Parameter free induction and provably total computable functions

Lev D. Beklemishev*
Steklov Mathematical Institute
Gubkina 8, 117966 Moscow, Russia
e-mail: bekl@mi.ras.ru

November 20, 1997

Abstract

We give a precise characterization of parameter free Σ_{n} and Π_{n} induction schemata, $I \Sigma_{n}^{-}$and $I \Pi_{n}^{-}$, in terms of reflection principles. This allows us to show that $I \Pi_{n+1}^{-}$is conservative over $I \Sigma_{n}^{-}$w.r.t. boolean combinations of Σ_{n+1} sentences, for $n \geq 1$. In particular, we give a positive answer to a question, whether the provably recursive functions of $I \Pi_{2}^{-}$are exactly the primitive recursive ones. We also characterize the provably recursive functions of theories of the form $I \Sigma_{n}+I \Pi_{n+1}^{-}$in terms of the fast growing hierarchy. For $n=1$ the corresponding class coincides with the doubly-recursive functions of Peter. We also obtain sharp results on the strength of bounded number of instances of parameter free induction in terms of iterated reflection.

Keywords: parameter free induction, provably recursive functions, reflection principles, fast growing hierarchy

Mathematics Subject Classification: 03F30, 03D20

1 Introduction

In this paper we shall deal with the first order theories containing Kalmar elementary arithmetic $E A$ or, equivalently, $I \Delta_{0}+\operatorname{Exp}$ (cf. [11]). We are interested in the general question how various ways of formal reasoning correspond to models of computation. This kind of analysis is traditionally based on the concept of provably total recursive function (p.t.r.f.) of a theory. Given a theory T containing $E A$, a function $f(\vec{x})$ is called provably total recursive in T, iff there is a Σ_{1} formula $\phi(\vec{x}, y)$, sometimes called specification, that defines the graph of f in the standard model of arithmetic and such that

$$
T \vdash \forall \vec{x} \exists!y \phi(\vec{x}, y)
$$

[^0]The class of p.t.r.f. of T, denoted $\mathcal{F}(T)$, is one of the most interesting characteristics of T, which somehow describes its power of reasoning about the termination of computations or 'computational strength'.

We are going to analyze from this point of view the role of parameters involved in applications of the principle of mathematical induction. Parameter free induction schemata have been introduced and investigated in a number of works by Kaye, Paris, and Dimitracopoulos [13], Adamowicz and Bigorajska [1], Ratajczyk [20], Kaye [12], and others. $I \Sigma_{n}^{-}$is the theory axiomatized over $E A$ by the schema of induction

$$
A(0) \wedge \forall x(A(x) \rightarrow A(x+1)) \rightarrow \forall x A(x),
$$

for Σ_{n} formulas $A(x)$ containing no other free variables but x, and $I \Pi_{n}^{-}$is similarly defined. ${ }^{1}$

It is known that the schemata $I \Sigma_{n}^{-}$and $I \Pi_{n}^{-}$have a very different behaviour from their parametric counterparts $I \Sigma_{n}$ and $I \Pi_{n}$. In particular, for $n \geq 1, I \Sigma_{n}^{-}$ and $I \Pi_{n}^{-}$are not finitely axiomatizable, and $I \Sigma_{n}^{-}$is strictly stronger than $I \Pi_{n}^{-}$ (in fact, stronger than $I \Sigma_{n-1}+I \Pi_{n}^{-}$). Furthermore, it is known that $I \Sigma_{n}$ is a conservative extension of $I \Sigma_{n}^{-}$w.r.t. Σ_{n+2} sentences, although $I \Sigma_{n}^{-}$itself only has a $\mathcal{B}\left(\Sigma_{n+1}\right)$ axiomatization [13].

In contrast, nontrivial conservation results for $I \Pi_{n}^{-}$, for $n>1$, were unknown. In particular, it was unknown, if the provably total recursive functions of $I \Pi_{2}^{-}$coincide with the primitive recursive ones (communicated by R. Kaye). The case of $I \Pi_{1}^{-}$(over $P A^{-}$) was treated in [13], where the authors showed that Π_{2} consequences of that theory are contained in $E A$, cf. also [7].

In this paper we prove that the p.t.r.f. of $I \Pi_{2}^{-}$are exactly the primitive recursive functions. Moreover, we show that $I \Pi_{n+1}^{-}$is conservative over $I \Sigma_{n}^{-}$ w.r.t. boolean combinations of Σ_{n+1} sentences ($n \geq 1$). In particular, this allows us to characterize p.t.r.f. of the theories $I \Pi_{n+1}^{-}$and $I \Sigma_{n}+I \Pi_{n+1}^{-}$for any $n \geq 1$.

Notice that our characterization of $\mathcal{F}\left(I \Pi_{2}^{-}\right)$is similar to a well-known theorem of Parsons [18] (independently proved by Mints and Takeuti) stating that $\mathcal{F}\left(I \Sigma_{1}\right)$ coincides with the class of primitive recursive functions, as well. However, the relationship between these two results is nontrivial, because the theories $I \Pi_{2}^{-}$and $I \Sigma_{1}$ are incomparable in strength (neither is included in the other). In fact, it is easy to see that the theory $I \Sigma_{1}+I \Pi_{2}^{-}$has a larger class of p.t.r.f. than the class of primitive recursive functions. This can be seen from the following characteristic example.

The well-known Ackermann function $\operatorname{Ack}(x)$ is defined by double recursion as follows. $\operatorname{Ack}(x):=g(x, x)$, where

$$
\left\{\begin{aligned}
g(x, 0) & =x+1 \\
g(0, n+1) & =g(1, n) \\
g(x+1, n+1) & =g(g(x, n+1), n)
\end{aligned}\right.
$$

[^1]$A c k$ is known to grow faster than any primitive recursive function (cf. [22]). The graphs of g and $A c k$ can be naturally defined by Σ_{1} formulas, for which one can also verify in $E A$ the inductive definition clauses above. In order to show that Ack is total we prove that the two-argument function $g(x, n)$ is total. A natural proof of the statement $\forall n \forall x \exists y g(x, n)=y$ goes by induction on n. Notice that the corresponding induction formula is Π_{2} and parameter free. However, in order to verify the induction step one must argue that
$$
\forall x \exists y g(x, n)=y \rightarrow \forall x \exists y g(x, n+1)=y
$$

This statement is provable by a subordinate Σ_{1} induction on x with a parameter n. In other words, the usual argument for the totality of Ackermann function is formalizable in $I \Sigma_{1}+I \Pi_{2}^{-}$. Our result shows that any correct argument for the totality of $A c k$ formalizable in Peano arithmetic must involve parameters (or induction formulas outside the class Π_{2}).

Below we shall show that $\mathcal{F}\left(I \Sigma_{1}+I \Pi_{2}^{-}\right)$actually coincides with the class of doubly-recursive functions of Peter (cf. [22]). This class can be also characterized as the class corresponding to the ordinal ω^{2} of the extended Grzegorczyk (or Fast Growing) hierarchy, and thus involves functions growing much faster than the Ackermann function. It is well-known that $\mathcal{F}\left(I \Pi_{2}\right)$ is the class of multiplyrecursive functions, that is, corresponds in the same sense yet to a bigger ordinal ω^{ω}.

The above example of a natural pair of theories capturing the same class of computable functions, whose union captures a much bigger class, opens the question whether there may exist in general a unique 'most natural' arithmetical theory corresponding to a given computation model. For the case of primitive recursion $I \Sigma_{1}$ was generally held to be such a theory. Now we are confronted with the question, if Σ_{1} induction with parameters is more natural than Π_{2} induction without parameters. Our answer to this (admittedly, somewhat philosophical) dilemma is that there is more to each of these two theories, than their computational content. Apart from the primitive recursion mechanism, both of them involve some more complex principles of reasoning. Taken together, these principles complement each other in a way that significantly increases their class of p.t.r.f..

The proofs of our results are based on a characterization of parameter free induction schemata in terms of reflection principles and (generalizations of) the conservativity results for local reflection principles obtained in [3] using methods of provability logic. In our opinion, such a relationship presents an independent interest, especially because this seems to be the first occasion when local reflection principles naturally arise in the study of fragments of arithmetic. Using the method of reflection principles we also obtain a number of other results, in particular, sharp characterizations of the strength of bounded number of instances of parameter free induction schemata and some corollaries on the complexity of their axiomatization.

We shall also essentially rely on the results from [4] characterizing the closures of arbitrary arithmetical theories extending $E A$ under Σ_{n} and Π_{n} induction rules. In fact, the results of this paper show that much of the unusual
behaviour of parameter free induction schemata can be explained by their tight relationship with the theories axiomatized by induction rules.

The results of Sections 3 and 4 of this paper appeared in [5].

2 Preliminaries

We shall work in the language of Peano Arithmetic enriched by a binary predicate symbol of inequality. Bounded or Δ_{0} formulas in this language are those, all of whose quantifier occurrences have the form $\forall x(x \leq t \rightarrow A(x))$ or $\exists x(x \leq$ $t \wedge A(x)$), where t is a term not involving x. In $E A$ a function symbol for exponention function 2^{x} can be introduced [11]; $\Delta_{0}(\exp)$ formulas are bounded formulas in the extended language. Σ_{n} and Π_{n} formulas are prenex formulas obtained from the bounded ones by n alternating blocks of similar quantifiers, starting from ' \exists ' and ' \forall ', respectively. $\mathcal{B}\left(\Sigma_{n}\right)$ denotes the class of boolean combinations of Σ_{n} formulas. $\Sigma_{n}^{s t}$ and $\Pi_{n}^{s t}$ denote the classes of Σ_{n} and Π_{n} sentences. $S t$ denotes the class of all arithmetical sentences. $E A^{+}$denotes the extension of $E A$ by a natural Π_{2} axiom stating that the iterated exponentiation function is total, or $I \Delta_{0}+$ Supexp in the terminology of $[11,27] . P R A$ denotes the standard first order Primitive Recursive Arithmetic.

Next, we establish some useful terminology and notation concerning rules in arithmetic (cf. also [4]). We say that a rule is a set of instances, that is, expressions of the form

$$
\frac{A_{1}, \ldots, A_{n}}{B}
$$

where A_{1}, \ldots, A_{n} and B are formulas. Derivations using rules are defined in the standard way; $T+R$ denotes the closure of a theory T under a rule R and first order logic. $[T, R]$ denotes the closure of T under unnested applications of R, that is, the theory axiomatized over T by all formulas B such that, for some formulas A_{1}, \ldots, A_{n} derivable in $T, \frac{A_{1}, \ldots, A_{n}}{B}$ is an instance of $R . T \equiv U$ means that theories T and U are deductively equivalent, i.e., have the same set of theorems.

A rule R_{1} is derivable from R_{2} iff, for every theory T containing $E A, T+R_{1} \subseteq$ $T+R_{2}$. A rule R_{1} is reducible to R_{2} iff, for every theory T containing $E A$, $\left[T, R_{1}\right] \subseteq\left[T, R_{2}\right] . \quad R_{1}$ and R_{2} are congruent iff they are mutually reducible (denoted $R_{1} \cong R_{2}$). For a theory U containing $E A$ we say that R_{1} and R_{2} are congruent modulo U, iff for every extension T of $U,\left[T, R_{1}\right] \equiv\left[T, R_{2}\right]$.

Induction rule is defined as follows:

$$
\text { IR: } \quad \frac{A(0), \quad \forall x(A(x) \rightarrow A(x+1))}{\forall x A(x)} .
$$

Whenever we impose a restriction that $A(x)$ only ranges over a certain subclass Γ of the class of arithmetical formulas, this rule is denoted Γ-IR. The theory $E A+\Sigma_{n}$-IR will also be denoted $I \Sigma_{n}^{R}$. In general, we allow parameters to occur in A, however the following lemma holds.

Lemma 2.1. $\Pi_{n}-\mathrm{IR}$ is reducible to parameter free Π_{n} - $\mathrm{IR} . \Sigma_{n}-\mathrm{IR}$ is reducible to parameter free Σ_{n} - IR .

Proof. An application of IR for a formula $A(x, a)$ can obviously be reduced to the one for $\forall z A(x, z)$, and this accounts for the Π_{n} case.

On the other hand, if $A(x, y, a)$ is Π_{n-1}, then an application of Σ_{n}-IR for the formula $\exists y A(x, y, a)$ is reducible, using the standard coding of sequences available in $E A$, to the one for $\exists y A^{\prime}(x, y)$, where

$$
A^{\prime}(x, y):=\forall i \leq x A\left((i)_{0},(y)_{i},(i)_{1}\right)
$$

Indeed, assume that

$$
\begin{align*}
& T \vdash \exists y A(0, y, a), \text { and } \tag{1}\\
& T \vdash \forall x(\exists y A(x, y, a) \rightarrow \exists y A(x+1, y, a)) \tag{2}
\end{align*}
$$

Then by (1) and the monotonicity of the coding of sequences, $T \vdash \exists y A^{\prime}(0, y)$. For a proof of

$$
T \vdash \forall x\left(\exists y A^{\prime}(x, y) \rightarrow \exists y^{\prime} A^{\prime}\left(x+1, y^{\prime}\right)\right)
$$

assume $\forall i \leq x A\left((i)_{0},(y)_{i},(i)_{1}\right)$. If $(x+1)_{0}=0$, then by (1) there is an element z such that $A\left(0, z,(x+1)_{1}\right)$, and we can take for y^{\prime} the sequence $y *\langle z\rangle$ (* denotes concatenation). If $(x+1)_{0}>0$, then the code of the pair $p:=$ $\left\langle(x+1)_{0}-1,(x+1)_{1}\right\rangle$ is strictly less than $x+1$, and thus, by the induction hypothesis, there is a $z=(y)_{p}$ such that $A\left((x+1)_{0}-1, z,(x+1)_{1}\right)$. From (2) it follows that for some z^{\prime} one has $A\left((x+1)_{0}, z^{\prime},(x+1)_{1}\right)$. Hence, for y^{\prime} one can take the sequence $y *\left\langle z^{\prime}\right\rangle$, q.e.d.

Reflection principles, for a given r.e. theory T containing $E A$, are defined as follows. The uniform reflection principle is the schema

$$
\operatorname{RFN}_{T}: \quad \forall x\left(\operatorname{Prov}_{T}(\ulcorner A(\dot{x})\urcorner) \rightarrow A(x)\right), \quad A(x) \text { a formula, }
$$

where $\operatorname{Prov}_{T}(\cdot)$ denotes a canonical provability predicate for T. The local reflection principle is the schema

$$
\operatorname{Rfn}_{T}: \quad \operatorname{Prov}_{T}(\ulcorner A\urcorner) \rightarrow A, \quad A \text { a sentence. }
$$

Partial reflection principles are obtained from the above schemata by imposing a restriction that A belongs to one of the classes Γ of the arithmetic hierarchy (denoted $\operatorname{Rfn}_{T}(\Gamma)$ and $\operatorname{RFN}_{T}(\Gamma)$, respectively). It is known that, due to the existence of partial truthdefinitions, the schema $\operatorname{RFN}_{T}\left(\Pi_{n}\right)$ is equivalent to a single Π_{n} sentence over $E A$. In particular, $\operatorname{RFN}_{T}\left(\Pi_{1}\right)$ is equivalent to the consistency assertion Con_{T} for T. See $[24,14,3]$ for some basic information about reflection principles. In addition we note the following facts: $E A^{+} \equiv$ $E A+\operatorname{RFN}_{E A}\left(\Pi_{2}\right)[27,4]$, and $I \Sigma_{n} \equiv E A+\operatorname{RFN}_{E A}\left(\Pi_{n+2}\right)$, for all $n \geq 1$ $[15,17,11]$.

We shall also consider the following metareflection rule:

$$
\operatorname{RR}\left(\Pi_{n}\right): \quad \frac{P}{\operatorname{RFN}_{E A+P}\left(\Pi_{n}\right)}
$$

We let $\Pi_{m}-\operatorname{RR}\left(\Pi_{n}\right)$ denote the above rule with the restriction that P is a Π_{m} sentence. Main results (Theorems 1, 2 and 3) of [4] can then be reformulated as follows.

Proposition 2.1. 1. $\Pi_{n}-\mathrm{IR} \cong \Pi_{n+1}-\mathrm{RR}\left(\Pi_{n}\right)$, for $n>1$;
2. $\Pi_{1}-\mathrm{IR} \cong \Pi_{2}-\mathrm{RR}\left(\Pi_{1}\right)$ (modulo $E A^{+}$).

Proposition 2.2. 1. $\Sigma_{1}-\mathrm{IR} \cong \Pi_{2}-\mathrm{RR}\left(\Pi_{2}\right)$;
2. $\Sigma_{n}-\mathrm{IR} \cong \Pi_{n+1}-\mathrm{RR}\left(\Pi_{n+1}\right)$ (modulo $\left.I \Sigma_{n-1}\right)$, for $n>1$.

Since $\left[E A, \Sigma_{n}-\mathrm{IR}\right]$ contains $I \Sigma_{n-1}$, the second claim of this proposition implies that the rules $\Pi_{n+1}-\mathrm{RR}\left(\Pi_{n+1}\right)$ and Σ_{n} - IR are interderivable, for all $n \geq 1$. Also notice that Propositions 2.1 and 2.2 imply the following result of Parsons [19]: $I \Sigma_{n}^{R} \equiv I \Pi_{n+1}^{R}$, for all $n \geq 1$.

3 Characterizing parameter free induction by reflection principles

Having in mind the exact correspondence between parametric induction schemata and uniform reflection principles over $E A$, it seems natural to conjecture that parameter free induction should correspond to parameter free, that is, local reflection principles. However, it is also well-known that local reflection schemata per se are too weak: e.g., $\operatorname{Rfn}_{E A}$ is contained in the extension of $E A$ by the set of all true Π_{1} sentences, yet none of the schemata $I \Pi_{n}^{-}$for $n>1$ satisfies this property. It turns out that in order to obtain a sharp characterization of parameter free induction one has to relativize the provability operator.

For $n \geq 1, \Pi_{n}(\mathbf{N})$ denotes the set of all true Π_{n} sentences. $\operatorname{True}_{\Pi_{n}}(x)$ denotes a canonical truthdefinition for Π_{n} sentences, that is, a Π_{n} formula naturally defining the set of Gödel numbers of $\Pi_{n}(\mathbf{N})$ sentences in $E A$. True $_{\Pi_{n}}(x)$ provably in $E A$ satisfies Tarski satisfaction conditions (cf [11]), and therefore, for every formula $A\left(x_{1}, \ldots, x_{n}\right) \in \Pi_{n}$,

$$
\begin{equation*}
E A \vdash A\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{True}_{\Pi_{n}}\left(\left\ulcorner A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right) . \tag{*}
\end{equation*}
$$

Tarski's truth lemma ($*$) is formalizable in $E A$, in particular,

$$
\begin{equation*}
E A \vdash \forall s \in \Pi_{n}^{s t} \operatorname{Prov}_{E A}\left(s \dot{\leftrightarrow}\left\ulcorner\operatorname{True}_{\Pi_{n}}(\dot{s})\right\urcorner\right) \tag{**}
\end{equation*}
$$

where $\Pi_{n}^{s t}$ is a natural elementary definition of the set of Gödel numbers of Π_{n} sentences in $E A$. We also assume w.l.o.g. that

$$
E A \vdash \forall x\left(\operatorname{True}_{\Pi_{n}}(x) \rightarrow x \in \Pi_{n}^{s t}\right)
$$

Let T be an r.e. theory containing $E A$. A provability predicate for the theory $T+\Pi_{n}(\mathbf{N})$ can be naturally defined, e.g., by the following Σ_{n+1} formula:

$$
\operatorname{Prov}_{T}^{\Pi_{n}}(x):=\exists s\left(\operatorname{True}_{\Pi_{n}}(s) \wedge \operatorname{Prov}_{T}(s \dot{\rightarrow} x)\right)
$$

Lemma 3.1. 1. For each Σ_{n+1} formula $A\left(x_{1}, \ldots, x_{n}\right)$,

$$
E A \vdash A\left(x_{1}, \ldots, x_{n}\right) \rightarrow \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right) .
$$

2. $\operatorname{Prov}_{T}^{\Pi_{n}}(x)$ satisfies Löb's derivability conditions in T :
(a) $T \vdash A \quad \Rightarrow \quad T \vdash \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner A\urcorner)$;
(b) $T \vdash \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner A \rightarrow B\urcorner) \rightarrow\left(\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner A\urcorner) \rightarrow \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner B\urcorner)\right)$;
(c) $T \vdash \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner A\urcorner) \rightarrow \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner A\urcorner)\right\urcorner\right)$.

Proof. Statement 1 follows from $(*)$. Statement 2 follows from Statement 1, Tarski satisfaction conditions, and is essentially well-known (cf. [25]), q.e.d.

We define

$$
\begin{aligned}
\operatorname{Con}_{T}^{\Pi_{n}} & :=\neg \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner 0=1\urcorner), \\
\operatorname{Rfn}_{T}^{\Pi_{n}} & :=\left\{\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\phi\urcorner) \rightarrow \phi \mid \phi \in S t\right\}, \\
\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{m}\right) & :=\left\{\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\sigma\urcorner) \rightarrow \sigma \mid \sigma \in \Sigma_{m}^{s t}\right\} .
\end{aligned}
$$

For $n=0$ all these schemata coincide, by definition, with their nonrelativized counterparts.

Lemma 3.2. For all $n \geq 0, m \geq 1$, the following schemata are deductively equivalent over $E A$:
(i) $\operatorname{Con}_{T}^{\Pi_{n}} \equiv \operatorname{RFN}_{T}\left(\Pi_{n+1}\right)$;
(ii) $\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{m}\right) \equiv\left\{P \rightarrow \operatorname{RFN}_{T+P}\left(\Pi_{n+1}\right) \mid P \in \Pi_{m}^{s t}\right\}$.

Proof. (i) Observe that, using ($* *$),

$$
\begin{aligned}
E A \vdash \neg \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner 0=1\urcorner) & \left.\left.\leftrightarrow \neg \exists s\left(\operatorname{True}_{\Pi_{n}}(s) \wedge \operatorname{Prov}_{T}(s \dot{\rightarrow})=1\right\urcorner\right)\right) \\
& \leftrightarrow \forall s\left(\operatorname{Prov}_{T}(\neg s) \rightarrow \neg \operatorname{True}_{\Pi_{n}}(s)\right) \\
& \leftrightarrow \forall s\left(\operatorname{Prov}_{T}\left(\left\ulcorner\neg \operatorname{True}_{\Pi_{n}}(\dot{s})\right\urcorner\right) \rightarrow \neg \operatorname{True}_{\Pi_{n}}(s)\right) .
\end{aligned}
$$

The latter formula clearly follows from $\operatorname{RFN}_{T}\left(\Sigma_{n}\right)$, but it also implies $\operatorname{RFN}_{T}\left(\Sigma_{n}\right)$, and hence $\operatorname{RFN}_{T}\left(\Pi_{n+1}\right)$, by $(*)$.
(ii) By formalized Deduction theorem,

$$
\begin{equation*}
E A \vdash \operatorname{Con}_{T+P}^{\Pi_{n}} \leftrightarrow \neg \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\neg P\urcorner) \tag{3}
\end{equation*}
$$

Hence, over $E A$,

$$
\begin{aligned}
\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{m}\right) & \equiv\left\{\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner S\urcorner) \rightarrow S \mid S \in \Sigma_{m}^{s t}\right\} \\
& \equiv\left\{P \rightarrow \neg \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\neg P\urcorner) \mid P \in \Pi_{m}^{s t}\right\} \\
& \equiv\left\{P \rightarrow \operatorname{RFN}_{T+P}\left(\Pi_{n+1}\right) \mid P \in \Pi_{m}^{s t}\right\}, \quad \text { by (3) and (i), }
\end{aligned}
$$

q.e.d.

Theorem 1. For $n \geq 1$,
(i) $I \Sigma_{n}^{-} \equiv E A+\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$;
(ii) $I \Pi_{n+1}^{-} \equiv E A+\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+2}\right)$;
(iii) $E A^{+}+I \Pi_{1}^{-} \equiv E A^{+}+\operatorname{Rfn}_{E A}\left(\Sigma_{2}\right) \equiv E A^{+}+\operatorname{Rfn}_{E A^{+}}\left(\Sigma_{2}\right)$.

Proof. All statements are proved similarly, respectively relying upon Propositions 2.2 and 2.1 , so we shall only elaborate the proof of the first one. For the inclusion (\subseteq) we have to derive

$$
A(0) \wedge \forall x(A(x) \rightarrow A(x+1)) \rightarrow \forall x A(x)
$$

for each Σ_{n} formula $A(x)$ with the only free variable x. Let P denote the Π_{n+1} sentence (logically equivalent to) $A(0) \wedge \forall x(A(x) \rightarrow A(x+1))$. Then, by external induction on n it is easy to see that, for each $n, E A+P \vdash A(\bar{n})$. This fact is formalizable in $E A$, therefore

$$
\begin{equation*}
E A \vdash \forall x \operatorname{Prov}_{E A+P}(\ulcorner A(\dot{x})\urcorner) \tag{4}
\end{equation*}
$$

By Lemma 3.2 we conclude that

$$
\begin{aligned}
E A+\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+1}\right)+P & \vdash \operatorname{RFN}_{E A+P}\left(\Pi_{n+1}\right) \\
& \vdash \forall x\left(\operatorname{Prov}_{E A+P}(\ulcorner A(\dot{x})\urcorner) \rightarrow A(x)\right) \\
& \vdash \forall x A(x), \quad \text { by }(4) .
\end{aligned}
$$

It follows that $E A+\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+1}\right) \vdash P \rightarrow \forall x A(x)$, as required.
For the inclusion (\supseteq) we observe that, for any Π_{n+1} sentence P, the theory $I \Sigma_{n}^{-}+P$ contains $P+\Sigma_{n}$-IR by Lemma 2.1, and hence

$$
I \Sigma_{n}^{-}+P \vdash \operatorname{RFN}_{E A+P}\left(\Pi_{n+1}\right),
$$

by Proposition 2.2. It follows that

$$
I \Sigma_{n}^{-} \vdash P \rightarrow \operatorname{RFN}_{E A+P}\left(\Pi_{n+1}\right)
$$

and Lemma 3.2 (ii) yields the result, q.e.d.

4 Analyzing $I \Pi_{n}^{-}$

The following theorem and its Corollary 4.1 are the main results of this paper.
Theorem 2. For any $n \geq 1, I \Pi_{n+1}^{-}$is conservative over $I \Sigma_{n}^{-}$w.r.t. $\mathcal{B}\left(\Sigma_{n+1}\right)$ sentences.

Proof. The result follows from Theorem 1 and the following relativized version of Theorem 1 of [3].

Theorem 3. For any $n \geq 0, T+\operatorname{Rfn}_{T}^{\Pi_{n}}$ is conservative over $T+\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$ w.r.t. $\mathcal{B}\left(\Sigma_{n+1}\right)$ sentences.

Proof. The proof of this theorem makes use of a purely modal logical lemma concerning Gödel-Löb provability logic GL (cf e.g. [8, 25]). Recall that GL is formulated in the language of propositional calculus enriched by a unary modal operator \square. The expressions $\forall \phi$ and $\square^{+} \phi$ are the standard abbreviations for $\neg \square \neg \phi$ and $\phi \wedge \square \phi$, respectively. Axioms of GL are all instances of propositional tautologies in this language together with the following schemata:

L1. $\square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi)$;
L2. $\square \phi \rightarrow \square \square \phi$;
L3. $\square(\square \phi \rightarrow \phi) \rightarrow \square \phi$.
Rules of GL are moduls ponens and $\phi \vdash \square \phi$ (necessitation).
By an arithmetical realization of the language of GL we mean any function $(\cdot)^{*}$ that maps propositional variables to arithmetical sentences. For a modal formula $\phi,(\phi)_{T}^{*}$ denotes the result of substituting for all the variables of ϕ the corresponding arithmetical sentences and of translating \square as the provability predicate $\operatorname{Prov}_{T}(\ulcorner\cdot\urcorner)$. Under this interpretation, axioms L1, L2 and the necessitation rule can be seen to directly correspond to the three Löb's derivability conditions, and axiom L3 is the formalization of Löb's theorem. It follows that, for each modal formula $\phi, \mathbf{G L} \vdash \phi$ implies $T \vdash(\phi)_{T}^{*}$, for every realization $(\cdot)^{*}$ of the variables of ϕ. The opposite implication, for the case of a Σ_{1} sound theory T, is also valid; this is the content of the important arithmetical completeness theorem for GL due to Solovay (cf [8]).

For us it will also be essential that $\mathbf{G L}$ is sound under the interpretation of \square as a relativized provability predicate. For an arithmetical realization $(\cdot)^{*}$, we let $(\phi)_{T+\Pi_{n}(N)}^{*}$ denote the result of substituting for all the variables of ϕ the corresponding arithmetical sentences and of translating \square as $\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\cdot\urcorner)$. The following lemma is a corollary of Lemma 3.1 and the fact that (formalized) Löb's theorem for relativized provability follows by the usual fixed-point argument from the derivability conditions.

Lemma 4.1. If $\mathbf{G} \mathbf{L} \vdash \phi$, then $T \vdash(\phi)_{T+\Pi_{n}(N)}^{*}$, for every arithmetical realization $(\cdot)^{*}$ of the variables of ϕ.

The opposite implication, that is, the arithmetical completeness of GL w.r.t. the relativized provability interpretation is also well-known (cf. [25]). Yet, below we do not use this fact.

The following crucial lemma is a modification of a similar lemma in [3].
Lemma 4.2. Let modal formulas Q_{i} be defined as follows:

$$
Q_{0}:=p, \quad Q_{i+1}:=Q_{i} \vee \square Q_{i}
$$

where p is a propositional variable. Then, for any variables p_{0}, \ldots, p_{m},

$$
\mathbf{G L} \vdash \square^{+}\left(\bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \rightarrow p\right) \rightarrow\left(\bigwedge_{i=0}^{m}\left(\square Q_{i} \rightarrow Q_{i}\right) \rightarrow p\right)
$$

Proof. Rather than exhibiting an explicit proof of the formula above, we shall argue semantically, using a standard Kripke model characterization of GL.

Recall that a Kripke model for $\mathbf{G L}$ is a triple (W, R, \Vdash), where

1. W is a finite nonempty set;
2. R is an irreflexive partial order on W;
3. \Vdash is a forcing relation between elements (nodes) of W and modal formulas such that

$$
\begin{aligned}
x \Vdash \neg \phi & \Longleftrightarrow x \nVdash \phi, \\
x \Vdash(\phi \rightarrow \psi) & \Longleftrightarrow(x \nVdash \phi \text { or } x \Vdash \psi), \\
x \Vdash \square \phi & \Longleftrightarrow \forall y \in W(x R y \Rightarrow y \Vdash \phi) .
\end{aligned}
$$

Theorem 4 on page 95 of [8] (originally proved by Segerberg) states that a modal formula is provable in $\mathbf{G L}$, iff it is forced at every node of any Kripke model of the above kind. This provides a useful criterion for showing provability in GL.

Consider any Kripke model (W, R, \Vdash) in which the conclusion ($\bigwedge_{i=0}^{m}\left(\square Q_{i} \rightarrow\right.$ $\left.Q_{i}\right) \rightarrow p$) is false at a node $x \in W$. This means that $x \nVdash p$ and $x \Vdash \square Q_{i} \rightarrow Q_{i}$, for each $i \leq m$. An obvious induction on i then shows that $x \nVdash Q_{i}$ for all $i \leq m+1$, in particular, $x \nVdash Q_{m+1}$.

Unwinding the definition of Q_{i} we observe that in W there is a sequence of nodes

$$
x=x_{m+1} R x_{m} R \ldots R x_{0}
$$

such that, for all $i \leq m+1, x_{i} \nVdash Q_{i}$. Since R is irreflexive and transitive, all x_{i} 's are pairwise distinct. Moreover, it is easy to see by induction on i that, for all i,

$$
\mathbf{G L} \vdash p \rightarrow Q_{i} .
$$

Hence, for each $i \leq m+1, x_{i} \nVdash p$.

Now we notice that each formula $\square p_{i} \rightarrow p_{i}$ can be false at no more than one node of the chain x_{m+1}, \ldots, x_{0}. Therefore, by Pigeon-hole Principle, there must exist a node z among the $m+2$ nodes x_{i} such that

$$
z \Vdash \bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \wedge \neg p
$$

In case z coincides with $x=x_{m+1}$ we have

$$
x \nVdash \bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \rightarrow p
$$

In case $z=x_{i}$, for some $i \leq m$, we have $x R z$ by transitivity of R, and thus

$$
x \nVdash \square\left(\bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \rightarrow p\right) .
$$

This shows that the formula in question is forced at every node of any Kripke model; hence it is provable in GL, q.e.d.

Lemma 4.3. For any $n \geq 0$, the following schemata are deductively equivalent over $E A$:

$$
\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right) \equiv \operatorname{Rfn}_{T}^{\Pi_{n}}\left(\mathcal{B}\left(\Sigma_{n+1}\right)\right)
$$

Proof. We prove that

$$
E A+\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right) \vdash \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\phi\urcorner) \rightarrow \phi
$$

for any boolean combination of Σ_{n+1} sentences ϕ. The formula ϕ is equivalent to a formula of the form $\bigwedge_{i=1}^{n}\left(\pi_{i} \vee \sigma_{i}\right)$, for some sentences $\pi_{i} \in \Pi_{n+1} \sigma_{i} \in \Sigma_{n+1}$. Since the provability predicate $\operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\urcorner$.$) commutes with conjunction, it is$ sufficient to derive in $E A+\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$ the formulas

$$
\operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\pi_{i} \vee \sigma_{i}\right\urcorner\right) \rightarrow\left(\pi_{i} \vee \sigma_{i}\right),
$$

for each i. By Lemma 3.1

$$
\begin{aligned}
\vdash \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\pi_{i} \vee \sigma_{i}\right\urcorner\right) \wedge \neg \pi_{i} & \rightarrow \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\neg \pi_{i}\right\urcorner\right) \\
& \rightarrow \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\sigma_{i}\right\urcorner\right) \\
& \rightarrow \sigma_{i},
\end{aligned}
$$

using $\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$. Hence,

$$
E A+\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right) \vdash \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\pi_{i} \vee \sigma_{i}\right\urcorner\right) \rightarrow\left(\pi_{i} \vee \sigma_{i}\right),
$$

q.e.d.

Now we complete our proof of Theorems 2 and 3 . Assume $T+\operatorname{Rfn}_{T}^{\Pi_{n}} \vdash A$, where A is a $\mathcal{B}\left(\Sigma_{n+1}\right)$ sentence. Then there are finitely many instances of relativized local reflection that imply A, that is, for some arithmetical sentences A_{0}, \ldots, A_{m}, we have

$$
T \vdash \bigwedge_{i=0}^{m}\left(\operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner A_{i}\right\urcorner\right) \rightarrow A_{i}\right) \rightarrow A .
$$

Since the relativized provability predicate satisfies Löb's derivability conditions, we also obtain

$$
T \vdash \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\bigwedge_{i=0}^{m}\left(\operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner A_{i}\right\urcorner\right) \rightarrow A_{i}\right) \rightarrow A\right\urcorner\right) .
$$

Considering an arithmetical realization $(\cdot)^{*}$ that maps the variable p to the sentence A and p_{i} to A_{i}, for each i, by Lemma 4.2 we conclude that

$$
T \vdash \bigwedge_{i=0}^{m}\left(\operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner B_{i}\right\urcorner\right) \rightarrow B_{i}\right) \rightarrow A,
$$

where B_{i} denote the formulas $\left(Q_{i}\right)_{T+\Pi_{n}(N)}^{*}$. Now we observe that, if $A \in$ $\mathcal{B}\left(\Sigma_{n+1}\right)$, then for all $i, B_{i} \in \mathcal{B}\left(\Sigma_{n+1}\right)$. Hence

$$
T+\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\mathcal{B}\left(\Sigma_{n+1}\right)\right) \vdash A
$$

which yields Theorem 3 by Lemma 4.3. Theorem 2 follows from Theorem 3 and the observation that the schema $\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+2}\right)$ corresponding to $I \Pi_{n+1}^{-}$is actually weaker than the full $\operatorname{Rfn}_{E A}^{\Pi_{n}}$, q.e.d.

It is obvious, e.g., since $I \Sigma_{1}^{-}$contains $I \Sigma_{1}^{R}$, that all primitive recursive functions are provably total recursive in $I \Sigma_{1}^{-}$and $I \Pi_{2}^{-}$. Moreover, since $I \Sigma_{1}^{-}$is contained in $I \Sigma_{1}$, by Parsons' theorem all p.t.r.f. of $I \Sigma_{1}^{-}$are primitive recursive. The following corollary strengthens this result and gives a positive answer to a question by R. Kaye.

Corollary 4.1. Provably total recursive functions of $I \Pi_{2}^{-}$are exactly the primitive recursive ones.

Proof. Follows from $\mathcal{B}\left(\Sigma_{2}\right)$ conservativity of $I \Pi_{2}^{-}$over $I \Sigma_{1}^{-}$, q.e.d.
By a similar argument we obtain
Corollary 4.2. Provably total recursive functions of $I \Pi_{n+1}^{-}$are the same as those of $I \Sigma_{n}$ and $I \Sigma_{n}^{-}$.

Proof. Follows from Theorem 2 and the fact that $I \Sigma_{n}$ is Σ_{n+2} conservative over $I \Sigma_{n}^{-}$[13], q.e.d.

Remark 4.1. Perhaps somewhat more naturally, conservation results for relativized local reflection principles can be stated modally within a certain bimodal system GLB due to Japaridze, with the operators \square and \square, that describes the joint behaviour of the usual and the relativized provability predicate (cf [8]). Using a suitable Kripke model characterization of GLB, one can semantically prove that

$$
\mathbf{G L B} \vdash \square\left(\bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \rightarrow p\right) \rightarrow \square\left(\bigwedge_{i=0}^{m}\left(\square Q_{i} \rightarrow Q_{i}\right) \rightarrow p\right),
$$

where the formulas Q_{i} are now understood w.r.t. the modality $⿴$, and this yields Theorem 3 almost directly.

5 Further conservation and axiomatization results

The characterization of parameter free induction in terms of reflection principles (Theorem 1) actually reveals other interesting information about these schemata.

The following theorem, which is a corollary of a relativized version of another conservation result for local reflection principles (due, essentially, to Goryachev [10]), gives a characterization of Π_{n+1} consequences of $I \Sigma_{n}^{-}$and $I \Pi_{n+1}^{-}$. For the case of $I \Sigma_{n}^{-}$a related characterization of p.t.r.f. is given in [1, 20]. On the other hand, the paper [13] also contains a related conservation result for $I \Pi_{1}^{-}$w.r.t. Π_{1} sentences ($I \Pi_{1}^{-}$is formulated over $P A^{-}$).

Let T be an r.e. theory containing $E A$. For a fixed $n \geq 1$, we define a sequence of theories $(T)_{i}^{n}$ as follows:

$$
(T)_{0}^{n}:=T ; \quad(T)_{i+1}^{n}:=(T)_{i}^{n}+\operatorname{RFN}_{(T)_{i}^{n}}\left(\Pi_{n}\right) ; \quad(T)_{\omega}^{n}:=\bigcup_{i \geq 0}(T)_{i}^{n}
$$

Theorem 4. For any $n \geq 1$,
(i) The theory axiomatized over $E A$ by arbitrary m instances of $I \Pi_{n+1}^{-}$is Π_{n+1} conservative over $(E A)_{m}^{n+1}$.
(ii) $I \Pi_{n+1}^{-}$is Π_{n+1} conservative over $(E A)_{\omega}^{n+1}$.

Proof. Statement (ii) follows from (i). The proof of (i) relies on the fact that our characterization of parameter free induction schemata in terms of reflection principles respects the number of instances of these schemata.

Lemma 5.1. For every instance B of $I \Pi_{n+1}^{-}$there is a Π_{n+2} sentence P such that $P \rightarrow \operatorname{RFN}_{E A+P}\left(\Pi_{n+1}\right)$ implies B over $E A$. Vice versa, for every such P there is an instance B of $I \Pi_{n+1}^{-}$such that $E A+B$ proves $P \rightarrow \operatorname{RFN}_{E A+P}\left(\Pi_{n+1}\right)$.

Proof. This is easy to check by inspection of our proof of Theorem 1. For the 'vice versa' part we employ Proposition 2.1 (1) stating that

$$
\left[E A+P, \Pi_{n+1}-\mathrm{IR}\right] \vdash \mathrm{RFN}_{E A+P}\left(\Pi_{n+1}\right)
$$

Also notice that any finite number of unnested applications of Π_{n+1}-IR can be obviously merged into a single one, which, in turn, is reducible to a single instance of $I \Pi_{n+1}^{-}$, q.e.d.

Remark 5.1. A similar statement holds for $I \Sigma_{n}^{-}$, but the 'vice versa' part only holds over $I \Sigma_{n-1}$. In general one seems to need $m+1$ instances of $I \Sigma_{n}^{-}$in order to derive m instances of the corresponding reflection schema (the first one is used to derive $I \Sigma_{n-1}$).

Let \perp denote the boolean constant 'falsum'.
Lemma 5.2. GL $\vdash \square^{+} \neg \bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \rightarrow \square^{m+1} \perp$.
Proof. By Lemma 4.2 we have

$$
\mathbf{G L} \vdash \square^{+}\left(\bigwedge_{i=0}^{m}\left(\square p_{i} \rightarrow p_{i}\right) \rightarrow p\right) \rightarrow\left(\bigwedge_{i=0}^{m}\left(\square Q_{i} \rightarrow Q_{i}\right) \rightarrow p\right)
$$

Then, substituting in the above formula \perp for p, observe that

$$
\mathbf{G} \mathbf{L} \vdash Q_{i}(p / \perp) \leftrightarrow \square^{i} \perp
$$

and therefore

$$
\mathbf{G} \mathbf{L} \vdash \bigwedge_{i=0}^{m}\left(\square Q_{i}(p / \perp) \rightarrow Q_{i}(p / \perp)\right) \leftrightarrow \neg \square^{m+1} \perp
$$

q.e.d.

The following lemma is a relativization of Goryachev's theorem [10].
Lemma 5.3. The theory axiomatized over T by any m instances of $\operatorname{Rfn}_{T}^{\Pi_{n}}$ is Π_{n+1} conservative over $(T)_{m}^{n+1}$.

Proof. Let U be a theory axiomatized over T by m instances of relativized local reflection, say $\operatorname{Prov}_{E A}^{\Pi_{n}}\left(\left\ulcorner A_{i}\right\urcorner\right) \rightarrow A_{i}$, for $i<m$. Let A be a Π_{n+1} sentence such that $U \vdash A$. Then we have

$$
T \vdash \neg A \rightarrow \neg \bigwedge_{i=0}^{m-1}\left(\operatorname{Prov}_{E A}^{\Pi_{n}}\left(\left\ulcorner A_{i}\right\urcorner\right) \rightarrow A_{i}\right)
$$

and, by Löb's derivability conditions,

$$
T \vdash \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\neg A\urcorner) \rightarrow \operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner\neg \bigwedge_{i=0}^{m-1}\left(\operatorname{Prov}_{T}^{\Pi_{n}}\left(\left\ulcorner A_{i}\right\urcorner\right) \rightarrow A_{i}\right)\right\urcorner\right) .
$$

By Lemma 5.2 we then obtain

$$
\begin{aligned}
T \vdash\left(\neg \square^{m} \perp\right)_{T+\Pi_{n}(N)}^{*} & \rightarrow\left(A \vee \neg \operatorname{Prov}_{T}^{\Pi_{n}}(\ulcorner\neg A\urcorner)\right) \\
& \rightarrow A,
\end{aligned}
$$

by Lemma 3.1 (1). Statement (i) of Lemma 3.2 implies that, for all i,

$$
(T)_{i}^{n+1} \vdash\left(\neg \square^{i} \perp\right)_{T+\Pi_{n}(N)}^{*},
$$

therefore $(T)_{m}^{n+1} \vdash A$, q.e.d.
Theorem 4 (i) obviously follows from Lemmas 5.1 and 5.3, q.e.d.
Remark 5.2. The first statement of Theorem 4 is also valid for $n=0$, but only over $E A^{+}$rather than $E A$. A proof is similar, using Theorem 1 (iii). For $E A$ a similar characterization can be obtained using bounded cut-rank provability a là Wilkie and Paris [27], cf. also [4].

The following corollary was first proved model-theoretically in [13].
Corollary 5.1. For $n \geq 1$, neither $I \Sigma_{n}^{-}$, nor $I \Pi_{n+1}^{-}$is finitely axiomatizable.
Proof. If any of these theories were, then its Π_{n+1} consequences would be contained in $(E A)_{m}^{n+1}$ for some finite m. But this is impossible, since $I \Sigma_{n}^{-}$ obviously contains $(E A)_{\omega}^{n+1}$, q.e.d.

This corollary can be strengthened by using the following generalization of Theorem 4.

Theorem 5. Let T be an extension of $E A$ by finitely many Π_{n+2} sentences, $n \geq 1$. Then
(i) The extension of T by any m instances of $I \Pi_{n+1}^{-}$is Π_{n+1} conservative over $(T)_{m}^{n+1}$.
(ii) $T+I \Pi_{n+1}^{-}$is Π_{n+1} conservative over $(T)_{\omega}^{n+1}$.

Proof. By formalized Deduction theorem it is easy to see that for the given T

$$
T \vdash \operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+2}\right) \leftrightarrow \operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+2}\right)
$$

Hence, by Theorem 1,

$$
\begin{aligned}
T+I \Pi_{n+1}^{-} & \equiv T+\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+2}\right) \\
& \equiv T+\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+2}\right)
\end{aligned}
$$

Lemma 5.3 then implies the second claim of the theorem. (The fact that $T+$ $I \Pi_{n+1}^{-}$contains $(T)_{\omega}^{n+1}$ follows from Proposition 2.1 and Lemma 2.1.) The first claim of the theorem is obtained from the first part of Theorem 4 in a similar manner, q.e.d.

Corollary 5.2. No consistent extension of $I \Pi_{n+1}^{-}$by Π_{n+2} sentences is finitely axiomatizable.

Proof. Suppose, on the contrary, that there is such an extension. We may assume w.l.o.g. that it has the form $T+U$, for some m instances U of $I \Pi_{n+1}^{-}$, where T is a finite Π_{n+2} axiomatized extension of $E A$. Then, by Theorem 5 , Π_{n+1} consequences of $T+U$ are provable in $(T)_{m}^{n+1}$ for some finite m. Yet, by the second claim of the same theorem,

$$
T+I \Pi_{n+1}^{-} \vdash \operatorname{RFN}_{(T)_{m}^{n+1}}\left(\Pi_{n+1}\right)
$$

The latter formula is Π_{n+1} and unprovable in $(T)_{m}^{n+1}$, q.e.d.
We also obtain the following statement.
Theorem 6. $I \Pi_{n+1}^{-}$is not contained in any consistent extension of $E A$ by an r.e. set of Π_{n+2} sentences.

Proof. By Theorem $1 I \Pi_{n+1}^{-}$contains the schema $\operatorname{Rfn}_{E A}^{\Pi_{n}}\left(\Sigma_{n+2}\right)$ and thus the weaker schema $\operatorname{Rfn}_{E A}\left(\Sigma_{n+2}\right)$. The result follows by the well-known Unboundedness theorem for local reflection (cf. $[14,3]$) stating that no consistent Π_{m} axiomatized r.e. extension of $E A$ contains $\operatorname{Rfn}_{E A}\left(\Sigma_{m}\right)$, q.e.d.

Corollary 5.3. $I \Pi_{n+1}^{-} \nsubseteq I \Sigma_{n+1}^{R}$.
Notice that the complexity of the natural axiomatization of $I \Pi_{n+1}^{-}$is Σ_{n+2}, and $I \Sigma_{n}^{-}$has the complexity $\mathcal{B}\left(\Sigma_{n+1}\right)$. We have the following variant of the Unboundedness theorem for $\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$.

Lemma 5.4. $\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$ is not contained in any consistent extension of T by finitely many $\mathcal{B}\left(\Sigma_{n+1}\right)$ sentences.

Proof. By Lemma 4.3 the schemata $\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\Sigma_{n+1}\right)$ and $\operatorname{Rfn}_{T}^{\Pi_{n}}\left(\mathcal{B}\left(\Sigma_{n+1}\right)\right)$ are equivalent over $E A$. If the latter is contained in $T+\phi$, where $\phi \in \mathcal{B}\left(\Sigma_{n+1}\right)$, then $T+\phi \vdash \square_{T}^{\Pi_{n}} \neg \phi \rightarrow \neg \phi$ and hence $T \vdash \square_{T} \neg \phi \rightarrow \neg \phi$. By Löb's theorem we conclude $T \vdash \neg \phi$, that is, $T+\phi$ is inconsistent, q.e.d.

As a corollary we obtain the following result.
Theorem 7. $I \Sigma_{n}^{-}$is not contained in any consistent extension of $E A$ by finitely many $\mathcal{B}\left(\Sigma_{n+1}\right)$ sentences.

Corollary 5.4. Any consistent theory extending $I \Sigma_{n}^{-}$by $\mathcal{B}\left(\Sigma_{n+1}\right)$ sentences is not finitely axiomatizable.

Proof. This follows from Theorem 7 and the fact that the theory $I \Sigma_{n}^{-}$itself has a $\mathcal{B}\left(\Sigma_{n+1}\right)$ axiomatization, q.e.d.

Finally, we draw a diagram representing the structure of parametric and parameter free induction schemata of bounded arithmetical complexity.

Notice that $I \Pi_{n+1}^{-} \nsubseteq I \Sigma_{n+1}^{R}$ forllows from Corollary 5.3. $I \Sigma_{n} \nsubseteq I \Pi_{n+1}^{-}$ follows from the fact that $I \Pi_{n+1}^{-}$has a Σ_{n+2} axiomatization, whereas $I \Sigma_{n}$ contains $\operatorname{RFN}_{E A}\left(\Pi_{n+2}\right)$ (Leivant [15]). $I \Sigma_{n+1}^{R} \nsubseteq I \Sigma_{n}+I \Pi_{n+1}^{-}$follows from the fact that $I \Sigma_{n}+I \Pi_{n+1}^{-}$is an extension of $I \Sigma_{n}$ by a set of Σ_{n+2} sentences, whereas $I \Sigma_{n+1}^{R}$ contains $\operatorname{RFN}_{\Pi_{n+2}}\left(I \Sigma_{n}\right)$ by Proposition 2.2. Therefore, all inclusions corresponding to the edges of the diagram are strict.

6 Parameter free induction and fast growing functions

Classes of p.t.r.f. of theories containing $E A$ are often measured in terms of the extended Grzegorczyk (or Fast Growing) hierarchy.

We fix a canonical fundamental sequences assignment for limit ordinals $<\varepsilon_{0}$ based on Cantor normal form (see [22]). $\alpha[n]$ denotes the n-th term of the fundamental sequence for an ordinal α. If the Cantor normal form of a limit ordinal α is $\alpha_{0}+\omega^{\beta}$, then

$$
\alpha[n]:= \begin{cases}\alpha_{0}+\omega^{\gamma} \cdot(n+1), & \text { if } \beta=\gamma+1 \\ \alpha_{0}+\omega^{\beta[n]}, & \text { if } \beta \text { is a limit ordinal. }\end{cases}
$$

For this fundamental sequences assignment, a hierarchy of functions F_{α}, for $\alpha<\varepsilon_{0}$, is defined as follows.

$$
\begin{cases}F_{0}(x) & :=x+1 \\ F_{\alpha+1}(x) & :=F_{\alpha}^{(x+1)}(x) \\ F_{\alpha}(x) & :=F_{\alpha[x]}(x), \quad \text { if } \alpha \text { is a limit ordinal. }\end{cases}
$$

As usual $F^{(n)}(x)$ denotes the n-fold iteration of a function $F(x)$, that is, the expression $F(F(\ldots F(x) \ldots))(n$ times $)$.

Classes of functions \mathcal{E}^{α}, for $\alpha<\varepsilon_{0}$ (the extended Grzegorczyk hierarchy), are defined as follows.

$$
\mathcal{E}^{\alpha}:=\mathbf{E}\left(\left\{F_{\beta} \mid \beta<\alpha\right\}\right),
$$

where $\mathbf{E}(K)$ denotes the elementary closure of a class K, that is, the closure of K and all elementary functions under composition and bounded recursion.

For $3 \leq \alpha<\omega$ the classes \mathcal{E}^{α} thus defined coincide with the classes \mathcal{E}^{α} of the familiar Grzegorczyk hierarchy. In particular, \mathcal{E}^{3} is the class of Kalmar elementary functions, and \mathcal{E}^{ω} is the class of primitive recursive functions. $\mathcal{E}^{\omega^{k}}$ coincides with the class of k-recursive functions in the sense of Peter (see [21, 16]).

It is well-known that $\mathcal{E}^{\varepsilon_{0}}$ coincides with the class of p.t.r.f. of Peano Arithmetic (Kreisel-Schwichtenberg-Wainer), see [9] for a modern self-contained exposition. The results of Parsons in combination with those of Tait (see e.g. [22, 19]) sharpen this to $\mathcal{F}\left(I \Sigma_{n}\right)=\mathcal{E}^{\omega_{n}}$, for each $n \geq 1$, where we define

$$
\begin{cases}\omega_{0}(\alpha) & :=\alpha \\ \omega_{k+1}(\alpha) & :=\omega^{\omega_{k}(\alpha)}\end{cases}
$$

and $\omega_{n}:=\omega_{n}(1)$. From Corollary 4.2 we thus immediately infer the following result.

Theorem 8. For $n \geq 1, \mathcal{F}\left(I \Pi_{n+1}^{-}\right)=\mathcal{E}^{\omega_{n}}$.
The characterization of p.t.r.f. of the theories of the form $I \Sigma_{n}+I \Pi_{n+1}^{-}$is more interesting.

Theorem 9. For $n \geq 1, \mathcal{F}\left(I \Sigma_{n}+I \Pi_{n+1}^{-}\right)=\mathcal{E}^{\omega_{n}(2)}$. In particular, $\mathcal{F}\left(I \Sigma_{1}+\right.$ $\left.I \Pi_{2}^{-}\right)=\mathcal{E}^{\omega^{2}}$, that is, coincides with the class of doubly-recursive functions of Peter.

Proof. For a proof of this theorem, in addition to the results of the previous section, we apply the machinery of transfinitely iterated reflection principles. This topic goes back to the works of Turing and Feferman. Essential ingredients for our proof are contained in the works [23, 2] and particularly [26]. Neither Schmerl, nor Sommer present all technical details in their papers, therefore the reader is also referred to their Ph.D. theses cited therein.

First, following Sommer [26], we represent the system of ordinal notation up to ε_{0} by bounded arithmetical formulas ${ }^{2}$ in such a way that basic properties of ordinal functions and Cantor normal forms become provable in $E A$. Then we construct a bounded formula $F_{\alpha}(x) \simeq y$ of the variables α, x, y that uniformly represents the graphs of the functions in the Fast Growing hierarchy as defined above. For these formulas one can verify basic monotonicity properties and

[^2]functionality property in $E A$. As in [26], p. 285, we then define the theories S_{α}, for $\alpha<\varepsilon_{0}$, as follows:
$$
S_{\alpha}:=E A+\left\{\forall x \exists y F_{3+\beta}(x) \simeq y \mid \beta<\alpha\right\} .
$$

As a corollary of Herbrand's Theorem (or Proposition 6.4 in [26]) we obtain the following statement.

Proposition 6.1. For all $\alpha<\varepsilon_{0}, \mathcal{F}\left(S_{\alpha}\right)=\mathcal{E}^{3+\alpha}$.
Proposition 6.10 of [26] can then be reformulated as follows.
Proposition 6.2. Provably in EA,

$$
\forall \alpha<\varepsilon_{0} \quad S_{\alpha} \equiv E A+\left\{\operatorname{RFN}_{S_{\beta}}\left(\Pi_{2}\right) \mid \beta<\alpha\right\}
$$

Uniqueness Lemma 2.3 of [2] formulated for iterated consistency assertions holds for iterated Π_{2} reflection principles with the same proof. It implies that there is only one, up to $E A$-provable equivalence, sequence of theories S_{α} satisfying the statement of the previous proposition. This means that the theories S_{α} coincide with the hierarchy of transfinitely iterated uniform Π_{2} reflection principles built up over $E A$ along the canonical system of ordinal notation in the sense of $[23,2]$.

More precisely (see [2]), for a given $\Delta_{0}(e x p)$ well-ordering representation, an initial theory T, and a fixed $n \geq 1$, there is a $\Delta_{0}(\exp)$ formula $A x_{T}(\alpha, x)$ numerating in $E A$ the axioms of a theory denoted by $(T)_{\alpha}^{n}$ such that, provably in $E A$,

$$
\forall \alpha<\varepsilon_{0} \quad(T)_{\alpha}^{n} \equiv T+\left\{\operatorname{RFN}_{(T)_{\beta}^{n}}\left(\Pi_{n}\right) \mid \beta<\alpha\right\}
$$

Actually, the equivalence above can be viewed as a fixed point equation implicitly defining $A x_{T}(\alpha, x)$. By Lemma 2.3 of [2], for a fixed initial theory T and a well-ordering representation, such a sequence of theories is defined uniquely up to $E A$-provable equivalence. So, applying this to the canonical well-ordering representation up to ε_{0} we obtain

Proposition 6.3. Provably in EA,

$$
\forall \alpha<\varepsilon_{0} \quad S_{\alpha} \equiv(E A)_{\alpha}^{2}
$$

By the same Uniqueness lemma, the transfinite progression of iterated reflection principles over primitive recursive arithmetic, $(P R A)_{\alpha}^{n+1}$, coincides with the one considered in Schmerl [23], which he denotes $\binom{n}{\alpha}$. By inspection of the so-called Fine Structure theorem ([23], page 347) it is not too difficult to convince oneself that its proof works for $E A$, as well as for $P R A$, and to obtain the following statement. (A more general form of this theorem with a new proof will appear in [6].)

Proposition 6.4. For each $n, k \geq 1$, and all ordinals $\alpha \geq 1$, $\left((E A)_{\alpha}^{n+k}\right)_{\beta}^{n}$ proves the same Π_{n} sentences as $(E A)_{\omega_{k}(\alpha) \cdot(1+\beta)}^{n}$.
(In fact, the mutual Π_{n} conservativity above holds provably in $E A^{+}$, uniformly in α, β.) Now we are ready to complete the proof of Theorem 9 . Since $I \Sigma_{n}$ is a finitely Π_{n+2} axiomatizable theory, Theorem 5 implies that $I \Sigma_{n}+I \Pi_{n+1}^{-}$is Π_{n+1} conservative over $\left(I \Sigma_{n}\right)_{\omega}^{n+1}$. But $I \Sigma_{n}$ is equivalent to $(E A)_{1}^{n+2}$, therefore

$$
\left(I \Sigma_{n}\right)_{\omega}^{n+1} \equiv\left((E A)_{1}^{n+2}\right)_{\omega}^{n+1}
$$

By Proposition $6.4\left((E A)_{1}^{n+2}\right)_{\omega}^{n+1}$ proves the same Π_{n+1} sentences as $(E A)_{\omega^{2}}^{n+1}$, and the latter theory proves the same Π_{2} sentences as $(E A)_{\omega_{n-1}\left(\omega^{2}\right)}^{2} \equiv(E A)_{\omega_{n}(2)}^{2}$. Therefore $I \Sigma_{n}+I \Pi_{n+1}^{-}$and $(E A)_{\omega_{n}(2)}^{2}$ prove the same Π_{2} sentences and have the same classes of p.t.r.f.. The result follows now by Propositions 6.1 and 6.3, q.e.d.

Acknowledgement. I wish to thank A. Weiermann for drawing my attention to the problems treated in this paper and bibliographical advice.

References

[1] Z. Adamovicz and T. Bigorajska. Functions provably total in $I^{-} \Sigma_{1}$. Fundamenta mathematicae, 132:189-194, 1989.
[2] L.D. Beklemishev. Iterated local reflection versus iterated consistency. Annals of Pure and Applied Logic, 75:25-48, 1995.
[3] L.D. Beklemishev. Notes on local reflection principles. Logic Group Preprint Series 133, University of Utrecht, 1995. To appear in Theoria.
[4] L.D. Beklemishev. Induction rules, reflection principles, and provably recursive functions. Annals of Pure and Applied Logic, 85:193-242, 1997.
[5] L.D. Beklemishev. Parameter free induction and reflection. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Lecture Notes in Computer Science 1289. Computational Logic and Proof Theory, 5-th K.Gödel Colloquium KGC'97, Proceedings, pages 103-113. Springer-Verlag, Berlin, 1997.
[6] L.D. Beklemishev. Reflection principles in formal arithmetic. Doctoral Dissertation, Steklov Math. Institute, Moscow, 1998.
[7] T. Bigorajska. On Σ_{1}-definable functions provably total in $I \Pi_{1}^{-}$. Mathematical Logic Quarterly, 41:135-137, 1995.
[8] G. Boolos. The Logic of Provability. Cambridge University Press, Cambridge, 1993.
[9] W. Buchholz and S. Wainer. Provably computable functions and the fast growing hierarchy. In Contemporary Math. 65, pages 179-198, 1987.
[10] S. Goryachev. On interpretability of some extensions of arithmetic. Mat. Zametki, 40:561-572, 1986. In Russian.
[11] P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic. Springer-Verlag, Berlin, Heidelberg, New-York, 1993.
[12] R. Kaye. Parameter free universal induction. Zeitschrift f. math. Logik und Grundlagen d. Math., 35(5):443-456, 1989.
[13] R. Kaye, J. Paris, and C. Dimitracopoulos. On parameter free induction schemas. Journal of Symbolic Logic, 53(4):1082-1097, 1988.
[14] G. Kreisel and A. Lévy. Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift f. math. Logik und Grundlagen d. Math., 14:97-142, 1968.
[15] D. Leivant. The optimality of induction as an axiomatization of arithmetic. Journal of Symbolic Logic, 48:182-184, 1983.
[16] M.H. Löb and S.S. Wainer. Hierarchies of number-theoretic functions. Archive for Mathematical Logic, 13:39-51, 97-113, 1970.
[17] H. Ono. Reflection principles in fragments of Peano Arithmetic. Zeitschrift f. math. Logik und Grundlagen d. Math., 33(4):317-333, 1987.
[18] C. Parsons. On a number-theoretic choice schema and its relation to induction. In A. Kino, J. Myhill, and R.E. Vessley, editors, Intuitionism and Proof Theory, pages 459-473. North Holland, Amsterdam, 1970.
[19] C. Parsons. On n-quantifier induction. Journal of Symbolic Logic, 37(3):466-482, 1972.
[20] Z. Ratajczyk. Functions provably total in $I^{-} \Sigma_{n}$. Fundamenta Mathematicae, 133:81-95, 1989.
[21] J.W. Robbin. Subrecursive hierarchies. PhD thesis, Princeton University, Princeton, 1965.
[22] H.E. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford, 1984.
[23] U.R. Schmerl. A fine structure generated by reflection formulas over Primitive Recursive Arithmetic. In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium'78, pages 335-350. North Holland, Amsterdam, 1979.
[24] C. Smoryński. The incompleteness theorems. In J. Barwise, editor, Handbook of Mathematical Logic, pages 821-865. North Holland, Amsterdam, 1977.
[25] C. Smoryński. Self-Reference and Modal Logic. Springer-Verlag, Berlin-Heidelberg-New York, 1985.
[26] R. Sommer. Transfinite induction within Peano arithmetic. Annals of Pure and Applied Logic, 76(3):231-289, 1995.
[27] A. Wilkie and J. Paris. On the scheme of induction for bounded arithmetic formulas. Annals of Pure and Applied Logic, 35:261-302, 1987.

[^0]: *Supported by the Russian Foundation for Basic Research grant 96-01-01222.

[^1]: ${ }^{1}$ This definition differs from the one in [13] in that we work over $E A$, rather than over the weaker theories $I \Delta_{0}$ or $P A^{-}$. Since $I \Sigma_{1}^{-}$in the sense of [13] obviously contains $E A$, the two definitions are equivalent for $n \geq 1$ in Σ case, and for $n \geq 2$ in Π case.

[^2]: ${ }^{2}$ In fact, a $\Delta_{0}(\exp)$ natural well-ordering representation will do for our present purposes.

