# Mathematics for Neural Networks <br> <br> Tussentoets 

 <br> <br> Tussentoets}
9.10.2003

1. (a) Find a general solution of the system of linear equations

$$
\left\{\begin{array}{r}
x_{1}+x_{2}-x_{3}+x_{4}=2 \\
x_{1}-x_{2}+x_{3}-x_{4}=0 \\
3 x_{1}+x_{2}-x_{3}+x_{4}=4 \\
3 x_{1}-x_{2}+x_{3}-x_{4}=2
\end{array}\right.
$$

(b) Find $r k(A)$ where $A$ is the matrix of the system.
(c) Find a basis in the space of solutions of the homogeneous system $A \vec{x}=0$.
2. Let $A$ be the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & -2 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Find $A^{-1}$.
3. Let $\mathcal{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation and $L \subseteq \mathbf{R}^{m}$ a subspace of $\mathbf{R}^{m}$. Prove that $M=\left\{\vec{x} \in \mathbf{R}^{n}: \mathcal{A}(\vec{x}) \in L\right\}$ is a vector space.
4. Consider the vectors $\vec{u}=(1,3,0,2)$ and $\vec{v}=(0,-1,1,0)$.
(a) Are these vectors linearly independent?
(b) Does the vector $\vec{z}=(2,9,-3,4)$ belong to the linear span $L=$ $\langle\vec{u}, \vec{v}\rangle$ of $\vec{u}$ and $\vec{v}$ ? If so, find the coordinates of $\vec{z}$ in the basis $\vec{u}, \vec{v}$ of $L$.
5. Let $\mathcal{A}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation of rotation w.r.t. the origin to the angle $60^{\circ}$ (counterclockwise). Find the matrix of the transformation $\mathcal{A}$ in the standard basis. Find the matrix of the inverse transformation.

