
A simplified proof of arithmetical completeness

theorem for provability logic GLP

L. Beklemishev∗

Steklov Mathematical Institute
Gubkina str. 8, 119991 Moscow, Russia

e-mail: bekl@mi.ras.ru

March 11, 2011

Abstract

We present a simplified proof of Japaridze’s arithmetical completeness
theorem for the well-known polymodal provability logic GLP. The simp-
lification is achieved by employing a fragment J of GLP that enjoys a
more convenient Kripke-style semantics than the logic considered in the
papers by Ignatiev and Boolos. In particular, this allows us to simplify the
arithmetical fixed point construction and to bring it closer to the standard
construction due to Solovay.
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1 Basic notions

Logics GLP and J. The polymodal provability logic GLP is formulated in
the language of the propositional calculus enriched by new unary connectives
[0], [1], [2], . . . , called modalities. The dual connectives 〈n〉, for all n ∈ N, are
treated as abbreviations: 〈n〉ϕ means ¬[n]¬ϕ.

The logic GLP is given by the following axiom schemata and inference rules.

Axiom schemata: (i) Tautologies of classical propositional calculus;

(ii) [n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ);

(iii) [n]([n]ϕ→ ϕ)→ [n]ϕ (Löb’s axiom);

(iv) 〈m〉ϕ→ [n]〈m〉ϕ, for m < n;

(v) [m]ϕ→ [n]ϕ, for m 6 n (monotonicity axiom);

Inference rules: modus ponens, ` ϕ ⇒ ` [n]ϕ.

∗Supported by the Russian Foundation for Basic Research, Russian Presidential Council for
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Thus, for each modality [n] the logic GLP contains the axioms (i)–(iii) and
the inference rules of Gödel–Löb provability logic GL, whereas the schemata
(iv) and (v) tie together different modalities. A well-known consequence of the
axioms (i)–(iii) is the transitivity schema

[n]ϕ→ [n][n]ϕ.

System J is obtained from GLP by replacing the monotonicity axiom (v) by
the following two axiom schemata easily derivable in GLP using the transitivity
schema:

(vi) [m]ϕ→ [n][m]ϕ, for m < n;

(vii) [m]ϕ→ [m][n]ϕ, for m < n.

Unlike GLP, the logic J is complete w.r.t. a natural class of finite Kripke
frames described below.

Kripke frames. A Kripke frame for the language of polymodal logic is a
structure (W ;R0, R1, . . .), where W is a nonempty set, and Rk are binary rela-
tions on W . The elements of W are usually called the worlds. A frame is called
finite if W is finite and Rk = ∅, for all but finitely many k > 0.

A valuation v on a frame W maps every propositional variable p to a subset
v(p) ⊆W called the truth set of p. A Kripke model is a Kripke frame together
with a valuation on it.

Let W = (W, v) be a Kripke model. By induction on the build-up of ϕ we
define a relation ϕ is valid in a world x of W (denoted W, x � ϕ).

1. W, x � p ⇐⇒ x ∈ v(p), if p is a variable;

2. W, x � (ϕ ∧ ψ) ⇐⇒ (W, x � ϕ and W, x � ψ),

W, x � ¬ϕ ⇐⇒ W, x 2 ϕ,

and similarly for the other boolean connectives;

3. W, x � [n]ϕ ⇐⇒ ∀y ∈W (xRny ⇒W, y � ϕ).

Write W � ϕ if ∀x ∈W W, x � ϕ.
For the axioms of J to be valid in a given Kripke frame for any valuation of

variables, we impose some restrictions on the relations Rk. A transitive binary
relation R on a set W is called noetherian, if there is no infinite chain of elements
of W of the form a0Ra1Ra2 . . . Note that if W if finite the condition of R being
noetherian on W is equivalent to its irreflexivity.

A frame (W ;R0, R1, . . .) is called a J-frame if

1. Rk is transitive and noetherian, for all k > 0;

2. ∀x, y (xRny ⇒ ∀z (xRmz ⇔ yRmz)), for m < n;

3. ∀x, y, z (xRmy yRnz ⇒ xRmz), for m < n.
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A J-model is any Kripke model based on a J-frame. By induction on the
derivation length one can easily prove the following lemma.

Lemma 1.1 For any formula ϕ, if J ` ϕ then W � ϕ, for any J-model W.

The converse statement, that is, the completeness theorem for J with respect
to the class of all (finite) J-models, is proved in ref. [2].

Proposition 1.2 For any formula ϕ, if J 0 ϕ then there is a finite J-model
W such that W 2 ϕ.

Let us call a root of J-frame (W ;R0, R1, . . . ) an element r ∈W for which

∀x ∈W ∃k > 0 rRkx.

The standard reasoning shows that Proposition 1.2 can be strengthened to the
following statement.

Proposition 1.3 For any formula ϕ, if J 0 ϕ then there is a finite J-model
W with a root r such that W, r 2 ϕ.

Proof.Assume J 0 ϕ and consider a J-model W and a point x0 ∈W such that
W, x0 2 ϕ. LetW0 denote a submodel generated by x0, that is, the restriction of
W to the subset W0 consisting of all points y ∈W reachable from x0 by moving
along the relations Rk (including x0 itself). More formally, we set y ∈ W0 if
there is a finite sequence of elements of W of the form

x0Rn0x1Rn1x2Rn3 . . . Rnk
xk+1 = y.

It is not difficult to check the following properties.

1. W0 is a J-model;

2. ∀x ∈W0 (W, x � ψ ⇐⇒ W0, x � ψ), for any formula ψ;

3. ∀y ∈W0 \ {x0} ∃k x0Rky.

The last claim is easy to verify by induction on the number of steps from x0 to
y using the following property of J-frames:

uRmvRnz ⇒ uRmin(m,n)z.

Thus, x0 is a root of W0 and W0, x0 2 ϕ. �
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Formal arithmetic and provability predicates. First order theories in
the language (0, ′,+, · ,=) containing the axioms of Peano arithmetic PA will
be called arithmetical. It is known that one can introduce terms for all prim-
itive recursive functions into the language of PA. ∆0 will denote the class of
arithmetical formulas having only bounded occurrences of quantifiers, that is,
occurrences of the form

∀x6t ϕ def⇐⇒ ∀x (x 6 t→ ϕ),

∃x6t ϕ def⇐⇒ ∃x (x 6 t ∧ ϕ),

where the term t does not contain the variable x.
The classes of Σn and Πn-formulas are defined by induction: ∆0-formulas

are considered as both Σ0 and Π0-formulas. Σn+1-formulas are those of the
form ∃~x ϕ(~x, ~y), where ϕ is a Πn-formula; Πn+1-formulas are those of the form
∀~x ϕ(~x, ~y), where ϕ is a Σn-formula.

We assume some fixed standard primitive recursive gödel numbering of the
language of arithmetic. The gödel number of an object τ (term, formula, etc.)
is denoted pτq. We will also be reasoning about gödel numbers of terms and
formulas in the formal context of PA. We will use the following abbreviations.

A natural number n will be denoted by the numeral n = 0′. . . ′ (n primes) in
the language of PA; for a given formula ϕ, the expression pϕq will be understood
as the corresponding numeral pϕq.

We will also consider within PA primitive recursive families of formulas
ϕn depending on a parameter n ∈ N. In this case, the expression pϕxq will
be understood as a primitive recursive definable term (with a free variable x)
whose value for a given n is the gödel number of ϕn. In particular, pϕ(x)q
is a term for the function that, given n, computes the gödel number of the
result of substitution of n into ϕ. Following Boolos [3], we shall use ϕ[ψ] as an
abbreviation for ϕ(pψq), and ϕ[ψx] as that for ϕ(pψxq). The intuitive meaning
of these expressions is that the formula ψ (respectively, ψx) satisfies the property
expressed by ϕ.

It will also be convenient for us to assume that a new sort of variables
α, β, . . . ranging over the set of gödel numbers of arithmetical formulas is intro-
duced into the language of arithmetic. Formulas containing variables α, β, . . .
are treated as the abbreviations for their natural translations into the standard
language of PA. We will use the abbreviations pϕαq and ϕ[ψα] for families of
formulas parametrized by the new sort of variables in the same sense as for the
numerical parameters.

Let T be an arithmetical theory, and let Prov(α) be an arithmetical formula
with a single free variable α. Following [4], we call Prov a provability predicate
of level n over T if, for any arithmetical sentences ϕ, ψ,

1. Prov ∈ Σn+1;

2. T ` ϕ implies T ` Prov[ϕ];

3. T ` Prov[ϕ→ ψ]→ (Prov[ϕ]→ Prov[ψ]);
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4. ϕ ∈ Σn+1 implies T ` ϕ→ Prov[ϕ].

Notice that Conditions 1 and 4 imply the so-called third condition of Löb:

T ` Prov[ϕ]→ Prov[Prov[ϕ]].

Recall that an arithmetical theory T is called sound, if T ` ϕ implies N � ϕ,
for each arithmetical sentence ϕ. Similarly, a provability predicate Prov is called
sound, if N � Prov[ϕ] implies N � ϕ.

If a theory T is sound, then by Conditions 2 and 3 the set

U = {ϕ : N � Prov[ϕ]}

is a deductively closed set of sentences, containing T . One can consider Prov
as a formula expressing the provability in a (generally, non-r.e.) theory U .

A sequence π of formulas Prov0, Prov1, . . . is called a strong sequence of
provability predicates over T , if there is a sequence of natural numbers r0 <
r1 < r2 < · · · such that, for any n > 0,

1. Provn is a provability predicate of level rn over T ;

2. T ` Provn[ϕ]→ Provn+1[ϕ], for any sentence ϕ.

We remind two standard examples of strong sequences of provability predi-
cates over PA.

It is known that, for each n > 1, there is a Πn-truthdefinition for the class
of Πn-formulas in PA, that is, an arithmetical Πn-formula TrueΠn(α) expressing
in a natural way the predicate “α is the gödel number of a true arithmetical
Πn-sentence.”

Let ProvPA denote the usual gödelian provability predicate for PA (of level
0). Define Prov0 = ProvPA and Provn(α) = ∃β (TrueΠn [β] ∧ Prov0[β → α]),
for n > 0. Notice that Provn(α) expresses that α is provable in the theory
axiomatized over PA by the set of all true Πn-sentences; this predicate has level
n.

Another strong sequence of provability predicates is defined by the closure
of PA under the n-fold application of the ω-rule. Define Prov0 = ProvPA and

Provn+1(α) = ∃β (∀x Provn[β(x)] ∧ Provn[∀x β(x)→ α]).

Notice that Provn has level 2n.
One can associate with each provability predicate of level n an analog of the

predicate “y is a proof of α,” that is, a Πn-formula Prf(α, y) such that

PA ` Prov(α)↔ ∃y Prf(α, y).

Without loss of generality we can assume that Prf is chosen in such a way that
each number y is a proof of at most one formula α, and that any provable for-
mula has arbitrarily long proofs. These properties are assumed to be verifiable
in PA.
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Arithmetical interpretation of GLP. Fix a strong sequence of provabil-
ity predicates π over a theory T . An arithmetical realization is any function f
mapping each propositional variable p of the language of GLP to some arith-
metical sentence f(p). For a given π, any arithmetical realization is uniquely
extended to a map fπ defined on the set of all modal formulas as follows:

1. fπ(p) = f(p), for any variable p;

2. fπ(ϕ∧ψ) = (fπ(ϕ)∧fπ(ψ)), fπ(¬ϕ) = ¬fπ(ϕ) and similarly for the other
boolean connectives;

3. fπ([n]ϕ) = Provn(pfπ(ϕ)q), for each n > 0.

The arithmetical formula fπ(ϕ) is called a translation of the modal formula
ϕ under the realization f . By induction on the length of proof of a formula ϕ it
is easy to establish the soundness of GLP under the arithmetical interpretation
with respect to any strong sequence of provability predicates over T .

Lemma 1.4 If GLP ` ϕ then T ` fπ(ϕ), for any arithmetical realization f .

Proof.The only nontrivial element in the proof of this lemma is to show that
the translation of Löb’s axiom is provable under every arithmetical realization.
Such a proof is obtained with the aid of the fixed point lemma similarly to the
proof of Löb’s theorem for the standard provability predicate in PA. �

The converse statement is valid under a sufficiently broad assumption of the
soundness of the considered provability predicates and constitutes the essence
of Japaridze’s arithmetical completeness theorem for GLP [5, 4].

2 Arithmetical completeness theorem

Theorem 1 Suppose a theory T and all the provability predicates Provn of a
strong sequence π are sound. Then, for any modal formula ϕ such that GLP 0
ϕ, there is an arithmetical realization f for which T 0 fπ(ϕ).

Thus, GLP is the provability logic for any strong sequence of sound prov-
ability predicates. The remaining part of the paper is devoted to a proof of this
theorem.

Our proof of Theorem 1 follows a general approach suggested in the fun-
damental paper of Solovay [7] and uses some additional ideas contained in
ref. [5, 4].

Given a modal formula ϕ, let M(ϕ) denote∧
i<s

∧
mi<j6n

([mi]ϕi → [j]ϕi),

where [mi]ϕi for i < s ranges over all subformulas of ϕ of the form [k]ψ and
n = maxi<smi. Further, let

M+(ϕ) = M(ϕ) ∧
∧
i6n

[i]M(ϕ).
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Obviously, GLP `M+(ϕ).
Theorem 1 is a consequence of the following theorem which also characterizes

GLP in terms of Kripke models.

Theorem 2 For any modal formula ϕ, the following statements are equiva-
lent:

(i) GLP ` ϕ;

(ii) J `M+(ϕ)→ ϕ;

(iii) for each finite J-model W, W �M+(ϕ)→ ϕ;

(iv) for any arithmetical realization f , T ` fπ(ϕ).

Note that the implication (iii)⇒(ii) follows from Proposition 1.2, the impli-
cation (i)⇒(iv) follows from Lemma 1.4, and (ii)⇒(i) is obvious. Thus, for a
proof of Theorem 2 it is sufficient to establish the implication (iv)⇒(iii).

We argue by contradiction and fix a formula ϕ and a finite J-model W0

with a root r such that W0, r 2 M+(ϕ) → ϕ. Since W0, r � M+(ϕ) and r is
the root, we can conclude that

W0 � [k]ψ → [j]ψ,

for each subformula [k]ψ of the formula ϕ and every j > k.
As in the standard Solovay construction, for an embedding of the model

W0 = (W0;R◦0, R
◦
1, . . . , v0) into arithmetic we assume that W0 = {1, 2, . . . , N},

for some N , and we adjoin a new root 0 to W0, that is, we define a new frame
(W ;R0, R1, . . . ) by putting W = W0 ∪ {0}, R0 = R◦0 ∪ {〈0, x〉 : x ∈ W0} and
Rk = R◦k, for k > 0. We also let v(p) = v0(p) for all variables p. Clearly, in the
model W = (W ;R0, R1, . . . , v), we have W, r 2 ϕ and W, x � [k]ψ → [j]ψ, for
all subformulas [k]ψ of ϕ, all j > k and all x 6= 0.

Define:

Rk(x) = {y ∈W : xRky},
R∗k(x) = {y ∈W : xRiy for some i > k},
R̃k(x) = R∗k(x) ∪

⋃
{R∗k(z) : x ∈ R∗k+1(z)}.

We are going to specify an arithmetical realization f by assigning to each
x ∈W an arithmetical sentence Sx and by letting

f(p) =
∨

x∈v(p)

Sx. (∗)

The sentences Sx will have to satisfy the following requirements.

(S1) T `
∨
x∈W Sx; T ` ¬(Sx ∧ Sy), for all x 6= y;

(S2) T ` Sx → ¬Provk[¬Sy], for all xRky;
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(S3) T ` Sx → Provk[
∨
y∈R̃k(x)

Sy], for all x 6= 0;

(S4) N � S0.

Suppose for now that the requirements (S1)–(S3) are met and a realization
f is defined by (∗).

Lemma 2.1 For each subformula θ of formula ϕ and each x ∈W0

(a) W, x � θ implies T ` Sx → fπ(θ);

(b) W, x 2 θ implies T ` Sx → ¬fπ(θ).

Proof.We jointly prove (a) and (b) by induction on the build-up of the formula
θ. If θ is a variable or has the form θ1 ∧ θ2 or ¬θ1, the statements follow from
the definition of f together with (S1).

Let θ = [k]ψ. For a proof of (b) assume that W, x 2 [k]ψ. Then there is a
y ∈ W0 such that xRky and W, y 2 ψ. By the induction hypothesis T ` Sy →
¬fπ(ψ). It follows that T ` fπ(ψ)→ ¬Sy and T ` Provk[fπ(ψ)]→ Provk[¬Sy].
By (S2) we have T ` Sx → ¬Provk[¬Sy], whence T ` Sx → ¬Provk[fπ(ψ)].

For a proof of (a) assume W, x � [k]ψ. First, we show that

∀w ∈ R̃k(x)W, w � ψ.

Let w ∈ R̃k(x), then for some z we have x ∈ R∗k+1(z) ∪ {z} and w ∈ R∗k(z).
Obviously, ∀y ∈ Rk(x)W, y � ψ, and since Rk(z) = Rk(x) we haveW, z � [k]ψ.
By the construction of W0 we also have W, z � [k]ψ → [m]ψ, for any m > k,
whence W, z � [m]ψ, for all m > k. Since w ∈ R∗k(z), it follows that W, w � ψ.

Since ∀w ∈ R̃k(x)W, w � ψ, by the induction hypothesis we obtain T `
Sw → fπ(ψ), for all w ∈ R̃k(x), and therefore T ` (

∨
w∈R̃k(x)

Sw) → fπ(ψ).

Using the derivability conditions it follows that

T ` Provk[
∨
w∈R̃k(x)

Sw]→ Provk[fπ(ψ)],

whence T ` Sx → Provk[fπ(ψ)] by condition (S3). �

As a corollary of this lemma we obtain T ` Sr → ¬fπ(ϕ). If T ` fπ(ϕ), then
T ` ¬Sr. It follows that T ` Prov0[¬Sr], and hence T ` ¬S0 by (S2). Since
T is sound, we have N 2 S0 which contradicts (S4). Thus, our assumption
T ` fπ(ϕ) is wrong, that is, Lemma 2.1 implies Theorem 2.

To complete the proof of Theorem 2 it remains for us to construct arith-
metical sentences Sx satisfying (S1)–(S4). A number m is called the rank of a
model W if Rm 6= ∅ and, for all k > m, Rk = ∅. For each k 6 m, we are going
to construct arithmetical functions hk : N→W with the aid of the arithmetical
fixed point theorem. Informally speaking, the function h0 is the “usual” Solovay
function for the frame (W,R0) and the provability predicate Prov0, whereas the
functions hk+1 are its analogues for the frames (W,Rk+1) and the predicates
Provk+1 linked by the condition that the initial value hk+1(0) is set to the limit
value of the function hk, for all k < m.
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More formally, let `k denote the limit of the function hk. A sentence Sx is
defined as a formalization of the statement `m = x, that is,

Sx
def⇐⇒ ∃n0 ∀n > n0 Hm(n, x),

where Hm(n, x) is a formula expressing hm(n) = x. We notice that pSxq is a
primitive recursive function of x and pHmq.

We would like to construct the functions hk (provably in T ) satisfying the
following conditions, for all k 6 m:

h0(0) = 0 and hk(0) = `k−1, if k > 0; (1)

hk(n+ 1) =

{
z, if hk(n)Rkz and Prfk(p¬Szq, n),

hk(n), otherwise.
(2)

A direct formalization of conditions (1) and (2) yields a sequence of arith-
metical formulas Ak, for k 6 m, defining a system of m + 1 equations in the
unknown formulas H0, . . . ,Hm:{

T ` H0(n, x)↔ A0(pHmq, n, x),

T ` Hk+1(n, x)↔ Ak+1(pHmq, `k, n, x), for all k < m.
(3)

Notice that `k is formally expressible viaHk, and thus viaAk(pHmq, `k−1, n, x).
Hence, we can successively substitute each equation in the system (3), starting
from the first, into the next one, and thereby eliminate all the definitions of `k.
Eventually, we obtain one equation defining Hm as a fixed point amenable to
an application of the standard fixed point lemma:

T ` Hm(n, x)↔ A′m(pHmq, n, x).

Having constructed Hm, converse substitutions yield all the other formulas Hk,
for k < m, satisfying (3).

Notice that Ak belongs to the class ∆0(Σrk), since Prfk ∈ Πrk . Unwinding
the definitions of `k−1 shows that each formula Hk belongs to the class Σrk+1

(modulo equivalence in PA). We also immediately obtain the following lemma.

Lemma 2.2 For any k > 0,

(i) T ` ∀n ∃!x ∈W Hk(n, x);

(ii) T ` ∀i, j, z (i < j ∧ hk(i) = z → hk(j) ∈ Rk(z) ∪ {z});

(iii) T ` ∃!x ∈W `k = x;

(iv) T ` ∀z (∃n hk(n) = z → `m ∈ R∗k(z) ∪ {z}).

The following lemma completes the proof of the theorem.

Lemma 2.3 Conditions (S1)–(S4) are satisfied for the set of sentences {Sx :
x ∈W} thus constructed.
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Proof.Condition (S1) follows from Lemma 2.2 (iii).
(S2) is obtained by formalizing the following argument in T .
Suppose Sx, then either `k = x, or x ∈ R∗k+1(`k). Notice that in both

cases Rk(x) = Rk(`k). Pick a number n0 such that ∀n > n0 hk(n) = `k.
Assume Provk[¬Sy], for some y ∈ Rk(x). Then there is an n1 > n0 such that
Prfk(p¬Syq, n1). Since `kRky and hk(n1) = `k, by the definition of hk we obtain
hk(n1 + 1) = y, a contradiction. Thus, ¬Provk[¬Sy].

For any A ⊆ W let `m ∈ A denote the sentence
∨
y∈A Sy. For a proof of

(S3) we have to show, for each x 6= 0, that

T ` Sx → Provk[`m ∈ R̃k(x)].

We formalize in T the following argument.
Assume Sx, where x 6= 0, and let z = `k. Then x ∈ R∗k+1(z) ∪ {z}. By the

definition of R̃k this implies R∗k(z) ⊆ R̃k(x) and, since this property is definable

by a ∆0-formula, Provk[R
∗
k(z) ⊆ R̃k(x)]. Hence,

Provk[`m ∈ R∗k(z)]→ Provk[`m ∈ R̃k(x)]. (4)

On the other hand, since `k = z we have ∃nhk(n) = z. The latter statement
is definable by an arithmetical Σrk+1-formula, hence Provk[∃n hk(n) = z]. By
Lemma 2.2 (iv), for any u ∈W ,

T ` ∃n hk(n) = u→ `m ∈ R∗k(u) ∪ {u}.

It follows that

Provk[∃n hk(n) = u]→ Provk[`m ∈ R∗k(u) ∪ {u}].

In particular, for u = z we obtain Provk[`m ∈ R∗k(z) ∪ {z}].
Now we notice that z 6= 0 (since x 6= 0). Since ∃n hk(n) = z we have

Provk[¬Sz]; in fact, hk cannot reach z unless Provk[¬Sz]. Thus, Provk[`m ∈
R∗k(z)], and using (4) we obtain Provk[`m ∈ R̃k(x)], as required.

(S4) By the induction on k we show that N � `k = 0, for all k 6 m. If
`k = z 6= 0 holds in the standard model of arithmetic, then Provk[¬Sz], since
by the induction hypothesis (for k > 0) there holds hk(0) = `k−1 = 0. Since
Provk is sound, it follows that `k 6= z. Thus, `k = 0. �

3 Some generalizations

The requirement that T together with all the provability predicates π be sound
is natural but stronger than is necessary for the validity of the arithmetical
completeness theorem for GLP.

A sequence π of provability predicates is called strongly consistent over T if
the theory

T + {Conn : n < ω}

is consistent, where Conn denotes ¬Provn[⊥]. Obviously, every sequence of
sound provability predicates over T is strongly consistent. The converse is, in
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general, not true. In fact, if Provn is the provability predicate for the theory
axiomatized over T by the set of all true Πn-sentences (as above), then Conn is
equivalent to the so-called uniform Σn-reflection principle over T . Thus, T +
{Conn : n < ω} is equivalent to the extension of T by the full uniform reflection
schema, that is, to T+RFN(T ) (see [6, 1]). It is easy to give examples of unsound
theories T for which, nevertheless, the theory T + RFN(T ) is consistent.

For example, let T be a sound r.e. theory, and let T ′ denote T + RFN(T ).
Consider the theory U = T + ¬Con(T ′). Clearly, U is unsound. On the other
hand, since ¬Con(T ′) ∈ Σ1 we have

T ` Conn(U)↔ (Conn(T ) ∧ ¬Con(T ′)),

for each n < ω. Thus, if U+RFN(U) ` ⊥ then, for some n < ω, U+Conn(U) ` ⊥
and therefore T + ¬Con(T ′) + Conn(T ) ` ⊥. From this we can conclude that
T + Conn(T ) ` Con(T ′) contradicting Gödel’s second incompleteness theorem.

Theorem 3 The conclusion of Theorem 2 holds for any strong sequence of
provability predicates π strongly consistent over T .

Proof.We employ the same construction as in the proof of Theorem 2. Since T
is no longer assumed to be sound, the property (S4) does not necessarily hold.
Nevertheless, Lemmas 2.1, 2.2 and 2.3 remain valid as before.

Let dk(x) denote the depth of a point x ∈ W in the sense of the binary
relation Rk, that is, dk(x) = sup{dk(y)+1 : y ∈ Rk(x)}. We prove the following
properties.

Lemma 3.1 Let m be the rank of W. Then, for all x ∈W0,

(i) T ` Sx → Provm[`m ∈ Rm(x)];

(ii) T ` Sx → Provkm[⊥], k = dm(x) + 1.

Proof.Statement (i) essentially amounts to a particular case of (S3) for k = m.
In fact, since Rm+1 is empty,

R̃m(x) = R∗m(x) ∪ {R∗m(z) : x ∈ R∗m+1(z)} = R∗m(x) = Rm(x).

Statement (ii) is obtained from (i) by an obvious induction on dm(x). �

For the proof of Theorem 3 we reason as follows. As before, we infer from
T ` fπ(ϕ) and Lemma 2.1 that T ` ¬S0, and hence T `

∨
z∈W0

Sz by (S1). On

the other hand, by the previous lemma, for each z ∈ W0, T ` Sz → Provkm[⊥],
where k = sup{dm(x) + 1 : x ∈ W0}. Therefore, we obtain T ` Provkm[⊥] `
Provm+1[⊥], that is, T cannot be strongly consistent. �

Now we give a simplified proof of Japaridze’s arithmetical completeness
theorem for the so-called truth polymodal provability logic. Let GLPS denote
the extension of the set of theorems of GLP by the schema [n]ϕ → ϕ, for all
formulas ϕ and all n < ω, and with modus ponens as a sole inference rule.

Let H(ϕ) denote the formula
∧
i<s([ni]ϕi → ϕi), where the formulas [ni]ϕi,

for i < s, enumerate all the subformulas of ϕ of the form [k]ψ.
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Theorem 4 Suppose a theory T and all the provability predicates π are sound.
The following statements are equivalent:

(i) GLPS ` ϕ;

(ii) GLP ` H(ϕ)→ ϕ;

(iii) N � fπ(ϕ), for every arithmetical realization f .

Proof.We will follow the standard method coming from the second arithmetical
completeness theorem of Solovay. The implications (i)⇒(iii) and (ii)⇒(i) are
immediate. We prove (iii)⇒(ii) reasoning by contraposition.

Assume GLP 0 H(ϕ) → ϕ. Then there is a finite J-model W with the
root 0 such that W, 0 � M+(ϕ), H(ϕ) and W, 0 2 ϕ. As before, we assume
that W = {0, . . . , N} and apply the construction from the proof of Theorem 2.
Lemmas 2.1, 2.2 and 2.3 hold without any change.

Since we are now interested in the validity relation at 0 we augment Lemma 2.1
by the following statement.

Lemma 3.2 For each subformula θ of the formula ϕ,

(a) W, 0 � θ implies T ` S0 → fπ(θ);

(b) W, 0 2 θ implies T ` S0 → ¬fπ(θ).

Proof.We jointly prove (a) and (b) by induction on the build-up of θ using
Lemma 2.1. All the cases are treated exactly as in Lemma 2.1 except for
(a) when θ = [k]ψ. In this case we have W, 0 � ψ, since W, 0 � H(ϕ) and
W, 0 � [j]ψ, for all k 6 j 6 m, because of W, 0 � M(ϕ). Thus, W, x � ψ,
for all x ∈ R∗k(0) ∪ {0}. Hence, by the induction hypothesis together with
Lemma 2.1,

T ` `m ∈ R∗k(0) ∪ {0} → fπ(ψ),

and therefore

T ` Provk[`m ∈ R∗k(0) ∪ {0}]→ Provk[fπ(ψ)]. (5)

Since 0 is a root ofW, from S0 one can infer ∃nhk(n) = 0, whence Provk[∃nhk(n) =
0] and Provk[`m ∈ R∗k(0) ∪ {0}] by Lemma 2.2 (iv). This implies by (5) that
Provk[fπ(ψ)], as required. �

Since N � S0, this lemma yields N 2 fπ(ϕ), which completes the proof of
Theorem 4. �
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[6] C. Smoryński. The incompleteness theorems. In J. Barwise, editor, Hand-
book of Mathematical Logic, pages 821–865. North Holland, Amsterdam,
1977.

[7] R.M. Solovay. Provability interpretations of modal logic. Israel Journal of
Mathematics, 28:33–71, 1976.

13


