such that S

is the image of the composition HoniA(X,Z) A> ' Hom\(X,C) —•
CC)/Hg. Now let j:P —> Z be a projective cover. Since

Z is not projective, we have that for each t:X —• P the composi-
tion jt is in radA(X,Z). Therefore for all t:X —> P the composition

X —> P —• Z —• C factors through g. Because / is determined by X,
we have that the composition P —• Z —• C factors through / . This,
together with the fact that j is an epimorphism, implies that Imh a Img.
Therefore S is contained in Hom\(X,lmg)/Hg which shows that Z is a
summand of Tr DA, our desired result. •

Thus we see that we can calculate the kernel of a morphism f:B—>C
from the invariant of / which is the minimal cover of the bottom of
/ . In the next section we show how to calculate I m / knowing the
F^-submodule Hf of HoniA(X, C) when X determines the morphism
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3 Classification of morphisms determined by a module

Let / : B —• C be a morphism in mod A with A an artin K-algebra and
X a module determining / . In studying the structure of the module X in
the previous section the Fx-submodule ImHoniA(I, /) of HomA(X, C)
played a crucial role. In view of these results it is natural to ask the
following question. Let C and X be arbitrary modules. Given a Tx-
submodule H of HomA(X, C), is there a morphism / : B —• C determined
by X such that H = ImHomA(XJ)? The main aim of this section is to
prove that this question has a positive answer.

Throughout this section we assume that X is a fixed A-module. There-
fore there is no danger of confusion if we write F for Tx. Also, as
in Section 2, given a morphism / : £ —• C we denote ImHomA(XJ) c
HomA(X, C) by Hf. It is also helpful to make the following general
observation about pullbacks.

B xcB
f -h Br

Lemma 3.1 Let

B :

I if
B X C

be a pullback diagram. Then for any module X the induced commutative
diagram of Y-modules

HomA(X,£ xcB') - • HomA(X,B') - • L -> 0

I 4 I
HomA(X,B) - • HomA(X,C) - • U -» 0

has the property that L —• U is a monomorphism.

Proof Since this is an immediate consequence of the definition of a
pullback diagram, we leave the proof to the reader. •

As a first step in proving our announced result, we prove the following
general result which is also of interest in its own right.

g /
S u p p o s e ( 5 : 0 — > ; 4 — • £ — • C — > 0 i s a n a r b i t r a r y e x a c t s e q u e n c e . T h e n

w e h a v e t h e e x a c t s e q u e n c e

HomA(£,DTrX) -> HomA(A,D TrX) -> d*(DTrX) - • 0

of E-modules, where I = EndA(DTrX). Let Ax be in addDTrX and
h\A —• Ax a morphism such that the composition
HomA(,4x ,DTrX) - • HomA(A,DTrX) - • S*(DTrX)
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is a Z-projective cover of S*(DTrX). Using this notation we have the
following.

Proposition 3.2 Let

[h [j ||

e: 0 — Ax ^ Bx £ C -> 0

foe a pushout diagram with Ax and h:A -+ Ax as above. Then we have the
following.

fx

(a) Bx —> C is right determined by X.
(b) Hf = Hfx.
(c) fx is right minimal.

Proof (a) Since 0 -» Ax ^ Bx ^ C -» 0 is exact with Ay in addD TrX,
we know by Corollary 1.4 that / x is right determined by X.

(b) Since / factors through fx we know that Hf a Hfx. From this it
follows that we have the exact commutative diagram

HomA(X,B)

I
Hom A (X,B x )

HonMX,/) H o m A { x c )

II
iom±X'M HomA(X,C)

0
i

Hfx/Hf

i

1

1
0

-> 0

-» 0

Hence /f/ = f//x if and only if d*(X) —> f*(X) is a monomorphism.
To prove that S*(X) —> e*(X) is a monomorphism it suffices to show

that lR(e*(X)) > lR(S*(X)) since d*(X) - • e*(X) is an epimorphism.
Now we know by IV Theorem 4.1 that lR(d*(X)) = lR(d*(DTrX)) and
lR(e*(X)) = lR(e*(DTrX)). Therefore we are done if we show that
lR(e.(DTrX))>lR(d*(DTvX)).

Going back to the pushout diagram, we have the following commuta-
tive diagram

HomA(Bx,DTrX) -> Hom A ( ,4 x ,DTrX) -> e*(DTrX) - • 0
(*) 4 4 HomA(M)TrX) [

H o m A ( £ , D T r X ) -^ H o m A ( ^ , D T r X ) -+ S*(D TrX) -» 0.
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By definition the composition

TrX) > d*(DTrX)

is a projective cover and therefore an epimorphism. Hence e*(DTrX) —•
5*(DTrX) is an epimorphism and so lR(e*(DTrX)) > lR(S*(DTrX)),
which is what we wanted to show.

(c) Suppose fx is not right minimal. Then the exact sequence 0 —>

Ax —> Bx -+ C —> 0 can be written as the sum of exact sequences

A'x = A'x

u u
0 - • Af

x - • B'x - • C - ^ 0

with ^ 7̂= 0. But this implies, using the commutative exact diagram (*),
that there is an epimorphism of Z-modules HoniA(/l^,DTrX) —>
d*(DTrX). Since Hom\(AX9DTrX) is a projective E-module, this con-
tradicts the fact that HoniA04,D TrX) is a projective cover for d*(D TrX).
Therefore we have shown that fx is right minimal. •

We say that any epimorphism fx: Bx —• C is a right X-version of the
epimorphism / : B —> C if

(a) / x is right determined by X and is also right minimal and
(b) Hfx=Hf.

Summarizing our results we have the following.

Proposition 3.3 Let f : B —> C be an epimorphism. Then we have the
following.

(a) The epimorphism f has a right X-version.
(b) If fx'Bx —• C is a right X-version of f then there is a morphism

f —> fx in mod A/C, i.e. there is a commutative diagram

B -4 C

Bx £ C.

(c) If fx:Bx —• C is another right X-version of f, then f and f are
isomorphic in mod A/C. •

We now apply Proposition 3.3 to obtain the following.
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Corollary 3.4 Let C be a module and H a T-submodule of HoniA(X, C)
such that £P(X,C) a H. Then there is a unique, up to isomorphism in
modA/C, epimorphism /H'-BH —• C satisfying the following.

(a) IH is right minimal and right determined by X.

(b) HfH=H.

Proof Since H is a finitely generated F-module there is some Xr in add X
and a morphism X' -> C such that Im(HomA(X,X') -> HomA(X,C)) =

H. Let P —> C be a projective cover. Then the induced morphism B —• C,
where £ = X ' J J P , is an epimorphism with Im(HoniA(X,/)) = H be-
cause of the assumption that &(X, C) is contained in H. Then letting
in • # H —• C be a right X-version of / : 2? -» C we have our desired result
by Proposition 3.3. •

It is useful to have the following observations in order to show how
our general result follows from the special case given in Corollary 3.4.

Lemma 3.5 Let f:B-+Cbean arbitrary morphism. Then we have the

following.

(a) If f is an epimorphism, then &{X, C) a Hf.

(b) If f is determined by X, then f is an epimorphism if and only if

Proof (a) This follows from the fact that if / is an epimorphism, then
every morphism in 0*(X, C) factors through / .

(b) Let g: P —> C be a projective cover of C. Since / is right determined
by X, the hypothesis that 0>(X, C) a Hf means that g factors through / .
Therefore / is an epimorphism. •

We now generalize Corollary 3.4 to obtain our promised result.

Theorem 3.6 Let X and C be A-modules and H an arbitrary T-sub-
module of HoniApC C). Then there exists a unique, up to isomorphism in

fH
modA/C, morphism BH —• C satisfying the following conditions.

(a) IH is right minimal.

(b) fH is right X-determined.

(c) HfH=H.
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We show that we can reduce this general case to the case of epi-
morphisms studied before. This reduction is based on the following
considerations.

First observe that if C is a submodule of C, then HomA(X, C) a
HomA(X, C) is a F-submodule of HomA(X, C). Now it is not hard to
see that if C and C" are submodules of C such that ^(X, C) a H
and 0>(X, C") a H, then ^>(X, C + C") c H. Thus there is a unique
submodule C of C maximal with respect to the condition ^(X, C) a H.
We denote this uniquely determined submodule C of C by CH- We now
give some basic properties of CH.

Lemma 3.7 Let X and C be A-modules and suppose H is a T-submodule
of HomA(X, C). Then the submodule CH of C as described above has the
following properties.

(a) CH contains the submodule C of C generated by {Im(/:X —> C)}/GH-

(b) P(X, CH) C H a HomA(X, CH).

(c) If V.Z - • C has the property that

Im(HomA(X, t): HomA(X, Z) -> HomA(X, C))

is contained in H, then Imt c CH-

Proof (a) Since H is a finitely generated F-submodule of HomA(X, C),
there are h\, ..., hn in H such that the induced morphism h:nX —• C

has the property Im(HomA(X, nX) - ^ ' HomA(X, C)) = / / . Then we
have that Imh = C. Since a projective cover P —• Cr factors through /i,
this shows that ^(X, C) c if and hence C c CH.

(b) We clearly have H c HomA(X, Cr). Since Cr c CH, we have that
H c H o m A ( I , C H ) .

(c) Suppose V.Z —> C is a morphism. Since a projective cover P —> Imt
factors through t, we have that ^(X,lmt) a ImHomA(X, t). Therefore if
ImHomA(X,t) c H, then 0>(X,Imt) a H and so Imt c CH. D

We now return to the proof of Theorem 3.6.

Suppose if is a F-submodule of HomA(X, C). Then by Lemma 3.7 the
submodule CH of C satisfies &>(X,CH) <= H a HomA(X,C//). Therefore

by Corollary 3.4 we have the exact sequence 0 —> AH —• ^ H -^ CH —• 0
which has the properties that / H is a right minimal morphism which
is determined by X and H = HfH. Consider now the composition
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BH ^> CH -U C, which we also denote by fH. Then 0 -> AH -> BH ^ C
is our desired exact sequence provided / # is right X-determined. Suppose
t:Z -> C is such that ImHom A ( I , t ) c if. Then by Lemma 3.7(c) we
have that Imt a CH- Hence t factors through fH and we are done. •

As an immediate consequence of this result we have the following.

Corollary 3.8 Let C be a A-module and H any T-submodule of
HomA(X, C). Then the submodule CH, which is completely determined by
H, is the image of any morphism f:B^>C such that Hf = H. •

We summarize our results in the following classification theorem.

Theorem 3.9 Let X and C be A-modules and let SubHoniA(X, C) be the
set of T-submodules of HoniA(X, C).

(a) Then the map mod A/C —> Sub HOUIACX', C) given by f' i—• Hf induces
a bijection between the isomorphism classes of f which are the right
minimal morphisms determined by the module X and Sub HoniApC C).

(b) For f in modA/C we have that I m / = CHf and Ker / = DTr U(f)
where U(f) is the cover of the bottom of f.

(c) Homm o d A /C( / i , /2) is not empty if and only if Hfl cz Hfl. •

As an application of this result we have the following.

Corollary 3.10 Let A be an arbitrary A-module with no nonzero injective
summands.

(a) Then the right minimal morphisms f:B->C with Ker / in add A are
precisely the right minimal morphisms in modA/C which are right
determined by X = Tr DA ]} A.

(b) The isomorphism classes of right minimal morphisms in modA/C
with kernel in add A are classified by SubHomA(X, C), the set of
T-submodules o/HoniA(X, C) by means of the bijection given by f *->
Hf.

(c) HommodA/c(/i Ji) is not empty if and only if Hh c Hh. •

Note that Theorem 3.6 can be viewed as a generalization of the exis-
tence theorem for minimal right almost split morphisms. For let C be
an indecomposable A-module. Let X = C and let H = radEndA(C) cz
HoniA(C,C). Then the morphisms f:B^>C with ImHomA(CJ) c: H
are those which are not split epimorphisms, and the morphism
/H'-BH —• C is the minimal right almost split morphism. In the more
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general situation we make a different restriction on the morphisms we
consider, namely for given X and H a HomA(X, C) we consider the
morphisms f:B—>C with ImHomA(I , / ) cz H. Then Theorem 3.6 says
that we have a similar finiteness condition to what is expressed through
the existence of minimal right almost split morphisms.

4 Rigid exact sequences

In this section we use the classification of morphisms to investigate when
exact sequences are rigid. We have already seen in V Proposition 2.3 that
almost split sequences and split sequences are rigid. It is also clear that

/ g
an exact sequence 0—>y4—•£—•€—•() is rigid if either / : A —• B is an
injective envelope or g: B —• C is a projective cover. However, in general
exact sequences are not rigid (see Exercise 1).

Our discussion of when exact sequences are rigid is based on the
following criteria for when exact sequences are isomorphic.

/ gP r o p o s i t i o n 4 . 1 L e t 0 — > , 4 — • £ — > C — • O f t e a w exact sequence w i t h g
f g'

right minimal and let X = TrDA An exact sequence 0 —• A1 —• B' —>

C - • 0 with A ~ Af and C ~ C is isomorphic to 0 -> A -4 B -^
C —• 0 if and only if there is an isomorphism t:C —> C such that the
induced isomorphism HoniApC t):HomA(X, C) —• Hom\(X,Cf) has the
property that Kom\(X, t)(Hg) = Hg>, where Hg = ImHoniA(X,g) and
Hg,=ImIlomA(X,g').

Proof Suppose t: C —> C is an isomorphism such that HoniA(X, t)(Hg) =
Hg>. Since both g and gf are epimorphisms with kernels isomorphic to
DTrX, it follows from Corollary 1.4 that they are determined by X.
Since HomA(X, t)(Hg) = Hg> and HomA(X, t~l){Hgf) = Hg there is a
commutative exact diagram

0 —> A -U B -?-> C —> 0

0 —» A' - ^ B' -i-» C —* 0

I I- I -
0 —> A - ^ B - ^ C —• 0.

But then vw.B —> B is an automorphism because g is right minimal.
Hence w is a monomorphism and therefore u is also a monomorphism.
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But then u:A —> A! is an isomorphism since A ~ A'. Hence w:B —• Br

is an isomorphism. This shows that the exact sequences 0 -» A —• B —•
C -• 0 and 0 -• 4 ' - • £' -• C -• 0 are isomorphic.

The proof in the other direction is trivial. •

Using this result it is not difficult to prove the following.

Corollary 4.2 Let X be a A-module and g:B —> C an epimorphism with
kernel DTrX. Assume that the T-submodule Hg = ImHomA(X,g) of
HomA(X, C) either is contained in or contains all T-submodules M of
HomA(X, C) with 0>(X, C) c M. Then the following are equivalent for

f g'an exact sequence e:0 —• DTrX —• Bf —• C -> 0.

(i) e is isomorphic to 0 -> DTrX -^ B ^ C -+ 0.
(ii) £ - £ ' .
(hi) /K(HomA(X,B)) = lR(HomA(X,Bf)).

Proof (i) => (ii) and (ii) => (iii) are trivial. In order to prove that
(iii) => (i) observe that /R(HomA(X,J5)) = lR(UomA(X,Bf)) implies that
lR(Hg>) = / R ( ImHom(X,g / ) ) = lR(Hg). Since 0>{X9C) <= Hg> we have

Hg = Hg', and the result follows from Proposition 4.1. •

/ s
Corollary 4.3 Let 0—>^4—•£—»C—•Ofrearc exact sequence with g right

minimal and let X = TrDA Suppose Hg cz HomA(X, C) has the property
f g'

that if 0 —> A —> Bf —>• C —• 0 is exact, then Hg> either contains or is

f gcontained in Hg. Then 0-^A—>B-^>C-^0isa rigid exact sequence. •

As an example of how to apply Corollary 4.3 we give the following
result.

Proposition 4.4 Let X and C be nonprojective A-modules. Let 0 —> A —>
B —• C —> 0 be the uniquely determined exact sequence with g a right

minimal morphism determined by X where Hg = ^(X, C). Then 0 •—• A —>
g

5 —• C —> 0 is a rigid exact sequence.
f g'Proof In Lemma 3.5 we showed that if 0 —• A —> Br —• C -> 0 is any

exact sequence, then # g =) < (̂X, C) = /fg and so 0 -* ^ >̂ B -^ C -> 0
is rigid by Corollary 4.3. •
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The hypothesis of Corollary 4.3 suggests introducing the following
notion.

Let M be a A-module. A submodule M' of M is said to be a waist of
M if Mf is a submodule of M with the property that a submodule M"
of M either contains M' or is contained in Mf. A submodule M' of M is
called a proper waist if 0 ^ Mf ^= M and M' is a waist of M.

Our reason for introducing the notion of a waist of a module is
apparent from the following.

/ gProposition 4.5 Let 0-*A^>B-^C-+0bean exact sequence with g

right minimal and let X = Tr DA. Then O^A^B^C^Ois rigid if
Hg is a waist of the EndA(X)°P-module HomA(X, C).

Proof This is a trivial consequence of the definition of a waist of a
module and Corollary 4.3. •

Before illustrating how Proposition 4.5 can be used to give more
examples of exact sequences which are rigid, it is useful to discuss some
elementary properties and examples of waists of modules.

As an immediate consequence of the definition of a waist we have the
following.

Proposition 4.6 Let Mr be a submodule of the A-module M.

(a) M' is a waist of M if and only if Am ID Mf for all elements m of M
not in Mr.

(b) Suppose Mf is a proper waist of M. Then M is indecomposable.

Proof (a) It is clear that if M' is a waist of M, then Am contains Mf

if m is not in Mr. Suppose Am 3 Mr if m is not in M'. Let M" be a
submodule of M. If every m in M" is in M', then M" a Mr. If there is
an m in M" not in M', then M" =» Am => Mr. Hence Mr is a waist of M.

(b) Suppose M = Mi JJ M2 and that M' is a proper waist of M. Then
M' is not contained in both M\ and M2 and does not contain both M\
and M2. Hence one Mt is contained in Mr and the other one contains
M'. This is a contradiction unless one of them is zero and therefore M
is indecomposable. •

We now give some examples of waists of modules.
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Proposition 4.7

(a) A nonzero A-module M is uniserial if and only if every submodule of
M is a waist of M.

f g

(b) Suppose 0 —> A —> B —> C —• 0 is an exact sequence with f\A—>B
an irreducible morphism. Let X be a A-module. Then ImHoniA(X,g)
is a waist of the EndA(X)0P-module HomA(X, C).

Proof (a) This is left as an exercise.
(b) Let h be in YLom\(X,C). Since / is irreducible we know by

V Proposition 5.6 that either h factors through g, in which case h is in
), or g factors through ft, in which case ImHoniApCg) cz

Hence we have that ImHoniApCg) is a waist of
HoniA(X, C) by Proposition 4.6. •

We now apply these remarks to obtain more examples of rigid exact
sequences.

f g
Proposition 4.8 Suppose A is a Nakayama algebra. If 0 —• A —> B —•
C —> 0 is an exact sequence of A-modules with A and C indecomposable
modules, then it is a rigid exact sequence.

Proof If A is injective, the sequence splits and is therefore rigid. There-
fore we may assume that A is not injective. Since A is indecompos-
able, we have that X = TrD^l is indecomposable. Since X and C are
indecomposable and A is a Nakayama algebra, we know by VI Corol-
lary 2.4 that Hom\(X,C) is a uniserial module over the Nakayama
algebra EndApOop. Therefore, by Proposition 4.7 we have that Hg is
a waist of HomApC C) since it is a submodule of HoniApC C). Hence

/ g
0 -> A -+ B —>C—•Oisa r igid exac t s equence b y C o r o l l a r y 4.3. •

As our final example of rigid exact sequences we have the following
immediate consequence of Proposition 4.7.

/ g
C o r o l l a r y 4 . 9 A n e x a c t s e q u e n c e 0 — > ^ 4 — • £ — > C — • O z s rigid if f is
irreducible.

Proof Let X = TrDA. Then by Proposition 4.7, we know that

ImHom A ( I ,g) is a waist of HomA(X,C). Therefore 0 - • A ^ B -^
C —• 0 is a rigid exact sequence. •
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5 Indecomposable middle terms

In V Section 6 a method was given for constructing almost split sequences
with indecomposable middle term that was sufficiently general to show
that all nonsemisimple artin algebras have such almost split sequences.
However, it is easy to give examples of almost split sequences with
indecomposable middle term which cannot be obtained by the method
given in V Section 6. Therefore it is natural to try to find other conditions
on an indecomposable module C which guarantee that a(C) = 1, i.e. in
the almost split sequence 0—» D Tr C —• £ —• C —• 0 the module E is
indecomposable. This section is devoted to a discussion of this problem.
Using the well known properties of pushouts and their connection with
exact sequences stated in I Proposition 5.6 and Corollary 5.7 we obtain
the following result about the indecomposable modules C with a(C) = 1.

Proposition 5.1 Let 0^>DTrC^>E->C->0bean almost split sequence
with E an indecomposable A-module. Then the following are equivalent.

(a) E is not protective.

(b) There is an exact sequence 0^>DTrE-+B-+C-+0 with f an
irreducible but not left almost split morphism.

(c) There is an exact sequence 0—>A—>B—>C—>0 with f an irre-

ducible but not left almost split morphism, with A or B indecomposable.

Proof (a) => (b) Since E is indecomposable and not projective, there
if) is' g)

is an almost split sequence 0 -> DTrE - • B\jDTrC -+ £ -» 0 with
B ^ 0. It then follows from I Corollary 5.7 that we have the exact
commutative pushout diagram

0 -> DTrE -4 B A Coker/ -> 0
I - / ' 1 g' \\ h>

0 -> D T r C i E -> C -> 0.

The exact sequence 0 — > D T r £ — • £ — • € — • ( ) has our desired property

since / is irreducible but not left almost split.

(b) => (c) This is trivial.

(c) => (a) Assume 0—>^4—•£—•€"—•Oisan exact sequence with /

irreducible but not left almost split and where A or B is indecomposable.

Using that 0 — • D T r C — • £ — • ( ! ? — • ( ) is an almost split sequence we
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obtain the following commutative diagram.

0 -> A ^ f l - > C - » 0

0 - • DTrC £ E - • C -> 0

Assume that £ is projective. We then have the split exact sequence

0 -* A -^> B]jDTrC '—> JE —> 0. Since 4̂ or £ is indecomposable
and / is irreducible, it follows that / e radA^4,i?). But (f) is a split
monomorphism and therefore g is a split monomorphism. Hence g is
an isomorphism and therefore h is an isomorphism. But then / is a left
almost split morphism which gives the desired contradiction. Hence E is
not projective. •

For the sake of brevity we say that a monomorphism f:A -» B is
properly irreducible if A is indecomposable and / is irreducible but not
left almost split. While such morphisms should really be called left prop-
erly irreducible, we use the shorter terminology properly irreducible since
we do not use the dual notion of right properly irreducible morphisms
in this book. In view of Proposition 5.1 it is natural to ask if for an
indecomposable module C which is the cokernel of a properly irreducible
morphism we have cc(C) = 1. The following example shows that this is
not always the case when C is a simple module.

Example Let k[X, Y] be a polynomial ring over a field k and let A =
k[X,Y]/(X2,Y2). Denoting the images of X and Y in A by x and
y respectively, it is not difficult to see that for the ideal m = (x,y)
we have A/m ~ k and m3 = 0 . So A is a local fc-algebra of k-
dimension 4 with m = radA. It is also not difficult to see that socA =
(xy) = m2. Therefore A is a selfinjective algebra since it is a local
commutative artin algebra with simple socle (see IV Section 3) and hence
a symmetric algebra since A is commutative. Now by V Proposition 5.5

we know that (*) 0 —> m —• (m/socA)]JA A A/socA —• 0 is an
almost split sequence where h: A —• A/ soc A is the natural epimorphism
and 7*:m/socA —• A/soc A is the natural inclusion. Since m2 = soc A
we have that m/socA ~ (A/m) ]J(A/m). Since (*) is an almost split
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sequence with m not simple we obtain the exact commutative diagram

0

0

0

0
4

-> n2(A/nt)

4
-> 2A

| / o

—• m

1
0

0
4

-y 2nt

4
-> 2AUA

4 go
-* (m/ soc nt) I IA

4
0

0
4

—> A/m

i
-> A

—• A / soc A

1
0

- • 0

- • 0

-> 0

where /o, go and fto are projective covers. Therefore the exact se-
quence 0 -> Q2(A/m) —• 2m —• A/m —• 0 is an almost split sequence by
X Section 1. Hence we have a(A/m) = 2. But in the exact sequence
0 —• m —> A —• A/m —• 0, the morphism t is properly irreducible. There-
fore the simple A-module A/m has a(A/m) = 2 > 1 even though it is the
cokernel of a properly irreducible morphism. Of course this also gives
an example of a simple module C with a(C) > 1.

Therefore the following is the best general theorem we can hope for
concerning when indecomposable modules C which are cokernels of
properly irreducible morphisms have the property a(C) = 1.

Theorem 5.2 Let C be a nonsimple indecomposable module which is the
cokernel of a properly irreducible morphism. Then we have that a(C) = 1.

The proof of this theorem occupies most of the rest of this section. We
start with the following.

/ gProposition 5.3 Let rj: 0 -> A —• B —• C -> 0 be exact with f irreducible.
Then EndA(^)^y c Ext\(C,^) is an EndA(A)-waist ofExt{

A{C,A).

Proof If End\(A)rj = Ext^C,^) , there is nothing to prove. If

EndA(A)rj ^ Extl
A(C,A), let 3:0 - • A U B' -^ C - • 0 be an element

of Ext\(C,^4). Since / is an irreducible monomorphism, it follows from
V Proposition 5.6 that there is either some h:Bf —> B such that g' = gh or
an hr: B -» B' such that g = grh'. If such an h exists, h induces a morphism
i.A —• A such that rj = id, and hence rj e End\(A)S. If such an hr exists,
h! induces a morphism j:A -> A such that 5 — jrj, hence 5 e End\(A)rj.
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Therefore either EndA(A)d c EndA(A)rj or EndA(A)n cz EndA(^)<5. It
then follows by Proposition 4.6 that End\(A)rj is an EndA(^4)-waist of
Ext{(C9A). D

From this we deduce the following result.

Corollary 5.4 Let A be an indecomposable A-module and rj:O —> A —>

B —> C —> 0 an exact sequence with f irreducible. Then End\(A)n is an

EndA(A)-EndA(C)°V-submodule ofEx\\{C,A) with rEndA(^)^ an End A (4) -

End A(C)op-submodule which is the unique maximal EndA(A)-submodule of

EndA(A)rj.

Proof Generally, if M is a F-F'-bimodule and Mf is a characteristic F-
submodule of M, i.e. Mf is mapped into itself by all F-homomorphisms
from M to M, then M' is a F-F'-subbimodule of M. Clearly, any
EndA(^4)-waist X of Extl

A(C9A) is a characteristic submodule and so
is also the EndA(^4)-radical of X. Hence End\(A)n and TEndA(A)V are
both EndA(^)-EndA(C)op-bimodules. Further, since A is indecompos-
able, EndA(/4)f7 has XEndA(A)W as a unique maximal EndA(^4)-submodule.

•

We next explain how we identify DExtj^C,^) and HomA(^,DTrC)
as EndA(^4)op-EndA(C)-bimodules. Let C be any A-module and let

P2 —> P\ -^ PQ -^ C —• 0 be the start of a minimal projective resolution

of C. We then obtain the sequence of Aop-modules Po* -^ P{ -* P2* where
Coker/j = TrC and the morphism f\ factors through TrC. Denoting
also by f\ the induced morphism from TrC to P2*

 w e observe that
fl: Tr C - • P2* has the property that for any Aop-morphism g: Tr C -> Q
with Q projective, there exists an h\P{ -> Q with g = hf%. Dualizing this
we obtain that the A-morphism Dfl'.DP^ —• DTrC has the property
that for any A-morphism g:I —• DTrC with / injective, there exists an
h:I -+DP; with g = (Df*2)h

From this we deduce that ImHomA(A,Df*2) = / ( i , D T r C ) for all
A in mod A. Hence we have the exact sequence HomA (A, DP2) —•
HomA(^,DTrC) -> HomA(^,DTrC) -+ 0 where the last morphism
is an EndA04)op-EndA(£>TrC)-bimodule morphism. But we also have
the complex HomA(^,DP2*) - • H o m A ^ D P ; ) -+ HomA(^,DPo). How-
ever for each projective A-module Q we have natural isomorphisms
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HomA(A,DQ*) ^ D(Q* <g> A) ~ DHomA(2,^4) giving rise to the commut-
ing diagram.

{ADC) (ADf:)
UomA(A,DP*)

DUomA(PuA)

where all maps are EndA(^4)op-morphisms. By definition
KerD(/i,^)/ImD(/2,^4) ~ DExtA(C,yl) which is then isomorphic to
Ker(A,Dfl)/ Im(^4,D/2) as an EndA04)op-module. But we have seen above
that Ker(A,Dfl) = HomA(v4,DTrC) and Im(A,Df*2) = J(A,DTvC) so
DExtj^C,^) ~ HomA(^4,I>TrC) as EndA(^4)op-modules. Also identi-
fying EndA(C) with EndA(DTrC) it is not too hard to verify that the
isomorphism DExt\{C,A) ~ HomA(A,Z)TrC) is an EndA(v4)op-EndA(C)-
bimodule isomorphism as well.

As before let A be an indecomposable A-module and r\: 0 —• A —• B —•
C —»• 0 an exact sequence with / irreducible. Consider the following exact
commutative diagram of EndA(v4)-modules and EndA(^4)-morphisms with
T a simple EndA(^4)-module.

0
i

0 T

1 i
-> Ext\(C9A) -+ X -+ 0

II I
-> Ext\(C,A) --> Y -> 0

I I
T 0
I
0

Dualizing, using that EndA(A)t] is a waist of Extj^C,^) we get that DX
and DY are the only EndA(A)op-submodules of DExt\(C,A) of length
IR(X) and IR(Y) over R respectively, with DY a maximal EndA(^4)op-
submodule of DX. Therefore DX is an EndA(^)op-waist of DExtj^C,^)
with a unique maximal submodule. Using the EndA(^4)op-isomorphism

C,^) ~ HomA(^,DTrC) we have that UomA(A,DTrC) also has
only one EndA(^4)op-submodule M of length IR(X) and M has a unique
maximal EndA(v4)op-submodule M'.
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We now consider the natural ^-bilinear map

x Ext\(C,A) -> Exti(C,DTrC)

given by pushout diagrams, i.e. if (5:0 —• 4̂ —• £/ —• C —»0 is an element
of Extj^C,^), and h is an element of HoniA(v4, D Tr C), then (f>(h9 8) = 8'
where 8' is obtained from the pushout diagram

5:

3':

0 ->

0 - •

A -*

DTrC ->

U

i
U'

-» c
II

-> c

-*• 0

-H- 0 .

Clearly <5' depends only on the image h of h in HomA(^4,I> Tr C).
Using properties of pushouts it is easy to see that <j> satisfies the

following properties: (j)(hjd) = (j)(hi,d) and (f)(h,Sj) = cj)(h,d)j and
4>(s\8) = scj)(h,d) for all h e H o m A ( ^ ^ T r C ) , d G Ext^iCA), i e
EndA(^4), £ G EndA(C) and s G End\(DTvC). Hence we obtain an
EndA(DTrC)-EndA(C)op-bimodule morphism

A, DTTC) ®EndA(A) Exti(C, A) -> Ext\(C, D Tr C).

Using the fact that there is an almost split sequence 6f: 0 —• D Tr C -^
E -> C ^ 0 we obtain that for each O ^ G Ext\(C,^) there exists
some h £ HoniA(v4, D Tr C) with </>(/*, ^) ^ 0. From this it follows that the
adjoint morphism

given by (j)(8)(h) = <j){h,d) is an EndA(C)op-monomorphism. Since
E x t ^ C ^ T r C ) ^ DEndA(^TrC) as EndA(^TrC)-modules, we have
by IX Lemma 1.4 that the functor Hom1^A(DTrC)( ,Ext^(C,Z)TrC))
preserves lengths over R and therefore 0 is an isomorphism. Hence
(f> induces a duality between the EndA(C)op-module Extj^C,^) and the
EndA(C)-module HomA(^, D Tr C) when EndA(C) and EndA(^ Tr C) are
identified. It is easy to see that the orthogonals (En&\(A)n)L and

of EndA (^h and xEnd{A)ri respectively in HomA(^?I>TrC)
with respect to (f) are EndA(^4)op-submodules of HomA(^4,I>TrC). But

x 8 e E n d A ( ^ } and ^
8 G tEndA(^)^} so they are also EndA(£>TrC)-submodules

since they are intersections of kernels of EndA(D Tr C)-morphisms. Now
from the duality we get that (xEndA(A)^i)1' and X have the same R-
length and (EndA^)^/)"1 and Y have the same i^-length. Using that
HomA(v4,DTrC) has only one EndA(^4)op-submodule of each of these
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lengths, namely M and Mf, we get that (xEndA(A)^l)± = M and
(EndAiA)^)1- = Mf. Since M' is the only maximal EndA(^4)op-submodule
of M we have that M is cyclic, and using that it is a waist we
get that any generator a for (xEndA(A)n)± has the property that for all
~J5 G HomA04,DTrC) with /J £ (EndA^)?/)-1 there is some a' G EndA(^4)
with /?a' = a. Further, a ^ (EndA^)^)-1 implies that there is some
a" G EndA(v4) with 0(aa",>/) ^ 0. But then aa" ^ ( E n d A ^ ) - 1 . Since

,77) ^ 0 there is some p'.DTrC -> DTrC with 0(j?'aa",>7) almost
split.

Letting a be the element /Taa" we collect our findings in the following
proposition.

/ gProposition 5.5 Let rj:O —• A —• B —> C ^> Obe an exact sequence with f a
properly irreducible morphism and let (j): HomA(^4, D Tr C) x Extj^C, A) —>
Ext^CjDTrC) foe t/ie natural bilinear map. Then there exists some a G
HomA(^4,I>TrC) with the following properties.

(a) (t>(a,rj) is almost split.
(b) For each p e HomA(A, D Tr C) with (t>0,rj) ± 0 there is some a' G

ta7 = a. •

In order to prove the main theorem of this section we need the
following two lemmas.

/ g
Lemma 5.6 Let n:0 —> A —• B —• C —• 0 foe exact witft / a properly

irreducible morphism. Then gh is not irreducible for any module Br and
morphism h:Bf —• B.

Proof Let rj be as above and let 0 —• A —> F -> Tr ZX4 —> 0 be an almost
split sequence. Then there exist morphisms a and c making the following
diagram commute.

0 - • A -> F A TrD^l - • 0

II | « 1 c
0 ^ A ^ B ^ C -> 0

Since / is irreducible, a is a split epimorphism. Let / i : 5 ' - > B b e a mor-
phism and assume gh\Bf -> C is irreducible and let ar be a map from B
to F such that ad is the identity on B. Then g/z = gaa'/z = cbdh. But
foa'/i is not a split monomorphism, so c is a split epimorphism. But then
a and c are isomorphisms and hence g is irreducible. Hence both / and
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f g
g are irreducible and therefore 0 - » , 4 — • £ — > C - » 0 i s a n almost split

sequence by V Proposition 5.9. But then / is not a properly irreducible

morphism. This gives the desired contradiction. •

Using Lemma 5.6 we obtain the following generalization of V Corol-

lary 5.8.

/ g
Lemma 5.7 Let n:0 —> A —> B ^> C ^> 0 be an exact sequence with f a

properly irreducible morphism. Let g!:Br —• C be irreducible. Then there

exists h:B —* B' with g = g'h. In particular gf is an epimorphism.

Proof This follows easily from the previous lemma. •

We are now ready to prove our promised result.

/ g
Theorem 5.8 Let n:0 —• A —• B —> C —> 0 be an exact sequence with f a

properly irreducible morphism and let d: 0 —> D Tr C —> E —> C —> 0 be an

almost split sequence. If E is decomposable then C is simple.

f g
Proof Let rj:O —> A —• B —• C —> 0 be exact with / a properly
irreducible morphism and let a G HoniA04,£>TrC) be fixed such that
a € HoniA(;4,£>TrC) satisfies conditions (a) and (b) in Proposition 5.5.
Assume that 0 - > D T r C - > £ - > C - » 0 i s a n almost split sequence
with E decomposable. Let E = E\ IJE2 with Et ^ 0 for i = 1,2 and

consider the sequence 0 —• D Tr C -+ E\ ]J £2 —* C —• 0. According to
Lemma 5.7, the morphisms p and q are both epimorphisms and there
exist morphisms h\:B —> E\ and h2'.B —• E2 with g = ph\, and g = qhi.
Hence there exists fi'.A —• DTrC with if\ = hifi and jf\ = 0 and
there exists f2'-A —• DTrC with if2 = 0 and 7/2 = fe/- Therefore
0 ( / P ^ / ) ^ 0 for i = 1,2. So by Proposition 5.5(b) there exist a\ and
a2 in EndA(^4)op with a\f\ = H and a2J2 = ^- But then ia = 0 and
7a = 0 and hence we get that Q)a G <f(A,Ei U^2)» the subgroup of
HomA(^4,£i I J i ^ ) consisting of morphisms factoring through injective
modules. Hence there is a morphism \p: B —• £1 JJ £2 factoring through
an injective module making the following diagram commute.

r\\ 0 - • ^ -4 £ - ^ C - > 0

S
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XI.5 Indecomposable middle terms 397

Now the pushout of n by a is an almost split sequence. Therefore \p
is an isomorphism. Suppose C is not simple and let yrsocC —• C be
the inclusion. Then there exists /?:socC —• B with y = g/J. Hence
xpy = (p,q)\p[l where xp factors through an injective module. This gives
the desired contradiction. •

The following restatement of Theorem 5.2 follows easily from Theo-
rem 5.8.

/ gTheorem 5.9 Let 0^>A-+B^>C-+0bean exact sequence with A
indecomposable, f a properly irreducible morphism and C not simple. Then
in the almost split sequence 0^>DTrC-+E^>C^0the middle term
E is indecomposable. •

Theorem 5.9 does not answer the question of under what circumstances
a(C) = 1 when C is a simple nonprojective module. We have already
given an example of a simple nonprojective module C where a(C) > 1

even though there is an exact sequence 0 — > A ^ > B - + C ^ > 0 with / a
properly irreducible morphism. We end this discussion with an example
of a nonprojective simple module C which is the cokernel of a properly
irreducible monomorphism with the property a(C) = 1. Hence more
is involved in determining when a nonprojective simple module C has
the property a(C) = 1 than just whether or not C is the cokernel of a
properly irreducible monomorphism. The example we now give is closely
related to our previous example.

Example Let k[X, Y] be the polynomial ring in two commuting variables
X and Y over a field k. Define A = k[X, Y]/(X3, Y3) and denote by
f(X, Y) the image in A of a polynomial f(X, Y) in k[X, Y] and write
X = x and Y — y. Since (X, Y) is a maximal ideal in k[X, Y] and
(X, Y)5 a (X3, 7 3 ) it follows that A is a finite dimensional local fc-algebra
with unique maximal ideal m = (x, y) and that A/m = k. It is also not
difficult to check that socA is simple with generator (xy)2. Therefore
since A is commutative, it is a symmetric fc-algebra by IV Section 3.
Hence m is an indecomposable A-module. Then the exact sequence

0—>m—>A—•&—•() , where / is the inclusion morphism, has the
property that / is an irreducible morphism without being an almost split
sequence. So the simple A-module fc is the cokernel of the properly
irreducible monomorphism / . We now show that a(fc) = 1, giving our
desired example.
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Since A is symmetric we have by V Proposition 5.5 the almost split

sequence 0 —• m —• A ]J(m/soc A) -4 A/soc A —> 0 where g:A —•
A/soc A is the natural epimorphism and /i:m/socA —• A/soc A is the
inclusion morphism. We have the commutative exact diagram

0
4

Q3(A/socA) - •

4
P - >

4
Q2(A/socA) ->

1
0

0
1

£i(m/ soc A)

4
AIIP

4
AII (m/ soc A)

4
0

0
4

—• s o c A

4
- • A

4
-> A/ soc A

4
0

where P —• Q2(A/ soc A) is a projective cover. Then 0 —> Q3(A/ soc A) —•
Q(m/socA) —• soc A —• 0 is an almost split sequence by X Section 1.
Since soc A is isomorphic to the unique simple A-module fc, we have
that a(fc) = 1 if we show that Q(m/socA) is indecomposable. To show
that Q(m/ soc A) is indecomposable, it suffices to show that m/ soc A is
indecomposable since A is a symmetric algebra.

Since m/ socA = (X, Y)/{X\(XY)2, Y3) and (X, 7 ) 3 D ( I 3 , ( I 7 ) 2 , Y3)
it follows that (X, Y)2(X, Y)/(X\(XY)\ Y3) - (X, Y)3/(X3,(XY)2, Y3)
and so (m/socA)/m2(m/socA) - (X, Y)/(X, Y)3. Therefore m/socA
is an indecomposable A-module if (X, Y)/(X, Y)3 is an indecomposable
A-module. Now (X, Y)/(X, Y)3 is a F-module where F is the factor ring
k[X, Y]/(X, Y)2 of A. So it suffices to show that (X, Y)/(X, Y)3 = A is
an indecomposable F-module. It is not difficult to see that annp(z) = 0
for each z in A — m'A where m' is the maximal ideal of F. Therefore
Yz ~ F for all z in A — m'A.

Suppose now that A = B\\C with £ ^ 0 and C ^ 0. Then there
are b and c in A — xn'A such that Tb ^ B and Tc ~ C, so 4̂ ~ 2F.
But dim^^ = 5 while dim/c(2F) = 6. This contradiction shows that A
is indecomposable, finishing the proof that the example has the desired
properties.
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Exercises

1. Let A be the quiver l 2 3

let k be a field and consider the simple feA-module S4 corresponding to
the vertex 4.

(a) Prove that TrDS* corresponds to the representation

and that (TrD)254 corresponds to the representation

(b) Show that there are exact sequences 0-• 54 -• Tr DS4 -> (Tr D)2S4 ->0
which are not rigid.

(c) Find three nonzero rigid exact sequences in j 2

2. Let fe be a field and A = k[X]/(X3). Prove that there are nonrigid
exact sequences in Extjv((A/r)]J(A/r2),(A/r)]J(A/r2)).

3. Let A be an artin algebra and let X be in mod A. For each A-module
A denote by TX(A) the submodule of A generated by all images of all
morphisms in

(a) Prove that for each morphism g in Hom\(A, B) we have g(zx(A)) cz
Tx(B) and deduce that %x induces a functor from mod A to mod A
which is a subfunctor of the identity functor.

(b) Show that TX(A) is a two-sided ideal in A.
(c) Let f:B —• C be a morphism in mod A such that Hom\(X,f) = 0.

Prove that Im/ c {c e C\TX(A)C = 0}.
(d) Let / : B —• C be a morphism in mod A which is right determined

by X. Prove that Im/ 3 {c e C\TX(A)C = 0}.
(e) Let / : B -*• C be a morphism in mod A which is right determined by

X and such that Uom(XJ) = 0. Prove that Im/ = {c e C\TX(A)C =
0}.
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400 Modules determining morphisms

4. Assume throughout this exercise that a is a left ideal of the artin
K-algebra A and that F = EndA(A/a)op. Recall from I Exercise 12 that
the idealizer of a in A is the subring Z = {X G A|cd <= a} of A and that
0 :Z -» T, given by (j){y){X + a) = ly + a for y G Z and A + a G A/a,
is a surjective ring morphism. We consider F-modules as Z-modules by
means of the ring morphism cj) and A-modules as F-modules through the
inclusion F a A.

(a) Prove that Z is an artin #-subalgebra of A and that 0 is an artin
K-algebra morphism.

(b) For C in mod A let aC = {c G C\ac = 0}. Prove that aC is a
Z-submodule of C.

(c) For C in mod A we have that Hom\(A/a,C) is a F-module and
hence a Z-module. Prove that the map fi:Hom\(A/a,C) —> C given
by jg(/) = / ( I + a) for all / G HoniA(A/a, C) is a monomorphism of
F-modules with image aC.

(d) Let / : B - > C b e a morphism in mod A. Prove that f(aB) c aC is a
F-submodule of C.

(e) Let / : B —• C be a morphism in mod A. Prove that the following are
equivalent.

(i) / is right determined by A/a.

(ii) Each morphism g:Y -> C with g(aY) a f(aB) factors through

/ .

(f) Let C be in mod A and let J f be the set of F-submodules of aC. Prove
that the map tp:modA/C —• ffl given by \p(f) = f(aB) for each
f:B —> C in modA/C induces a bijection between the isomorphism
classes of right (A/a)-determined morphisms in modA/C and Jf.

(g) Let b be the right ideal aA of A and let / : B —• C be a morphism
in mod A which is right determined by A/a. Prove that I m / =
{c G C\bc cz f(aB)}.

5. Let A be a local artin ring with maximal ideal m and denote A/m by
k.

(a) Prove that the following are equivalent for an indecomposable A-
module Y.

(i) Extjv(fc, Y) - k as a fc°P-module.

(ii) There exists a proper left ideal a in A with Tr DY ^ A/a.
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(b) Let a be a proper left ideal of A and let 0 -+ D Tr(A/a) -^ B -4 k -» 0
be a nonsplit exact sequence. Show that / is a right minimal
morphism determined by A/a with HoniA(A/a,/) = 0.

(c) Let g: A/a —» k be the natural morphism. Prove that in the pullback
diagram

0 -* Z)Tr(AA*) -> £ - • A/a -* 0

II i * I *
0 -> TrD(A/a) - • 5 - • fe - • 0

the sequence 0 —• D Tr(A/a) —> £ —• A/a —> 0 is almost split.
(d) Suppose a is a two-sided ideal contained in the right socle of A, and

let 0 —> nD Tr(A/a) —> A —• C be an exact sequence with h a right
minimal morphism determined by A/a and with HoniA(A/a, h) = 0.
Show that Imh — socC, that n = /(socC) and that the induced
exact sequence 0 —• nD Tr(A/a) —> A —• Im h —• 0 is isomorphic to

0 -> nD Tr(A/a) ^> rc£ ^ nk -> 0 where 0 - • D Tr(A/a) -^ J5 -+
fc —>• 0 is the sequence given in (b).

6. Let R be the commutative polynomial ring k[X\9...9Xn] in n variables
over the field k. Let mo be the maximal ideal of R generated by
Xi9X2,...,Xn9 and let a be an ideal such that there is some q > 2 such
that ml a a c ntQ. Let A = R/a and let h:R —• A be the natural ring
morphism such that h(r) — r + a.

(a) Show that A is a commutative local artin ring with maximal ideal
m = /i(nto) and with A/m ^ k.

(b) Denote h(Xt) by x* for i = l , . . . ,n. Show that the kernel of the
morphism / : A —• nA given by / ( I ) = (xi, . . . ,xn) is socA, that
Coker/ ~ TrD(fe) and that the induced exact sequence (*) 0 —> fc —>
nA/(m(xi,...,xn)) —• Coker/ —• 0 is an almost split sequence.

(c) Let t be the number of summands in a decomposition of
nA/(m(xi,...,xn)) into a sum of indecomposable modules. Show
that t = a(A/m), where a is as defined in V Section 6.

(d) Let m = JJ*=1 nt; be a decomposition of m into a sum of indecom-
posable A-modules. Show that s < t.

(e) Deduce from (d) that if a(fe) = 1 then m is indecomposable and give
an example when m is indecomposable and a(fc) > 2.

(f) Show that if a c m^ then a(/c) = 1.
(g) Determine precise conditions for a(fc) = 1.
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7. Let A be an artin i^-algebra. Let M be in mod A. An i^-submodule N
of M is said to be of finite definition if there exists a A-homomorphism
/ : A —• X such that N = Im HoniA(/, M) where HoniA(A, M) is identified
with M. Prove that N a M is an i^-submodule of M of finite definition
if and only if N is an EndA(M)-submodule of M.

8. Let M be in mod A where A is an artin algebra. Prove that there
exists some X in mod A and an x in X such that for each A-module N
the following are equivalent.

(i) HomA(iV,M)=:0.
(ii) For each n in N there exists an / in HoniA(X, N) with f(x) = n.

9. Let A be a nonsemisimple artin algebra. Prove that there exists
a simple A-module S and either an irreducible morphism f:S—>B
with B indecomposable and a(Coker/) = 1 or an irreducible morphism
g:B -* S with B indecomposable and <x(DKerg) = 1.

The following set of exercises is devoted to investigating epimorphisms

B —• C which are not split epimorphisms but have the property that each
proper inclusion C -+ C factors through / . Such morphisms f.B^C
are called subsplit epimorphisms.

10. Suppose 0—»^4—•£—•€-»() is an exact sequence with / a subsplit
epimorphism. Show that the following statements hold.

(a) C is indecomposable.

B U C
(b) If g j fh commutes and h is not a split epimorphism, then

Bl

h is a subsplit epimorphism.
(c) If /o : Bo —> C is a right minimal version of / , then /o is also a

subsplit epimorphism.
(d) If A is indecomposable and 0 -» A —> E —• Tr DA —> 0 is an almost

split sequence, then there is a commutative exact diagram

0

0

— A
||

-» A
1

4
0

- • TTDA

1
-> c

4
0

-»• 0

- • 0
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In particular, there is an epimorphism Tr DA —• C.
(e) Let

0 - > A - > B x c U - ! + U - > 0

0 -* A -> 5 i> c -> 0

be a pullback diagram.

(i) Every morphism X —• (7 such that the composition g£:X —• C

is not an epimorphism factors through ft.
(ii) If ft is not a split epimorphism and g: U —> C is an essential

epimorphism, then ft is a subsplit epimorphism.

11. Show that the following statements are equivalent for an indecom-
posable, nonprojective module C over an artin algebra A.

(a) Every subsplit epimorphism / : B —> C is right almost split.
(b) If g: U —> C is an irreducible epimorphism with U an indecompos-

able module, then U is projective.

12. Suppose 0—> A —»£—>C—>0isa nonsplit exact sequence. Let
C be a submodule of C minimal with respect to the property that
the induced epimorphism f~l(C) —• C does not split. Show that the
following statements hold.

(a) The epimorphism f~l{C) —> C is a subsplit epimorphism.
Suppose further that A is an indecomposable module.

(b) If C has the property that every subsplit epimorphism t:U —• C
is right almost split, then the induced exact sequence 0 —• A —>
f~l{C) - • Cr - • 0 is almost split, so TrZX4 ^ C .

(c) If Tr ZM is not isomorphic to any proper submodule of C, then there
is an irreducible epimorphism V —• C with V an indecomposable
nonprojective A-module.

13. Let 0 - • Q(C) - > P - ^ C - > 0 b e a projective cover. Show that the
following statements are equivalent.

(a) C is almost projective, as defined in V Section 3.
(b) / : P —• C is a subsplit epimorphism.
(c) The inclusion Q(C) —• P is irreducible.
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14. Let 0 -+ A —> P —• C -» 0 be exact with P an indecomposable
projective module and A a xP. Then show that the following are
equivalent.

(a) The inclusion A —• xP is a split monomorphism.

(b) / is a subsplit epimorphism.

(c) C is almost projective.

(d) For each indecomposable summand A! of A, then there is an epi-
morphism TvDA —> C.

15. Suppose 0 -> Q(C) - • P ±> C -> 0 is exact where / : P -> C is
a projective cover of the almost projective module C. Show that the
following hold.

(a) A submodule C of C has the property that 0 - • C ' / rC -> C/rC is
exact if and only if there is a decomposition P = P ' \[P" such that
/ (P ' ) = C and the induced morphism Pf —• C is an isomorphism.

(b) If P = P ' l J P " , then the submodule C = f(Pf) of C has the
property that the induced morphism C/xC —• C/rC is a monomor-
phism. Hence the induced epimorphism Pr —> C is an isomorphism.
So if both P ' and P" are nonzero, then P ' n Q(C) = 0 = P" n Q(C).

(c) Let C" be a submodule of C such that 0 - • C/xC -> C/rC is exact.
If Pr is a submodule of P such that f\p>: P ' -^ C is a monomorphism
with image C , then the inclusion i: P' -> P is a split monomorphism.

(d) Suppose 0 —> C —> C —• C" —> 0 is an exact sequence such that
CIxC —> C/rC is a proper monomorphism. Then C" is almost pro-
jective. (Hint: First show using (c) that / is a subsplit epimorphism.)

(e) Show that if P1 is an indecomposable summand of P, then Q(C) is
isomorphic to a summand of xP'.

(f) Show that there is an epimorphism TrD(^4) —• C for each indecom-
posable summand A of Q(C).

(g) If E is any almost projective module, then l\(E) < max{/A(Tr2X4)|,4
indecomposable summand of r}.

16. Show for an artin algebra that the set of modules with proper waists
has bounded length.
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Notes

The notion of morphisms being determined by modules arose originally
in [Au5] in connection with subfunctors of a functor being determined
by an object in an abelian category. In [Au5] the basic facts about
morphisms being determined by modules were derived as consequences
of theorems about functors. The development given here is new. While
less conceptual than the functorial point of view, it has the advantage of
being more explicit and therefore hopefully more constructive.

The notion of the waist of a module was introduced in [AuGR]. The
original inspiration for this idea came from studying modules over the
Auslander algebra where nontrivial waists frequently appear.

Theorem 5.9 was first conjectured by Brenner and proved indepen-
dently by Brenner and Krause. The proof of this result given here is
a modified version of [Krai]. Exercise 6 is based on [Lu]. (See also
[Bren2]).
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Set notation

N
Q
R
C

X—Y

For a given
Mod A
f.l.(A)
mod A
ind A

mod,/ A

mod A
mod A
Ko(modA)
Ko(f.l.A)

./(A)

integers
{1,2,3,...}
{0,1,2,...}
rational numbers
real numbers
complex numbers
countably infinite cardinal
inclusion (not necessarily proper)
the elements in a set X which are not in a set Y

ring (artin algebra) A
category of (left) A-modules
category of left A-modules of finite length (any ring)
category of finitely generated A-modules (artin algebras)
category of a chosen set of representatives of nonisomor-
phic indecomposable finitely generated A-modules
subcategory of mod A consisting of modules without pro-
jective summands
subcategory of mod A consisting of modules without injec-
tive summands
category mod A modulo projectives
category mod A modulo injectives
Grothendieck group of mod A (modulo exact sequences)
Grothendieck group of/./.A
category of finitely generated projective A-modules
category of finitely generated injective A-modules
category of finitely generated preprojective A-modules for
a hereditary artin algebra A

406
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</(A) the category of finitely generated preinjective A-modules
for a hereditary artin algebra A

gl.dim A
T2(A)
r A = rad A
rl(A))
A°P

D: mod A —•
mod(A°P)
1:

For a given i
pdAv4
idA^

U
rad A
add ,4
dom.dim A
l(A)
lR(A) = (A)
Ql(A)
Tr(A)
nA
socA
ms(A)

T\(A)
A(A)

eA
A*
annA^4
EndA(^)

TA

global dimension of A
ring of 2 x 2 lower triangular matrices over A
radical of A (also written r)
Loewy length of A (index of nilpotency)
opposite ring of A

standard duality for artin algebras
identity element in rings (also identity element in groups
written multiplicatively)

Vmodule A (A artin /^-algebra)
projective dimension
injective dimension
the identity map from A to A
radical of A
category of summands of finite sums of copies of A
dominant dimension of A
length of A as a A-module
length of A as .R-module
ith syzygy module of A (QA = Q1A)
transpose of A
sum of n copies of A
socle of A
multiplicity of a simple module S in a composition series
of ,4
radical length of A
socle length of A
the functor Hom\(A, )
the Aop-module HomA(v4, A)
annihilator of A in A
endomorphism ring of A
EndA(v4)/radEndA(^4) (A indecomposable)

For given A-modules A and B (A artin /^-algebra)
radA( , ) radical of the category mod A
Irr(A,B) mdA(A,B)/v<id2

A(A,B)

A + B
m>0

submodule generated by A and B
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0>{A,B)

J(A,B)

(A,B)

Notation

the morphisms from A to B which factor through a pro-
jective module
the morphisms from A to B which factor through an
injective module
the length of Hom\(A9B) as an ^-module
submodule of B generated by the images of A-morphisms
from A to B

For a given
I m /
Ker/
f\c
f~l(E)
Coker/

Others
SuppF

map f:A^>B between modules
image of /
kernel of /
restriction to a submodule C of A
preimage in A of a submodule E of B
cokernel of F

the objects A in indA with F(A)

u

Ab

AxcB

Axc B

(fij)

8*

(5*

() ^ 0 for a functor
F: mod A —• mod R
categorical sum
map from A II B to X II 7 induced by / : A —> X and
g.B^Y given by (/IIg)(a,&) = (f(a),g(b))
category of abelian groups
tensor ring of the X-bimodule M over E
fe-algebra which is the product of n copies of a field k with
k acting diagonally

C A
pushout of diagram

B

pullback of diagram
B
I
C

tuthe induced map \J A}? —• JJ Bt for A-morphisms ftj: Aj

Bt for 1 < j < n and 1 < i < t

the functor given by the exact sequence HoniA( ,B) -4 '

HOHIA( , C) —• ^* —> 0 for an exact sequence (5:0 —> v4 —>
5 -^>C - ^ 0 in mod A
the functor given by the exact sequence Hom(£, )

Hom(^4, ) -> d* —> 0 for an exact sequence (5:0 -

Hom(/, )

B 0 in mod A
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Conjectures

We now list some well known conjectures in the representation theory of
artin algebras covered in this book.

(1) If A is an infinite artin algebra of infinite representation type, then
there are infinitely many integers n with infinitely many indecomposable
modules of length n.

(It is enough to find one such n (see [Sm]). The conjecture is verified for
finite dimensional algebras over an algebraically closed field (see [Bau3],
[BretT] and [Fi]). It would be interesting to find a more direct proof
even in this case.)

(2) If the AR-quiver of an artin algebra A has only one component,
then A is of finite representation type.

(3) If A is an artin algebra of infinite representation type, then the AR-
quiver of A has infinitely many components. (This conjecture holds for
hereditary artin algebras.)

(4) If A is an artin algebra and all indecomposable A-modules are
determined up to isomorphism by their composition factors, then A is of
finite representation type.

(5) Let A and A' be two artin algebras which are stably equivalent. Then
the numbers of isomorphism classes of simple nonprojective modules are
the same for A and A'. (It is enough to consider the situation when A is
selfinjective (see [M3]). This is proven when A is of finite representation
type (see [M2]).)

409

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623608.014
https://www.cambridge.org/core


410 Conjectures

(6) Let A be an artin algebra of finite global dimension with S\,...,Sn

a complete list of nonisomorphic simple A-modules and P\,...,Pn the
corresponding projective covers. Let C be the Cartan matrix of A, i.e.
C = (ctj) where [Pj] = YH=i cij\Si\ i*1 t n e Grothendieck group of A.
Then the determinant of C is 1. (This has been proven for graded artin
algebras ([W] and [FuZ]). For other cases see [Z] and [BurF].)

(7) Let A be an artin algebra and S a simple A-module with ExtA(S, S) ^=
0. Then pdA(5) = oo. (It is known that under the given assumption we
have gl.dim A = oo; see [Le] and [I].)

(8) Let A be an artin algebra and 0 —> A —• IQ —• I\ —• I2 —• • • • a
minimal injective resolution of A as a left A-module. If Ij is projective
for all j > 0, then A is selfinjective. (This is known as the Nakayama
Conjecture, and has been proven for graded artin algebras ([W] and
[FuZ]).)

(9) Let A be an artin algebra and S a simple A-module. Then
Ext^(S,A) ^ 0 for some i. An affirmative answer to (9) implies that
the conjecture in (8) also holds (see [AuR3]).

(10) A A-module M is projective if Ex4(M,M II A) = 0 for all i > 0.
(This is equivalent to (9), see [AuRl], and was conjectured by Tachikawa
for selfinjective algebras in [Ta].)

(11) Let A be an artin algebra. Then sup{pdAX|X in mod A and
pd A X < 00} is finite. (This is proven for some classes of algebras
(see [IZ], [GrZ] and [GrKK]). An affirmative answer to (11) implies that
the conjecture in (9) also holds.)

(12) A A-module M is zero if Ext\(M, A) = 0 for all i > 0. (This is a
consequence of (11).)

(13) If idAA < 00, then idAoPA < 00. (This is a consequence of (11).)
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Open problems

We now list some open problems based on the topics covered in this
book.

(1) Give a method for deciding when two uniserial modules over an
artin algebra are isomorphic.

(2) Which artin algebras of infinite representation type have only a finite
number of pairwise nonisomorphic uniserial modules?

(3) Let A and C be uniserial modules. Give a method for deciding if
there are exact sequences O-*^-*!?—•£?—>() with the property that
B is also uniserial.

(4) A uniserial module is said to be a maximal uniserial module if it is
neither a proper submodule, or a proper factor module of a uniserial
module. Which algebras A have the property that all maximal uniserial
submodules have length equal to the Loewy length of A? (This has been
solved for commutative local rings containing an infinite field in [Lu].)

(5) An artin algebra A is called a monomial algebra if A is isomorphic
to a path algebra of a quiver with relations over a field k and where all
relations can be chosen to be paths. Give an invariant description, one
that is independent of generators and relations, of when an artin algebra
is a monomial algebra. (See [BurFGZ] for partial results.)

(6) Describe the artin algebras with only a finite number of nonisomor-
phic almost projective modules. (This question is decided in [Ml] for
hereditary algebras.)
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412 Open problems

(7) Suppose A and F are artin algebras and G:modA —• modF is an
equivalence of categories.

(a) When is there a functor F:modA —• modF with the property
F(0>(A)) cz 9>(T) such that the induced functor F':modA -• modT
is isomorphic to G?

(b) When is there such a functor F: mod A —• mod T which is half exact,
right exact, left exact or exact?

(c) Is there some functor F:modA —• modF with the property
F(0>(A)) cz 0>(T) such that the induced functor F:mod A -> modT
is an equivalence of categories.

(8) Describe the infinite artin algebras with the property that each inde-
composable module has only a finite number of indecomposable factor
modules up to isomorphism.

(9) Describe the artin algebras which have only a finite number of
nonisomorphic modules with proper waists.

(10) Suppose that the Loewy lengths of the endomorphism ring as a
module over itself or as a module over the ground ring are bounded for
all indecomposable A-modules. Is A of finite representation type? It is
known that if the lengths of the endomorphism ring are bounded for all
indecomposable modules, then A is of finite representation type [SmV].
(The case when the length is 1 was proved in [Sk2].)

(11) When is a selfinjective algebra stably equivalent to a symmetric
algebra also symmetric?
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Xo(f.LA),5
Xo(modA), 206
X0(modA,0), 206
R-algebra automorphism, 83
R-algebra operation of a group, 83
K-category, 28
K-functor (Co- and contravariant), 28
TX = End(X)/tEndA(x), 227
DTr-orbit, 114
Irr(A,B), 227
a(C), 173
a(A), 176
rad^(£, ), 181
rad^( ,£) , 181

additive category, 28
additive function, 241
additive functor, 28
additive generator, 209
admissible action (of a group of translation

quiver morphism), 251
admissible sequence, 117
after a module, 319
algebra given by a Brauer tree, 353
almost factor through, 370
almost projective module, 157
almost split sequence, 144
AR-quiver, 225
artin R-algebra, 26
associated quiver of an algebra, 218
Auslander algebra, 209
Auslander-Reiten formula, 135

Baer sum, 19
basic artin algebra, 35
before a module, 319
bimodule, 19
block partition, 44
blocks of a ring, 44
Brauer tree, 353

Cartan matrix, 241
category modulo injectives, 105
category modulo projectives, 105
category of finite dimensional

representations, 56
category of representation (of a quiver), 55
closed under extensions, 4
components of indA, 192
composition factors, 2
composition series, 2
contravariant defect of an exact sequence,

128
cosyzygy functor, 124
covariant defect of an exact sequence, 128
covering (of translation quiver), 250
Coxeter transformation, 269, 270
cross section, 292
cycle in mod A, 314

dense functor, 30
directing module, 314
dominant dimension, 211
dual of the transpose, 105
duality, 32
Dynkin diagram, 242

elementary algebra, 65
enough injectives, 39
enough projectives, 38
epimorphism (categorical), 31
epimorphism (of modules), 4
equivalence, 29
essential epimorphism, 11
essential extension, 37
Euclidean diagram, 242
evaluation functor, 33
exact sequence of representation, 56

factor category, 101
faithful functor, 30
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faithful module, 317
filtration, 2
finite length, 2
finite representation type, 111
fixed point functor, 81
fixed point functor for group algebra, 86
fixed point functor for skew group

algebras, 86
full functor, 30
full section, 293
functor isomorphism, 29

generalized composition series, 2
global dimension, 17
Grothendieck group, 5
group algebra, 79
group operation, 79

Harada-Sai Lemma, 222
hereditary, 17
homological quadratic form, 272

indA, 114
indecomposable module, 13
indecomposable representations, 56
injective envelope, 37
injective object, 31
injective vertex, 232, 249
integral representation ring, 164
irreducible morphism, 166

Kronecker algebra, 302
Kupisch series, 116

left almost split morphism, 137
left hereditary, 17
left minimal morphism, 6
left minimal version, 8
length, 2
lie on a cycle, 314
local ring, 14
locally finite quiver, 248
Loewy length, 12

mesh relation, 232
minimal cover of the bottom of a

morphism, 373
minimal injective copresentation, 107
minimal left almost split morphism, 138
minimal (left/right) morphism, 6
minimal module determining a morphism,

372
minimal projective presentation, 35
minimal right almost split morphism, 138
modules related by an irreducible

morphism, 192
monomorphism (categorical), 31

monomorphism (of modules), 4
Morita equivalence, 211
morphism category, 101
morphism factoring through a projective

module, 104
morphism factoring through an injective

module, 105

Nakayama algebra, 111
Nakayama automorphism, 126
negative element in Ko(mod A), 270

one-point extension, 71
operates trivially, 80
oriented cycle, 50
orthogonal idempotents, 15

parallel sections, 293
path algebra, 50
path in mod A, 314
path in a quiver, 50
positive definite, 273
positive element in Ko(mod A), 270
positive root, 295
positive semidefinite, 273
preadditive, 28
preinjective component, 264
preinjective module, 259
preinjective vertex, 264
preprojective component, 264
preprojective module, 259
preprojective vertex, 264
primitive idempotents, 15
projective cover, 12
projective dimension, 17
projective line, 303
projective object, 31
projective presentation, 35
projective vertex, 232, 249
proper epimorphism, 280
proper monomorphism, 280
proper translation quiver, 249
pullback diagram, 22
pushout diagram, 22

quadratic form, 295
quiver, 49
quiver of a tensor algebra, 53
quiver of an algebra, 65
quiver with relation, 58

radical (in a category), 178
radical length, 12
radical of a module, 10
radical of a ring, 8
radical series, 12
reduced form of an algebra, 35
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reflexive module, 123
regular components, 277
regular modules, 277
relation in a category, 101
relation on a quiver, 58
relation on an R-category, 101
relatively projective module, 203
representation of a quiver, 55
right X-version of a morphism, 381
right almost split morphism, 137
right determined morphism, 367
right minimal morphism, 6
right minimal version, 7
rigid exact sequences, 149
root of a quadratic form, 295

section, 292
section in translation quiver, 292
sectional path, 239
sectional sequence, 239
selfinjective algebra, 122
semidirect product of groups, 84
semisimple, 2
semitranslation, 227
semitranslation of a translation quiver, 249
separated quiver, 350
short chain, 315
short cycle, 314
simple representation, 56
sincere module, 317
sink, 53
skew group algebra, 83
small submodule, 10
socle length of a module, 42
socle of a module, 39
socle series of a module, 43
source, 53
split epimorphism, 136
split monomorphism, 136
stable equivalence, 335
stable translation quiver, 252
stable tube, 287
stably equivalent algebras, 335
subadditive function, 241
subobject of a representation, 55
sum, 1
sum of representations, 56
summand, 2
support of a functor, 181
symmetric algebra, 127
symmetrizable (Cartan matrix), 297
syzygy functor, 124

tame hereditary algebra, 301
tensor ring, 51
Tits form, 299
top of a module, 326

torsionless module, 123
trace of a linear transformation, 160
translation, 225
translation quiver, 248
translation quiver morphism, 250
translation stable component, 277
transpose, 100
tree, 300
triangular matrix ring, 71
trivial AG-module (group algebra), 87
trivial /cG-module, 80
trivial fcG-module (group algebra), 87
trivial extension, 78
trivial operation, 80
trivial path, 50
tube, 287
tube of rank 1, 304
type of the preprojective component, 269

underlying graph, 289
uniserial module, 111

valuation, 225
valued graph, 241, 288
valued quiver, 225
valued quiver of an algebra, 69
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