Logics for AI, Examination problems 2003

1. Give a definition of bisimulation and zig-zag equivalence between Kripke models.
2. Determine, if the following formulas are provable in $\mathbf{S} 5$ (give a derivation, if yes, and a countermodel, if no):
(a) $\diamond \square \square p \rightarrow \square p$;
(b) $\square p \rightarrow \neg \square \square q$.
3. Show that the following set of formulas is K4-consistent:
$\{\diamond(q \wedge \neg p \wedge \square(\neg p \wedge q) \wedge \diamond r \wedge \diamond \neg r), \diamond(p \wedge \neg q \wedge r)\}$
Draw an appropriate Kripke model.
4. Show that there is a node x in the canonical model \mathcal{W}^{c} for \mathbf{K} such that $\mathcal{W}^{c}, x \vDash \square \varphi \rightarrow \varphi$, for any formula φ;
5. The three card problem (hexagon). There are three cards $0,1,2$ and three players a, b, c. Each takes one card and keeps it secret.
(a) Draw the Krike model representing the knowledge situation using the variables of the form q_{a}, q_{b}, q_{c} with $q=0,1,2\left(1_{a}\right.$ means a has the card 1, etc.).
(b) Assume that it is publicly announced by the referee who sees all the players cards: "If a has 0 , then b has 1 ". Write down the update formula. Draw the updated model.
(c) It is assumed that the players are $\mathbf{S 5}$ reasoners and can make only true statements. Suppose a says: "If I have 0, then b has 1". Write down the update formula. Draw the new model representing the updated knowledge.
