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Abstract

We give a precise characterization of parameter free Σn and Πn in-

duction schemata, IΣ−

n
and IΠ−

n
, in terms of reflection principles. This

allows us to show that IΠ−

n+1 is conservative over IΣ−

n
w.r.t. boolean com-

binations of Σn+1 sentences, for n ≥ 1. In particular, we give a positive

answer to a question, whether the provably recursive functions of IΠ−

2 are

exactly the primitive recursive ones. We also characterize the provably

recursive functions of theories of the form IΣn + IΠ−

n+1 in terms of the

fast growing hierarchy. For n = 1 the corresponding class coincides with

the doubly-recursive functions of Peter. We also obtain sharp results on

the strength of bounded number of instances of parameter free induction

in terms of iterated reflection.
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1 Introduction

In this paper we shall deal with the first order theories containing Kalmar ele-
mentary arithmetic EA or, equivalently, I∆0+Exp (cf. [11]). We are interested
in the general question how various ways of formal reasoning correspond to
models of computation. This kind of analysis is traditionally based on the con-
cept of provably total recursive function (p.t.r.f.) of a theory. Given a theory T
containing EA, a function f(~x) is called provably total recursive in T , iff there
is a Σ1 formula φ(~x, y), sometimes called specification, that defines the graph of
f in the standard model of arithmetic and such that

T ⊢ ∀~x∃!y φ(~x, y).
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The class of p.t.r.f. of T , denoted F(T ), is one of the most interesting characteris-
tics of T , which somehow describes its power of reasoning about the termination
of computations or ‘computational strength’.

We are going to analyze from this point of view the role of parameters
involved in applications of the principle of mathematical induction. Parameter
free induction schemata have been introduced and investigated in a number of
works by Kaye, Paris, and Dimitracopoulos [13], Adamowicz and Bigorajska [1],
Ratajczyk [20], Kaye [12], and others. IΣ−

n is the theory axiomatized over EA
by the schema of induction

A(0) ∧ ∀x (A(x) → A(x + 1)) → ∀xA(x),

for Σn formulas A(x) containing no other free variables but x, and IΠ−
n is

similarly defined.1

It is known that the schemata IΣ−
n and IΠ−

n have a very different behaviour
from their parametric counterparts IΣn and IΠn. In particular, for n ≥ 1, IΣ−

n

and IΠ−
n are not finitely axiomatizable, and IΣ−

n is strictly stronger than IΠ−
n

(in fact, stronger than IΣn−1 + IΠ−
n ). Furthermore, it is known that IΣn is a

conservative extension of IΣ−
n w.r.t. Σn+2 sentences, although IΣ−

n itself only
has a B(Σn+1) axiomatization [13].

In contrast, nontrivial conservation results for IΠ−
n , for n > 1, were un-

known. In particular, it was unknown, if the provably total recursive functions
of IΠ−

2 coincide with the primitive recursive ones (communicated by R. Kaye).
The case of IΠ−

1 (over PA−) was treated in [13], where the authors showed that
Π2 consequences of that theory are contained in EA, cf. also [7].

In this paper we prove that the p.t.r.f. of IΠ−
2 are exactly the primitive

recursive functions. Moreover, we show that IΠ−
n+1 is conservative over IΣ−

n

w.r.t. boolean combinations of Σn+1 sentences (n ≥ 1). In particular, this allows
us to characterize p.t.r.f. of the theories IΠ−

n+1 and IΣn+ IΠ
−
n+1 for any n ≥ 1.

Notice that our characterization of F(IΠ−
2 ) is similar to a well-known theo-

rem of Parsons [18] (independently proved by Mints and Takeuti) stating that
F(IΣ1) coincides with the class of primitive recursive functions, as well. How-
ever, the relationship between these two results is nontrivial, because the the-
ories IΠ−

2 and IΣ1 are incomparable in strength (neither is included in the
other). In fact, it is easy to see that the theory IΣ1 + IΠ−

2 has a larger class
of p.t.r.f. than the class of primitive recursive functions. This can be seen from
the following characteristic example.

The well-known Ackermann function Ack(x) is defined by double recursion
as follows. Ack(x) := g(x, x), where







g(x, 0) = x+ 1
g(0, n+ 1) = g(1, n)

g(x+ 1, n+ 1) = g(g(x, n+ 1), n)

1This definition differs from the one in [13] in that we work over EA, rather than over the
weaker theories I∆0 or PA−. Since IΣ−

1
in the sense of [13] obviously contains EA, the two

definitions are equivalent for n ≥ 1 in Σ case, and for n ≥ 2 in Π case.
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Ack is known to grow faster than any primitive recursive function (cf. [22]). The
graphs of g and Ack can be naturally defined by Σ1 formulas, for which one can
also verify in EA the inductive definition clauses above. In order to show that
Ack is total we prove that the two-argument function g(x, n) is total. A natural
proof of the statement ∀n∀x∃y g(x, n) = y goes by induction on n. Notice that
the corresponding induction formula is Π2 and parameter free. However, in
order to verify the induction step one must argue that

∀x∃y g(x, n) = y → ∀x∃y g(x, n+ 1) = y.

This statement is provable by a subordinate Σ1 induction on x with a parameter
n. In other words, the usual argument for the totality of Ackermann function
is formalizable in IΣ1 + IΠ−

2 . Our result shows that any correct argument for
the totality of Ack formalizable in Peano arithmetic must involve parameters
(or induction formulas outside the class Π2).

Below we shall show that F(IΣ1 + IΠ−
2 ) actually coincides with the class of

doubly-recursive functions of Peter (cf. [22]). This class can be also characterized
as the class corresponding to the ordinal ω2 of the extended Grzegorczyk (or
Fast Growing) hierarchy, and thus involves functions growing much faster than
the Ackermann function. It is well-known that F(IΠ2) is the class of multiply-
recursive functions , that is, corresponds in the same sense yet to a bigger ordinal
ωω.

The above example of a natural pair of theories capturing the same class
of computable functions, whose union captures a much bigger class, opens the
question whether there may exist in general a unique ‘most natural’ arithmetical
theory corresponding to a given computation model. For the case of primitive re-
cursion IΣ1 was generally held to be such a theory. Now we are confronted with
the question, if Σ1 induction with parameters is more natural than Π2 induction
without parameters. Our answer to this (admittedly, somewhat philosophical)
dilemma is that there is more to each of these two theories, than their compu-
tational content. Apart from the primitive recursion mechanism, both of them
involve some more complex principles of reasoning. Taken together, these prin-
ciples complement each other in a way that significantly increases their class of
p.t.r.f..

The proofs of our results are based on a characterization of parameter free
induction schemata in terms of reflection principles and (generalizations of)
the conservativity results for local reflection principles obtained in [3] using
methods of provability logic. In our opinion, such a relationship presents an
independent interest, especially because this seems to be the first occasion when
local reflection principles naturally arise in the study of fragments of arithmetic.
Using the method of reflection principles we also obtain a number of other
results, in particular, sharp characterizations of the strength of bounded number
of instances of parameter free induction schemata and some corollaries on the
complexity of their axiomatization.

We shall also essentially rely on the results from [4] characterizing the clo-
sures of arbitrary arithmetical theories extending EA under Σn and Πn induc-
tion rules. In fact, the results of this paper show that much of the unusual
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behaviour of parameter free induction schemata can be explained by their tight
relationship with the theories axiomatized by induction rules.

The results of Sections 3 and 4 of this paper appeared in [5].

2 Preliminaries

We shall work in the language of Peano Arithmetic enriched by a binary predi-
cate symbol of inequality. Bounded or ∆0 formulas in this language are those,
all of whose quantifier occurrences have the form ∀x (x ≤ t→ A(x)) or ∃x (x ≤
t ∧ A(x)), where t is a term not involving x. In EA a function symbol for ex-
ponention function 2x can be introduced [11]; ∆0(exp) formulas are bounded
formulas in the extended language. Σn and Πn formulas are prenex formulas
obtained from the bounded ones by n alternating blocks of similar quantifiers,
starting from ‘∃’ and ‘∀’, respectively. B(Σn) denotes the class of boolean combi-
nations of Σn formulas. Σst

n and Πst
n denote the classes of Σn and Πn sentences.

St denotes the class of all arithmetical sentences. EA+ denotes the extension of
EA by a natural Π2 axiom stating that the iterated exponentiation function is
total, or I∆0+Supexp in the terminology of [11, 27]. PRA denotes the standard
first order Primitive Recursive Arithmetic.

Next, we establish some useful terminology and notation concerning rules
in arithmetic (cf. also [4]). We say that a rule is a set of instances, that is,
expressions of the form

A1, . . . , An

B
,

where A1, . . . , An and B are formulas. Derivations using rules are defined in
the standard way; T +R denotes the closure of a theory T under a rule R and
first order logic. [T,R] denotes the closure of T under unnested applications
of R, that is, the theory axiomatized over T by all formulas B such that, for
some formulas A1, . . . , An derivable in T , A1,...,An

B
is an instance of R. T ≡ U

means that theories T and U are deductively equivalent, i.e., have the same set
of theorems.

A rule R1 is derivable fromR2 iff, for every theory T containing EA, T+R1 ⊆
T + R2. A rule R1 is reducible to R2 iff, for every theory T containing EA,
[T,R1] ⊆ [T,R2]. R1 and R2 are congruent iff they are mutually reducible
(denoted R1

∼= R2). For a theory U containing EA we say that R1 and R2 are
congruent modulo U , iff for every extension T of U , [T,R1] ≡ [T,R2].

Induction rule is defined as follows:

IR:
A(0), ∀x (A(x) → A(x+ 1))

∀xA(x)
.

Whenever we impose a restriction that A(x) only ranges over a certain subclass
Γ of the class of arithmetical formulas, this rule is denoted Γ-IR. The theory
EA+Σn-IR will also be denoted IΣR

n . In general, we allow parameters to occur
in A, however the following lemma holds.
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Lemma 2.1. Πn-IR is reducible to parameter free Πn-IR. Σn-IR is reducible
to parameter free Σn-IR.

Proof. An application of IR for a formula A(x, a) can obviously be reduced to
the one for ∀zA(x, z), and this accounts for the Πn case.

On the other hand, if A(x, y, a) is Πn−1, then an application of Σn-IR for
the formula ∃yA(x, y, a) is reducible, using the standard coding of sequences
available in EA, to the one for ∃yA′(x, y), where

A′(x, y) := ∀i ≤ xA((i)0, (y)i, (i)1).

Indeed, assume that

T ⊢ ∃y A(0, y, a), and (1)

T ⊢ ∀x (∃y A(x, y, a) → ∃y A(x + 1, y, a)). (2)

Then by (1) and the monotonicity of the coding of sequences, T ⊢ ∃y A′(0, y).
For a proof of

T ⊢ ∀x (∃y A′(x, y) → ∃y′ A′(x+ 1, y′)),

assume ∀i ≤ x A((i)0, (y)i, (i)1). If (x + 1)0 = 0, then by (1) there is an
element z such that A(0, z, (x+1)1), and we can take for y′ the sequence y ∗ 〈z〉
(∗ denotes concatenation). If (x + 1)0 > 0, then the code of the pair p :=
〈(x + 1)0 − 1, (x + 1)1〉 is strictly less than x + 1, and thus, by the induction
hypothesis, there is a z = (y)p such that A((x + 1)0 − 1, z, (x+ 1)1). From (2)
it follows that for some z′ one has A((x + 1)0, z

′, (x + 1)1). Hence, for y′ one
can take the sequence y ∗ 〈z′〉, q.e.d.

Reflection principles, for a given r.e. theory T containing EA, are defined as
follows. The uniform reflection principle is the schema

RFNT : ∀x (ProvT (pA(ẋ)q) → A(x)), A(x) a formula,

where ProvT (·) denotes a canonical provability predicate for T . The local re-
flection principle is the schema

RfnT : ProvT (pAq) → A, A a sentence.

Partial reflection principles are obtained from the above schemata by imposing
a restriction that A belongs to one of the classes Γ of the arithmetic hierarchy
(denoted RfnT (Γ) and RFNT (Γ), respectively). It is known that, due to the
existence of partial truthdefinitions, the schema RFNT (Πn) is equivalent to a
single Πn sentence over EA. In particular, RFNT (Π1) is equivalent to the
consistency assertion ConT for T . See [24, 14, 3] for some basic information
about reflection principles. In addition we note the following facts: EA+ ≡
EA + RFNEA(Π2) [27, 4], and IΣn ≡ EA + RFNEA(Πn+2), for all n ≥ 1
[15, 17, 11].
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We shall also consider the following metareflection rule:

RR(Πn) :
P

RFNEA+P (Πn)
.

We let Πm-RR(Πn) denote the above rule with the restriction that P is a Πm

sentence. Main results (Theorems 1, 2 and 3) of [4] can then be reformulated
as follows.

Proposition 2.1. 1. Πn-IR ∼= Πn+1-RR(Πn), for n > 1;

2. Π1-IR ∼= Π2-RR(Π1) (modulo EA+).

Proposition 2.2. 1. Σ1-IR ∼= Π2-RR(Π2);

2. Σn-IR ∼= Πn+1-RR(Πn+1) (modulo IΣn−1), for n > 1.

Since [EA,Σn-IR] contains IΣn−1, the second claim of this proposition im-
plies that the rules Πn+1-RR(Πn+1) and Σn-IR are interderivable, for all n ≥ 1.
Also notice that Propositions 2.1 and 2.2 imply the following result of Parsons
[19]: IΣR

n ≡ IΠR
n+1, for all n ≥ 1.

3 Characterizing parameter free induction by

reflection principles

Having in mind the exact correspondence between parametric induction schemata
and uniform reflection principles over EA, it seems natural to conjecture that
parameter free induction should correspond to parameter free, that is, local re-
flection principles. However, it is also well-known that local reflection schemata
per se are too weak: e.g., RfnEA is contained in the extension of EA by the
set of all true Π1 sentences, yet none of the schemata IΠ−

n for n > 1 satisfies
this property. It turns out that in order to obtain a sharp characterization of
parameter free induction one has to relativize the provability operator.

For n ≥ 1, Πn(N) denotes the set of all true Πn sentences. TrueΠn
(x)

denotes a canonical truthdefinition for Πn sentences, that is, a Πn formula nat-
urally defining the set of Gödel numbers of Πn(N) sentences in EA. TrueΠn

(x)
provably in EA satisfies Tarski satisfaction conditions (cf [11]), and therefore,
for every formula A(x1, . . . , xn) ∈ Πn,

EA ⊢ A(x1, . . . , xn) ↔ TrueΠn
(pA(ẋ1, . . . , ẋn)q). (∗)

Tarski’s truth lemma (∗) is formalizable in EA, in particular,

EA ⊢ ∀s ∈ Πst
n ProvEA(s ↔̇pTrueΠn

(ṡ)q), (∗∗)

where Πst
n is a natural elementary definition of the set of Gödel numbers of Πn

sentences in EA. We also assume w.l.o.g. that

EA ⊢ ∀x (TrueΠn
(x) → x ∈ Πst

n ).
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Let T be an r.e. theory containing EA. A provability predicate for the
theory T +Πn(N) can be naturally defined, e.g., by the following Σn+1 formula:

ProvΠn

T (x) := ∃s (TrueΠn
(s) ∧ ProvT (s →̇x)).

Lemma 3.1. 1. For each Σn+1 formula A(x1, . . . , xn),

EA ⊢ A(x1, . . . , xn) → ProvΠn

T (pA(ẋ1, . . . , ẋn)q).

2. ProvΠn

T (x) satisfies Löb’s derivability conditions in T :

(a) T ⊢ A ⇒ T ⊢ ProvΠn

T (pAq);

(b) T ⊢ ProvΠn

T (pA→ Bq) → (ProvΠn

T (pAq) → ProvΠn

T (pBq));

(c) T ⊢ ProvΠn

T (pAq) → ProvΠn

T (pProvΠn

T (pAq)q).

Proof. Statement 1 follows from (∗). Statement 2 follows from Statement 1,
Tarski satisfaction conditions, and is essentially well-known (cf. [25]), q.e.d.

We define

ConΠn

T := ¬ProvΠn

T (p0 = 1q),

RfnΠn

T := {ProvΠn

T (pφq) → φ | φ ∈ St},

RfnΠn

T (Σm) := {ProvΠn

T (pσq) → σ | σ ∈ Σst
m}.

For n = 0 all these schemata coincide, by definition, with their nonrelativized
counterparts.

Lemma 3.2. For all n ≥ 0, m ≥ 1, the following schemata are deductively
equivalent over EA:

(i) ConΠn

T ≡ RFNT (Πn+1);

(ii) RfnΠn

T (Σm) ≡ {P → RFNT+P (Πn+1) | P ∈ Πst
m}.

Proof. (i) Observe that, using (∗∗),

EA ⊢ ¬ProvΠn

T (p0 = 1q) ↔ ¬∃s (TrueΠn
(s) ∧ ProvT (s →̇p0 = 1q))

↔ ∀s (ProvT (¬̇s) → ¬TrueΠn
(s))

↔ ∀s (ProvT (p¬TrueΠn
(ṡ)q) → ¬TrueΠn

(s)).

The latter formula clearly follows from RFNT (Σn), but it also implies RFNT (Σn),
and hence RFNT (Πn+1), by (∗).

(ii) By formalized Deduction theorem,

EA ⊢ ConΠn

T+P ↔ ¬ProvΠn

T (p¬Pq). (3)
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Hence, over EA,

RfnΠn

T (Σm) ≡ {ProvΠn

T (pSq) → S | S ∈ Σst
m}

≡ {P → ¬ProvΠn

T (p¬Pq) | P ∈ Πst
m}

≡ {P → RFNT+P (Πn+1) | P ∈ Πst
m}, by (3) and (i),

q.e.d.

Theorem 1. For n ≥ 1,

(i) IΣ−
n ≡ EA+RfnΠn

EA(Σn+1);

(ii) IΠ−
n+1 ≡ EA+RfnΠn

EA(Σn+2);

(iii) EA+ + IΠ−
1 ≡ EA+ +RfnEA(Σ2) ≡ EA+ +RfnEA+(Σ2).

Proof. All statements are proved similarly, respectively relying upon Proposi-
tions 2.2 and 2.1, so we shall only elaborate the proof of the first one. For the
inclusion (⊆) we have to derive

A(0) ∧ ∀x (A(x) → A(x + 1)) → ∀xA(x),

for each Σn formula A(x) with the only free variable x. Let P denote the Πn+1

sentence (logically equivalent to) A(0)∧∀x(A(x) → A(x+1)). Then, by external
induction on n it is easy to see that, for each n, EA + P ⊢ A(n̄). This fact is
formalizable in EA, therefore

EA ⊢ ∀x ProvEA+P (pA(ẋ)q). (4)

By Lemma 3.2 we conclude that

EA+RfnΠn

EA(Σn+1) + P ⊢ RFNEA+P (Πn+1)

⊢ ∀x (ProvEA+P (pA(ẋ)q) → A(x))

⊢ ∀xA(x), by (4).

It follows that EA+RfnΠn

EA(Σn+1) ⊢ P → ∀xA(x), as required.
For the inclusion (⊇) we observe that, for any Πn+1 sentence P , the theory

IΣ−
n + P contains P +Σn-IR by Lemma 2.1, and hence

IΣ−
n + P ⊢ RFNEA+P (Πn+1),

by Proposition 2.2. It follows that

IΣ−
n ⊢ P → RFNEA+P (Πn+1),

and Lemma 3.2 (ii) yields the result, q.e.d.
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4 Analyzing IΠ−
n

The following theorem and its Corollary 4.1 are the main results of this paper.

Theorem 2. For any n ≥ 1, IΠ−
n+1 is conservative over IΣ−

n w.r.t. B(Σn+1)
sentences.

Proof. The result follows from Theorem 1 and the following relativized version
of Theorem 1 of [3].

Theorem 3. For any n ≥ 0, T +RfnΠn

T is conservative over T +RfnΠn

T (Σn+1)
w.r.t. B(Σn+1) sentences.

Proof. The proof of this theorem makes use of a purely modal logical lemma
concerning Gödel-Löb provability logic GL (cf e.g. [8, 25]). Recall that GL is
formulated in the language of propositional calculus enriched by a unary modal
operator �. The expressions ♦φ and �+φ are the standard abbreviations for
¬�¬φ and φ∧�φ, respectively. Axioms of GL are all instances of propositional
tautologies in this language together with the following schemata:

L1. �(φ→ ψ) → (�φ→ �ψ);

L2. �φ→ ��φ;

L3. �(�φ→ φ) → �φ.

Rules of GL are moduls ponens and φ ⊢ �φ (necessitation).
By an arithmetical realization of the language of GL we mean any function

(·)∗ that maps propositional variables to arithmetical sentences. For a modal
formula φ, (φ)∗T denotes the result of substituting for all the variables of φ the
corresponding arithmetical sentences and of translating � as the provability
predicate ProvT (p·q). Under this interpretation, axioms L1, L2 and the neces-
sitation rule can be seen to directly correspond to the three Löb’s derivability
conditions, and axiom L3 is the formalization of Löb’s theorem. It follows that,
for each modal formula φ, GL ⊢ φ implies T ⊢ (φ)∗T , for every realization (·)∗ of
the variables of φ. The opposite implication, for the case of a Σ1 sound theory
T , is also valid; this is the content of the important arithmetical completeness
theorem for GL due to Solovay (cf [8]).

For us it will also be essential that GL is sound under the interpretation of
� as a relativized provability predicate. For an arithmetical realization (·)∗, we
let (φ)∗

T+Πn(N) denote the result of substituting for all the variables of φ the

corresponding arithmetical sentences and of translating � as ProvΠn

T (p·q). The
following lemma is a corollary of Lemma 3.1 and the fact that (formalized) Löb’s
theorem for relativized provability follows by the usual fixed-point argument
from the derivability conditions.

Lemma 4.1. If GL ⊢ φ, then T ⊢ (φ)∗
T+Πn(N), for every arithmetical realiza-

tion (·)∗ of the variables of φ.
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The opposite implication, that is, the arithmetical completeness of GL w.r.t.
the relativized provability interpretation is also well-known (cf. [25]). Yet, below
we do not use this fact.

The following crucial lemma is a modification of a similar lemma in [3].

Lemma 4.2. Let modal formulas Qi be defined as follows:

Q0 := p, Qi+1 := Qi ∨�Qi,

where p is a propositional variable. Then, for any variables p0, . . . , pm,

GL ⊢ �+(

m
∧

i=0

(�pi → pi) → p) → (

m
∧

i=0

(�Qi → Qi) → p).

Proof. Rather than exhibiting an explicit proof of the formula above, we shall
argue semantically, using a standard Kripke model characterization of GL.

Recall that a Kripke model for GL is a triple (W,R,), where

1. W is a finite nonempty set;

2. R is an irreflexive partial order on W ;

3.  is a forcing relation between elements (nodes) ofW and modal formulas
such that

x  ¬φ ⇐⇒ x 1 φ,

x  (φ→ ψ) ⇐⇒ (x 1 φ or x  ψ),

x  �φ ⇐⇒ ∀y ∈ W (xRy ⇒ y  φ).

Theorem 4 on page 95 of [8] (originally proved by Segerberg) states that a modal
formula is provable in GL, iff it is forced at every node of any Kripke model of
the above kind. This provides a useful criterion for showing provability in GL.

Consider any Kripke model (W,R,) in which the conclusion (
∧m

i=0(�Qi →
Qi) → p) is false at a node x ∈ W . This means that x 1 p and x  �Qi → Qi,
for each i ≤ m. An obvious induction on i then shows that x 1 Qi for all
i ≤ m+ 1, in particular, x 1 Qm+1.

Unwinding the definition of Qi we observe that in W there is a sequence of
nodes

x = xm+1RxmR . . .Rx0

such that, for all i ≤ m + 1, xi 1 Qi. Since R is irreflexive and transitive, all
xi’s are pairwise distinct. Moreover, it is easy to see by induction on i that, for
all i,

GL ⊢ p→ Qi.

Hence, for each i ≤ m+ 1, xi 1 p.
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Now we notice that each formula �pi → pi can be false at no more than
one node of the chain xm+1, . . . , x0. Therefore, by Pigeon-hole Principle, there
must exist a node z among the m+ 2 nodes xi such that

z 

m
∧

i=0

(�pi → pi) ∧ ¬p.

In case z coincides with x = xm+1 we have

x 1

m
∧

i=0

(�pi → pi) → p.

In case z = xi, for some i ≤ m, we have xRz by transitivity of R, and thus

x 1 �(

m
∧

i=0

(�pi → pi) → p).

This shows that the formula in question is forced at every node of any Kripke
model; hence it is provable in GL, q.e.d.

Lemma 4.3. For any n ≥ 0, the following schemata are deductively equivalent
over EA:

RfnΠn

T (Σn+1) ≡ RfnΠn

T (B(Σn+1)).

Proof. We prove that

EA+RfnΠn

T (Σn+1) ⊢ ProvΠn

T (pφq) → φ

for any boolean combination of Σn+1 sentences φ. The formula φ is equivalent to
a formula of the form

∧n
i=1(πi ∨ σi), for some sentences πi ∈ Πn+1 σi ∈ Σn+1.

Since the provability predicate ProvΠn

T (p·q) commutes with conjunction, it is

sufficient to derive in EA+RfnΠn

T (Σn+1) the formulas

ProvΠn

T (pπi ∨ σiq) → (πi ∨ σi),

for each i. By Lemma 3.1

⊢ ProvΠn

T (pπi ∨ σiq) ∧ ¬πi → ProvΠn

T (p¬πiq)

→ ProvΠn

T (pσiq)

→ σi,

using RfnΠn

T (Σn+1). Hence,

EA+RfnΠn

T (Σn+1) ⊢ ProvΠn

T (pπi ∨ σiq) → (πi ∨ σi),

q.e.d.
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Now we complete our proof of Theorems 2 and 3. Assume T + RfnΠn

T ⊢ A,
where A is a B(Σn+1) sentence. Then there are finitely many instances of
relativized local reflection that imply A, that is, for some arithmetical sentences
A0, . . . , Am, we have

T ⊢
m
∧

i=0

(ProvΠn

T (pAiq) → Ai) → A.

Since the relativized provability predicate satisfies Löb’s derivability conditions,
we also obtain

T ⊢ ProvΠn

T (p

m
∧

i=0

(ProvΠn

T (pAiq) → Ai) → Aq).

Considering an arithmetical realization (·)∗ that maps the variable p to the
sentence A and pi to Ai, for each i, by Lemma 4.2 we conclude that

T ⊢

m
∧

i=0

(ProvΠn

T (pBiq) → Bi) → A,

where Bi denote the formulas (Qi)
∗
T+Πn(N). Now we observe that, if A ∈

B(Σn+1), then for all i, Bi ∈ B(Σn+1). Hence

T +RfnΠn

T (B(Σn+1)) ⊢ A,

which yields Theorem 3 by Lemma 4.3. Theorem 2 follows from Theorem 3
and the observation that the schema RfnΠn

EA(Σn+2) corresponding to IΠ−
n+1 is

actually weaker than the full RfnΠn

EA, q.e.d.

It is obvious, e.g., since IΣ−
1 contains IΣR

1 , that all primitive recursive func-
tions are provably total recursive in IΣ−

1 and IΠ−
2 . Moreover, since IΣ−

1 is
contained in IΣ1, by Parsons’ theorem all p.t.r.f. of IΣ−

1 are primitive recur-
sive. The following corollary strengthens this result and gives a positive answer
to a question by R. Kaye.

Corollary 4.1. Provably total recursive functions of IΠ−
2 are exactly the prim-

itive recursive ones.

Proof. Follows from B(Σ2) conservativity of IΠ−
2 over IΣ−

1 , q.e.d.

By a similar argument we obtain

Corollary 4.2. Provably total recursive functions of IΠ−
n+1 are the same as

those of IΣn and IΣ−
n .

Proof. Follows from Theorem 2 and the fact that IΣn is Σn+2 conservative
over IΣ−

n [13], q.e.d.
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Remark 4.1. Perhaps somewhat more naturally, conservation results for rela-
tivized local reflection principles can be stated modally within a certain bimodal
system GLB due to Japaridze, with the operators � and �1 , that describes the
joint behaviour of the usual and the relativized provability predicate (cf [8]).
Using a suitable Kripke model characterization of GLB, one can semantically
prove that

GLB ⊢ �(

m
∧

i=0

(�1 pi → pi) → p) → �(

m
∧

i=0

(�1 Qi → Qi) → p),

where the formulas Qi are now understood w.r.t. the modality �1 , and this yields
Theorem 3 almost directly.

5 Further conservation and axiomatization re-

sults

The characterization of parameter free induction in terms of reflection prin-
ciples (Theorem 1) actually reveals other interesting information about these
schemata.

The following theorem, which is a corollary of a relativized version of another
conservation result for local reflection principles (due, essentially, to Goryachev
[10]), gives a characterization of Πn+1 consequences of IΣ−

n and IΠ−
n+1. For the

case of IΣ−
n a related characterization of p.t.r.f. is given in [1, 20]. On the other

hand, the paper [13] also contains a related conservation result for IΠ−
1 w.r.t.

Π1 sentences (IΠ−
1 is formulated over PA−).

Let T be an r.e. theory containing EA. For a fixed n ≥ 1, we define a
sequence of theories (T )ni as follows:

(T )n0 := T ; (T )ni+1 := (T )ni +RFN(T )n
i
(Πn); (T )nω :=

⋃

i≥0

(T )ni .

Theorem 4. For any n ≥ 1,

(i) The theory axiomatized over EA by arbitrary m instances of IΠ−
n+1 is

Πn+1 conservative over (EA)n+1
m .

(ii) IΠ−
n+1 is Πn+1 conservative over (EA)n+1

ω .

Proof. Statement (ii) follows from (i). The proof of (i) relies on the fact that
our characterization of parameter free induction schemata in terms of reflection
principles respects the number of instances of these schemata.

Lemma 5.1. For every instance B of IΠ−
n+1 there is a Πn+2 sentence P such

that P → RFNEA+P (Πn+1) implies B over EA. Vice versa, for every such P
there is an instance B of IΠ−

n+1 such that EA+B proves P → RFNEA+P (Πn+1).
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Proof. This is easy to check by inspection of our proof of Theorem 1. For the
‘vice versa’ part we employ Proposition 2.1 (1) stating that

[EA+ P,Πn+1-IR] ⊢ RFNEA+P (Πn+1).

Also notice that any finite number of unnested applications of Πn+1-IR can
be obviously merged into a single one, which, in turn, is reducible to a single
instance of IΠ−

n+1, q.e.d.

Remark 5.1. A similar statement holds for IΣ−
n , but the ‘vice versa’ part only

holds over IΣn−1. In general one seems to need m+1 instances of IΣ−
n in order

to derive m instances of the corresponding reflection schema (the first one is
used to derive IΣn−1).

Let ⊥ denote the boolean constant ‘falsum’.

Lemma 5.2. GL ⊢ �+¬
∧m

i=0(�pi → pi) → �m+1⊥.

Proof. By Lemma 4.2 we have

GL ⊢ �+(
m
∧

i=0

(�pi → pi) → p) → (
m
∧

i=0

(�Qi → Qi) → p).

Then, substituting in the above formula ⊥ for p, observe that

GL ⊢ Qi(p/⊥) ↔ �i⊥,

and therefore

GL ⊢

m
∧

i=0

(�Qi(p/⊥) → Qi(p/⊥)) ↔ ¬�m+1⊥,

q.e.d.

The following lemma is a relativization of Goryachev’s theorem [10].

Lemma 5.3. The theory axiomatized over T by any m instances of RfnΠn

T is
Πn+1 conservative over (T )n+1

m .

Proof. Let U be a theory axiomatized over T by m instances of relativized
local reflection, say ProvΠn

EA(pAiq) → Ai, for i < m. Let A be a Πn+1 sentence
such that U ⊢ A. Then we have

T ⊢ ¬A→ ¬

m−1
∧

i=0

(ProvΠn

EA(pAiq) → Ai)

and, by Löb’s derivability conditions,

T ⊢ ProvΠn

T (p¬Aq) → ProvΠn

T (p¬
m−1
∧

i=0

(ProvΠn

T (pAiq) → Ai)q).
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By Lemma 5.2 we then obtain

T ⊢ (¬�m⊥)∗T+Πn(N) → (A ∨ ¬ProvΠn

T (p¬Aq))

→ A,

by Lemma 3.1 (1). Statement (i) of Lemma 3.2 implies that, for all i,

(T )n+1
i ⊢ (¬�i⊥)∗T+Πn(N),

therefore (T )n+1
m ⊢ A, q.e.d.

Theorem 4 (i) obviously follows from Lemmas 5.1 and 5.3, q.e.d.

Remark 5.2. The first statement of Theorem 4 is also valid for n = 0, but only
over EA+ rather than EA. A proof is similar, using Theorem 1 (iii). For EA a
similar characterization can be obtained using bounded cut-rank provability a
là Wilkie and Paris [27], cf. also [4].

The following corollary was first proved model-theoretically in [13].

Corollary 5.1. For n ≥ 1, neither IΣ−
n , nor IΠ

−
n+1 is finitely axiomatizable.

Proof. If any of these theories were, then its Πn+1 consequences would be
contained in (EA)n+1

m for some finite m. But this is impossible, since IΣ−
n

obviously contains (EA)n+1
ω , q.e.d.

This corollary can be strengthened by using the following generalization of
Theorem 4.

Theorem 5. Let T be an extension of EA by finitely many Πn+2 sentences,
n ≥ 1. Then

(i) The extension of T by any m instances of IΠ−
n+1 is Πn+1 conservative

over (T )n+1
m .

(ii) T + IΠ−
n+1 is Πn+1 conservative over (T )n+1

ω .

Proof. By formalized Deduction theorem it is easy to see that for the given T

T ⊢ RfnΠn

T (Σn+2) ↔ RfnΠn

EA(Σn+2).

Hence, by Theorem 1,

T + IΠ−
n+1 ≡ T +RfnΠn

EA(Σn+2)

≡ T +RfnΠn

T (Σn+2).

Lemma 5.3 then implies the second claim of the theorem. (The fact that T +
IΠ−

n+1 contains (T )n+1
ω follows from Proposition 2.1 and Lemma 2.1.) The first

claim of the theorem is obtained from the first part of Theorem 4 in a similar
manner, q.e.d.
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Corollary 5.2. No consistent extension of IΠ−
n+1 by Πn+2 sentences is finitely

axiomatizable.

Proof. Suppose, on the contrary, that there is such an extension. We may
assume w.l.o.g. that it has the form T + U , for some m instances U of IΠ−

n+1,
where T is a finite Πn+2 axiomatized extension of EA. Then, by Theorem 5,
Πn+1 consequences of T + U are provable in (T )n+1

m for some finite m. Yet, by
the second claim of the same theorem,

T + IΠ−
n+1 ⊢ RFN(T )n+1

m
(Πn+1).

The latter formula is Πn+1 and unprovable in (T )n+1
m , q.e.d.

We also obtain the following statement.

Theorem 6. IΠ−
n+1 is not contained in any consistent extension of EA by an

r.e. set of Πn+2 sentences.

Proof. By Theorem 1 IΠ−
n+1 contains the schema RfnΠn

EA(Σn+2) and thus the
weaker schema RfnEA(Σn+2). The result follows by the well-known Unbound-
edness theorem for local reflection (cf. [14, 3]) stating that no consistent Πm

axiomatized r.e. extension of EA contains RfnEA(Σm), q.e.d.

Corollary 5.3. IΠ−
n+1 6⊆ IΣR

n+1.

Notice that the complexity of the natural axiomatization of IΠ−
n+1 is Σn+2,

and IΣ−
n has the complexity B(Σn+1). We have the following variant of the

Unboundedness theorem for RfnΠn

T (Σn+1).

Lemma 5.4. RfnΠn

T (Σn+1) is not contained in any consistent extension of T
by finitely many B(Σn+1) sentences.

Proof. By Lemma 4.3 the schemata RfnΠn

T (Σn+1) and RfnΠn

T (B(Σn+1)) are
equivalent over EA. If the latter is contained in T + φ, where φ ∈ B(Σn+1),
then T + φ ⊢ �

Πn

T ¬φ→ ¬φ and hence T ⊢ �T¬φ→ ¬φ. By Löb’s theorem we
conclude T ⊢ ¬φ, that is, T + φ is inconsistent, q.e.d.

As a corollary we obtain the following result.

Theorem 7. IΣ−
n is not contained in any consistent extension of EA by finitely

many B(Σn+1) sentences.

Corollary 5.4. Any consistent theory extending IΣ−
n by B(Σn+1) sentences is

not finitely axiomatizable.

Proof. This follows from Theorem 7 and the fact that the theory IΣ−
n itself

has a B(Σn+1) axiomatization, q.e.d.

Finally, we draw a diagram representing the structure of parametric and
parameter free induction schemata of bounded arithmetical complexity.
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EA

IΠ−
1

IΣ−
1

IΠ−
2

IΣR
1

IΣ1 + IΠ−
2 IΣ−

2

IΣR
2

IΣ1

IΠ−
3

IΣ2 + IΠ−
3

IΣ2

IΣR
3

IΣ−
3

Notice that IΠ−
n+1 6⊆ IΣR

n+1 forllows from Corollary 5.3. IΣn 6⊆ IΠ−
n+1

follows from the fact that IΠ−
n+1 has a Σn+2 axiomatization, whereas IΣn con-

tains RFNEA(Πn+2) (Leivant [15]). IΣ
R
n+1 6⊆ IΣn+IΠ

−
n+1 follows from the fact

that IΣn + IΠ−
n+1 is an extension of IΣn by a set of Σn+2 sentences, whereas

IΣR
n+1 contains RFNΠn+2

(IΣn) by Proposition 2.2. Therefore, all inclusions
corresponding to the edges of the diagram are strict.

6 Parameter free induction and fast growing func-

tions

Classes of p.t.r.f. of theories containing EA are often measured in terms of the
extended Grzegorczyk (or Fast Growing) hierarchy.

We fix a canonical fundamental sequences assignment for limit ordinals < ε0
based on Cantor normal form (see [22]). α[n] denotes the n-th term of the
fundamental sequence for an ordinal α. If the Cantor normal form of a limit
ordinal α is α0 + ωβ, then

α[n] :=

{

α0 + ωγ · (n+ 1), if β = γ + 1,

α0 + ωβ[n], if β is a limit ordinal.

For this fundamental sequences assignment, a hierarchy of functions Fα, for
α < ε0, is defined as follows.







F0(x) := x+ 1

Fα+1(x) := F
(x+1)
α (x)

Fα(x) := Fα[x](x), if α is a limit ordinal.
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As usual F (n)(x) denotes the n-fold iteration of a function F (x), that is, the
expression F (F (. . . F (x) . . .)) (n times).

Classes of functions Eα, for α < ε0 (the extended Grzegorczyk hierarchy),
are defined as follows.

Eα := E({Fβ | β < α}),

where E(K) denotes the elementary closure of a class K, that is, the closure of
K and all elementary functions under composition and bounded recursion.

For 3 ≤ α < ω the classes Eα thus defined coincide with the classes Eα

of the familiar Grzegorczyk hierarchy. In particular, E3 is the class of Kalmar

elementary functions, and Eω is the class of primitive recursive functions. Eωk

coincides with the class of k-recursive functions in the sense of Peter (see [21,
16]).

It is well-known that Eε0 coincides with the class of p.t.r.f. of Peano Arith-
metic (Kreisel–Schwichtenberg–Wainer), see [9] for a modern self-contained ex-
position. The results of Parsons in combination with those of Tait (see e.g. [22,
19]) sharpen this to F(IΣn) = Eωn , for each n ≥ 1, where we define

{

ω0(α) := α,
ωk+1(α) := ωωk(α),

and ωn := ωn(1). From Corollary 4.2 we thus immediately infer the following
result.

Theorem 8. For n ≥ 1, F(IΠ−
n+1) = Eωn .

The characterization of p.t.r.f. of the theories of the form IΣn + IΠ−
n+1 is

more interesting.

Theorem 9. For n ≥ 1, F(IΣn + IΠ−
n+1) = Eωn(2). In particular, F(IΣ1 +

IΠ−
2 ) = Eω2

, that is, coincides with the class of doubly-recursive functions of
Peter.

Proof. For a proof of this theorem, in addition to the results of the previous
section, we apply the machinery of transfinitely iterated reflection principles.
This topic goes back to the works of Turing and Feferman. Essential ingredients
for our proof are contained in the works [23, 2] and particularly [26]. Neither
Schmerl, nor Sommer present all technical details in their papers, therefore the
reader is also referred to their Ph.D. theses cited therein.

First, following Sommer [26], we represent the system of ordinal notation up
to ε0 by bounded arithmetical formulas2 in such a way that basic properties of
ordinal functions and Cantor normal forms become provable in EA. Then we
construct a bounded formula Fα(x) ≃ y of the variables α, x, y that uniformly
represents the graphs of the functions in the Fast Growing hierarchy as defined
above. For these formulas one can verify basic monotonicity properties and

2In fact, a ∆0(exp) natural well-ordering representation will do for our present purposes.
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functionality property in EA. As in [26], p. 285, we then define the theories Sα,
for α < ε0, as follows:

Sα := EA+ {∀x∃y F3+β(x) ≃ y | β < α}.

As a corollary of Herbrand’s Theorem (or Proposition 6.4 in [26]) we obtain the
following statement.

Proposition 6.1. For all α < ε0, F(Sα) = E3+α.

Proposition 6.10 of [26] can then be reformulated as follows.

Proposition 6.2. Provably in EA,

∀α < ε0 Sα ≡ EA+ {RFNSβ
(Π2) | β < α}.

Uniqueness Lemma 2.3 of [2] formulated for iterated consistency assertions
holds for iterated Π2 reflection principles with the same proof. It implies that
there is only one, up to EA-provable equivalence, sequence of theories Sα sat-
isfying the statement of the previous proposition. This means that the theories
Sα coincide with the hierarchy of transfinitely iterated uniform Π2 reflection
principles built up over EA along the canonical system of ordinal notation in
the sense of [23, 2].

More precisely (see [2]), for a given ∆0(exp) well-ordering representation,
an initial theory T , and a fixed n ≥ 1, there is a ∆0(exp) formula AxT (α, x)
numerating in EA the axioms of a theory denoted by (T )nα such that, provably
in EA,

∀α < ε0 (T )nα ≡ T + {RFN(T )n
β
(Πn) | β < α}.

Actually, the equivalence above can be viewed as a fixed point equation implic-
itly defining AxT (α, x). By Lemma 2.3 of [2], for a fixed initial theory T and
a well-ordering representation, such a sequence of theories is defined uniquely
up to EA-provable equivalence. So, applying this to the canonical well-ordering
representation up to ε0 we obtain

Proposition 6.3. Provably in EA,

∀α < ε0 Sα ≡ (EA)2α.

By the same Uniqueness lemma, the transfinite progression of iterated reflection
principles over primitive recursive arithmetic, (PRA)n+1

α , coincides with the one
considered in Schmerl [23], which he denotes

(

n
α

)

. By inspection of the so-called
Fine Structure theorem ([23], page 347) it is not too difficult to convince oneself
that its proof works for EA, as well as for PRA, and to obtain the following
statement. (A more general form of this theorem with a new proof will appear
in [6].)

Proposition 6.4. For each n, k ≥ 1, and all ordinals α ≥ 1, ((EA)n+k
α )nβ

proves the same Πn sentences as (EA)n
ωk(α)·(1+β).
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(In fact, the mutual Πn conservativity above holds provably in EA+, uniformly
in α, β.) Now we are ready to complete the proof of Theorem 9. Since IΣn is
a finitely Πn+2 axiomatizable theory, Theorem 5 implies that IΣn + IΠ−

n+1 is

Πn+1 conservative over (IΣn)
n+1
ω . But IΣn is equivalent to (EA)n+2

1 , therefore

(IΣn)
n+1
ω ≡ ((EA)n+2

1 )n+1
ω .

By Proposition 6.4 ((EA)n+2
1 )n+1

ω proves the same Πn+1 sentences as (EA)n+1
ω2 ,

and the latter theory proves the same Π2 sentences as (EA)
2
ωn−1(ω2) ≡ (EA)2ωn(2).

Therefore IΣn + IΠ−
n+1 and (EA)2

ωn(2)
prove the same Π2 sentences and have

the same classes of p.t.r.f.. The result follows now by Propositions 6.1 and 6.3,
q.e.d.
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