Экзамен

18 декабря

Если не сказано иначе, во всех задачах A — коммутативное кольцо.

Задача 1

Пусть A является локализацией конечно порожденной алгебры над алгебраически замкнутым полем \mathbf{k} характеристики p. Докажите, что образ отображения $A \to A, a \mapsto a^p$ также является локализацией конечно порожденной алгебры над \mathbf{k} .

Задача 2

Пусть A — такое, что $a^2 = a$ для любого $a \in A$. Найдите размерность Крулля dim A.

Задача 3

Назовем A-модуль M очень плоским, если последовательность A-модулей

$$N' \to N \to N''$$

точна тогда и только тогда, когда точна последовательность

$$M \otimes_A N' \to M \otimes_A N \to M \otimes_A N''.$$

Докажите, что M — очень плоский тогда и только тогда, когда он плоский и для всякого A-модуля $N \neq 0$ выполнено $M \otimes_A N \neq 0$.

Задача 4

Пусть $\mathfrak{q}\subset A-\mathfrak{p}$ -примарный идеал. Докажите, что идеал $\mathfrak{q}[x]$ является $\mathfrak{p}[x]$ -примарным в кольце A[x], где I[x] для идеала $I\subset A$ обозначает идеал, стостоящий из многочленов с коэффициентами в I.

Задача 5

Пусть $A = \mathbf{k}[x,y]/(xy)$, где \mathbf{k} — поле. Вычислите $\operatorname{Tor}_i^A(A/(x),A/(y))$, а также глобальную размерность A.

Задача 6

Докажите, что множества инъективных и проективных модулей над $\mathbb{Z}/(m)$ совпадают для любого целого m>1.