1. Consider the following matrices and describe what linear transformations they define.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. Find the matrix of the transformation of symmetry with respect to the line given by vector $(1,2)$ in \mathbb{R}^{2}.
3. Find the matrix of the rotation in \mathbb{R}^{3} with respect to the line given by vector $(1,1,1)$ to the angle α.
4. Find the rank of the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
2 & 4 & 6
\end{array}\right)
$$

5. (a) Prove that the set of solutions of a homogeneous system of linear equations $L=\{\vec{x}: A \vec{x}=\overrightarrow{0}\}$ is a linear space.
(b) Suppose $r k(A)=k$, where A is an $n \times m$ matrix. What is the dimension of the space L ? (Hint: use the geometric intuition and Gaussian elimination method.)
