Modal propositional inference rules for PA

Lev D. Beklemishev

January 13, 2003

An inference rule A/B is said to be admissible in PA if for every arithmetical realization f, PA $\vdash f(A)$ implies PA $\vdash f(B)$. From the Solovay's second completeness theorem we immediately conclude

Theorem 1 A/B is admissible in PA iff $S \vdash \Box A \rightarrow \Box B$.

Corollary 1 Admissibility of a rule in PA is a decidable property.

Here we provide another characterization of admissible rules that gives a left adjoint. Write $A \vdash B$ iff B is provable from the axioms of \mathbf{GL} and A using modus ponens and necessitation rules.

Theorem 2 For any formula A one can effectively construct a formula A^* such that for all φ ,

$$A/\varphi$$
 is admissible in PA \iff $A^* \vdash \varphi$.

We begin with a notion of Parikh provability. Parikh rule is the PA- and GL-admissible rule $\Box \varphi/\varphi$. We write $A \vdash_P B$ iff B is provable from the axioms of GL and A using modus ponens, necessitation and Parikh rules.

First, we obtain a useful characterization.

Theorem 3 The following statements are equivalent:

- (i) $A \vdash_P \varphi$;
- (ii) $\mathbf{S} \vdash \Box A \rightarrow \Box \varphi$;
- (iii) $A \vdash \Box^{n+1}\varphi$, where n := d(A) is the number of different \Box -subformulas of A;

(iv) $A \vdash \Box^n \varphi$, for some n.

Proof. (i)⇒(ii) Induction on the length of the derivation. Obvious for all the axioms and inference rules.

(ii) \Rightarrow (iii) Assume $A \nvDash \Box^{n+1}\varphi$. Consider a Kripke model \mathcal{K} such that $\mathcal{K} \Vdash \Box A$ and $\mathcal{K} \nVdash \Box^{n+1}\varphi$. ¿From the second condition we find in \mathcal{K} a linear chain of nodes of length n+1 below a node, where φ is false. By the choice of n there must be an A-reflexive point r among them. Let \mathcal{K}_r be the restriction of \mathcal{K} to this node. Then $\mathcal{K}_r \Vdash \Box A$ and $\mathcal{K}_r \nVdash \Box \varphi$. Pulling a tail out of the root of \mathcal{K}_r delivers a tail model where $\Box A$ and $\neg \Box \varphi$ are true.

$$(iii) \Rightarrow (iv)$$
 and $(iv) \Rightarrow (i)$ are obvious. \boxtimes

Notice that this theorem implies that a rule is PA-admissible iff it is derivable in **GL** enriched with the Parikh rule. Thus, Parikh rule is, in a sense, the most general PA-admissible (propositional modal) rule.

Lemma 2 For any formula A there is a formula A' such that, for all φ ,

$$\mathbf{GL} \vdash A \to \Box \varphi \iff \mathbf{GL} \vdash A' \to \varphi.$$

Proof. Write A as $\bigvee_i A_i$, where A_i has the form

$$\bigwedge_{i} \Box \psi_{ij} \wedge \bigwedge_{k} \neg \Box \theta_{ik} \wedge \bigwedge_{l} p_{il} \wedge \bigwedge_{m} \neg p_{im}.$$

We may assume that $\mathbf{GL} \nvdash \neg A_i$, for each i, for inconsistent formulas A_i can be deleted from the disjunction.

Obviously, $\mathbf{GL} \vdash A \to \Box \varphi$ iff $\mathbf{GL} \vdash A_i \to \Box \varphi$, for all *i*. Consider any particular A_i . We claim:

$$\mathbf{GL} \vdash A_i \to \Box \varphi \iff \mathbf{GL} \vdash \bigwedge_j \Box \psi_{ij} \to \varphi.$$

Indeed, the implication (\Leftarrow) is obvious, by necessiation and the axioms of $\mathbf{K4}$.

For the opposite implication, consider a Kripke model \mathcal{K}_1 such that $\mathcal{K}_1 \nvDash \varphi$ and $\mathcal{K}_1 \Vdash \Box \psi_{ij}$, for all j. Further, since we assumed A_i to be consistent, consider any model \mathcal{K}_2 of A_i . Attach the model \mathcal{K}_1 immediately above the root of \mathcal{K}_2 . It is easy to see that the resulting model is a countermodel to $A_i \to \Box \varphi$.

Now we can define $A' := \bigvee_i \bigwedge_j \Box \psi_{ij}$. \boxtimes

As a corollary of this lemma we obtain a similar statement for provability in **GL** from assumptions.

Lemma 3 For every A there is a formula A° such that, for all φ ,

$$A \vdash \Box \varphi \iff A^{\circ} \vdash \varphi.$$

Proof. We have

$$A \vdash \Box \varphi \iff \mathbf{GL} \vdash \boxdot A \to \Box \varphi \iff \mathbf{GL} \vdash (\boxdot A)' \to \varphi.$$
 (*)

We let $A^{\circ} := (\Box A)'$. The statement then follows from the fact that

$$\mathbf{GL} \vdash (\boxdot A)' \leftrightarrow \boxdot (\boxdot A)'.$$

This is easy to see substituting in (*) the formula $(\boxdot A)'$ for φ . Indeed, $A \vdash \Box(\boxdot A)'$, hence $A \vdash \Box\Box(\boxdot A)'$, and so $\mathbf{GL} \vdash (\boxdot A)' \to \Box(\boxdot A)'$. \boxtimes

Proof of the Theorem. Let $A_0 := A$ and $A_{k+1} := A_k^{\circ}$. We let $A^* := A_{n+1}$, where n = d(A). By an obvious induction on k, from the previous lemma, we prove:

$$A \vdash \Box^k \varphi \iff A_k \vdash \varphi.$$

Induction step:

$$A \vdash \Box^k \Box \varphi \iff A_k \vdash \Box \varphi \iff A_k^{\circ} \vdash \varphi.$$

So, from Theorem 3 we conclude that $A \vdash_P \varphi$ iff $A^* \vdash \varphi$. \boxtimes