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1. Introduction

K. Godel (31): 7" is consistent = Tt/ Con(T').
Holds for all reasonable 'T".

G. Gentzen (37):
PA + (transfinite ind. up to gy) - Con(PA).
Specific for PA.

Ordinal £) = sup{w,w", ...} is represented by an ele-
mentary well-ordering < on N.

e [ransf. ind. depends on the formula representing <

e Con depends on the proof system



theory — ~-  ordinal (notation system)

complex simple

e The problem of canonical ordinal notations
e General lack of canonicity. Category of proofs?

e Category of ordinal notation systems?
Ordinals with additional operations, like

(807 <, 07 —|_7 waj)

What is the right notion of ‘theory’?
What is the right choice of operations?

‘Coordinate-free’ proof theory?



Graded Provability Algebras
e Decent ‘simple’ structures
e Ordinal notation systems are canonically extractable

e Closely linked to the theories by ‘arithmetical inter-
pretation’

e Clear proof-theoretic analysis

Provability logic:

theory  ~~  provability logic

complex simple



2. Background

Elementary arithmetic EA is formulated in the lan-
guage (0,1,+,-,2", <, =) and has some minimal set of
basic axioms defining these symbols plus the induction
schema for bounded formulas.’

Peano arithmetic PA is EA with full induction:
p(0) AVz (p(z) = p(z +1)) = Yrp(z).

Yip-formulas: 3x\Vxo ... Qr,p(xy, ..., z,), with o(T)
bounded.
1>, = EA + induction for >,-formulas

EAC 1Y CIYy--- CPA

LEA is also known as IA + exp and EFA.



2.1. Lindenbaum Algebras

Lindenbaum algebra of I', the space of all T-independent
sentences:
L1 = {T-sentences}/ ~p, where

o~ = ThEpey

Ordering: o] < [¢] <= T F ¢ — 2.
Boolean algebra with A, Vv, =, T, L.

Identities = boolean tautologies, like

xV-x=1T @V T,
A = —|—|gp<ﬁgp7



Extension 7' C U +—— filter in L.
['U ~ [,T/U




Fact. 7' is consistent = L7 is dense.
r<y=dzr<z<y
(Follows from Rosser's theorem.)

Fact. A, B countable, dense = A ~ .
Hence L, ~ L, for all reasonable 71", U.
(By Pour-El and Kripke, even recursively isomorphic.)

How to enrich the structure of Lindenbaum algebras?
Cylindric algebras ~ difficulties.



2.2. Provability algebras

R. Magari? [Mlag75], F. Montagna [Mon75], V. Shavrukov [Sha93, Shad7]

Consistency operator < : Lo — L

o — Con(T + ¢)
(Lr, <) = the provability algebra of T
Op = == ="p is T-provable”

Godel 2nd: p # | = ¢ £ O,

2provability algebras = Magari algebras, diagonalizable algebras



Modal logic = propositional logic with O, <.
|dentities of Lo = the provability logic of T’

GL (Godel-Lob logic)

1. boolean tautologies

2.0(p = ¢) — (Op — OY)

3. Op — OOy

4. O(0p — ¢) — Oy

Rules: modus ponens, ¢ = Ogp.
Decidable, fmp, Craig interpolation, . ..

More on provability logics see [B0093, Smo85].



R. Solovay [Sol76]:
GLF (%) <= (L7, 0) EVZ (p(X)=T).

K. Segerberg [Seg71]: GL is sound and complete
for the class of converse well-founded Kripke frames.




2.3. Graded provability algebras

L is stratified by the quantifier complexity levels:

IhCll, © ... Ui i = Lr

n-Consistency:
n-Con(U) = “(U + all true I1,,) is consistent”

(n) : o — n-Con(T + )

O =1[0], [n] =—(n)— (n-provability)

Notice that (n)y is I, for any .



Graded provability algebra of T':
Mo = (Lr,{0),(1),...).
Identities (Japaridze [Jap85]):
GLP
1. GL for each [n]
2. [nJo — [n+1]e
3. (n)p = [n+1(n)e

Rules: modus ponens, ¢ = [n]e.




Lem. 1. [>, . -completeness] For ¢ € ¥, 1,

EA = Vz (¢(x) — [n]re(T)).

Proof. If Jyy(y, k) is true, then for some m, ¢ (m, k)
is true I1,,. Hence, ¥(m, k) is n-provable. Jy(y, k)
follows.




Lem. 2. [Reflection| Over EA,
n-Con(T) = {Vz(Opp(z) — ¢(x)) : ¢ € 11}

Proof. (=) If o € I1,,, is false, then = is true >3, ;.
Hence, [n|—y. Therefore O implies [n|(¢ A —¢), that
is, [n] L.

(«<=) If [n] L, then for some true 7w € I1,,, O—7. Take
@(x) ;= —Truer, (x) so that

EAF 7 < Truep, ("77).

We have Opp("7") but —p("77).



2.4. Reduction property

(generalizes U. Schmerl [Sch79])

[1,,,1-conservativity relation between filters:
U=, VeVrell,uineUsreV)
Th.1. Assume 7T'is I, o-axiomatized. Then in M

Un + Dt =n {n)e, (e A{n)e), ... }
Proof: formalizable in EA™ = EA + 1-Con(EA).

Ex.1. )T = {()T, (H{DHT,... }.



Consistency ordering:
Y <gp & TkEqp— Y.
Define: if &« = (n + 1)y, then
alk] = (R} A m)(pA...))

Y
k times

Cor.3.Fa — Oy = 3k : F afk] — O,
hence a[0] <p al] <¢ ... — «




3. Consistency proof for PA

3.1. An algebraic view of ¢,

Work in GLP.
Let S be generated from T by (0), (1), ...

o = <n1>(n2> ce <nk>_|_
We identify S with words

O ="11M9...MNL

S,, is the restriction of S' to the alphabet {n,n+1,...}.




Th.2. (9, <) is well-founded of height =.
Modulo ~gLp the ordering is linear.

Proof: purely in GLP. The ordinal 0(0") = k.
If o« = 10050 - - - Ocy,,, then
ofa) = wlen) 4 ... 4 o)
where (132)~ = 021.
Ex. 2. 0(2101) = w?© + w200 = ) 4 '+ =

P01 e 2



Let " denote the interpretation of o € S in M.
Notice that

GLPFa < 3= MpEa" =4
The converse also holds, provided 7" is sound (i.e., true).

K. Ignatiev | |: normal forms for the letterless
fragment of GLP. Interpretations of letterless formulas
constitute the prime subalgebra P C M.

Th. 3. [Ignatiev] Suppose 7" is sound. On P\ { L} the
ordering < is well-founded of height &y.

Technically, we do not need this result, but it shows that
£¢ is an intrinsic characteristic of the algebra M.



3.2. A closure property of S

Lem. 4. Some derivations in GLP:
(i) If m < n, then = (n)p A (m)1h < (n)( A (m));
(i) If o € S, 1, then - a Anf < ang.
(iii) If m < n, then - nma — ma.
Proof. Statement (i):
(m)p A (myp — [al(mi by Axiom 3
— (n)(@ A (m)1))

Statement (ii) follows by repeated application of (i).
Statement (iii) is axiom [m]y — |[m][m]p of GL.



Lem.5.a=(n+1l)pe S = 3 S F [« alk].

Proof: by induction on k. For &k = 0 we have 0] =
(n)yp € S.

Write a[k] € S in the form nym/[3, where v € S, 1
and m < n.
alk+1] < (n)(ymf A nymp)
— (n)(y(mB Anymf)) by Lem.4(i)
— (n)(ynympB) by Lem.4(iii)

Cor. 6. For any k, - a[k] < (ny)*mg.



Operations on ordinals vs. operations of the algebra

e w" corresponds to o (not in the signature of the
algebral).

o v +nis 0.
oo+ (is B0q, if B> w.
e Conjunction of ordinals: o(a A 3) =7

IAN12=212, w’ Aw’! =t



3.3. Embedding of PA into Mgp
Lem. 7. [Kreisel] PA= {(n)T : n < w}
Proof. (C) Let P := ¢(0) AVz (p(z) — p(x + 1)).
Obviously, Vn EA - P — ©(n), so
EA Ve OP — ¢(1)).

By Lem. 2 (n)T implies Vax (P — p(&)), where n is
the complexity of P — .

(D) Assume Cip(x). There is a cut-free proof of .
Prove that all formulas in the proof are true by induction
on depth.

Cor.8. EA™ F Vn<(n) T « Con(PA).



3.4. Consistency proof

Work in Mga. We claim:
EAT V6 <y a OB — Oa’.

Assume V3 <o a O F%.
If « = 03, then &%, hence OO G using (1) T.
If @ = (n+1)73, then VEOalk]*, because afk] < a.
By Reduction (provably in EA™)
o =, {alk]" k < w}.

Therefore Vi Oalk]* yields Cat.




So, EA™ + (S, <¢)-induction + Vo € S Ca
= Con(PA) by Cor.8
END

De facto we apply (.5, <¢)-induction rule for [1;-formula
() == Sa* once:

VB <o a p(B) — »la)
Vayp(a)

Th.4. EA" + (S, <q)-induction rule for IT;-formulas is
equivalent to

EA™ + Con(PA) + Con(PA + Con(PA)) + ...



4. The Worm Principle

Worm is a function f : [0, n] — N.

List: w = (f(0), f(1),...,f(n))
Word: w = 2102031
A




4.1. Rules of the game
First define a function next(w, m):

1. If f(n) =0 then
next(w, m) := (f(0),..., f(n —1)).

2.If f(n) >0 let k:=max;—, f(i) < f(n);
o= (f0),..., f(k));

s=(f(k+1),...,f(n=1), f(n)—1);

next(w, m) :=rk gk Sk %3,
m~+1 times

next (2102031, 1) = 210203030
k=4:r=21020: s = 30.

Now let wy := w and w,, .1 := next(w,,n + 1).




wo = 2102031

wy = 210203030

wy = 21020303

w3 = 21020302222

wy = 210203022212221222122212221

Wy = 2102030(22212221222122212220)6

Notice that w,, is an elementary function.
[wy,| < (n+2)! - |w




Every Worm Dies < Vwdn w, = &

Th. 5. EWD is true but unprovable in PA.

Th. 6. EWD is EA-equivalent to 1-Con(PA).

1-Con(T') means “(T" + all true I1%) is consistent’




4.2. Validity of EWD

To prove: EA + 1-Con(PA) = EWD.
Work in MEga. Shift the interpretation of worms:

0 — (1)
1 — (2)

Let v be the inverse of w. Then w* = (a")*, where
(132)*+ = 243.
Thus, (103)* = (4)(1)(2) T

Plan of the proof




Lem. 9. For any w, PA - w™.

Proof: induction on |w|. If w = vn and m > any
letter in w, then

EAFv"A{m+1)T — (m+1)v" by Lem. 4
— (n+ LHo*

By Lem. 7 and the induction hypothesis
PAFv*A(m+1)T.




Lem. 10. For any w,
EA F ¥ (w, # @ — O(uf — (Lw},)).
Proof. It is sufficient to prove

Vw # @ Vn EA F w* — (next(w, n)*

Let o be the converse of w. By Cor. 6, a|n]| is the
converse of next(w, n).

a# @ = GLPF a— <aln]
GLP is stable under ()™, so
GLP o™ — (L)a[n]™.



Lem.11. EAF (Hwj — dnw, = &

Proof. We prove Vnw, # @ — Vn [l|-w} using Lob.

Vnw, # @ A [1]Vn|l]-w; — [1]Vn|l]-w;
— Vn[l][1]—w,
— Vn[l]-w} by Lem. 10

1Vnw, # 2 — [1|([1|Vn[l]-w] — Vn[l]-w))
— [1]Vn[l]-w] by Lob

Vnw, # 2 — [1|Vnw, # @ by Ys-compl.
— [1]Vn[l]-w)

s V1]~




4.3. The proof

From Lemmas 9 and 11 we obtain

PA - (Dw*
EA F (Hw* — dnw, =9

Hence, provably in EA,
YVw PAF dnw, = @.

So, 1-Con(PA) implies Yw3dn w,, = .

EWD



4.4. Independence of EWD
Let w|n] := next(w,n) and
wln...n+ k] =wn]n+1]...[n+ k]
Let /(1) be the smallest £ such that
wln...n+ k] = 2.
Some properties of h:
Lem. 12. hp,(n) = hy(hy(n) + 1) + hy(n) + 1
Proof: w0v — u0 - @.
Cor.13. If w € Sy, then hyui(n) > A (n).

Proof: wl|n] = w0w0. .. w0.



Let v < w iff v = u[0][0] ... [O].
Lem. 14. If h,(m)] and u < w, then
dk wlm...m+ k] = u.

Proof. The n-th letter in w can only change if all letters
to the right of it are deleted.

Cor.15.Vm < ndk w[n...n+ k] = wlm].
Lem. 16. If v Jwu and = < y then h,(z) < hy(y).

Proof. Repeating Cor. 15 obtain s, s1,... s.t.

uly ...y —+sg] = v|x]
uly...y+so+s1] = olz]lz +1]



Let hyl = (Vady hy(x) = 1).

Lem.17. EAFYw € 5 (hllllwl — <1>w*)

Proof of the independence of EWD:
EA - Ywdnw, = @ — Yw € S hyl

— Vn (1){(n) T
— 1-Con(PA)




We use additional general fact (to be proved later):

Th. If f is provably increasing, has an el. graph and
f(z) > 2", then

EAF Az f@(2)] « (1) f].




Proof of Lem. 17: Yw € S| (hi1110) — (1)w™).
By Lob we can use as an additional assumption

\V/’UJ c Sl [H(hllllwl — <1>’LU*)

If 1111w = v1, then hui| — Az.hi (z)].
Since h, is increasing, has an elementary graph and
grows at least exponentially,

Az hO(z)] — (1)hy]

(D {L)v*
(Hw”

—_

—
—



If 1111w = v ends with m > 1, then

h,] — )\x.hv[[x]] (33 + 1) +1]

Fix n. If x < n, then 1 (7) < hypy(n +1).
If © > n, then hv[[n]](:c) < hv[[w]](fb +1).

Vi byl — Y byl as v[n]l Qon + 1]
— Vn (1)h,p, |  as before
— Vo ()(Hw[n]*
— (1)w”" by Reduction




5. Proof-theoretic analysis

5.1. Provably total computable functions

Let F (1) be the class of provably total computable
functions of a theory 7.

Def. 1. g € F(T) iff for some p(x,y) € ¥y,
(i) 9(z) =y = NF ¢(z,y)

(i) T F Va3dyp(x, y).




Examples. F(EA) = £ (elementary functions)
F(I%;) = primitive rec. functions (Parsons 70)
F(PA) = < gg-recursive functions (Ackermann 44)

In general,
e 7(T') O & and closed under composition
e 7(T') only depends on the [l,-fragment of T°
o 7(T') = F(T + Thy,(N))



f<.g <= fisobtained from £ U {g}
by composition

Lem. 18. Let g have an elementary graph. Then
feFEA+yl) <= f<cy

Proof: follows from Herbrand theorem.




Internal indexing
Def. 2. ¢ is a T-index, if e = (ey, e5) where
e ¢, codes a Turing machine

e ¢y codes a T-proof of VaIyp,, (z) =y

Universal function: 1.(x) == ¢, (x).

Jump: F(T') := closure under composition of

F(T) Ui}




Lem. 19. EA F Ve, 23y ¢.(x) = y <> 1-Con(T)

Proof. The formulas are basically the same:

Ve, e9, x (Prp(es, "VaIype, () = y7) — Jywe, () = y).

Cor. 20. F(EA + 1-Con(T)) = F(T)'




In EA™: (e1, ) «~ term, so the internal indexing is
equivalent to the Godel numbering of terms.

Th. 7. If f is provably increasing, has an el. graph and
f(x) > 27, then

EAF Az f®(2)] « (1) f].

Proof. By monotonicity every function <. f is bounded
by a fixed iterate of f. Hence, \w.f")(x)] iff o] .



5.2. Proof-theoretic analysis

theories ~~ ordinals

[1{-analysis: Provable well-orderings

S| =sup{| < |: SEWF(<)}.

[19-analysis: Provably total computable functions

S~ F(S) ~ &,

Eo =E{Fs: 0 <a})

=z +1
— Fo(él’—l-l)(x)
= Fyy)(x), if aisa limit ordinal.



|S|H(2) = min{a : S ¥ Vedy F(z) = y}

Ex. 3. [PA + EWD|y = [PAy: = &
Ex. 4. |PA + Con(PA)|ig = [PA|g = &9

[T{-ordinal is insensitive to true ){ axioms.
[19-ordinal is insensitive to true 11} axioms.




[1)-analysis: Iterated consistency assertions
|S]p := min{er : 5% Con(EA,)}.
To:=1T; T, :=T,+Con(T,); T,:= Uﬁ<a T

Ex. 5.
|PA + Con(PA)|H(1) =ep-2 [I¥1+ Con(PA)|H(1) =gp + w”

IPA + EWD| o = &} IPA + EWDJpyy = £ - 2




5.3. Analysis by iterated consistency

S, is the fragment of S in the language with (n), (n+1),
equipped with the ordering

© <, Y < GLP ¢ — (n)p.
Def.3. T =T + {n-Con(T}) : B <, a, 3 € Sy}

Theories T!" are uniquely defined for a € S,,.




Th.8. If T is II,.; axiomatized, then (provably in
EAT)

Vae S, T+a" =,T),.

Proof: reduction 4 Lob.
Cor.21. PA =, |, (EA*)
Lem.22. F(EA!) = &,, where &, is

the a-th class of the fast growing hierarchy.
Proof: an extension of Theorem 7.

Hence: analysis by iterated 1-consistency yields the
same information as the usual I19-analysis.

Cor.23. F(PA) =, &



Ex.6. |PA + EWD|H(2) =gy - 2.

Proof. Consider 7' := EA + EWD. Work in M. We
have

PA+EWD ={(n)T :n < w}.
Reduction property holds in My, as 1" is I1,. Hence,
PA + EWD =1 Tl

(EAf'l:()"‘l)E()
_]_ EAgo 2




Open questions

1. Generalizations of graded provability algebras for
stronger theories: RA, KP_, .

2. A general argument for the well-foundedness of
GPA.

3. New combinatorial independent principles from
Kripke models?

4. Infinitely generated filters on GPA, regularity, au-
tomata.

5. Is the elementary theory of the prime subalgebra of
M decidable?
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