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Abstract

Gurevich and Neeman introduced Distributed Knowledge Autho-
rization Language (DKAL). The world of DKAL consists of communi-
cating principals computing their own knowledge in their own states.
DKAL is based on a new logic of information, the so-called infon logic,
and its efficient subsystem called primal logic. In this paper we simplify
Kripkean semantics of primal logic and study various extensions of it
in search to balance expressivity and efficiency. On the proof-theoretic
side we develop cut-free Gentzen-style sequent calculi for the original
primal logic and its extensions.

1 Introduction

Our story starts with cloud computing and cloud security, not because these
are fashionable buzzwords but because this paper was written in the frame-
work of such a project (code-named Vidalia for the time being [1]). With the
advent of cloud computing, the role of formal policies grows. The person-
nel of brick-and-mortar businesses often exercise their judgments; all that
should be replaced with formal policies when businesses move to the cloud.
The logic-based policy language DKAL (Distributed Knowledge Authoriza-
tion Language) [19, 20, 12] was developed with such applications in mind.
The feature that distinguishes DKAL from most preceding logic-based pol-
icy languages is that it is explicitly geared toward federated scenarios (with
no central authority) where trust may be in short supply.

The world of DKAL consists of communicating principals computing
their own knowledge in their own states. They communicate infons, pieces
of information, and reason in terms of infons. In [20], the original developers
of DKAL distilled the basic features of the logic of infons and introduced
infon logic qI that is an extension of the {→,∧} fragment I of intuitionis-
tic logic with quotation modalities p saidϕ and p impliedϕ. In addition
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they discovered a primal fragment qP of qI which is very efficient and yet
sufficiently expressive for many purposes. In the case of bounded quotation
depth, the derivation problem for qP is solvable in linear time. In particular,
the quotation-free fragment P of qP is linear time in that sense. (Notations
I, qI, P and qP are introduced in the present paper.)

The continuing development of DKAL (whose current implementation
is found at [2]) requires further investigation of the logic of infons. That is
exactly what we are doing here. We extend the four logics of [20] with one or
both of disjunction and negation, and we determine the complexities of the
extended logics. We provide a simpler semantics for the extension P[∨] of P
that we call quasi-boolean. This allows us to give efficient mutual translations
between P[∨] and classical propositional logic as well as an embedding of the
appropriate classical modal logic into qP[∨]. On the proof-theoretic side we
develop cut-free Gentzen-style sequent calculi for the extensions of primal
logic P with some or all of disjunction, negation and quotations.

Related work. As we mentioned, infon logic emerged in the context of
access control language DKAL. However, the present paper deals exclusively
with infon logic itself. Accordingly we do not discuss access control literature
here. The DKAL papers mentioned above include short discussions on the
issue.

Technically, infon logic belongs to the family of intuitionistic (or con-
structive) modal logics. Such logics have been considered at least from the
time of Bull [14, 15], see [29, 30, 27, 34, 35, 17]. Potential applications
in Computer Science stimulated a growing interest in this topic, see e.g.
[28, 16, 26, 10]. We would like to refer the reader to Simpson [31] and Wolter
and Zakharyaschev [39] for comprehensive surveys. General results on de-
cidability of intuitionistic modal logics have been considered in [38, 37, 5].

Infon logics of this paper are, in one important respect, simpler than
typical intuitionistic modal logics found in the literature. Namely, they only
have 2-type modalities, though there are infinitely many of those. They
have no 3-type modalities.1 The situation is similar for the other access
control modal logics in the literature, where says operators play the role of
modalities, see e.g. [4, 24, 6, 8, 13] and especially [3, 18]. The axioms of said
and implied modalities in our systems correspond to basic modal logic K.
Thus they do not admit the principles such as ϕ→ q saidϕ postulated for
some of the typical access control logics and discussed in [3]. In this regard
our systems are closer to the standard modal logics than to the so-called lax

1In intuitionistic modal logic diamonds are usually not expressible in terms of boxes.
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logics.
An essential novelty of infon logic is the use of restricted (primal) implica-

tion introduced in [21] as a compromise between expressivity and practical
efficiency. The goal of this paper is to better understand primal implica-
tion, also in relation to the modalities. Our conclusions are that this new
connective is quite manageable and has good proof-theoretic and semantic
properties. Avron and Lahav [7] consider a sequent calculus for primal logic
(without modalities) and observe that it falls within their framework of con-
structive canonical systems, which implies a number of nice properties such
as cut-elimination and semantic completeness. The semantics as well as the
sequent calculus presented in this paper are somewhat different from the
one in [7]. Namely, we deal with a multi-conclusion sequent calculus, and
our quasi-boolean models are simpler than those of [21] and [7].

2 Infon logic: language and derivability

Language. The vocabulary of infon logic consists of a set P of constants
denoting principals and of a set of propositional variables P,Q, . . . denoting
infons, that is, any pieces of information that can be communicated between
the principals. We can think of infons as declarative statements; the notion
of infon is basic in DKAL.

Propositional infon logic introduced in [20, 21] is an extension of the
fragment of propositional intuitionistic logic without disjunction and nega-
tion by two series of quotation modalities p said and p implied , for each
principal p ∈ P.

Intuitively, logical connectives denote some natural ways of combining
infons. Thus, conjunction ϕ ∧ ψ means joining the information contained
in ϕ and in ψ. The implication ϕ → ψ represents conditional information:
the minimal information needed to infer ψ once one has ϕ. Logical constant
> represents the uninformative infon, that is, something every principal
knows.

The meaning of quotations is related to communication between the
principals. The intuitive meaning of q saidϕ (from the point of view of
another principal p) is that ϕ can be inferred from the information directly
said by q to p.2 Here is the most typical DKAL scenario how a principal p
learns that q saidϕ. Suppose that a principal q says ϕ to p (and p gets the

2DKAL avoids the logical omniscience problem by means of a mechanism of computing
knowledge. On the level of logical systems, deduction is unrestricted.
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message, and the message is properly signed by q so that there is no doubt
that it is coming from q); then p learns q saidϕ.

The intuitive meaning of q impliedϕ is that q indeed communicated (its
support for) ϕ but predicated it on the knowledge of some proviso ψ. Here
is the most typical scenario how a principal p learns q impliedϕ. Suppose
that q communicates ϕ to p under condition that p knows ψ, and suppose
that p knows the proviso ψ; then p learns q impliedϕ. The exact meaning
of q saidϕ and q impliedϕ in DKAL is more involved but those details are
irrelevant for our purposes in this paper. Intuitively, q saidϕ is a version of
q impliedϕ where the communication was not predicated on any proviso.
Technically, both kinds of modalities satisfy the rules of the basic modal
logic K and the relation (q saidϕ) ` (q impliedϕ).

Proof system. A proof system for infon logic could be equivalently stated
in any of the familiar proof-theoretic formats, in particular, it has been
formulated in a Hilbert-style format and in a natural deduction style format
in [21]. In this paper we adopt the sequent-style natural deduction format
from [21] as our basic definition of derivability relation. In Section 5 we also
present an equivalent Gentzen-style calculus together with the corresponding
cut-elimination theorem.

Let Γ, ∆ denote sets of formulas; we abbreviate Γ∪∆ as Γ,∆ and Γ∪{ϕ}
as Γ, ϕ. Also, q saidΓ stands for {q saidϕ : ϕ ∈ Γ}.

We define the relation Γ ` ϕ ‘formula ϕ is provable from assumptions Γ’
as the minimal relation containing the following axioms and closed under
the following inference rules.

Axioms: ϕ ` ϕ; ` >;

Inference rules:
Γ ` ϕ

Γ,∆ ` ϕ (weakening)

Γ ` ϕ ∧ ψ
Γ ` ϕ (∧El)

Γ ` ϕ ∧ ψ
Γ ` ψ (∧Er)

Γ ` ϕ Γ ` ψ
Γ ` ϕ ∧ ψ (∧I)

Γ ` ϕ→ ψ Γ ` ϕ
Γ ` ψ (→E)

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

(→I)

Γ ` ϕ
q saidΓ ` q saidϕ (Said)

Γ,∆ ` ϕ
q saidΓ, q implied∆ ` q impliedϕ (Implied)

The intuitionistic propositional logic, and even its fragment in the lan-
guage without disjunction and negation which we denote I, is known to
be PSpace-complete by a result of R. Statman [32] (see also [36]). The
same result holds for the infon logic with quotations: it remains in the class
PSpace like many other natural modal logics [21]. This motivated Gurevich
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and Neeman to introduce a weaker but still relatively expressive and much
more efficient fragment of intuitionistic logic called primal logic P. Primal
logic is obtained by restricting the (→I) rule as follows:

Γ ` ψ
Γ ` ϕ→ ψ

(→Ip)

For P, there is a linear time algorithm deciding whether Γ ` ϕ [21].
A logical connective satisfying the rules (→E) and (→Ip) can be called

quasi-implication. Both the intuitionistic and classical implications are ex-
amples of such. The quasi-implication of P itself will be called the primal
implication. Sometimes it would be convenient to denote it →p to distin-
guish from the intuitionistic implication. One possible interpretation would
be to say that ϕ →p ψ denotes an arbitrary infon θ such that ψ yields θ
and θ ∧ ϕ yields ψ. This reading will be supported by the formal notion of
primal model, see below.

Let qP denote the primal infon logic, that is, the extension of primal
logic to the language with quotations, when the rules (Said) and (Implied)
are added. There is a linear time algorithm deciding whether Γ ` ϕ provided
Γ and ϕ have quotation depth bounded by a constant [21]. Despite its
restrictions on the implication and quotation depth this logic turns out to
be sufficiently expressive for many practical purposes.

Introducing disjunction and negation. Some scenarios we would like
to formalize in DKAL presuppose the use of disjunction and negation. Dis-
junction is a way of combining information related to hiding it. When you
say ‘There is a coin in my left or in my right pocket’ you essentially com-
municate a disjunction of two pieces of information (you can have a coin
in each pocket). The rules of handling disjunctions are the usual ones: the
introduction rules

Γ ` ϕ
Γ ` ϕ ∨ ψ (∨Il)

Γ ` ψ
Γ ` ϕ ∨ ψ (∨Ir)

are applied when wrapping an infon into a disjunction (they can be called
hiding rules). The receiver can use disjunction θ ∨ ψ by the following rule:
if ϕ can be inferred separately from θ and from ψ, and disjunction θ ∨ ψ is
known, then one can infer ϕ. Proof-theoretically this amounts to the usual
disjunction elimination rule:

Γ, θ ` ϕ Γ, ψ ` ϕ Γ ` θ ∨ ψ
Γ ` ϕ (∨E)
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When speaking about disjunction in infon logic we will assume all three
of the above rules. We also remark that the rule (∨E), as well as (→I),
involves ‘cancelation’ of some hypotheses and, thus, it is not hilbertian in
the sense of [11].

Introducing negation into the language of infon logic is a more delicate
matter. Here we consider the most straightforward approach to negation in
infon logic corresponding to intuitionistic negation. This has been sufficient
in practice. As we gain more experience in the use of DKAL, we will see
whether the other, possibly stronger, forms of negation are needed.

Negation ¬ϕ in intuitionistic logic is often introduced as an abbreviation
for ϕ→ ⊥, where ⊥ is the constant false. The other way around, ⊥ can be
introduced, for example, as ¬>, once one has the negation. In intuitionistic
logic, the constant ⊥ satisfies the principle ex contradictio:

(⊥) ⊥ ` ϕ,

for any ϕ. When this axiom is not assumed, that is, when we just have a
constant ⊥ without postulating any logical laws for it, we obtain the so-
called minimal logic (see [33]).

What should be the infon-logical interpretation of ⊥? It is natural to
assume that ⊥ represents inconsistent information, that is, the information
that should be interpreted as an error. Obtaining this information a prin-
cipal should go into the error-handling mode rather than continue its usual
mode of operation. This interpretation of ⊥ seems to call for the minimal
logic rather than the intuitionistic logic axioms. In fact, having ⊥ ` ϕ as an
axiom might lead in some scenarios to unwanted communication between
the principals.

Technically, the intuitionistic and the minimal logics are very close to
each other (see e.g. [33]). Therefore, until we gain more experience in the
practical use of infon logic to favor one of the two logics, we will treat both
of them in parallel. Since in the minimal logic ⊥ is as good as any other
variable, we shall ignore the difference between such logics and the logics
without ⊥ and negation.

We shall use the following notation for various logics. Our basic propo-
sitional logics are I and P. We denote their extensions by the rules for ∨
and/or the axiom (⊥) as P[∨], I[∨,⊥], etc. The presence of quotations is
indicated by a q in front of the logic name, for example, qP[∨,⊥].
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3 Primal logic with disjunction: semantics and
complexity

A complete Kripke-style semantics for primal logic P was developed in [21].
Here we simplify it by showing that the completeness result holds for a
very particular class of models that we call quasi-boolean. We define these
models for the language with disjunction, that is, for P[∨]. In Section 5 this
semantics is extended to the language with quotations.

A notable feature of primal logic is that it does not respect substitution
of equivalents. For example, as we will see shortly, one cannot derive in P

Q→ (P ∧ P ) ` Q→ P. (1)

This means that a complete semantics for primal logic cannot be composi-
tional in the sense that the meaning of an implication ϕ→ ψ is determined
by the meanings of the formulas ϕ and ψ. The quasi-boolean models defined
below are a non-compositional analog of the usual {0, 1}-valued semantics
for classical propositional logic.

Definition 3.1 A valuation v is a map assigning 0 or 1 to each propositional
variable, as well as to each implication ϕ→ ψ of the language of primal logic
(with disjunction). Valuation v naturally extends to all formulas by applying
the usual truth tables for ∧, ∨ and by letting v(>) = 1. A formula ϕ is valid
under v if v(ϕ) = 1, which is denoted �v ϕ. For a set of formulas Γ we write
�v Γ iff �v ϕ, for all ϕ ∈ Γ.

We say that v is quasi-boolean if, for each implication ϕ→ ψ,

(i) If �v ψ, then �v (ϕ→ ψ);

(ii) If �v (ϕ→ ψ), then either 2v ϕ or �v ψ.

Notice that the classical material implication is defined by postulating
an equivalence in (ii), whereas (i) is just a half of the converse implication.

Valuations satisfying

�v (ϕ→ ψ) iff (2v ϕ or �v ψ)

will be called classical. The following is a strong form of soundness and
completeness theorem for primal logic.

Theorem 1 Γ ` ϕ holds in P[∨] iff �v Γ implies �v ϕ for all quasi-boolean
valuations v.
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Proof. The soundness part is a routine check. To show the completeness
we apply a variant of the usual canonical model argument.

A set of formulas F is called a theory if, for all formulas ψ, F ` ψ
implies ψ ∈ F , that is, if F is deductively closed. The following lemma has
a standard proof.

Lemma 3.2 Any set of formulas Γ such that Γ 0 ψ can be extended to a
maximal theory F ⊇ Γ such that F 0 ψ.

Assume Γ 0 ϕ and let F be a maximal theory such that Γ ⊆ F and
F 0 ϕ.

Lemma 3.3 For all ψ1, ψ2,

(ψ1 ∨ ψ2) ∈ F ⇐⇒ (ψ1 ∈ F or ψ2 ∈ F ).

Proof. (⇐) If ψ1 ∈ F then F ` ψ1 ∨ψ2 by (∨I), hence (ψ1 ∨ψ2) ∈ F , since
F is deductively closed.

(⇒) If ψ1, ψ2 /∈ F , then F,ψ1 ` ϕ and F,ψ2 ` ϕ by maximality. Hence,
F,ψ1 ∨ ψ2 ` ϕ by (∨E) contradicting (ψ1 ∨ ψ2) ∈ F . �

We define a valuation v by

v(A) = 1 def⇐⇒ A ∈ F,

for each variable or implication A.

Lemma 3.4 For every formula ψ, �v ψ ⇐⇒ ψ ∈ F .

Proof. Induction on the build-up of ψ. The claim is obvious if ψ is a
variable, an implication, or the constant >.

Suppose ψ = (ψ1 ∧ ψ2). By the induction hypothesis we have:

�v ψ ⇐⇒ (�v ψ1 and �v ψ2) ⇐⇒ (ψ1 ∈ F and ψ2 ∈ F ).

Since F is deductively closed, ψ1, ψ2 ∈ F ⇐⇒ (ψ1 ∧ ψ2) ∈ F ⇐⇒ ψ ∈ F.
Suppose ψ = (ψ1 ∨ ψ2). Then

�v ψ ⇐⇒ (�v ψ1 or �v ψ2) ⇐⇒ (ψ1 ∈ F or ψ2 ∈ F ) ⇐⇒ (ψ1∨ψ2) ∈ F,

by Lemma 3.3. �

By this lemma we can conclude that �v Γ and 2v ϕ. We can also easily
check that v is quasi-boolean. Consider an implication θ → ψ.
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(i) If �v ψ then ψ ∈ F , hence (θ → ψ) ∈ F by (→P ) and �v θ → ψ.
(ii) If �v θ and �v (θ → ψ), then θ, (θ → ψ) ∈ F , hence ψ ∈ F by (→E)

and �v ψ.
This completes the proof of the theorem. �

We remark that to define a quasi-boolean valuation v falsifying Γ ` ϕ it
is sufficient to only specify it on the variables and the implications contained
in Γ∪{ϕ}. We can illustrate the use of this semantics by exhibiting a quasi-
boolean valuation falsifying (1). In fact, it is sufficient to put v(P ) = v(Q) =
v(Q→ P ) = 0 and v(Q→ (P ∧ P )) = 1.

As an application of quasi-boolean semantics we prove that the primal
logic shares with the intuitionistic logic its fundamental disjunction property.
Our method of constructing a quasi-boolean model is similar to the so-
called Aczel slash, see [33]. In some sense quasi-boolean models clarify this
somewhat mysterious operation.

Recall that the set of Harrop formulas H is defined by the following
grammar:

H ::= > | P | H ∧H | A→ H P a variable, A a formula

Theorem 2 (disjunction property) If Γ is a set of Harrop formulas
and Γ ` ϕ ∨ ψ in P[∨], then Γ ` ϕ or Γ ` ψ.

Proof. For any set of formulas Γ we inductively define a valuation v (Aczel
slash) as follows:

• v(P ) = 1 ⇐⇒ Γ ` P , if P is a variable;

• v(ϕ→ ψ) = 1 ⇐⇒ (Γ ` (ϕ→ ψ) and (2v ϕ or �v ψ)).

We remark that �v ϕ is usually written as Γ|ϕ in the intuitionistic litera-
ture. It is easy to check the following property by induction on the build-up
of ϕ.

Lemma 3.5 If �v ϕ then Γ ` ϕ, for any formula ϕ.

As an immediate corollary we obtain that v is quasi-boolean. In fact, con-
dition (i) holds because �v ψ implies Γ ` ψ and hence Γ ` ϕ→ ψ; therefore
v(ϕ→ ψ) = 1. Condition (ii) is immediate from the definition of v.

Next we show that Harrop formulas are well-behaved in this model.

Lemma 3.6 If ϕ is Harrop, then

�v ϕ ⇐⇒ Γ ` ϕ.
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Proof. The implication (⇒) always holds by the previous lemma. To prove
(⇐) we argue by induction on the build-up of ϕ. The cases when ϕ is >,
a variable or a conjunction are easy. Suppose ϕ = (θ → ψ) with ψ Harrop.
We have to show that 2v θ or �v ψ. Suppose �v θ, then Γ ` θ. Since we
also assume Γ ` (θ → ψ) we have Γ ` ψ and by the induction hypothesis
�v ψ. �

Now suppose Γ is Harrop and Γ ` ϕ ∨ ψ. For any θ ∈ Γ we have Γ ` θ,
hence �v θ by Lemma 3.6. By the soundness theorem it follows that �v ϕ∨ψ,
hence �v ϕ or �v ψ. By Lemma 3.5 this implies Γ ` ϕ or Γ ` ψ. �

Remark 3.7 All of the above works for the logic P[∨,⊥]. One only has to
stipulate in this case that ⊥ is always evaluated as 0.

4 Reductions between primal and classical logic

In spite of the above, the quasi-boolean semantics shows that primal logic is
in some respects akin to classical logic. We define polynomial translations
from one logic to the other assuming disjunction to be present in the lan-
guage. This shows, in particular, that the derivability problem for P[∨] is
co-NP-complete.

We assume that classical logic C is formalized in the language of P[∨]
with a distinguished variable ⊥ for falsity. For a given formula A let H(A)
denote the conjunction of the following formulas:

(i) ϕ ∨ (ϕ→ ψ), for all subformulas ϕ→ ψ of A;

(ii) ⊥ → Q, for all variables Q of A.

Proposition 4.1 C ` A iff H(A) ` A is provable in P[∨].

Proof. The (if) part is clear, since H(A) is classically valid.
(only if) Suppose H(A) 0 A. There is a quasi-boolean valuation for

which � H(A) and 2 A. We have to show that it is, in fact, a classical
boolean valuation. For each subformula ϕ→ ψ of A we have:

� (ϕ→ ψ) ⇐⇒ (2 ϕ or � ψ).

Indeed, the implication (⇒) always holds, and � ψ implies � ϕ→ ψ. If 2 ϕ
then, since � (ϕ→ ψ) ∨ ϕ, we also have � ϕ→ ψ.

It remains for us to check that ⊥ is evaluated as 0. By induction on the
build-up of an arbitrary formula ψ (of positive logic) it is easy to show that
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� ψ whenever � Q, for each variable Q of ψ. Since we have 2 A, this means
that some variable P of A must be false. But the formula ⊥ → P is true,
hence ⊥ is false. �

Theorem 3 The derivability problem for primal logic with disjunction is
co-NP-complete.

Proof. Since the length of H(A) is polynomial in the length of A, the
hardness follows from the above proposition. It is also clear that the non-
derivability problem for primal logic is in NP. In fact, we can verify Γ 0 ϕ
by non-deterministically guessing a quasi-boolean valuation, which is poly-
nomial in the size of ϕ, then checking that it satisfies the conditions of being
quasi-boolean, and computing the truthvalues of Γ and ϕ. �

Remark 4.2 The same result can be obtained by a somewhat simpler trans-
lation: C ` A iff H0(A) ` A ∨⊥ in primal logic, where H0(A) only consists
of formulas (i) in the definition of H(A).

Remark 4.3 The use of disjunction is necessary for such an effective re-
duction, because of the linear time complexity bound established for P in
[21].

Next we show that P[∨,⊥] (and hence P[∨]) is effectively reducible to
C, and P is effectively reducible to the Horn fragment of C.

Suppose we want to check whether Γ ` A in primal logic. We introduce
a fresh variable Pϕ for each subformula ϕ of a formula in Γ∪{A}. Let Φ be
the union of the following sets of formulas:

1.
{
Pϕ→ψ ∧ Pϕ → Pψ
Pψ → Pϕ→ψ

, for each subformula ϕ→ ψ of A;

2.
{
Pϕ∧ψ → Pϕ, Pϕ∧ψ → Pψ,
Pϕ ∧ Pψ → Pϕ∧ψ

, for each subformula ϕ ∧ ψ of A;

3.
{
Pϕ → Pϕ∧ψ, Pψ → Pϕ∨ψ,
Pϕ∨ψ → (Pϕ ∨ Pψ),

, for each subformula ϕ ∨ ψ of A;

4. P>; P⊥ → PA.

Let ϕ∗ denote Pϕ, and let Γ∗ = {Pϕ : ϕ ∈ Γ}.

Proposition 4.4 Γ ` A in P[∨,⊥] iff Γ∗,Φ ` A∗ in C.

11



Proof. (⇐) Suppose Γ 0 A. Let v be a quasi-boolean valuation such that
�v Γ and 2v A. Define a classical valuation v′ on propositional variables Pϕ
by v′(Pϕ) := v(ϕ). Obviously, �v′ Γ∗ and 2v′ A∗. Since v is quasi-boolean,
we also have �v′ Φ. Hence, Γ∗,Φ 0 A∗ in classical logic.

(⇒) Suppose Γ∗,Φ 0 A∗ in C. Let v be a classical valuation such that
�v Γ∗,Φ and 2v A∗. Define a valuation v′ by v′(ψ) := v(ψ∗), for each
variable or implication ψ.

Let θ be a subformula of a formula in Γ ∪ {A}. We claim that

v′(θ) = v(θ∗).

The claim is proved by a straightforward induction on the build-up of θ.
It is obvious if θ is >, a variable or an implication.

If θ is ⊥ we have �v (⊥∗ → A∗), since ⊥∗ → A∗ is in Φ. Since 2v A∗ we
have v(⊥∗) = 0 = v′(⊥).

If θ is a conjunction or a disjunction we use the validity of parts 2 and
3 of Φ, respectively.

Finally, using the validity of part 1 of Φ we check that v′ is quasi-boolean.
Suppose ϕ→ ψ is a subformula of a formula in Γ ∪ {A}.

(i) If �v′ ψ then �v ψ∗ by the claim. We have �v (ϕ→ ψ)∗ by the second
part of 1, hence �v′ (ϕ→ ψ).

(ii) Similarly, if �v′ (ϕ → ψ) then �v (ϕ → ψ)∗. By the first part of 1,
either 2v ϕ∗ or �v ψ∗. Hence, 2v′ ϕ or �v′ ψ. �

Next we remark that the above reduction is quite efficient. As usual, we
consider linear time computations within the PRAM model. We denote by
Γ⇒ A a formal expression consisting of a finite set of hypotheses Γ followed
by conclusion A.

Lemma 4.5 There is a linear-time algorithm producing on input Γ ⇒ A
the output Γ∗,Φ⇒ A∗.

Proof. Run a parser on the input string (of length n) producing a parse tree.
The subtrees of the formulas in Γ and the one of A hang immediately under
the root. Each node of the parse tree has a label representing a variable or
a connective. The label length can be assumed to be O(log(n)). Extra tags
mark the hypotheses in Γ and the query A.

Each variable Pϕ in the translation will be represented by (the name
of) a node of the parse tree, except for the root. Thus, we consider an
obvious variant of the translation in Proposition 4.4 where new variables
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are assigned to all occurrences of subformulas in Γ ∪ {A} rather than to
subformulas themselves.

Run through the parse tree visiting each node once (in whatever order).
For each node write down the formulas of the groups 1–4 depending on the
label of the node. Notice that each variable Pψ occurs in Φ no more than
6 times: at most 3 times in a group where Pψ is the main variable, and at
most 3 times in a group where it is a secondary variable. Hence, the total
number of steps needed to write down Φ is linear in the sum of the lengths
of all new variables. The latter, however, does not exceed the total size of
the representation of the tree, which is linear in the size n of the original
input. �

Recall that a Horn clause is a variable or a formula of the form P1∧P2∧
· · · ∧ Pn → Q, where P1, . . . , Pn, Q are variables. We notice that if Γ and
A are in the language without disjunction, then the translation Γ∗,Φ⇒ A∗

consists of Horn clauses. It is well-known that the satisfiability problem for
a set of Horn clauses in classical logic is solvable in linear time (see [25]).
As a corollary we obtain that the derivability problem for primal logic is
in linear time. This fact was proved by Gurevich and Neeman [21] using a
different method.

Corollary 4.6 For the language without disjunction, there is a linear time
algorithm to determine whether Γ ` A in P.

5 Primal logic with disjunction and quotations:
sequent calculus and cut-elimination

In this section we study the logic qP[∨,⊥]. We introduce a Gentzen-style se-
quent calculus and a Kripke-style semantics, and we prove a cut-elimination
theorem as well as a soundness and completeness theorem. Gentzen-style
systems without ⊥, ∨ or the quotations can be obtained by ignoring the
respective connectives everywhere below.

Sequents are objects of the form Γ ⇒ ∆, where Γ and ∆ are finite sets
of formulas. The rules of primal, intuitionistic and classical sequent calculus
are all the same, except for the rules (→R) of introduction of implication to
the right.

Axioms: ϕ⇒ ϕ; ⇒ >; ⊥ ⇒;

Inference rules:
Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ (∧R)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(∧L)
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Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(∨L)

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ (∨R)

Γ, ψ ⇒ ∆ Γ ⇒ ∆, ϕ

Γ, ϕ→ ψ ⇒ ∆
(→L)

The (→R) rules for the three logics respectively are

Γ⇒ ψ,∆
Γ⇒ ϕ→ ψ,∆

(→Rp)
Γ, ϕ⇒ ψ

Γ⇒ ϕ→ ψ
(→Ri)

Γ, ϕ⇒ ψ,∆
Γ⇒ ϕ→ ψ,∆

(→Rc)

Within this framework, the rules for quotations look the same as the cor-
responding natural deduction-style rules:

Γ⇒ ϕ

q saidΓ⇒ q saidϕ
(Said)

Γ,∆⇒ ϕ

q saidΓ, q implied∆⇒ q impliedϕ
(Implied)

We also posit the rules of weakening and cut:

Γ⇒ ∆
Γ,Γ1 ⇒ ∆,∆1

(Weaken)
Γ⇒ ∆, ϕ ϕ,Γ1 ⇒ ∆1

Γ,Γ1 ⇒ ∆,∆1
(Cut)

The systems described above will be denoted GP (primal), GI (intuitionis-
tic), and GC (classical). Checking that they axiomatize the respective logics
under the interpretation of Γ⇒ ∆ as Γ `

∨
∆ is routine. The cut-rule can

be eliminated in all these systems. This can be done both syntactically
and semantically. The syntactical argument (in either case) is more tedious,
but it is constructive and differs only slightly from the standard proof of
the cut-elimination theorem due to Gentzen, see [9] for some details. In
contrast, the semantical argument also delivers completeness theorems for
these calculi and shall be presented (for the case of primal logic) in the next
section.

Theorem 4 Let L be any of the Gentzen-style systems GP, GI or GC. A
sequent Γ⇒ ∆ is provable in L iff it is provable in L without a cut.

Proof. We essentially follow the standard proof-reduction strategy due to
Gentzen. It is sufficient to show that cuts can be eliminated in any proof
containing a single cut as the last inference rule. The grade g(d) and the
rank r(d) of such a proof d are defined as usual: Let |ψ| denote the height of
the parse tree of a formula ψ. Then g(d) := |θ|+1 where θ is the cut-formula
in d, and r(d) is the sum of heights of the right and the left proof subtrees
of d.

The proof of cut-elimination goes by induction on the grade and a sub-
sidiary induction on the rank of d. If θ has not been introduced in d on both
sides of the cut-rule immediately before the cut, we can obviously decrease
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the rank of d. If θ is on the one side part of an axiom or is introduced by
weakening, the rank of the proof can also be decreased. The proof transfor-
mations in the cases when θ is a conjunction, a disjunction or an implication
(in the cases of classical and intuitionistic logics) are standard. Thus, it is
sufficient to consider the case θ = (ϕ→ ψ) for GP, and the cases of quota-
tions θ = q saidϕ and θ = q impliedϕ which in all three logics are treated
in the same way.

If θ = (ϕ→ ψ) the end-piece of the proof d must have the form

Γ⇒ ψ,∆
Γ⇒ ϕ→ ψ,∆

(→Rp)
Γ1, ψ ⇒ ∆1 Γ1 ⇒ ∆1, ϕ

Γ1, ϕ→ ψ ⇒ ∆1
(→L)

Γ,Γ1 ⇒ ∆,∆1
(Cut)

We can reduce it to a proof-tree with a lower grade to which the induction
hypothesis is applicable:

Γ⇒ ψ,∆ Γ1, ψ ⇒ ∆1

Γ,Γ1 ⇒ ∆,∆1
(Cut)

To enhance the readability we shall locally write 2 and 4 for q said and
q implied, respectively.

If θ = 2ϕ is introduced on both sides of the cut, the left rule must be
(Said) and the right one either (Said) or (Implied). Both cases are similar,
so we only consider the latter. Then the end-piece of d has the form

Γ⇒ ϕ

2Γ⇒ 2ϕ
(Said)

ϕ,Γ1,Γ2 ⇒ ψ

2ϕ,2Γ1,4Γ2 ⇒4ψ
(Implied)

2Γ,2Γ1,4Γ2 ⇒4ψ
(Cut)

We reduce this proof to the following one of lower grade:

Γ⇒ ϕ ϕ,Γ1,Γ2 ⇒ ψ

Γ,Γ1,Γ2 ⇒ ψ
(Cut)

2Γ,2Γ1,4Γ2 ⇒4ψ
(Implied)

The case θ = 4ϕ is similar; the end-piece of d must have the form

Σ1,Σ2 ⇒ ϕ

2Σ1,4Σ2 ⇒4ϕ
(Implied)

ϕ,Γ1,Γ2 ⇒ ψ

4ϕ,2Γ1,4Γ2 ⇒4ψ
(Implied)

2Σ1,4Σ2,2Γ1,4Γ2 ⇒4ψ
(Cut)

We reduce this proof to the following one of lower grade:

Σ1,Σ2 ⇒ ϕ ϕ,Γ1,Γ2 ⇒ ψ

Σ1,Σ2,Γ1,Γ2 ⇒ ψ
(Cut)

2Σ1,4Σ2,2Γ1,4Γ2 ⇒4ψ
(Implied)
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This completes our sketch of a proof of Theorem 4. �

We note some standard corollaries. Firstly, GP without cut enjoys the
subformula property: if Γ⇒ ∆ occurs in a cut-free derivation of Γ0 ⇒ ∆0,
then Γ and ∆ only contain the subformulas of the formulas in Γ0 ∪∆0. In
fact, the set of all subformulas here can be replaced by a somewhat narrower
set of primal subformulas.

Definition 5.1 We define the sets of the left L(ϕ) and the right R(ϕ)
primal subformulas of a formula ϕ. (These are subsets of the sets of the
negatively and of the positively occurring subformulas of ϕ, respectively.)

• L(ϕ) = ∅ and R(ϕ) = {ϕ}, if ϕ is a variable or a constant;

• If ϕ = (ϕ1 ∧ ϕ2) or ϕ = (ϕ1 ∨ ϕ2), then

L(ϕ) = L(ϕ1) ∪ L(ϕ2),
R(ϕ) = {ϕ} ∪R(ϕ1) ∪R(ϕ2);

• If ϕ = (ϕ1 → ϕ2) then

L(ϕ) = R(ϕ1) ∪ L(ϕ2),
R(ϕ) = {ϕ} ∪R(ϕ2).

• If ϕ = (q saidϕ1) or ϕ = (q impliedϕ1) then

L(ϕ) = L(ϕ1), R(ϕ) = {ϕ} ∪R(ϕ1).

For a set of formulas Γ define

L(Γ) =
⋃
{L(ϕ) : ϕ ∈ Γ},

R(Γ) =
⋃
{R(ϕ) : ϕ ∈ Γ}.

A primal subformula of ϕ is either its left or its right primal subformula.

Proposition 5.2 If Γ ⇒ ∆ occurs in a cut-free derivation in GP of a
sequent Γ0 ⇒ ∆0, then ∆ ⊆ L(Γ0) ∪R(∆0) and Γ ⊆ R(Γ0).

Proof. The proof goes by a routine induction on the length of a cut-free
proof of Γ0 ⇒ ∆0. We only treat the cases of the implication and the
quotation rules.
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Suppose ∆0 = ∆1, ϕ → ψ and the last application of a rule in the
derivation of Γ0 ⇒ ∆0 has the form

Γ0 ⇒ ∆1, ψ

Γ0 ⇒ ∆1, ϕ→ ψ
(→R)

If Γ⇒ ∆ coincides with Γ0 ⇒ ∆0, the claim is obvious. Otherwise, Γ⇒ ∆
occurs in the proof of Γ0 ⇒ ∆1, ψ. By the induction hypothesis Γ ⊆ R(Γ0)
and ∆ ⊆ L(Γ0) ∪ R(∆1) ∪ R(ψ). However, R(ψ) ⊆ R(ϕ → ψ) ⊆ R(∆0).
Hence, the claim.

Suppose Γ0 = Γ1, ϕ→ ψ and the last application of a rule in the deriva-
tion of Γ0 ⇒ ∆0 has the form

Γ1 ⇒ ∆0, ϕ Γ1, ψ ⇒ ∆0

Γ1, ϕ→ ψ ⇒ ∆0
(→L)

Suppose Γ ⇒ ∆ occurs in the proof of Γ1 ⇒ ∆0, ϕ. By the induction
hypothesis Γ ⊆ R(Γ1) and ∆ ⊆ L(Γ1) ∪ R(∆0) ∪ R(ϕ). However, R(ϕ) ⊆
L(ϕ→ ψ) ⊆ L(Γ0). Hence, ∆ ⊆ L(Γ0) ∪R(∆0).

If Γ ⇒ ∆ occurs in the proof of Γ1, ψ ⇒ ∆0, then by the induction
hypothesis Γ ⊆ R(Γ1) ∪ R(ψ) and ∆ ⊆ L(Γ1) ∪ R(∆0) ∪ L(ψ). We have
R(ψ) ⊆ R(ϕ→ ψ) ⊆ R(Γ0), hence Γ ⊆ R(Γ0). On the other hand, L(ψ) ⊆
L(ϕ→ ψ) ⊆ L(Γ0), hence ∆ ⊆ L(Γ0) ∪R(∆0).

Suppose the last inference in the proof is

Γ1,∆1 ⇒ ϕ

q saidΓ1, q implied∆1 ⇒ q impliedϕ

Here Γ0 = q saidΓ1, q implied∆1 and ∆0 = {q impliedϕ}.
Suppose Γ ⇒ ∆ occurs in the proof of Γ1,∆1 ⇒ ϕ. By the induction

hypothesis Γ ⊆ R(Γ1) ∪ R(∆1) and ∆ ⊆ L(Γ1) ∪ L(∆1) ∪ R(ϕ). Since
R(Γ1) ⊆ R(q saidΓ1) and R(∆1) ⊆ R(q implied∆1), we have Γ ⊆ R(Γ0).
On the other hand, L(Γ1) ⊆ L(q saidΓ1), L(∆1) ⊆ L(q implied∆1) and
R(ϕ) ⊆ R(q impliedϕ). Hence, ∆ ⊆ L(Γ0) ∪R(∆0).

All the other rules are treated similarly. �

The standard proof-search procedure for a cut-free derivation in GP
provides a PSpace algorithm solving the derivability problem.

Corollary 5.3 The derivability problem for qP[∨,⊥] is in PSpace.

Proof. Here it is sufficient to notice that the number of nodes in any branch
in a cut-free derivation of a sequent Γ0 ⇒ ∆0 is bounded by the length n of
that sequent, and the length of any sequent Γ ⇒ ∆ occurring at any node
in the proof-tree is polynomial in n by the subformula property. �
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6 Primal logic with disjunction and quotations:
semantics and a completeness proof

Kripke semantics for the intuitionistic and primal infon logic was introduced
in [21]. We define simpler Kripke models for primal infon logic.

Definition 6.1 A tuple W = (W, (Sq)q∈P , (Iq)q∈P , v) is called a primal
Kripke pre-model, if P is the set of principals in the language and W is
a non-empty set (of worlds). For each q ∈ P, Sq and Iq are binary relations
on W such that Sq ⊆ Iq; they correspond to modalities said and implied,
respectively. v is a map assigning to each x ∈W a valuation vx. In turn, vx
is a map assigning 0 or 1 to all the variables and implications of the language
of primal logic with quotations.

Given a pre-model W, the validity relation x � ϕ is defined, for each
x ∈W and each formula ϕ, as follows:

1. x � ϕ ⇐⇒ vx(ϕ) = 1, if ϕ is a variable or an implication;

2. x � >, x 2 ⊥;

3. x � θ ∧ ψ ⇐⇒ (x � θ and x � ψ);

4. x � θ ∨ ψ ⇐⇒ (x � θ or x � ψ);

5. x � q saidψ ⇐⇒ ∀y (xSqy ⇒ y � ψ);

6. x � q impliedψ ⇐⇒ ∀y (xIqy ⇒ y � ψ).

We require that the validity relation satisfies the conditions of being quasi-
boolean, for each x ∈W :

(i) If x � ψ then x � (ϕ→ ψ);

(ii) If x � (ϕ→ ψ) then (x 2 ϕ or x � ψ).

If the two conditions are satisfied for a given pre-model W, we say that W
is a primal Kripke model. A sequent Γ⇒ ∆ is valid in W if

∀x ∈W (x �
∧

Γ⇒ x �
∨

∆).

Remark 6.2 Even though the meaning of implication in primal logic is not
compositional, Conditions (i) and (ii) relate the validity of an implication
ϕ→ ψ only to the validity of its simpler constituents ϕ and ψ. This allows
to define a quasi-boolean valuation of implications from any given valuation
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of variables selecting their values in any order respecting the subformula
order on the implications. There is a lot of freedom in doing this. One
possibility is the usual classical valuation. Another one is to always define
v(ϕ → ψ) = v(ψ), which corresponds, in a sense, to the strongest quasi-
implication. But there is a host of intermediate cases.

Theorem 5 The following statements are equivalent:

(i) Γ `
∨

∆ holds in qP[∨,⊥];

(ii) Γ⇒ ∆ is provable in GP;

(iii) Γ⇒ ∆ is provable in GP without cut;

(iv) Γ⇒ ∆ is valid in all finite primal Kripke models;

(v) Γ⇒ ∆ is valid in all primal Kripke models.

Proof. The implications (iii)⇒(ii), (ii)⇒(i), (v)⇒(iv), and (i)⇒(v) are rou-
tine. We only prove (iv)⇒(iii).

Suppose Γ0 ⇒ ∆0 is not cut-free provable. We are going to construct a
finite primal Kripke model W such that Γ0 ⇒ ∆0 is not valid in W.

Let F be the set of all subformulas of Γ0 ∪ ∆0. Sequents Γ ⇒ ∆ with
Γ,∆ ⊆ F will be called F-sequents.

Definition 6.3 Let Γ ⇒ ∆ be an F-sequent. Γ ⇒ ∆ is called saturated if
the following conditions hold for all ϕ,ψ ∈ F :

1. ϕ ∧ ψ ∈ Γ⇒ ϕ,ψ ∈ Γ;

2. ϕ ∧ ψ ∈ ∆⇒ (ϕ ∈ ∆ or ψ ∈ ∆);

3. ϕ ∨ ψ ∈ Γ⇒ (ϕ ∈ Γ or ψ ∈ Γ);

4. ϕ ∨ ψ ∈ ∆⇒ ϕ,ψ ∈ ∆;

5. (ϕ→ ψ) ∈ Γ⇒ (ψ ∈ Γ or ϕ ∈ ∆);

6. (ϕ→ ψ) ∈ ∆⇒ ψ ∈ ∆;

7. > ∈ Γ, ⊥ ∈ ∆.

Lemma 6.4 Suppose Γ ⇒ ∆ is an F-sequent unprovable in GP without
cut. Then there is a saturated F-sequent Γ′ ⇒ ∆′ such that Γ ⊆ Γ′, ∆ ⊆ ∆′

and Γ′ ⇒ ∆′ is unprovable without cut.
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Proof. The closure conditions 1–6 correspond to the inference rules of GP
being read bottom-up. Therefore, these statements directly follow from the
logical form of the rules in our Gentzen-style sequent calculus. In the case
of 7 we have show that Γ ⇒ ∆ is cut-free derivable if (and only if) so is
Γ,> ⇒ ∆. This is easily checked by induction on the height of the cut-free
derivation of Γ,> ⇒ ∆. The case of ⊥ is similar. �

Now we introduce the following notation. Let s = (Γ⇒ ∆) be a sequent.
Then s0 denotes Γ and s1 denotes ∆.

We define a Kripke model W = (W, (Sq)q∈P , (Iq)q∈P , v) as follows:

• W is the set of all cut-free unprovable saturated F-sequents; further,
for all r, s ∈W ,

• sSqr
def⇐⇒ ∀ϕ (q saidϕ ∈ s0 ⇒ ϕ ∈ r0);

• sIqr
def⇐⇒ ∀ϕ (q impliedϕ ∈ s0 ⇒ ϕ ∈ r0) and sSqr.

The valuation v onW is defined by induction on the complexity of formulas.
We introduce the following measure of formula complexity.

• c(ϕ) = 0, if ϕ is a variable or a constant;

• c(ϕ→ ψ) = c(ψ) + 1;

• c(ϕ ∧ ψ) = c(ϕ ∨ ψ) = max(c(ϕ), c(ψ));

• c(q saidϕ) = c(q impliedϕ) = c(ϕ).

By a partial n-valuation we mean a map assigning 0 or 1 to all variables
and implications of complexity at most n at each node s ∈ W . If such a
partial n-valuation is given, the corresponding validity relation x �n ϕ is
uniquely defined, for all formulas ϕ such that c(ϕ) 6 n, according to the
clauses of Definition 6.1.

Therefore, by induction on n we can define partial n-valuations vn on
W as follows: for all s ∈W ,

• vns (P ) = 1 def⇐⇒ P ∈ s0, if P is a variable;

• vns (ϕ→ ψ) = 1 def⇐⇒ ((ϕ→ ψ) ∈ s0 or s �n−1 ψ), if c(ϕ→ ψ) 6 n.

We notice that with n increasing the partial valuations vn extend each other.
Hence, in the limit we obtain a valuation v on W such that, for all s ∈ W
and all formulas ϕ,ψ (not necessarily from F),
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• vs(P ) = 1 def⇐⇒ P ∈ s0, if P is a variable;

• vs(ϕ→ ψ) = 1 def⇐⇒ ((ϕ→ ψ) ∈ s0 or s � ψ). (∗)

This completes the definition of the model W. Before showing that this
model is, in fact, primal we prove the following lemma.

Lemma 6.5 For all s ∈W and ϕ ∈ F ,

(i) ϕ ∈ s0 ⇒ s � ϕ;

(ii) ϕ ∈ s1 ⇒ s 2 ϕ.

Proof. If ϕ is a variable or a constant, both (a) and (b) are obvious.

Suppose ϕ = (θ → ψ). If (θ → ψ) ∈ s0 then trivially s � (θ → ψ) by (∗).
If (θ → ψ) ∈ s1 then ψ ∈ s1 since s is saturated. Hence, s 2 ψ by the

induction hypothesis. We also have (θ → ψ) /∈ s0, otherwise s would be
provable. Thus, s � (θ → ψ) by (∗).

Suppose ϕ = (θ ∧ ψ). If (θ ∧ ψ) ∈ s0 then θ, ψ ∈ s0 by saturation, hence
s � ψ, θ and s � θ ∧ ψ by the induction hypothesis.

If (θ ∧ ψ) ∈ s1 then θ ∈ s1 or ψ ∈ s1 by saturation. Hence, s 2 ψ or
s 2 θ, which implies s 2 θ ∨ ψ.

Suppose ϕ = (θ∨ψ). If (θ∨ψ) ∈ s0 then θ ∈ s0 or ψ ∈ s0 by saturation.
Hence, s � ψ or s � θ, which implies s � θ ∨ ψ.

If (θ∨ψ) ∈ s1 then θ, ψ ∈ s1 by saturation, hence s 2 ψ, θ and s 2 θ∨ψ.

Suppose ϕ = (q saidψ). (a) By definition of Sq, if sSqr and q saidψ ∈
s0, then ψ ∈ r0 and r � ψ by the induction hypothesis. Since this holds for
any r, we obtain s � q saidψ whenever q saidψ ∈ s0.

(b) Assume q saidψ ∈ s1. Let Γ := {θ : q said θ ∈ s0}. We claim that
Γ⇒ ψ is cut-free unprovable. Otherwise, from Γ⇒ ψ one could infer

q saidΓ⇒ q saidψ,

and therefore s would be provable by weakening (we have q saidΓ ⊆ s0 and
q saidψ ∈ s1).

Let r be any saturated unprovable sequent with Γ ⊆ r0 and ψ ∈ r1. We
have sSqr by the definition of Sq and r 2 ψ by the induction hypothesis. It
follows that s 2 q saidψ.
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Suppose ϕ = (q impliedψ). Part (a) is similar to the previous case. We
prove (b). Assume q impliedψ ∈ s1. Let

Γ := {θ : q said θ ∈ s0 or q implied θ ∈ s0}.

We claim that Γ⇒ ψ is cut-free unprovable. Otherwise, from Γ⇒ ψ by the
rule (Implied) we could infer

{q said θ, q implied ξ : q said θ, q implied ξ ∈ s0} ⇒ q impliedψ,

from which s follows by weakening. Let r be an unprovable saturation of
Γ⇒ ψ. We have sIqr and ψ ∈ r1, hence s 2 q impliedψ. �

Now we can check that W satisfies the conditions of being primal.

Lemma 6.6 For any (ϕ→ ψ) ∈ F and any s ∈W ,

(i) if s � ψ then s � (ϕ→ ψ);

(ii) if s � (ϕ→ ψ) then (s 2 ϕ or s � ψ).

Proof. Statement (i) is immediate from (∗). We prove (ii).
Suppose s � ϕ → ψ. Then, by (∗), either (ϕ → ψ) ∈ s0 or s � ψ. If

s � ψ we are done. If (ϕ→ ψ) ∈ s0 then ψ ∈ s0 or ϕ ∈ s1 by the saturation
of s. Hence, either s � ψ or s 2 ϕ by the previous lemma. �

To complete the proof of Theorem 5 recall that the given sequent Γ0 ⇒
∆0 is not cut-free provable. Let s be an unprovable saturation of Γ0 ⇒ ∆0.
By Lemma 6.5 we obtain s �

∧
Γ0 and s 2

∨
∆0. Hence, Γ0 ⇒ ∆0 is not

valid in W. �

As an application of semantical completeness we now establish the dis-
junction property for qP[∨,⊥]. In fact, the Aczel slash method works here
with just a few modifications.

The set of Harrop formulas for the language with quotations is now
defined by the following grammar:

H ::= > | ⊥ | P | H ∧H | A→ H | q saidA | q impliedA

Here P is a variable, A is a formula, and q is a principal constant.

Theorem 6 (disjunction property) If Γ is a set of Harrop formulas
and Γ ` ϕ ∨ ψ in qP[∨,⊥], then Γ ` ϕ or Γ ` ψ.
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Proof. As in the proof of Theorem 2, with a given set Γ we inductively asso-
ciate a valuation v = vΓ on the set of formulas of the language of qP[∨,⊥]:

• v(ϕ) = 1 ⇐⇒ Γ ` ϕ, if ϕ is a variable or has the form q saidψ or
q impliedψ;

• v(ϕ→ ψ) = 1 ⇐⇒ (Γ ` (ϕ→ ψ) and (2v ϕ or �v ψ));

In other words, we treat all formulas of the form q saidψ or q impliedψ
as propositional atoms. We further proceed as in the proof of Theorem 2.
Firstly, by an easy induction on ϕ we obtain

Lemma 6.7 For any formula ϕ, if �v ϕ then Γ ` ϕ.

Then we establish the soundness lemma for provability in qP[∨,⊥].

Lemma 6.8 If ∆ ` A and �v ∆, then �v A.

Proof. This is proved by a straightforward induction on the length of the
proof of ∆ ` A. We only treat the cases of implication and quotation rules.

Suppose ∆ ` (ϕ→ ψ) is obtained from ∆ ` ψ. If �v ∆, by the induction
hypothesis we have �v ψ and by the previous lemma Γ ` ψ. It follows that
Γ ` (ϕ→ ψ) and by the definition of v we obtain �v (ϕ→ ψ).

Suppose that �v ∆ and ∆ ` ψ is obtained from ∆ ` (ϕ→ ψ). If ∆ ` ϕ,
by the induction hypothesis we have �v (ϕ → ψ) and �v ϕ. However,
�v (ϕ → ψ) implies that 2v ϕ or �v ψ, by the definition of v. The first is
false, hence �v ψ.

Suppose ∆ = q said∆1, A = q saidϕ and the last inference is

∆1 ` ϕ
q said∆1 ` q saidϕ

Assume �v q said∆1. This means Γ ` q saidψ, for each ψ ∈ ∆1. Since
q said∆1 ` q saidϕ, we also have Γ ` q saidϕ, which means �v q saidϕ by
the definition of v. So, in this case we do not even have to use the induction
hypothesis.

The case of the rule (Implied) is similar. �

The analogue of Lemma 3.6 works without any change.

Lemma 6.9 If ϕ is Harrop, then

�v ϕ ⇐⇒ Γ ` ϕ.

Now suppose Γ is Harrop and Γ ` ϕ ∨ ψ. For any θ ∈ Γ we have Γ ` θ,
hence �v θ by Lemma 6.9. By Lemma 6.8 it follows that �v ϕ ∨ ψ, hence
�v ϕ or �v ψ. By Lemma 6.7 this implies Γ ` ϕ or Γ ` ψ. �
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7 Complexity bounds

Next we show that there is a reduction of classical modal logic to primal logic
with quotations. This gives suitable complexity bounds for the fragments of
the primal logic with disjunction and quotations.

Let us call a prefix a sequence of modalities of the form qi said or
qj implied, for example, q1 said q3 implied q1 said is a prefix of length
three. We say that a subformula ϕ occurs in A under a prefix σ, if in
the parse tree of A there is a branch leading to an occurrence of ϕ such that
reading the modalities top down along this branch yields σ. Of course, for
a given occurrence of ϕ this prefix is uniquely defined. Modal depth of A
can be defined as the maximal length of prefixes of subformula occurrences
in A.

Let H(A) denote the set of all formulas of the form σ(ϕ ∨ (ϕ → ψ)),
where ϕ → ψ occurs in A under a prefix σ. We note that the length of
H(A) is polynomial in the length of A.

Let qC denote the extension of classical logic by quotations.

Proposition 7.1 For any formula A, qC ` A iff H(A) ` A in qP[∨,⊥].

Proof. The implication from right to left is obvious, since H(A) is provable
in qC for any A.

For the opposite implication we give a syntactic proof based on our
Gentzen-style sequent calculus for primal logic. Given a set of formulas Γ
define H(Γ) to be the union of all H(ϕ), for all ϕ ∈ Γ. By induction on
the length of derivation we show that H(Γ,∆),Γ ⇒ ∆ is provable in GP
whenever Γ⇒ ∆ is provable in GC.

We only have to treat the cases of the modal rules and the rule (→R).
Suppose the last rule applied in the classical derivation of Γ⇒ ∆ is (→R),
that is, the last inference has the form

Γ, ϕ⇒ ∆′, ψ
Γ⇒ ∆′, ϕ→ ψ

By the induction hypothesis we obtain a derivation of H,Γ, ϕ ⇒ ∆′, ψ in
GP where H = H(Γ, ϕ,∆′, ψ). We notice that

H(Γ,∆) = H(Γ,∆′, ϕ→ ψ) = H ∪ {ϕ ∨ (ϕ→ ψ)}.

Then we consider the following proof tree:

H,ϕ,Γ⇒ ∆′, ψ
H,ϕ,Γ⇒ ∆′, ϕ→ ψ

(→Rp)
H,ϕ→ ψ,Γ⇒ ∆′, ϕ→ ψ

H,ϕ ∨ (ϕ→ ψ),Γ⇒ ∆′, ϕ→ ψ
(∨L)

24



The leaves of this tree are provable in primal logic, the left one by the
induction hypothesis and the right one for trivial reasons. Hence, we obtain
the required derivation.

Suppose the last inference has the form

Γ′ ⇒ ϕ

q saidΓ′ ⇒ q saidϕ
(Said)

Let H := H(Γ′, ϕ), then clearly

H(q saidΓ′, q saidϕ) = {q saidψ : ψ ∈ H} =: q saidH.

By the induction hypothesis H,Γ′ ⇒ ϕ is provable in primal logic. Hence,
we obtain the required derivation

H,Γ′ ⇒ ϕ

q saidH, q saidΓ′ ⇒ q saidϕ.

Suppose the last inference has the form

Σ,Π⇒ ϕ

q saidΣ, q impliedΠ⇒ q impliedϕ
(Implied)

Let H := H(Σ,Π, ϕ) = H(Σ) ∪H(Π, ϕ). Then

H(q saidΣ, q impliedΠ, q impliedϕ) = H(q saidΣ)∪H(q impliedΠ, q impliedϕ)
= q saidH(Σ) ∪ q impliedH(Π, ϕ). (2)

By the induction hypothesis H,Σ,Π ⇒ ϕ is provable in primal logic.
Hence, we obtain the required derivation

H(Σ), H(Π, ϕ),Σ,Π⇒ ϕ

q saidH(Σ), q impliedH(Π, ϕ), q saidΣ, q impliedΠ⇒ q impliedϕ.

The cases of all the other rules and axioms are obvious. �

It follows from the well-known work of Ladner [23] that the derivabil-
ity problem for qC is PSpace-hard. Hence, Proposition 7.1 together with
Theorem 3 imply the following theorem.

Theorem 7 The derivability problem for qP[∨,⊥] is PSpace-complete.

On the other hand, Halpern [22] showed that the derivability problem for
the bounded-modal-depth fragment of modal logic K is co-NP-complete.
The situation for qP[∨,⊥] is similar.
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Theorem 8 (i) If Γ 0 A in qP[∨,⊥] and Γ, A have modal depth bounded
by a constant d, there is a primal model W of size polynomial in the
length of Γ and A such that, for some x ∈ W, x � Γ but x 2 A.

(ii) For each d, the derivability problem for modal depth d fragment of
qP[∨,⊥] is co-NP-complete.

Clause (ii) follows from (i) and Theorem 3. Clause (i) can be proved by
adapting the standard methods of [22]. We prove the following main lemma,
which is a more specific version of (i). We call a primal model treelike, if its
Iq relations are finite trees (and hence, so are its Sq relations).

Lemma 7.2 Suppose Γ ⇒ ∆ is unprovable in GP and has modal depth
bounded by d. Then there is a treelike primal model W of depth d and
branching bounded by the length of Γ ⇒ ∆ such that Γ ⇒ ∆ is false at the
root r of W.

Proof. We argue by induction on d. If d = 0 the model W will consist of
a single root, by Theorem 1. Suppose the modal depth of Γ ⇒ ∆ is d + 1.
Let F denote the set of all subformulas of Γ⇒ ∆. We write u � Γ⇒ ∆ as
a shorthand for u �

∧
Γ→

∨
∆.

Consider any primal model U and a point u ∈ U such that u 2 Γ ⇒ ∆.
For each q let

Γq := {ϕ ∈ F : u � q saidϕ}
∆q := {ϕ ∈ F : u � q impliedϕ}

Further, let ϕq1, . . . , ϕ
q
n be all the formulas ϕ ∈ F such that u 2 q saidϕ,

and let ψq1, . . . , ψ
q
m be all the formulas ϕ ∈ F such that u 2 q impliedϕ.

We notice that each of the sequents Γq ⇒ ϕqi , for i = 1, . . . , n, is false
at some node uqi ∈ W such that uSqu

q
i . Similarly, each of the sequents

Γq,∆q ⇒ ψqj , for j = 1, . . . ,m, is false at some node vqj ∈ U such that uIqv
q
j .

The modal depth of all these sequents is bounded by d, so by the induction
hypothesis we obtain treelike models Wq

i with the roots rqi , and Vqj with the
roots tqj such that

rqi 2 Γq ⇒ ϕqi and tqj 2 Γq,∆q ⇒ ψqi .

The required model W will consist of the disjoint union of all these
modelsWq

i and Vqj together with a new root r. The root r is only connected
to the points rqi by Sq and to the points tqj by Iq, for all q. The valuation
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at the root r (on the variables and the implications) coincides with that at
u ∈ U .

Claim. For each formula ϕ ∈ F , u � ϕ holds in U iff r � ϕ holds in W.
This claim is proved by a straightforward induction which we omit. It

follows that r 2 Γ⇒ ∆. We finally remark that the depth of W is bounded
by d + 1, and that the branching at r is bounded by the total number of
formulas in F , hence by the length of Γ ⇒ ∆. This concludes the proof of
Lemma and thereby of Theorem 8. �
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[17] K. Došen. Models for stronger intuitionistic modal logics. Studia Logica,
44:39–70, 1985.

[18] D. Garg and M. Abadi. A modal deconstruction of access control logics.
In R. Amadio, editor, FOSSACS 2008, LNCS 4962, pages 216–230.
Springer, 2008.

[19] Y. Gurevich and I. Neeman. DKAL: Distributed-Knowledge Authoriza-
tion Language. In Proc. of CSF 2008, pages 149–162. IEEE Computer
Society, 2008.

[20] Y. Gurevich and I. Neeman. DKAL 2 — A Simplified and Improved Au-
thorization Language. Technical Report MSR-TR-2009-11, Microsoft
Research, February 2009.

[21] Y. Gurevich and I. Neeman. Logic of Infons: the propositional case.
ACM Transactions on Computational Logic, 12(2), 2011.

[22] J. Halpern. The effect of bounding the number of primitive propositions
and the depth of nesting on the complexity of modal logic. Artificial
Intelligence, 75(2):361–372, 1995.

28



[23] R.E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing, 6(3):467–480,
1977.

[24] N. Li, B.N. Grosof, and J. Feigenbaum. Delegation logic: A logic-
based approach to distributed authorization. ACM Transactions on
Information and System Security, 6(1):128–171, 2003.

[25] M. Minoux. LTUR: A simplified unit-resolution algorithm for Horn for-
mulae and computer implementation. Information Processing Letters,
29:1–12, 1988.

[26] E. Moggi. Notions of computation and monads. Information and Com-
putation, 93(1):55–92, 1991.

[27] H. Ono. On some intuitionistic modal logics. Publ. Res. Institute for
Mathematical Science, 13:55–67, 1977.

[28] G. Plotkin and C. Stirling. A framework for intuitionistic modal logic.
In J. Halpern, editor, Theoretical Aspects of Reasoning about Knowl-
edge. 1986.

[29] G. Fischer Servi. On modal logic with an intuitionist base. Studia
Logica, pages 141–149, 1977.

[30] G. Fischer Servi. Semantics for a class of intuitionist modal calculi. In
M.-L. dalla Chiara, editor, Italian Studies in the Philosophy of Science,
pages 59–72. Reidel, Dordrecht, 1981.

[31] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal
Logic. PhD thesis, University of Edinburgh, 1994.

[32] R. Statman. Intuitionistic propositional logic is polynomial-space com-
plete. Theoretical Computer Science, 9:67–72, 1979.

[33] A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
Tracts in Theoretical Computer Science, 43. Cambridge Univeristy
Press, Cambridge, 1996.

[34] D.I. Vakarelov. Intuitionistic modal logics incompatible with the law of
the excluded middle. Studia Logica, 40(2):103–111, 1981.

[35] D.I. Vakarelov. An application of Rieger-Nishimura formulas to the
intuitionistic modal logics. Studia Logica, 44(7):79–85, 1985.

29
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