
On GLP-spaces

Lev Beklemishev

January 22, 2009

Abstract

The following is a draft collection of miscellaneous preliminary re-
sults on GLP-spaces, the natural topological models for Japaridze’s
polymodal provability logic. The collection is poorly structured, lacks
a proper introduction and references, and is generally not intended for
publication in the current form.

1 GLP-algebras and spaces

We study topological models of a system of polymodal logic GLP due to
Giorgi Japaridze.

Consider the language of propositional polymodal logic with modalities
[n] and 〈n〉 labeled by natural numbers. The system GLP is given by the
following axiom schemata and rules.

Axioms: (i) Boolean tautologies;

(ii) [n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ);

(iii) [n]([n]ϕ→ ϕ)→ [n]ϕ;

(iv) [m]ϕ→ [n]ϕ, for m < n;

(v) 〈m〉ϕ→ [n]〈m〉ϕ, for m < n.

Rules: modus ponens, ϕ ` [n]ϕ.

We consider poly-topological spaces of the form (X; τ0, τ1, . . . ) where τi
are topologies on a set X. The topological interpretation of modality 〈n〉
here is the derived set operator Dn corresponding to τn: for a subset A ⊆ X
we define x ∈ Dn(A) iff for all τn-open U containing x, there is a y 6= x such
that y ∈ U ∩A.

Every such space gives rise to its dual boolean algebra X∗ of subsets of
X equipped with unary operators

〈n〉 : A 7−→ Dn(A),

for each n < ω.
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Definition 1.1 A boolean algebra with operators (A; 〈0〉, 〈1〉, . . . ) is a GLP-
algebra, if it satisfies all the identities of the system GLP, in other words,
if for each propositional formula ϕ(~x)

A � ∀~x (ϕ(~x) = >) ⇐⇒ GLP ` ϕ.

Definition 1.2 A poly-topological space X is a GLP-space if the following
three conditions are satisfied:

(i) The space (X; τ0) is scattered, that is, every A ⊆ X has a τ0-isolated
point;

(ii) For all m < n, τm ⊆ τn;

(iii) For all m < n and all A ⊆ X, Dm(A) is open in τn.

Notice that if τ0 is scattered, so is each of the stronger topologies τn on
X, for all n < ω.

Theorem 1 X is a GLP-space iff X∗ is a GLP-algebra.

Proof. As shown by Leo Esakia, validity of Löb’s axiom (iii) is equivalent
to scatteredness, and Conditions (ii) and (iii) correspond to Axioms (iv) and
(v) of GLP, respectively. �

Main examples of GLP-algebras come from proof theory, where they
have been introduced under the name graded provability algebras (see [3, 1]).
Under one possible proof-theoretic interpretation, modalities 〈n〉 correspond
to reflection principles of restricted logical complexity in arithmetic acting
as operators on the Lindenbaum algebra of a formal theory T . Provability
algebras provide our main motivation for studying GLP-spaces, however
they are not considered in this paper. We shall define and study some
natural examples of GLP-spaces below.

2 Basic facts on GLP-spaces

2.1 Generated GLP-space

The properties (ii) and (iii) express, for each n, that topology τn+1 is suffi-
ciently strong w.r.t. τn. This motivates the following definition.
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Definition 2.1 Let (X; τ0) be given. Define inductively a sequence of
topologies τn on X by setting that, for each n < ω, τn+1 is generated by
the subbase τn ∪ {Dn(A) : A ⊆ X}. We say that the poly-topological space
(X; τ0, τ1, . . . ) is generated from (X; τ0).

Proposition 2.2 Let (X; τ0) be a scattered space and let X := (X; τ0, τ1, . . . )
be generated from (X; τ0). Then X is a GLP-space.

Proof. Easy. �

2.2 Separation properties

Scattered spaces are well-known to satisfy a weak form of separation located
between T0 and T1.

Definition 2.3 A space (X; τ) is Td if it satisfies one of the three equivalent
conditions:

(i) Every point is an intersection of a closed and an open set;

(ii) For each A ⊆ X, D(A) is closed;

(iii) For each A ⊆ X, D(D(A)) ⊆ D(A).

Proposition 2.4 (Esakia) Every scattered space is Td.

Proof. On a modal-logical level this theorem corresponds to a derivation of
the transitivity principle 33ϕ → 3ϕ from Löb’s principle, a theorem due
to Dick de Jongh. �

Hence, every topology of a GLP-space is Td. In general, scattered spaces
need not be hausdorff or even T1.

Example 2.5 Let (X,≺) be a partial ordering. The upset topology on
(X,≺) is defined by the collection of upwards closed sets. It is an Alexandroff
topological space and is scattered iff the ordering (X,≺) is upwards well-
founded. However, for any nontrivial (X,≺), this topology is not T1.

For topologies τ1, τ2, . . . in a GLP-space one can, however, infer a bit
more separation.

Proposition 2.6 Let X be a GLP-space. Then each τn, for n > 1, has to
be T1.
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Proof. It is sufficient to show that τ1 is T1. Let a, b ∈ X, a 6= b. We must
show that there is an open set A such that a ∈ A and b /∈ A. Consider the
set A := D0({b}), which must be open in τ1 and hence clopen in τ1, since
it is closed in τ0. If a ∈ A then a and b are separated by this clopen set,
because b /∈ D0({b}). Otherwise, if a /∈ A, a does not belong to the closure
of {b} (which is simply {b} ∪D0({b})). It follows that the complement of
{b} ∪A is the required open set. �

The following example shows that, in general, τ1 need not be hausdorff.

Example 2.7 Let (X,≺) be a strict partial ordering on the set X := ω ∪
{a, b} such that m ≺ n ⇐⇒ m > n and a ≺ n, b ≺ n, for all m,n ∈ ω. Let
τ0 be the upset topology on (X,≺) and let X be the GLP-space generated
by (X, τ0). Notice that for the upset topology

D0(A) = {x ∈ X : ∃y ∈ A x ≺ y}.

Hence, sets of the form D0(A) are downward closed. Thus, if A intersects
ω, then D0(A) contains an end-segment of ω. Otherwise, D0(A) = ∅. It
follows that a base of open neighborhoods of a in τ1 consists of sets of the
form I ∪ {a} where I is an end-segment of ω. Similarly, sets of the form
I ∪ {b} are a base of open neighborhoods of b. This space is clearly not
hausdorff.

Below we shall study in some detail the GLP-space generated by the
upset topology on an ordering (λ,>), where λ is an ordinal. We note that,
for this space, τ1 will be the usual interval topology on λ, hence hausdorff.

2.3 Nontriviality conditions

Definition 2.8 A GLP-space (X; τ0, τ1, . . . ) is called trivial, if τ1, and hence
all τn for n > 1, are discrete.

Here we show that, in a nontrivial GLP-space, either τ0 is non-hausdorff,
or (X, τ0) has to be rather large.

Recall that a topological space X is first-countable if every point x ∈ X
has a countable basis of open neighborhoods.

Lemma 2.9 Suppose X is hausdorff and first-countable. For all x ∈ D(X)
there is a subset A such that D(A) = {x}.
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Proof. Select a countable basis of open neighborhoods of x, (Un)n>0. We
can additionally assume that Un ⊂ Um whenever n > m. Select an element
un ∈ Un \ {x}, for each n > 0, using the fact that x ∈ D(X). Let A := {un :
n > 0}.

Clearly, x ∈ D(A). If V is a neighborhood of x, there is an n such that
x ∈ Un ⊆ V . Then un ∈ V \ {x} and un ∈ A.

We show that if y 6= x then y /∈ D(A). If y 6= x select the neighborhoods
U 3 x and V 3 y such that U ∩ V = ∅. Let Um ⊆ U . Then, for all n > m
un ∈ U , hence un /∈ V . Hence, V ∩A is finite. Since X is hausdorff, one can
select a smaller neighborhood V ′ ⊂ V such that V ′ ∩A = ∅. �

As an immediate corollary we obtain

Proposition 2.10 For any GLP-space X , if τ0 is hausdorff and first count-
able, then X is trivial.

This follows from the fact that all sets of the form D(A) in a GLP-space
must be 1-open.

As a contrast to this proposition we remark that one obtains many ex-
amples of of nontrivial countable non-hausdorff GLP-spaces generated by
upset topology on various well-founded partial orderings (e.g., on the one
given in Example 2.7, but also on any countable well-ordering).

In the next section we define non-trivial hausdorff GLP-spaces generated
by the standard interval topology of a well-ordering.

2.4 Ordinal spaces

Ordinal spaces provide perhaps the most natural examples of GLP-spaces.

Definition 2.11 Let κ be an ordinal. Let O(κ) denote the set of all ordinals
α < κ equipped with the interval topology τ0 generated by the standard base
consisting of intervals of the form (α, β) where α < β, α, β ∈ O(κ)∪{±∞}.
O(κ) will also denote the GLP-space generated from τ0. We call such GLP-
spaces ordinal spaces.

For ordinal spaces we would like to characterize the topologies τ1, τ2, etc.
in the more familiar terms. We would also like to know for which ordinals
(if any) such spaces are non-trivial. Then we shall consider the question of
topological completeness of the system GLP w.r.t. ordinal spaces.

We infer from Proposition 2.10 the following corollary.

Corollary 2.12 For any countable κ, O(κ) is trivial.
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We will, in fact, show that for any uncountable κ O(κ) is non-trivial.
Before going any further we would like to characterize some simpler bases
for generated GLP-spaces.

3 Bases for GLP-spaces

Suppose (X; τ0, τ1, . . . ) is a GLP-space generated from (X; τ0).

Definition 3.1 Let B0 be a base for τ0. Bn+1 is obtained from B0 by adding
all sets of the form

A0 ∩Dk(A1) ∩Dk(A2) ∩ · · · ∩Dk(Am) (∗)

such that A0 ∈ B0, k 6 n, Ai ⊆ X, for i 6 m.

Proposition 3.2 Bn is a base for τn, for each n.

Proof. We reason by induction on n using the following lemma.

Lemma 3.3 In any GLP-space, if k < n then

Dn(A ∩Dk(B)) = Dn(A) ∩Dk(B).

Proof. This corresponds to a well-known identity

(〈n〉p ∧ 〈k〉q)↔ 〈n〉(p ∧ 〈k〉q),

provable in modal logic GLP. �

We shall obtain a base for τn+1 by considering finite intersections of the
form

Y ∩Dn(B1) ∩Dn(B2) ∩ · · · ∩Dn(Bs), (∗∗)
where Y ∈ Bn. By induction hypothesis, we can assume Y has the form (∗),
for some k < n. If s > 1, the previous lemma allows one to get rid of all
terms of the form Dk(Ai) replacing Dk(Ai) by Dn(B1 ∩Dk(Ai)), the latter
being equal to Dn(B1) ∩Dk(Ai). Hence, (∗∗) belongs to Bn+1. �

Remark 3.4 The base Bn can be further narrowed down a bit by consid-
ering only those sets (∗) where each Ai ⊆ A. This follows from the identity

I ∩D(A) = I ∩D(I ∩A)

which holds in any topological space, if I is open. We will also denote this
modified base Bn.

Further simplifications are possible if we restrict a GLP-space X to its
subspace Dn+1(X), for a fixed n. This allows to obtain a neater character-
ization of topologies τn, for n > 1, in terms of τ0.
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3.1 Dn-reflection

The following notion seems rather useful in the study of GLP-spaces.

Definition 3.5 A set A Dn-reflects at x ∈ X, if x ∈ A implies x ∈ Dn(A).
A point x ∈ X is called Dn-reflexive if x ∈ Dn(X) and, for each A ⊆ X,
Dn(A) reflects at x. Notice that the converse inclusion Dn(Dn(A)) ⊆ Dn(A)
is always true by the Td property of τn.

Similarly, x ∈ X is called m-fold Dn-reflexive if x ∈ Dn(X) and each set
of the form Dn(A1) ∩ · · · ∩Dn(Am) reflects at x.

The next lemma shows that m-fold reflection, for each finite m, follows
from just 2-fold reflection.

Lemma 3.6 Every 2-fold reflexive point x ∈ X is m-fold reflexive.

Proof. Induction on m > 2, the argument works in any Td space, so we
omit the subscript n for readability. Suppose x ∈ D(A1) ∩ · · · ∩D(Am+1),
then x ∈ D(A1)∩ · · · ∩D(Am) and x ∈ D(Am+1). By induction hypothesis,

x ∈ D(D(A1) ∩ · · · ∩D(Am))

and by 2-fold reflection

x ∈ D(D(D(A1) ∩ · · · ∩D(Am)) ∩D(Am+1)).

However, by Td property

D(D(A1) ∩ · · · ∩D(Am)) ⊆ D(A1) ∩ · · · ∩D(Am),

hence
x ∈ D(D(A1) ∩ · · · ∩D(Am) ∩D(Am+1)),

as required. �

Remark 3.7 This argument has a well-known analogue in provability logic
(first formulated by Japaridze). There D-reflection corresponds to the local
Σ1-reflection principle, usually stated in a dual form.

In ordinal GLP-spaces D1-reflection corresponds to the so-called station-
ary reflection, well-studied in set theory. This will be explained below.

Proposition 3.8 Points x ∈ Dn+1(X) are m-fold Dk-reflexive, for each m
and each k 6 n.
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Proof. We give an argument in modal logic format. Reasoning in GLP, it
is sufficient to prove the formal statement of 2-fold reflection:

〈n+ 1〉> ∧ 〈k〉p ∧ 〈k〉q → 〈n+ 1〉(〈k〉p ∧ 〈k〉q).

Suppose the premise holds, then by Lemma 3.3 we obtain

〈n+ 1〉〈k〉p ∧ 〈k〉q,

and by the same lemma once again

〈n+ 1〉(〈k〉p ∧ 〈k〉q).

The latter formula can be weakened to

〈k〉(〈k〉p ∧ 〈k〉q)

by the monotonicity axiom of GLP, as required. �

3.2 Decomposition

Suppose (X; τ0, τ1, . . . ) is a GLP-space generated from (X; τ0). The follow-
ing two propositions provide a neat characterization of the topologies τn, for
n > 1, in terms of τ0.

Proposition 3.9 Topology τn+1 of a GLP-space X restricted to the sub-
space Dn+1(X) has a base consisting of sets of the form

A0 ∩Dn(A1) ∩Dn+1(X)

with A1 ⊆ A0, A0 ∈ B0.

Proof. Base Bn+1 restricted to Dn+1(X) consists of sets of the form

A0 ∩Dk(A1) ∩ · · · ∩Dk(Am) ∩Dn+1(X), (∗∗)

where k 6 n, A0 ∈ B0. By Proposition 3.8

Dk(A1) ∩ · · · ∩Dk(Am) ∩Dn+1(X)

equals
Dk(Dk(A1) ∩ · · · ∩Dk(Am)) ∩Dn+1(X).

The latter equals

Dn(Dk(Dk(A1) ∩ · · · ∩Dk(Am))) ∩Dn+1(X),
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by the identity
Dn+1(X) ∩Dk(C) ⊆ Dn(Dk(C)),

proved similarly to Proposition 3.8. Hence, (∗∗) equals

A0 ∩Dn(A0 ∩Dk(Dk(A1) ∩ · · · ∩Dk(Am))) ∩Dn+1(X),

which has the required format. �

The following proposition characterizes Dn+1(X) in terms of τn.

Proposition 3.10 Dn+1(X) coincides with the set of 2-fold Dn-reflexive
points.

Proof. It is sufficient to show that each reflexive point belongs to Dn+1(X).
Suppose x is Dn-reflexive. Since x ∈ Dn(X), by Proposition 3.8 x is m-fold
Dk-reflexive, for each k 6 n. Consider any Bn+1-set

U := A0 ∩Dk(A1) ∩ · · · ∩Dk(Am),

containing x. Since

x ∈ Dk(A1) ∩ · · · ∩Dk(Am),

by m-fold Dk-reflexivity we obtain

x ∈ Dk(Dk(A1) ∩ · · · ∩Dk(Am)).

Since A0 is an open neighborhood of x, there is a y ∈ A0 such that y 6= x
and

y ∈ Dk(A1) ∩ · · · ∩Dk(Am).

Hence y ∈ U and y 6= x, as required. �

Notice that every point of X \ Dn+1(X) is isolated, hence X is par-
titioned into X \ Dn+1(X) on which the topology is trivial, and the part
Dn+1(X) on which there is a neat base for τn+1. This provides the following
characterization of topology τn+1 in terms of neighborhood bases.

Corollary 3.11 A set A is τn+1-open iff, for each x ∈ A, if x is Dn-
reflexive, then there is a set U := A1 ∩ Dn(A2) such that x ∈ U ⊆ A,
A1 ∈ B0 and A2 ⊆ A1.
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4 Ordinal spaces

Here we shall characterize the topologies in ordinal GLP-spaces. It would
be convenient for us to start with left order topology on an (unspecified and
very big) ordinal Ω, rather than with the interval topology. It is the same
topology as the upset topology on the inverse ordering Ω∗. We shall see that
the usual interval topology will be obtained at the first step, so our study
will naturally extend to ordinal spaces proper. For each of the generated
topologies we establish a little vocabulary translating the general concepts
from the previous sections.

4.1 Left topology, τ0

1. U is a neighborhood of α: U contains [0, α].

2. Isolated points: {0}.

3. Limit points D(X): (0,+∞).

4. α ∈ D(A): ∃β < α β ∈ A.

5. D(A): (min(A),+∞).

6. A D-reflects at α: α 6= min(A).

7. α is D-reflexive: α is a limit ordinal.

Indeed, reflexivity means α 6= 0 and α 6= min(D(A)), for each A, but
min(D(A)) = min(A) + 1 is always a successor ordinal.

8. α is 2-fold reflexive: α is a limit ordinal. Here, the notion coincides
with the reflexivity.

9. Base of open neighborhoods of α in the next topology : (β, α], for α ∈
Lim, β < α; {α} for α /∈ Lim.

This follows by Corollary 3.11, since

[0, α] ∩ (β,+∞) = (β, α].

Thus, the next topology is the familiar interval topology on κ.
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4.2 Interval topology, τ1

1. U is a neighborhood of α: U contains (β, α], for some β < α.

2. Isolated points: 0 and successor ordinals.

3. Limit points D(X): limit ordinals Lim.

4. α ∈ D(A): α ∈ Lim and A ∩ α is cofinal in α.

5. D(A): limit points of A.

6. A D-reflects at α: If α ∈ A then A ∩ α is cofinal in α.

7. α is D-reflexive: cf(α) > ω.

Indeed, reflexivity of αmeans that α ∈ Lim and, for all A, if A is cofinal
in α, then D(A) is cofinal in α. If cf(α) = ω then there is an increasing
sequence (αn)n<ω such that αn → α. Then, for A := {αn : n < ω}
we obviously have D(A) = {α}, so A violates the reflexivity property.
If cf(α) > ω and A is cofinal in α, then D(A) is also cofinal in A.
Suppose β < α, consider the first ω-many elements B of A occurring
above β. Let γ := supB. Obviously, A is cofinal in γ. Since cf(α) > ω,
we have γ < α, q.e.d.

8. α is 2-fold reflexive: cf(α) > ω.

9. Base of open neighborhoods of α in the next topology : D(A)∩ [0, α], if
cf(α) > ω and A is cofinal in α; {α} if not cf(α) > ω.

Notice that D(A) ∩ α is a club (closed unbounded set) in α, if A is
cofinal in α. Also, for any club C in α, D(C) ⊆ C, since C is closed.
So, the filter of (pointed) neighborhoods of α with cf(α) > ω coincides
with the so-called club filter in α. We call this topology the club
topology.

4.3 Club topology, τ2

1. U is a neighborhood of α: U contains α and, if cf(α) > ω, U contains
a club C in α.

2. Isolated points: {α : cf(α) = ω}, 0 and successor ordinals.

3. Limit points D(X): cof(> ω) := {α : cf(α) > ω}.
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4. α ∈ D(A): A ∩ α is stationary in α.

We say that A ⊆ α is stationary in α, if cf(α) > ω and A intersects
every club in α (see [7, 6]).

5. D(A): {α : A ∩ α is stationary in α}.
This is closely related to the so-called Mahlo operation. M(A) is usu-
ally defined as {α ∈ A : A ∩ α is stationary in α}. So,

M(A) = D(A) ∩A.

Thus, if A is 2-closed, then D(A) = M(A).

Example 4.1 λ is a weakly Mahlo cardinal if {ρ < λ : ρ is regular} is
stationary in λ. Since the class Reg of regular cardinals is 2-closed, we have:
λ is weakly Mahlo iff λ ∈ D2(Reg) iff λ ∈M(Reg).

6. A D-reflects at α: If α ∈ A then A ∩ α is stationary in α.

7. α is D-reflexive: Stationary reflection holds in α.

By this we mean: cf(α) > ω and, for all A ⊆ α stationary in α, there
is a β < α such that A ∩ β is stationary in β (see [8]).

D-reflexivity obviously implies stationary reflection. For the other
direction, assume that A is stationary in α and notice that if C is a
club in α and A is stationary in α, then C∩A is stationary. Reflecting
C ∩ A below α for every club C delivers a collection of β ∈ D(A)
intersecting every club C. Hence, D(A) is stationary in α.

8. α is 2-fold reflexive: Simultaneous reflection holds in α for pairs of
stationary sets, that is, cf(α) > ω and for all A1, A2 stationary in α
there is a β < α such that both A1 ∩β and A2 ∩β are stationary in β.

This principle is known to be stronger than stationary reflection, at
least under some restrictions (see below).

9. Base of open neighborhoods of α in the next topology :

{β 6 α : A ∩ β is stationary in β},

if α is 2-fold reflexive and A ∩ α is stationary in α; {α} if α is not
2-fold reflexive.

We call this topology τ3 Mahlo topology, because its open sets are
defined using Mahlo operation.
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5 Discussion

The first ordinal at which topology τn is not discrete is, obviously, δn :=
min(Dn(κ)). We see that δ0 = 1, δ1 = ω, δ2 = ω1. However, we do not
know within ZFC what is δ3 and whether such an ordinal even exists at all.

Stationary reflection has attracted considerable attention by set theorists
with contributors such as Jech, Shelah, Magidor, Harrington, Solovay and
many others (see [?] for an overview). Here we mention only the following
results.

It is well known that every weakly compact cardinal is (2-fold) reflexive.
Moreover, under the assumption V = L only such cardinals are reflexive
(Jensen [4]).

However, in general, δ3 need not be very big. In fact, under some strong
large cardinal assumptions one can force δ3 to be equal ℵω+1 (Magidor,
[8]). In general, we also know by simple arguments that reflexive ordinals
have to be regular cardinals, but not successors of regular cardinals. In
other words, reflexive ordinals are either weakly inaccessible or successors of
singular cardinals (such as ℵω+1).

The consistency strength of the assertion that δ3 = ℵω+1 exists can be
located between the existence of a measurable cardinal and that of infinitely
many supercompact cardinals (Magidor [8], Dodd–Jensen [?]).

I do not know exactly, what is the consistency strength of the weaker
assertion “δ3 exists.” Does it imply the consistency of any large cardinal
axiom? For example, does it imply that it is consistent that a weakly com-
pact cardinal exists? (We obviously cannot do any better than that because
weakly compact cardinals are reflexive.)

6 Non-triviality of the topologies τn

Here we give a sufficient condition, due to Philipp Schlicht, for all the topolo-
gies τn to be non-discrete. We show that, if there exists a Π1

n-indescribable
cardinal κ, then τn+1 is not discrete.

Recall the definition of Q-indescribable cardinal, for a class of second-
order formulas Q (see Kanamori [5]). We assume Q to contain at least the
class of all first order formulas (denoted Π1

0).

Definition 6.1 A set A is Q-indescribable in κ if, for all R ⊆ Vκ and all
sentences ϕ ∈ Q,

(Vκ,∈, R) � ϕ ⇒ ∃α < κ (α ∈ A and (Vα,∈, R ∩ Vα) � ϕ).
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Here R is an unspecified (unary) relation symbol in the language.
Let A ∈ Fκ if A ⊆ κ and κ \ A is not Q-indescribable in κ. Fκ is called

the Q-indescribable filter over κ.
κ is called Q-indescribable if κ is Q-indescribable in κ, i.e., equivalently,

if Fκ is a proper filter.

In would be convenient to translate these definitions into topological
terms. The Q-indescribable filter will be perceived as the filter of pointed
neighborhoods of κ in a certain Q-describable topology τQ. The topology can
then be more directly defined as follows.

Definition 6.2 For any sentence ϕ ∈ Q and any R ⊆ Vκ, let Uκ(ϕ,R)
denote the set

{α 6 κ : (Vα,∈, R ∩ Vα) � ϕ}.

The topology τQ is generated by the subbase consisting of sets Uκ(ϕ,R),
for all κ, ϕ ∈ Q, R ⊆ Vκ.

Example 6.3 Intervals [0, κ], for each κ, are open: Consider ϕ = >.

Example 6.4 Intervals (λ, κ], for λ < κ, are open. In particular, {κ} is
a basic open set, if κ is 0 or a successor ordinal. Consider R = {λ} and
ϕ = (∃x x ∈ R). We have:

(Vα,∈, R ∩ Vα) � ϕ ⇐⇒ α > λ.

Lemma 6.5 The sets Uκ(ϕ,R) form a base for τQ, if Q is any of the classes
Π1
n, for n > 0.

Proof. First, we remark that the following relationship is obvious for λ 6 κ:

Uκ(ϕ,R) ∩ [0, λ] = Uλ(ϕ,R ∩ Vλ). (∗)

Consider an intersection of two subbase sets:

Uκ1(ϕ1, R1) ∩ Uκ2(ϕ2, R2),

such that w.l.o.g. κ1 6 κ2. By (∗) we can replace Uκ2(ϕ2, R2) by Uκ1(ϕ2, R2∩
Vκ1). Hence, we can assume κ1 = κ2 =: κ.

Furthermore, we can assume κ to be a limit ordinal; otherwise, if κ =
λ+ n, for n < ω and λ ∈ Lim, we have

Uκ(ϕ,R) = Uλ(ϕ,R ∩ Vλ) ∪ F,
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where F is a finite set of successor ordinals. Each successor ordinal, by the
previous example, is an element of the base. Hence, it is sufficient to show
that

Uκ(ϕ1, R1) ∩ Uκ(ϕ2, R2) = Uκ(ϕ,R),

for some ϕ, R ⊆ Vκ, if κ is a limit ordinal.
Since κ is limit Vκ is closed under pairing. Hence, if R1, R2 ⊆ Vκ we can

form the product R1 ×R2 ⊆ Vκ. Then,

Uκ(ϕ1, R1) ∩ Uκ(ϕ2, R2) = Uκ(ϕ1(R1) ∧ ϕ2(R2), R1 ×R2).

Since R1 and R2 can be recovered from R = R1×R2 by first order definable
projection, this shows that the intersection belongs to the base. �

Let DQ denote the derived set operator for this topology. Then it is
easy to see that κ ∈ DQ(A) holds iff A is Q-indescribable in κ. Hence, κ is
Q-indescribable iff κ ∈ DQ(On) iff κ ∈ DQ(κ).

A weakly compact cardinal can be defined as the Π1
1-indescribable one.

An exercise 6.12 in Kanamori [5] (due to Lévy) states the following basic
fact:

Proposition 6.6 If A is stationary in κ, then {α < κ : A ∩ α is stationary in α}
belongs to the Π1

1-indescribable filter.

In topological terms this is equivalent to the following statement (which
will be superseded by the next proposition):

Proposition 6.7 The Mahlo topology τ3 is contained in τΠ1
1
.

Proof. The statement Club(C) expressing that C is a club (in On) is
naturally expressed as a first order formula with a second order variable C.
Likewise, the fact that the cofinality of the universe is uncountable can be
expressed by the Π1

1-sentence

Cof>ω := ∀X (X ⊆ On ∧ |X| 6 ω → ∃β∀δ ∈ X δ < β).

Hence,
(Vα,∈) � Cof>ω ⇐⇒ cf(α) > ω.

Then, A ⊆ α is stationary in α iff

(Vα,∈, A) � Cof>ω ∧ ∀C (Club(C)→ ∃β ∈ A ∩ C).

15



Hence,
{α < κ : A ∩ α is stationary in α}

equals
{α < κ : (Vα,∈, A ∩ α) � ψ},

for the above formula ψ ∈ Π1
1. Hence, if A is stationary in κ, {α < κ :

A ∩ α is stationary in α} will be an open neighborhood of κ in τΠ1
1
. �

Proposition 6.8 For any n > 0, τn+2 is contained in τΠ1
n

.

Proof. We shall show that, for each n, there is a Π1
n-formula ϕn+1(R) such

that
κ ∈ Dn+1(A) ⇐⇒ (Vκ,∈, A ∩ κ) � ϕn+1(A ∩ κ). (∗∗)

This implies that, for each κ ∈ Dn+1(A), the set Uκ(ϕn+1, A ∩ κ) is a τΠ1
n
-

open subset of Dn+1(A) containing κ. Hence, each Dn+1(A) is τΠ1
n
-open.

Since τn+2 is generated over τn+1 by the open sets of the form Dn+1(A) for
various A, we have τn+2 ⊆ τΠ1

n
.

We prove (∗∗) by induction on n. For n = 0, notice that κ ∈ D1(A) iff
(κ ∈ Lim and A ∩ κ is unbounded in κ) iff

(Vκ,∈, A ∩ κ) � ∀α∃β ∈ A α < β.

For the induction step, notice that by Proposition 3.11

κ ∈ Dn+1(A) ⇐⇒ (κ is 2-fold Dn-reflexive) ∧
∀Y ⊆ κ (κ ∈ Dn(Y )→ ∃α < κ (α ∈ A ∧ α ∈ Dn(Y )).

Using the induction hypothesis, for some ϕn(R) ∈ Π1
n−1 we have

α ∈ Dn(A) ⇐⇒ (Vα,∈, A ∩ α) � ϕn(A ∩ α).

Hence, the second line of the expression for κ ∈ Dn+1(A) is equivalent to

(Vκ,∈, A ∩ κ) � ∀Y ⊆ On (ϕn(Y )→ ∃α (α ∈ A ∧ ϕVαn (Y ∩ α))).

By the induction hypothesis, this formula is Π1
n.

To treat the first line of the formula, we prove the following lemma.

Lemma 6.9 κ is 2-fold Dn-reflexive iff κ ∈ Dn(On) and

∀Y1, Y2 ⊆ κ (κ ∈ Dn(Y1) ∩Dn(Y2)→ ∃α < κ α ∈ Dn(Y1) ∩Dn(Y2)).
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Proof. The ‘only if’ part is obvious. To prove the ‘if’ part, consider any
κ ∈ D(Y1) ∩ Dn(Y2). We must show that, for each open neighborhood
U ∈ Bn such that U 3 κ, there is a α 6= κ such that α ∈ U∩Dn(Y1)∩Dn(Y2).

If U = A0 ∩Dk(A1) ∩ · · · ∩Dk(Am), for some k < n and A0 ∈ B0, then

U ∩Dn(Y1) ∩Dn(Y2) = A0 ∩Dn(Y ′1) ∩Dn(Y2),

where
Y ′1 := Y1 ∩Dk(A1) ∩ · · · ∩Dk(Am).

Hence, we obtain an α < κ such that α ∈ A0 ∩Dn(Y ′1) ∩Dn(Y2). It follows
that α ∈ U ∩Dn(Y1) ∩Dn(Y2), as required. �

Similarly to the above, this formula can also be rewritten to a Π1
n-format.

�

Corollary 6.10 If there is a Π1
n-indescribable cardinal, then τn+2 has a

non-isolated point.

Corollary 6.11 If there is a cardinal which is Π1
n-indescribable, for each n,

then all τn are non-trivial.

7 Iterated derivatives

For a topological space X and a set A ⊆ X define subsets Dα[A] by trans-
finite recursion as follows.

D0[A] := X; Dα+1[A] := D(Dα[A] ∩A); Dλ[A] =
⋂
α<λ

Dα[A].

We also define Dα := Dα[X].
If X is scattered, the sequence Dα[A] is a strictly decreasing sequence

of closed sets, hence we have Dα[A] = ∅, for some α. Rank of a scattered
space X is the least α such that Dα = ∅.

For GLP-space generated by the left topology on ordinals we characterize
the iterations of its derived set operators D0, D1 and D2. Dα

n[On] will be
denoted Dα

n . For each operator Dn we calculate the least fixed point ordinal,
i.e., the least α > 0 such that α ∈ Dα

n .

Proposition 7.1 Dα
0 = [α,+∞).

Proof. By induction on α. �
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Proposition 7.2 Dα
1 = {ωα(1 + β) : β ∈ On}, if α > 0.

Proof. Basis: D1
1 = Lim = {ω(1 + β) : β ∈ On}. Induction step:

Dα+1
1 = D1(Dα

1 ) = D1({ωα(1 + β) : β ∈ On}).

However, D1(A) is the set of limit points of A, hence

D1({ωα(1 + β) : β ∈ On}) = {ωα(1 + β) : β ∈ Lim} =

= {ωα(ω(1 + γ)) : γ ∈ On} = {ωα+1(1 + γ) : γ ∈ On}.

Finally, if λ is a limit ordinal, we have

Dλ
1 =

⋂
α<λ

Dα
1 =

⋂
α<λ

{ωα(1 + β) : β ∈ On}.

We claim: δ ∈
⋂
α<λ{ωα(1 + β) : β ∈ On} iff δ = ωλ(1 + β), for some β.

Suppose δ = ωλ(1 + β). If α < λ then λ = α + µ, for some µ > 0,
hence ωλ = ωαωµ and δ = ωαωµ(1 + β) = ωα(1 + β′), for some β′. Hence,
δ ∈ {ωα(1 + β) : β ∈ On}.

Suppose δ = ωλ(1 + β) + γ, for some γ < ωλ. Then, by continuity, for
some α < λ we have γ < ωα. Then δ /∈ {ωα(1 + β) : β ∈ On}. �

Corollary 7.3 µα > 0. α ∈ Dα
1 = ε0.

Proof. If α ∈ Dα
1 , α > 0, then α = ωα(1 + β) which implies β = 0 and

ωα = α. �

Let rα enumerate infinite regular cardinals: r0 = ℵ0, r1 = ℵ1, . . . ,
rω = ℵω+1, etc.

Proposition 7.4 β ∈ Dα
2 ⇐⇒ cf(β) > rα, for α > 0.

Proof. Basis: β ∈ D1
2 ⇐⇒ cf(β) > ℵ1 is already shown.

Induction step: Let cof(> λ) denote the class of all ordinals α such that
cf(α) > λ.

β ∈ Dα+1
2 ⇐⇒ (β ∩Dα

2 is stationary in β and cf(β) > ω)

⇐⇒ (cf(β) > ω and cof(> rα) ∩ β is stationary in β).

We claim: (cf(β) > ω and cof(> rα) ∩ β is stationary in β) iff cf(β) >
rα+1.
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Suppose cf(β) > rα+1. Consider any club C in β. The order type of
C is at least cf(β) > rα+1. Let g(γ) denote the γ-th element of C and let
λ := g(rα). We have cf(λ) = rα.

Indeed, g : rα → λ is a cofinal map, hence cf(λ) 6 rα. If there also
were a cofinal map h : µ → λ with µ < rα, we would obtain a cofinal map
f : µ→ rα by setting

f(γ) := min{ν : g(ν) > h(γ)}.

This contradicts the regularity of rα. Hence, cf(λ) = rα and cof(> rα)
intersects C.

Suppose cf(β) < rα+1. Let Y be a cofinal sequence in β of type λ =
cf(β) 6 rα. Then the derived set C := D1(Y ) is a club in β. Moreover, for
all γ ∈ C,

cf(γ) 6 otyp(C ∩ γ) < λ 6 rα.

Hence, C ∩ cof(> rα) ∩ β = ∅ and cof(> rα) ∩ β is not stationary in β.
For the limit ordinals λ, we have β ∈ Dλ

2 ⇐⇒ ∀α < λ β ∈ Dα
2 ⇐⇒

∀α < λ cf(β) > rα ⇐⇒ cf(β) > rλ. �

Corollary 7.5 µα > 0. α ∈ Dα
2 = µα. (α = rα) = λ, where λ is the first

weakly inaccessible cardinal.

Proof. We prove that λ is weakly inaccessible iff λ = rλ.
If λ = rλ then λ is a limit ordinal (∀α rα ∈ Lim). Hence, it is a limit

of cardinals rα, for α < λ. It is also a regular cardinal, hence weakly
inaccessible.

Suppose λ is a regular limit cardinal. Then Reg∩ λ is cofinal in λ, since
for each α < λ we have α+ < λ and α+ is regular. Since λ is regular,
|Reg ∩ λ| = λ. It follows that Reg ∩ λ = {rβ : β < λ}, hence rλ = λ. �

Corollary 7.6 (i) D1
2 ⊆ D

ω1
1 , but D1

2 6⊆ D
ω1+1
1 and Dω1+1

1 6⊆ D1
2;

(ii) C1(D1
2) = Dω1

1 ;

(iii) D1(D1
2) = Dω1+1

1 .

Proof. (i) Let α ∈ D1
2, then cf(α) > ω1. Any α can be represented in the

form α = ω1β + γ with γ < ω1. If cf(α) > ω1, we have γ = 0 and β > 0.
Hence, by Proposition 7.2, α ∈ Dω1

1 .
Similarly, we observe that ω1ω is the minimum of Dω1+1

1 , but cf(ω1ω) =
ω, hence ω1ω /∈ D1

2. On the other hand, ω1 ∈ D1
2, but ω1 /∈ Dω1+1

1 .
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(ii) Clearly, C1(D1
2) ⊆ Dω1

1 , since Dω1
1 is closed and (i) holds. If α ∈ Dω1

1

then α = ω1β with β > 0. If β is a successor, then cf(α) = ω1 hence α ∈ D1
2.

If β ∈ Lim then β is a limit of successor ordinals. Hence ω1β is a limit of
ordinals of cofinality ω1, that is, α ∈ C1(D1

2).
(iii) This follows from (ii) as D1C1A = D1A, for any A. �

To compare D3 and iterated D2 operators we prove the following propo-
sition.

Proposition 7.7 For any κ, κ ∈ D1
3 iff cf(κ) ∈ D1

3.

Proof. Let λ = cf(κ). We must show that λ is D2-reflexive iff so is κ. First,
we need two basic auxiliary lemmas. They are well known and easy.

Lemma 7.8 If λ = cf(κ) then there is a τ1-continuous, strictly increasing
and cofinal map f : λ→ κ.

Proof. Since cf(κ) = λ, there is a cofinal subset X in κ of order type λ.
The set of limit points Y := D1(X) ∩ κ is a club in κ. In fact, Y in one-to-
one correspondence with the limit ordinals below λ: if α < λ and α ∈ Lim,
let α 7→ otyp(X ∩ α). Hence, otyp(Y ) = otyp(λ ∩ Lim) = λ, since λ is a
cardinal. The enumeration function for Y satisfies all the requirements. �

Lemma 7.9 Let f : λ→ κ be as in the previous lemma. Then

• f is closed, i.e., f ′′X is closed for every closed X ⊆ λ;

• X is a club in α 6 λ iff f ′′X is a club in f(α) 6 κ;

• X is stationary in α 6 λ iff f ′′X is stationary in f(α) 6 κ.

Proof. (i) Assume f ′′X ∩α is cofinal in α. Let Xα := f−1(f ′′X ∩α) and let
β := supXα. Since Xα ⊆ X and X is closed, we have β ∈ X. By continuity
of f we obtain f(β) = sup f ′′Xα = sup f ′′X ∩ α = α.

(ii) If X is a club in α then X ∪ {α} is closed, hence f ′′X ∪ {f(α)} is
closed, therefore f ′′X is closed in f(α). Since α = supX by continuity we
have f(α) = sup f ′′X, hence f ′′X is unbounded in f(α).

If f ′′X is a club in f(α), then f ′′X ∪ {f(α)} is closed, hence X ∪ {α} =
f−1(f ′′X∪{f(a)}) is closed. Hence, X is closed in α. Also, if supX = β < α
then sup f ′′X = f(β) < f(α). Hence, X is unbounded in α.

(iii) If X is stationary in α and C is a club in f(α), then C∩f ′′α is a club
in f(α). Hence, C ′ := f−1(C∩f ′′α) is a club in α (we have f ′′C ′ = C∩f ′′α).
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Since X is stationary, X ∩ C ′ 6= ∅. Hence, f ′′X ∩ C ∩ f ′′α = f ′′C ′ 6= ∅, as
required.

If f ′′X is stationary in f(α) and C is a club in α, then f ′′C is a club in
f(α) and f ′′C ∩ f ′′X 6= ∅. It follows that C ∩X 6= ∅. �

Assume κ is reflexive for pairs of stationary sets and λ = cf(κ). Let
f : λ → κ be a continuous increasing cofinal map. If A,B are stationary
in λ, then f ′′A, f ′′B are stationary in κ, hence there is a β < κ such that
β ∩ f ′′A, β ∩ f ′′B are stationary in β. In particular, both of these sets are
cofinal in β, and since f ′′λ is closed β ∈ f ′′λ. Let α := f−1(β). Since
f ′′(A ∩ α) = β ∩ f ′′A and similarly for B, we obtain that A ∩ α and B ∩ α
are stationary in α.

Assume λ = cf(κ) is reflexive for pairs of stationary sets. Let A,B be
stationary in κ. Since f ′′λ is a club in κ, A∩f ′′λ and B∩f ′′λ are stationary
in κ. Let A′ := f−1(A ∩ f ′′λ) and B′ := f−1(B ∩ f ′′λ). A′ and B′ are
stationary in λ, hence there is an α < λ such that A′ ∩ α and B ∩ α are
stationary in α. Then f ′′(A′∩α) and f ′′(B′∩α) are stationary in f(α) < κ.
Since A ∩ f(α) contains f ′′(A′ ∩ α) and similarly for B, we obtain that
A ∩ f(α) and B ∩ f(α) are stationary in f(α). �

From this proposition we infer the following corollary. Let θ3 := min D3(Ω)
denote the first ordinal reflexive for pairs of stationary sets.

Corollary 7.10 θ3 is a regular cardinal.

Proof. Indeed, since θ3 is minimal, we have cf(θ3) = θ3. �

Proposition 7.11 (i) κ ∈ D1
3 implies cf(κ) > θ3;

(ii) κ ∈ C2(D1
3) iff cf(κ) > θ3;

(iii) C2(D1
3) = Dµ

2 , where µ is such that θ3 = rµ.

Proof. (i) If κ ∈ D1
3 then cf(κ) ∈ D1

3, hence cf(κ) > θ3.
By Proposition 7.4, Statements (ii) and (iii) are equivalent. By (i),

D1
3 ⊆ Dµ

2 and the latter is τ2-closed. Hence C2(D1
3) ⊆ Dµ

2 . We show
Dµ

2 ⊆ C2(D1
3).

Assume cf(κ) > θ3. If cf(κ) = θ3 then κ ∈ D1
3, by Proposition 7.7. If

cf(κ) > θ3 then the set

S := {α < κ : cf(α) = θ3}

is stationary in κ (Lemma 6.10 in Kunen [6]). By Proposition 7.7, this means
D1

3 ∩ κ is stationary in κ, hence κ ∈ D2(D1
3) ⊆ C2(D1

3). �
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Remark 7.12 Assuming infinitely many supercompact cardinals, in some
model of ZFC we have θ3 = ℵω+1. Then µ = ω and we obtain C2(D1

3) = Dω
2 .

However, it is also consistent with ZFC that θ3 is a weakly compact cardinal
(if such cardinals exist), and then µ must be the same cardinal.

8 Reduction property in GLP-spaces

An analog of the reduction property for GLP-spaces introduced below plays
an important role in the proof-theoretic analysis of Peano arithmetic based
on provability algebras (see [2]).

We begin with the following definitions. Let X be a scattered space.

Definition 8.1 A binary relation < on P(X) is defined by

A < B ⇐⇒ B ⊆ D(A).

We also define A ≡ B iff, for all C ⊆ X,

C < A ⇐⇒ C < B.

Obviously, < is transitive and ≡ is an equivalence relation on P(X). If one
excludes ∅, then < is irreflexive, for A ⊆ D(A) implies A has no isolated
points, whereas we assume X to be scattered. Hence, < is a partial ordering
relation on P∗(X) := P(X) \ {∅}.

If (X; τ0, τ1, . . . ) is a GLP-space, we denote < and ≡ for τn, respectively,
<n and ≡n.

Example 8.2 For the left order topology τ0 on Ω we have:

A <0 B ⇐⇒ B ⊆ (min(A),+∞) ⇐⇒ min(A) < min(B).

Hence,

A ≡0 B ⇐⇒ min(A) = min(B) ⇐⇒ C0(A) = C0(B),

where C0 denotes the closure operator in τ0. Notice that

• <0 is well-founded on P∗(Ω) and of height Ω;

• A ≡0 B iff A and B are incomparable;

• <0 linearly orders P(Ω)/≡0.
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Remark 8.3 The exact analogues of these notions in the provability GLP-
algebra of an arithmetical theory T are: A <n B holds iff sentence B implies
〈n〉TA, the n-consistency assertion for a sentence A. Relation A ≡n B holds
iff T + A and T + B prove the same sentences of the form 〈n〉TC. This
class of sentences is very close to the class of Πn+1-sentences in arithmetic
and, in fact, coincides with Πn+1 modulo equivalence in T + 〈n〉T>. Thus,
≡ is essentially the notion of Πn+1-conservativity in arithmetic (modulo
T + 〈n〉T>).

We want to characterize ≡ somewhat more generally. First, we observe
the following properties.

Lemma 8.4 (i) A ≡ CA;

(ii) CA = CB implies A ≡ B.

Proof. Statement (i) follows from the fact that DC is closed, for each C.
Statement (ii) follows from (i): if CA = CB then A ≡ CA = CB ≡ B. �

We would like to find out when the opposite implication in (ii) holds.
Define:

Ã :=
⋂
{DC : DC ⊇ A}.

Obviously, Ã is a closed set containing A, hence CA ⊆ Ã.

Lemma 8.5 (i) A ≡ Ã;

(ii) A ≡ B ⇐⇒ Ã = B̃.

Proof. Statement (i) follows from the definition, and (ii) follows from (i).
�

In general, Ã does not equal the closure of A. However, for a natural
class of spaces this is so. Recall that a space X is regular (or T3) if for any
closed A ⊆ X and any a /∈ A there are open U 3 a and V ⊇ A such that
U ∩ V = ∅.

Proposition 8.6 If X is T3 then Ã = CA, if A ⊆ D(X), and Ã = X,
otherwise.

Proof. Assume A ⊆ DX. We have to show Ã ⊆ CA. Let a /∈ CA. Pick
open U 3 a and V ⊇ CA such that U ∩ V = ∅. Letting C := X \ U we
prove DC ⊇ A and a /∈ DC.
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Since C is closed, DC ⊆ C, hence a /∈ DC.
Consider any x ∈ A and any open neighborhood Ux 3 x. Since V ∩Ux is

open and x ∈ A ⊆ DX, there is a point y 6= x such that y ∈ V ∩ Ux. Since
y ∈ V we also have y ∈ C. Hence, x ∈ DC. �

Corollary 8.7 If X is T3 then A ≡ B holds iff A,B ⊆ DX and CA = CB,
or both A,B 6⊆ DX.

Proof. If A ⊆ DX, then CA ⊆ DX 6= X. �

Example 8.8 For the interval topology τ1 on Ω we have: A ≡1 B iff either
A,B ⊆ Lim and C1A = C1B, or both A,B 6⊆ Lim. This follows from the
fact that interval topology is T3.

Let A ⊆ Ω be closed and α /∈ A. There is an interval (β, α] such that
A ∩ (β, α] = ∅. Then let V := [0, β] ∪ (α,+∞) and U := (β, α].

Notice that the ordering <1 is a subordering of <0, hence it is also well-
founded.

Proposition 8.6 also applies to all topologies τn of ordinal GLP-spaces,
n > 0. Recall that a space X is zero-dimensional, if X has a base of clopen
sets. The interval topology on Ω is zero-dimensional, since it has a base of
intervals of the form (α, β] (for α < β including α = −∞, β = +∞). The
complement of (α, β] has the form [0, α] ∪ (β,+∞), which is a union of two
basic open sets.

We obviously remark that if τ0 is zero-dimensional then so are τn, for all
n, in the generated GLP-space. Indeed, all base sets of the form Dn(A) will
be open, and hence clopen, in τn+1. Thus, we obtain the following corollary.

Corollary 8.9 In the ordinal GLP-space Ω, all the topologies τn are zero-
dimensional.

Lemma 8.10 A zero-dimensional space is regular.

Proof. If A is closed and a /∈ A, then there is a basic clopen set U such
that a ∈ U and U ∩A = ∅. Then U and X \U play the role of U and V . �

Corollary 8.11 In the ordinal GLP-space Ω, for all n > 1, we have:

A ≡n B ⇐⇒ A,B ⊆ DnΩ and CA = CB, or both A,B 6⊆ DnΩ.
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Now we introduce a stronger version of equivalence on sets. It is an
analog of the notion of provable Π1-conservativity. In a provability algebra
of a theory T this means that, for each sentence π ∈ Π1,

2T (A→ π)↔ 2T (B → π)

is true and provable in T . This can be written dually as

3T (A ∧ ¬π) = 3T (B ∧ ¬π).

Restricting this to sentences π of the form 3TC yields the following defini-
tion.

Definition 8.12 Define A ∼= B iff, for all C ⊆ X,

C(A ∩ −DC) = C(B ∩ −DC). (∗)

In a GLP-space, we denote by ∼=n the relation ∼= for topology τn.

Lemma 8.13 If A ∼= B then CA = CB, DA = DB and A ≡ B.

Proof. Consider C = ∅ and use the identity DCA = DA. �

Definition 8.14 A GLP-space X (and the corresponding dual algebra) sat-
isfies (weak) α-reduction property for Dn if, for each subset A ⊆ X,

Dn+1(A) ≡n Dα
n[A].

X satisfies strong α-reduction property for Dn if, for each subset A ⊆ X,

Dn+1(A) ∼=n Dα
n[A].

Remark 8.15 The provability algebra of elementary arithmetic satisfies
the ω-reduction property for each n. This is the content of the reduction
lemma [2].1

Obviously, the strong α-reduction property implies the weak one. For
regular spaces we obtain the following characterization.

Lemma 8.16 Suppose (X, τn) is regular. Then the weak reduction property
for X is equivalent to the identity

Cn(Dn+1A) = Dα
n[A],

for any A ⊆ X.

1Does it satisfy the strong reduction property?
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Proof. Indeed, both Dn+1A and Dα
n[A] are contained in Dn(X), hence

Proposition 8.6 applies and

Cn(Dn+1A) = CnD
α
n[A].

However, Dα
n[A] is closed, hence CnD

α
n[A] = Dα

n[A]. �

Consider the GLP-space Ω generated by the left topology on ordinals.

Proposition 8.17 Ω satisfies the strong ω-reduction property for D0.

Proof. Recall that D0(A) = (min(A),+∞) and hence D+
0 (A) = [min(A),+∞),

the closure of A to the right. Similarly, −D0(C) = [0, c] where c = min(C).
D1(A) is the set of limit points of A. Dω

0 [A] = [aω,+∞) where aω is the
ω-th element of A. For any set C we consider two cases.

Case 1. There is no limit point of A in the interval [0, c]. Then both
sides of the equation (∗) are empty.

Case 2. There is a limit point of A in the interval [0, c]. Then aω belongs
to [0, c] and is the first limit point of A. Hence, both sides of the equation
(∗) equal [aω,+∞). �

Proposition 8.18 Ω satisfies the ω1-reduction property for D1.

Proof. This follows as in Lemma 7.6 (ii). �

9 A upper bound result

Theorem 2 Suppose A is a τ0-closed subset of a GLB-space X. Then, for
all ordinals α > 0,

Dα
1 (A) ⊆ Dωα

0 (A).

For a proof of this theorem we need a few lemmas.

Lemma 9.1 (i) D1(A) ∩D0(B) = D1(A ∩D0(B)),

(ii) For any α > 0, Dα
1 (A) ∩D0(B) = Dα

1 (A ∩D0(B)).

Proof. Part (i) is well-known to hold in any GLB-algebra. Part (ii) is
proved by induction on α. Basis is Part (i). Induction step:

Dα+1
1 A∩D0B = D1(Dα

1A)∩D0B = D1(Dα
1A∩D0B) = D1D

α
1 (A∩D0B).
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If λ is a limit, then

Dλ
1A∩D0B = D0B∩

⋂
α<λ

Dα
1A =

⋂
α<λ

(D0B∩Dα
1A) =

⋂
α<λ

Dα
1 (A∩D0B) = Dλ

1(A∩D0B).

�

For a topological space X and a set A ⊆ X define subsets Dα[A] by
transfinite recursion as follows.

D0[A] := X; Dα+1[A] := D(Dα[A] ∩A); Dλ[A] =
⋂
α<λ

Dα[A].

Notice that Dα[A] is a decreasing sequence of closed subsets of X. More-
over, if A is closed, then Dα[A] = DαA.

Lemma 9.2 For any A ⊆ X, D1(A) ⊆ Dω
0 [A].

Proof. We show by induction on n < ω that D1(A) ⊆ Dn
0 [A]. The claim is

obvious for n = 0. Suppose the claim holds for n = k. Then

D1(A) ⊆ D1(A) ∩Dk
0[A] = D1(A ∩Dk

0[A]) ⊆ D0(A ∩Dk
0[A]) = Dk+1

0 [A].

The first equality holds since Dk
0[A] has the form D0(B). �

Proof of Theorem. We argue by induction on α (with a quantifier over
all closed sets A).

Basis: α = 1. We must show D1(A) ⊆ Dω
0 (A), that is, for all n < ω,

D1(A) ⊆ Dn
0 (A). We prove it by a subsidiary induction on n. For n = 0

the claim is obvious, since A is closed. For n = k + 1 we obtain:

D1(A) ⊆ D1(A) ∩Dk
0(A) = D1(A ∩Dk

0(A)) = D1D
k
0(A) ⊆ Dk+1

0 (A).

For the first equality we used Lemma 9.1 (i). For the second we used A ⊇
Dk

0(A), which is valid since A is closed.
Induction step. Suppose α is a limit ordinal. Then

Dα
1 (A) =

⋂
β<α

Dβ
1 (A) ⊆

⋂
β<α

Dωβ

0 (A) = Dωα

0 (A).

The last equality follows from the fact that the sequence of sets of the form
Dβ

0 (A) is decreasing and ωα = supβ<α ω
β if α is a limit ordinal.

Suppose α = β + 1. By Lemma 9.2,

Dβ+1
1 (A) = D1(Dβ

1A) ⊆ Dω
0 [Dβ

1A] =
⋂
n<ω

Dn
0 [Dβ

1A].
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We prove by induction on n < ω that

Dn
0 [Dβ

0A] ⊆ D0D
ωβ ·n
0 A. (∗)

It will then follow that

Dβ+1
1 (A) ⊆

⋂
n<ω

D0D
ωβ ·n
0 A = Dωβ+1

0 A.

If n = 1 the claim (∗) amounts to the induction hypothesis for β.
If (∗) holds for n = k, then we obtain:

Dn+1
0 [Dβ

1A] = D0(Dβ
1A ∩Dn

0 [Dβ
1A]) ⊆ D0(Dβ

1A ∩D0D
ωβ ·n
0 A) =

= D0(Dβ
1 (A ∩D0D

ωβ ·n
0 A)) = D0D

β
1D0D

ωβ ·n
0 A (1)

By the induction hypothesis applied to the closed set D0D
ωβ ·n
0 A in place of

A we obtain

D0D
β
1D0D

ωβ ·n
0 A ⊆ D0(Dωβ

0 D0D
ωβ ·n
0 A) = D0D

ωβ ·(n+1)
0 A.

Here we also used the obvious fact that DαDβB = Dβ+αB, for any α, β,B.
�
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