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On some slowly terminating term rewriting systems

L. D. Beklemishev and A.A. Onoprienko

Abstract. We formulate some term rewriting systems in which the num-
ber of computation steps is finite for each output, but this number can-
not be bounded by a provably total computable function in Peano arith-
metic PA. Thus, the termination of such systems is unprovable in PA. These
systems are derived from an independent combinatorial result known as
the Worm principle; they can also be viewed as versions of the well-known
Hercules-Hydra game introduced by Paris and Kirby.
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§ 1. Introduction

The first examples of term rewriting systems and important classes of these
appeared at the beginning of the 20th century, in the works of Thue (Thue systems),
Schönfinkel and Curry (combinatory logic), Herbrand and Gödel (Herbrand-Gödel
computability), Church (λ-calculus), Post, Markov and other authors. Nowadays,
term rewriting systems are widely used in informatics and, in particular, in func-
tional programming and in computer algebra systems. Investigating their proper-
ties, such as termination (which means that each chain of transformations following
the rules of the system terminates), confluence (branches of computation with the
same initial state can be continued to meet), the existence and uniqueness of normal
forms, is an important field in computer science (see [1] and [2]).

In this paper we look at systems which can be called slowly terminating. Each
chain of transformations in such a system is finite, so that the system is terminating,
but the number of steps in the chain cannot be bounded by a function of a reasonable
order of growth in the length of the initial term.

Given a system W we define its complexity function CW (n) as the maximum
possible number of steps in a chain of transformations of W starting from a term
of length at most n. (If for some n there exists no upper bound for the number
of steps, then the system W is nonterminating.) The complexity function of the
slowly terminating systems presented in this paper is not provably total in Peano
arithmetic PA, and the lower bound on the number of steps exceeds any function
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in the so-called extended Ggrzegorczyk hierarchy up to the ordinal ε0 (see [3]).
In particular, the termination of such systems cannot be proved in PA.

The existence of slowly terminating term rewriting systems is a consequence of
some classical results in mathematical logic. It is well known that term rewriting
systems, and even certain more special subclasses of these such as Thue systems,
are a universal model of computation. Since the set of sentences provable in PA
is computably enumerable, we can consider a computable enumeration (ϕn)n∈N of
all computable functions from N to N which are provably total in PA. Then the
function

ψ(n) = max
i,m6n

ϕi(m) + 1

satisfies the inequality ψ(n) > ϕk(n) for all n > k. Since ψ is a computable function,
we can easily construct a finite term rewriting system W with CW (n) > ψ(n), so
that CW exceeds any provably total computable function in PA.

Examples of systems which arise from this construction are based on the method
of proof encoding used in Gödel’s incompleteness theorem, so they are rather awk-
ward and difficult to write out explicitly. One can ask if there exist natural, easy
to formulate and memorable examples of such systems. One can give an answer
to this question based on some independent combinatorial principles, such as the
well-known Hercules-Hydra principle (see [4]).

The first example of using a term rewriting system to interpret the Hercules-
Hydra battle was formulated by Dershowitz and Jouannaud [5]. Subsequently,
that system was corrected in [6]; to analyze it accurately has proved to be rather
complicated.

An alternative sequence of systems was proposed by Touzet [7]. In these sys-
tems the question of termination is simpler to analyse, but they only correspond to
a restricted version of the Hercules-Hydra battle. In particular, the termination for
each individual system is provable in PA. The strength of these systems approx-
imates PA from below, but the arity of the signature functions involved in these
systems increases ad infinitum.

The Worm principle [8], [9] is one of the simplest combinatorial principles, which
looks almost like a statement of termination of a particular word rewriting system.
It also leads to some natural examples of slowly terminating term rewriting sys-
tems. We present three such systems here. The first is a word rewriting system
corresponding very closely to the nondeterministic version of the Worm principle.
Its rules are extremely simple, but the alphabet and the system of rules are infinite
(albeit recursive). The second system has a finite alphabet and is also easily memo-
rable, but its system of rules is still infinite. The third system, obtained by adapting
the second, is finite and allows for a sufficiently simple analysis of termination, but
it is not as elementary as the first two.

Our results here can be summarized as follows.

Theorem 1. Let W be any one of the three systems W1 , W2 and W3 formulated
below. Then

(i) W is terminating;
(ii) the complexity function CW (n) is not bounded by a provably total computable

function in PA;
(iii) the termination of W is unprovable in PA.
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The results in this paper were first announced in [10]. At the same time, Buch-
holz [11] gave another elegant encoding of the Hercules-Hydra game, related to the
Derschowitz system, and gave a simple proof that it terminates. In publishing the
results from [10] here we have been motivated by investigations by Zankl, Winkler
and Middeldorp [12], who used the systems Wi as test examples for the methods
they were developing for computer-aided proofs of termination for term rewriting
systems. They could prove termination for the system W3 using computer calcula-
tions. Furthermore, they found a rule that was forgotten in the formulation of the
system W3 in [10], but is actually necessary to model the Worm principle. In this
paper we give our own proof of termination for the corrected formulation of W3.

§ 2. Term rewriting systems

By a signature we mean a set Σ of function symbols of various arities (function
symbols of arity zero are the constants). Apart from the symbols of the signature we
consider an infinite alphabet of variables {x0, x1, . . . } and auxiliary symbols for the
brackets and the comma. The set of terms TmΣ of Σ is defined recursively as usual:
variables and constants are terms, and if f ∈ Σ is a function symbol of arity n > 0
and t1, . . . , tn are terms, then the expression f(t1, . . . , tn) is a term. By closed terms
we mean those containing no variables. Terms can be conveniently represented as
finite trees, whose leaves are labelled by variables or constants and whose interior
vertices are labelled by the function symbols of the signature. The arity of a label
must correspond to the degree of the corresponding vertex.

By a term rewriting rule we mean an expression of the form l→ r, where l and r
are terms. A term rewriting system for a signature Σ is an arbitrary set W of such
rules for terms of Σ.

To define the concept of derivation in a given term rewriting system we require
the concepts of a context and a substitution. A context t[x] is a term with a unique
occurrence of the distinguished variable x. The result of the replacement of x by
a term s in a context t is denoted by t[s].

A substitution is a map σ : TmΣ → TmΣ which commutes with all the symbols
of the signature:

(f(t1, . . . , tn))σ = f(tσ1 , . . . , t
σ
n).

Here, tσ denotes the result of applying σ to t. In fact, tσ is obtained by replacing
all the variables in t by certain terms.

By an application of the rule l→ r we mean the transformation of the term t[lσ]
into t[rσ], for some substitution σ and some context t[x]. For terms s and t we
write s →W t if we can obtain t from s by applying some rule of the system W .
If it is clear which system W is under consideration, then we drop the subscript W
from the arrow.

By a derivation of a term tn from a term t1 in W we mean a sequence of
applications of rules of this system of the form:

t1 →W t2 →W · · · →W tn−1 →W tn.

We write s→∗
W t if t can be derived from s in W .

The term rewriting system W terminates if for each initial term t any chain of
applications of rules in W starting from t is finite.
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Note that string rewriting systems, also known as semi-Thue systems, can be
regarded as a particular kind of term rewriting systems for a signature containing
only function symbols of arity 1. Each symbol corresponds to a letter in the alpha-
bet of the Thue system in question. Then a word A = a1 . . . an corresponds to the
term A(x) = a1(· · · an(x) · · · ), where x is a fixed variable, and each rewrite rule
A → B in the Thue system corresponds to the term rewrite rule A(x) → B(x).
The concept of derivation also matches in the two formalisms.

To prove that a particular term rewriting system terminates, authors often use
some well-founded ordering of terms, chosen so that each application of the rules
results in a decrease of the terms. One standard choice is the so-called lexicographic
path ordering ; see [5].

Assume that Σ is finite and a strict linear ordering ≺ is defined on Σ. Then
we define the associated order relation ≺lpo on TmΣ (together with its reflexive
closure ≼lpo) recursively as follows.

We set s ≻lpo t if and only if either t is a variable occurring in s and t ̸= s or
s = f(s1, . . . , sn), t = g(t1, . . . , tm) and one of the following conditions is satisfied:

1) si ≽lpo t for some i, 1 6 i 6 n;
2) f ≻ g and s ≻lpo tj for all j, 1 6 j 6 m;
3) f = g, s ≻lpo tj for all j, 1 6 j 6 m, and for some i, 1 6 i 6 n, we have

s1 = t1, . . . , si−1 = ti−1, si ≻lpo ti.
It is well known that the ordering ≺lpo is well-founded. Furthermore, if each

rule l → r of the system W satisfies l ≻lpo r, then each application of this
rule t[lσ] ≻lpo t[rσ] also has this property, therefore the system W terminates
(see [5], [13] and [14]).

§ 3. The Worm principle

Now we formulate an independent combinatorial statement known as the Worm
principle (see [8], [9], [15]). Words in the alphabet of natural numbers N will be
called worms; we denote the set of all such words by S. The length of a word A is
denoted by |A|; the height of a worm is its largest letter. The size of the worm A
is defined as the maximum of its length and height. The first element of the worm
A = n0n1 . . . nk will be called its head. Let Sn denote the set of words in the
sub-alphabet {i : i > n}.

Informally speaking, the life of a worm is described by the following process: if
the head of the worm is equal to 0, then it is cut off at the next step; otherwise the
head decreases by 1, but the worm regenerates in accordance with the simple rule
below. The Worm principle states that a worm cannot live forever.

More formally, for each m ∈ N we specify a worm function A 7→ A[m] mapping
worms to worms. For each initial worm A = n0n1 . . . nk this function defines
a sequence (Ai)i∈N, called the evolution of the worm:

A0 := A, Ai+1 := Ai[i+ 1].

Thus, m counts the steps of the process. The rules defining A[m] are as follows:

1) if n0 = 0, then A[m] := n1 . . . nk; in this case the head of the worm is cut off;
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2) if n0 = n+1 > 0, then we find the maximal initial piece n0B of A such that
B ∈ Sn+1 (B may be empty); if A = n0BC, then

A[m] := (nB)m+1C.

Example 1. Consider the evolution of the worm A = 1302. At the first step we
obtain B = 3 and A1 = A[1] = 030302. Then the following sequence appears:

A0 = 1302,
A1 = 030302,
A2 = 30302,
A3 = 22220302,

A4 = (1222)50302,
. . . . . . . . . . . . . . . . . . . . .

Note that for each word A we have |A[m]| 6 |A| ·(m+1), so the lengths of the Ai

are bounded by |Ai| 6 |A| · (i+ 1)!.
The Worm principle states that for each initial word A there exists i > 0 such

that Ai = Λ.
Let D(n) denote the maximal lifespan of worms of size at most n. Since the

number of worms of size n is finite, the Worm principle is equivalent to the assertion
that D(n) is well defined for each n ∈ N. The next theorem follows from the results
in [8] and [9].

Theorem 2. (i) For each A ∈ S there exists i such that Ai = Λ.
(ii) Statement (i) is not provable in Peano arithmetic PA.
(iii) The function D(n) majorizes each computable function provably total in PA.

Proof. For the convenience of the reader we give the proof of (i) here. The proofs
of (ii) and (iii) are more complicated (see, for instance, [15]), and (ii) is a direct
consequence of (iii).

We first define a function o : S → ε0 and show that in transformations of worms
the corresponding ordinals decrease. Let B+ denote the result of the replacement
of each letter n with n+1 in the word B, and let B− denote the result of the inverse
operation (which is defined for B ∈ S1). The ordinal o(A) is defined by induction
on the height of A.

If A = 0k, then o(A) := k. Otherwise A can be uniquely represented as
A10A20 . . . 0An, where the words Ai contain no zeros and some of these words
are nonempty. Then we set o(A) := ωo(A−n ) + · · ·+ ωo(A−2 ) + ωo(A−1 ). The height of
each A−i is less than that of A, so the inductive hypothesis applies.

Note that o(Λ) = 0 and o(0A) = o(A) + 1 for each word A. If B ̸= 0k, then

o(B0A) = o(A) + o(B), (3.1)

and if B ∈ S1 is nonempty, then o(B) = ωo(B−).
We will show that o(A) > o(A[m]) for each nonempty word A. We use induction

on the height of A. For words of height 0 the inequality is obvious. Now we
consider A = A10A20 . . . 0Ak, where Ai ∈ S1 and some Ai are nonempty. Setting
C := A20 . . . 0Ak we obtain A = A10C, where A1 and C cannot both be empty.
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If A1 = Λ, then A = 0C and A[m] = C, so o(A) > o(A[m]).
Let A1 ̸= Λ. Then A[m] = (A1[m])0C. The word A1[m] has the form 0k only

for A1 = 1. In this case o(A) = o(C) + ω > o(C) + k + 1 = o(A[m]) and the proof
is complete. Otherwise, from (3.1) we obtain

o(A) = o(C) + o(A1), (3.2)
o(A[m]) = o(C) + o(A1[m]). (3.3)

Thus it is sufficient to show that o(A1) > o(A1[m]). We distinguish the following
two cases.

1) A1 = 1B for some B ∈ S1. Then A1[m] = (0B)m+1 and we have

o(A1) = ωo((1B)−) = ωo(B−)+1.

On the other hand

o(A1[m]) = ωo(B−) · (m+ 1) + 1 < ωo(B−) · ω = o(A1).

2) A1 = (n+ 1)B for some n > 1. Then A−1 [m] = (A1[m])− by the definition of
the worm function. Now, by the inductive assumption

o(A1) = ωo(A−1 ) > ωo(A−1 [m]) = ωo((A1[m])−) = o(A1[m]),

as required.

§ 4. The system W1

This string rewriting system corresponds to a nondeterministic version of the
Worm principle. Let Σ = {a0, a1, a2, . . . } be an infinite alphabet and Sn the set of
words in the sub-alphabet {ai | i > n}. The system W1 is defined by the following
rules:

an+1A→ (anA)k for each A ∈ Sn+1, k > 1. (∗)

We point out several distinctions between computations in the system W1 and
the worm sequence.

First, transformations can occur anywhere within the word, not only at its start.
Second, the symbol a0 is never erased. Thus the computation terminates if and
only if the word consisting of the single letter a0 appears. Third, k, the number of
copies occurring after the application of the rule (∗), is chosen arbitrarily at each
step. Fourth, the sub-word A ∈ Sn+1 to which we apply (∗) need not be the longest
possible in general.

It is easy to see that the evolution of any worm B can be modelled by some
computation branch in the system W1. In fact, suppose we apply the rules (∗) each
time to the leftmost occurrence of a sub-word of the form an+1A, where A ∈ Sn+1

has the maximum possible length, and we take k to correspond with the step of the
evolution of the worm B. It is easy to prove by induction that the words obtained
from B in this way in the system W1 are only different from the corresponding
worms by a certain prefix of the form ai

0. Hence if W1 is terminating then the
lifespan of each worm is finite.
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Theorem 3. The system W1 is terminating.

Proof. We shall use the same map o : S0 −→ ε0 taking words to ordinal numbers as
before, that is, we set o(ak

0) = k and o(A1a0A2a0 . . . a0An) = ωo(A−n ) + · · ·+ωo(A−1 ),
where all the Ai belong to S1 and some of them are nonempty, and where B− is
obtained from B ∈ S1 by replacing all the letters am+1 by am.

Lemma 1. Let A→W1 B be an application of some rule of the system W1 . Then
o(A)>o(B). Moreover, if this rule is applied to the beginning of A, then o(A)>o(B).

Proof. To spare us extra calculations we use the standard interpretation of worms
as modal formulas in the polymodal provability logic GLP or in its strictly positive
fragment RC (see [8] and [16]). For brevity we will identify words ai1ai2 . . . ain with
formulas of the form ⟨i1⟩⟨i2⟩ . . . ⟨in⟩⊤ in GLP. The notation A ⊢ B means that the
implication A→ B is provable in GLP.

It is known (see [8], Lemma 12) that for any words A,B ∈ S0

o(A) < o(B) ⇐⇒ B ⊢ a0A.

Hence, to prove the first statement it is sufficient to show that if A →W1 B,
then A ⊢ B. (In which case we have B 0 a0A because A0a0A, so that o(A)≮o(B).)

Using induction on k we will show first that an+1AC ⊢ (anA)kC for each
A ∈ Sn+1. The basis of induction is an axiom of GLP. We assume that the formula
holds for k and prove it for k+1. We observe that an+1AC implies an+1A∧(anA)kC.
By Lemma 11, (ii) in [8] this formula is equivalent to an+1A(anA)kC, which obvi-
ously implies anA(anA)kC, as required.

It follows that Dan+1AC ⊢ D(anA)kC for each word D, which proves the first
part of the lemma. The second part is a consequence of the following observation.

Lemma 2. If B is a nonempty word, then o(A) < o(BA).

Proof. Using induction on the length of B in an obvious way we see that BA ⊢ a0A.

Since an+1AC ⊢ (anA)kC for each k > 1, it follows that

o(an+1AC) > o((anA)k+1C) > o((anA)kC).

Thus the second part of Lemma 1 is proved.

Suppose that W1 is not terminating and A0 → A1 → A2 → · · · is an infinite
sequence of transformations. Using Lemma 1 we can assume that o(A0) = o(A1) =
o(A2) = · · · . Further, among all such sequences we can select one with the minimal
ordinal o(A0). Since o(A0) = o(A1) = o(A2) = · · · , Lemma 1 shows that there
are no transformations in this sequence at the beginning of words. Hence, there
exists a nonempty B equal to the maximal common initial piece of all the Ai, so
that Ai = BA′i for each i > 0. This means that all the transformations occur to
the right of B, and hence A′0 → A′1 → A′2 → · · · where o(A′i) < o(Ai) = o(A0) for
each i. This contradicts the choice of the ordinal o(A0) to be minimal.
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§ 5. The system W2

The signature of the system W2 contains a constant 0, a unary function symbol f
and a binary multiplication symbol · . The system W2 has the following rules:

(x · y) · z → x · (y · z),
f(0 · x) → (0 · f(x))m, m > 1,
f(0) → 0m, m > 1.

Here xm means x · (· · · (x · (x · x)) · · · )︸ ︷︷ ︸
m times

.

Intuitively, f and · can be viewed as operations on words in the alphabet
Σ = {a0, a1, a2, . . . }, where 0 denotes a0, x · y denotes the concatenation of the
words x and y, and f(x) denotes the word obtained by replacing every letter ai

in x by ai+1. Thus, according to this interpretation any closed term t has a value,
which is a nonempty word A ∈ S0.

We can find A from t by calculating the f -depth of zeros. By the f -depth of an
occurrence of a subterm s in a term t we mean the number of symbols f occurring
on the path from the root of the subtree s to the root of the tree t (the starting
vertex of the path is not counted). If the nth leftmost zero lies at f -depth k in t,
then the nth symbol in A is equal to ak.

We define a map of nonempty words A ∈ S0 to closed terms A# of the signature
of W2; the value of A# will be equal to A. If A = an

0 , then A# := 0n. Otherwise
A = A1a0A2a0 . . . a0An, where the Ai are words in S1 not all of which are empty.
Then

A# := f((A−1 )#) · 0 · f((A−2 )#) · 0 · · · 0 · f((A−n )#),

where the factor f((A−i )#) is left out if the word Ai is empty. (We assume right
association of brackets, so that x · y · z is treated as x · (y · z).)

Example 2. (a1a2a0a1)# = f((a0a1)#) · (0 · f(a#
0 )) = f(0 · f(0)) · (0 · f(0)).

As previously, A[m] denotes the worm function.

Lemma 3. If A is nonempty and does not begin with a0 , then A# →∗
W2

A[m]# .

Proof. Since A does not begin with a0, A# contains an occurrence of a subterm of
the form f(0 · t) or f(0). Pick the leftmost of such occurrences and apply to it the
second or the third rule with the given m. Then reassociate the brackets to the
right using the first rule. We claim that the resulting term is A[m]#.

Now, if C ∈ Sn, then C# = fn(t) for some t. Thus, if B begins with an, then
B# begins with n symbols f : B# = f(f(· · · f(t) · · · ) · · · ) · · · , and the scope of the
kth f corresponds to the maximal initial piece of B which belongs to Sk. Hence if
an+1B is the maximal initial piece of A which belongs to Sn+1, then there are two
possibilities.

If B is empty, then A# contains a subterm f(0) (and this is the (n + 1)st
occurrence of the symbol f .) We replace it with 0m in accordance with the third
rule and normalize the whole term, associating the brackets to the right if necessary.
These zeros are preceded by n symbols f and the f -depths of all the other zeros
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have remained the same. Hence the first symbol, an+1, in A has been replaced
with (an)m.

If B is nonempty, then A# contains a subterm f(0 · t) preceded by n symbols f .
Here t = C#, where C is the result of subtracting n from the index of each letter
in B. We replace f(0 · t) by (0 · f(t))m following the second rule and normalize the
term, applying the first rule if necessary. This corresponds to replacing the prefix
an+1B in A with (anB)m.

This completes the proof.

Corollary 1. The complexity function CW2(n) is not bounded by a provably total
computable function in PA.

Proof. We will prove that for certain primitive recursive functions g and h (which
are provably total in PA) we have h(n,CW2(g(n))) > D(n), where D(n) is the
‘lifespan function’ of a worm of size n. Let A be a worm of size n and let g(n) be
a function providing an upper bound on the length of the term A#. Clearly, g can
be chosen to be primitive recursive. Now we consider the evolution of the worm A
and extract the subsequence Aik

of all the worms that do not begin with 0 from
the sequence Ai.

Note that the transition from Aik
to Aik+1 consists in applying one rule and

then removing all the zeros at the beginning of the word. Hence the number of
such steps is bounded by the length of the word Aik+1, and from the bound on the
length of worms we obtain

ik+1 6 ik + 1 + n · (ik + 2)!.

This yields a primitive recursive bound on ik as a function of k and n (we denote
this bound by I(n, k)). By Lemma 3 there exists a sequence of terms Bk in W2

such that
B0 →∗ B1 →∗ B2 →∗ · · · →∗ Bk →∗ · · ·

and for each k the term Bk has the form 0mk · A#
ik

for some mk ∈ N. Thus the
lifespan of the worm A is bounded by

iN + |AiN
| 6 iN + n(iN + 1)! 6 I(n,N) + n(I(n,N) + 1)!,

where N is the length of the sequence of transformations Bk. Let h(n,N) denote
the right-hand side of this inequality. Since N is bounded by CW2(g(n)), we obtain
the required result.

Lemma 4. The system W2 is terminating.

Proof. We prove that W2 is terminating using the lexicographic path ordering. We
order the symbols of the signature as 0 ≺ · ≺ f and show that all the three schemas
of rules in W2 reduce the term in the sense of the ordering ≺lpo.

In fact, for the first rule we have x · y ≻lpo y, hence

(x · y) · z ≻lpo y · z.

Since x · y ≻lpo x, we infer that

(x · y) · z ≻lpo x · (y · z).
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The statement f(0 ·x) ≻lpo (0 ·f(x))m can be proved by induction on m. It holds
for m = 1 because f ≻ · , f(0 · x) ≻lpo 0 and f(0 · x) ≻lpo f(x). For m + 1
we use the assumption f ≻ · , the inductive assumption for m and the fact that
f(0 · x) ≻lpo (0 · f(x)), which has just been established.

In a similar way we can prove that f(0) ≻lpo 0m for each m > 1.

§ 6. The system W3

We modify the system W2 to obtain a slowly terminating term rewriting system
with a finite set of rules. Now a term will not encode the worm alone, but also the
step m of its evolution. We will arrange things so that the term encoding a pair
(m,A) rewrites to the term encoding (m+ 1, A[m]).

We introduce new unary function symbols a, b, c and d playing the role of mark-
ers. A pair (m,A) will be represented by a term of the form dam(t), where t = A#

(as in W2) and d always marks the beginning of the term. The rules of W3 will
enable the marker a to move to some place within t, where transformations are to
be made. Each symbol a performs one act of copying the appropriate piece of the
worm and is replaced by b. Further transformations follow the rules of W2. We call
them reductions, and they result in a reduction in the ordinal of the corresponding
W2-term. After one reduction a new symbol c appears. Symbols c can travel to
the beginning of the term; all the symbols b encountered in the process are trans-
formed into c, while the symbols c themselves are transformed into symbols a upon
encountering d. The latter event triggers the start of a new cycle of computations
of the next step of the worm evolution.

A notable feature of W3 is that in fact the order of transformations can be
somewhat different from the one described above. So, the proof that W3 terminates
requires a thorough analysis.

The rules of the system W3 are as follows:
1) (x · y) · z −→ x · (y · z);
2) (copying)

a(f(0 · x)) −→ b
(
f(0 · x) · (0 · f(x))

)
, a(f(0)) −→ b(f(0) · 0);

3) (reduction)

f(0 · x) −→ c(0 · f(x)), f(0) −→ c(0), 0 · x −→ c(x);

4) (a moves downwards)

a(f(x)) −→ f(a(x)), a(x · y) −→ a(x) · y,
a(b(x)) −→ b(a(x)), a(c(x)) −→ c(a(x));

5) (c moves upwards and subsumes b)

f(c(x)) −→ c(f(x)), c(x) · y −→ c(x · y), b(c(x)) −→ c(c(x));

6) d(c(x)) −→ d(a(x)).
First we show that W3 simulates the evolution of any worm. For brevity we shall

write ab(t) in place of a(b(t)) and an(t) in place of a(a(· · · a(t) · · · )).
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Lemma 5. For each n > 0:
(i) anf(0 · x) →∗

W3
cn+1(0 · f(x))n+1 ;

(ii) anf(0) →∗
W3

cn+1(0n+1).

Proof. We will prove (i); assertion (ii) has a similar, but simpler, proof. We consider
the derivation when the symbols a move one by one to the occurrence of f(0 · x),
change to b and produce copies of the term (0·f(x)) on the right. Then the reduction
rule is applied, producing a symbol c. This symbol moves upwards, subsuming n
symbols b, and then the brackets are reassociated to the right:

anf(0 · x) −→ an−1b(f(0 · x) · (0 · f(x))) −→∗ an−2b
(
a(f(0 · x)) · (0 · f(x))

)
−→ an−2b

(
b(f(0 · x) · (0 · f(x))) · (0 · f(x))

)
−→∗ b

(
· · · b(b(f(0 · x) · (0 · f(x))) · (0 · f(x)) · · · (0 · f(x)))

)
−→ b

(
· · · b(b(c(0 · f(x)) · (0 · f(x))) · (0 · f(x)) · · · (0 · f(x)))

)
−→∗ cn+1(0 · f(x))n+1.

The proof is complete.

The following lemma shows that W3 simulates one step in the worm sequence.

Lemma 6. Let A be a nonempty word distinct from a0 . Then for each n > 1

dan(A#) −→∗
W3

dan+1(A[n]#).

Proof. Two cases are possible here.
Case 1: A begins with a0, so that A# = 0 · t. Then

dan(0 · t) −→ danc(t) −→∗ dcan(t) −→∗ dan+1(t).

Case 2: A does not begin with a0. In this case the leftmost occurrence of 0 in the
term A# occurs in the context f(0 · t) or f(0). Then the term A[n]# is obtained
from A# by replacing these occurrences with (0 · f(t))n+1 or 0n+1, respectively.
Without loss of generality we look at the first case.

We move the symbols a rightwards to the first occurrence of f(0 · t). Using
Lemma 5 we can transform the occurrence of anf(0·t) into the term cn+1(0·f(t))n+1.
Next we move cn+1 to the beginning of the term, obtaining dcn+1(A[n]#). Finally,
from dcn+1(A[n]#) we obtain dan+1(A[n]#).

Corollary 2. The complexity function CW3(n) is not bounded by any provable total
computable function in PA.

Proof. We consider the evolution of the worm A = A0:

A0 → A1 → A2 → · · · → Ak → · · · .

From Lemma 6 we obtain a derivation in W3:

daA#
0 −→∗ da2A#

1 −→∗ da3A#
2 −→∗ · · · −→∗ dak+1A#

k −→∗ · · · .

This can be continued until the last step but one in the evolution of A (when the
word a0 appears). Each step of this evolution can be simulated by at least one
application of the rules of W3. Hence, the length of the derivation in W3 is no
smaller than the length of the worm evolution (minus one step).
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Theorem 4. The system W3 terminates.

Proof. It is sufficient to show that there can be no infinite chains of transformations
of closed terms in W3. In fact, from each derivation in W3 we obtain a derivation
of the same length by replacing all the occurrences of variables with 0.

Now we prove several auxiliary results.

Lemma 7. If a term t does not contain a symbol d, then there exists no infinite
chain of transformations starting with t.

Proof. Note first that rule 6) is not used in derivations from the term t because the
symbol d cannot occur there. Now we order the symbols in the original alphabet:
0 ≺ c ≺ · ≺ f ≺ b ≺ a. A direct verification shows that all the rules of W3,
with the exception of rule 6), reduce the term in the sense of the corresponding
lexicographic path ordering. Hence each chain of transformations following these
rules terminates.

Next we consider the special case when the initial term has the form d(t), where t
does not contain a symbol d or variables. In this case the other terms in the chain of
transformations have the same form. The first (leftmost) occurrence of zero in such
a term will be called critical. We will represent terms as upwards growing trees.
By the trunk of a tree we will mean the path from the root to the critical leaf of
the tree, that is, the leftmost path in the tree. By critical reductions (copyings) we
shall mean reduction (copying) transformations applied to the critical occurrence
of 0. The following lemma plays a key part.

Lemma 8. Each infinite sequence of transformations of the form dt0 → dt1 →
dt2 → · · · in the system W3 , where the ti are closed terms not containing d, involves
a critical reduction.

Proof. Suppose that an infinite chain of transformations involves no critical reduc-
tion. Then we can make the following observations.

1. Let na denote the number of letters a in the trunk of the tree (we also
introduce similar notation for b and c). Then the sum na + nb + nc is the same for
all the terms in the derivation.

Note that transformations in groups 2) and 4)–6) have the following property:
no letters a, b or c positioned to the right of the trunk of the term will end on the
trunk (a can only move upwards, while c can move downwards, but only along the
left-hand branch). The occurrences of a, b and c already positioned on the trunk
remain on it or are renamed in the order a→ b→ c→ a, so that the sum na+nb+nc

does not change. Transformation 1) can only cancel out one multiplication sign on
the trunk. Reduction transformations 3) can change labels on the trunk only when
we apply them to the critical occurrence; otherwise the symbol c that appears can
never reach the trunk.

2. The number of critical copyings in the chain of transformations in question is
finite.

Let mb denote the number of symbols b on the trunk positioned under some
symbol c there. Then the quantity na + mb + nc is nonincreasing and, moreover,
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decreases by 1 after each critical copying: the symbols b arising after critical copy-
ings occur above all the symbols c on the trunk, and should be subtracted from the
sum.

3. If a chain of transformations contains neither critical copyings nor reductions
then the quantity na is nondecreasing. Since the sum na + nb + nc is constant,
starting from some step na stabilizes. This means that rule 6) is not used in the
subsequent transformations. But in this case we known already from Lemma 7 that
the chain of transformations terminates.

Now we define a map v from the set of closed terms which do not contain d in W3

to words in the alphabet Σ = {a0, a1, . . . }. This map is similar to the interpretation
of closed terms in W2 as words, but is a modification of the latter, which takes into
account the position of some symbols c in the terms under consideration.

We extend the alphabet Σ by an infinite series of (new) symbols ci, so that we
set Σ′ = Σ ∪ {c0, c1, c2, . . . }. For words A in the alphabet Σ′ we have the map
A 7→ A+ increasing the index of each letter by 1. For each n > 0, let S′n be the set
of words in the alphabet {ai, ci : i > n}. As previously, Sn denotes the set of words
in the alphabet {ai : i > n}.

Let t be a closed term in W3 which does not contain d. We assign to t a word
v(t) in the alphabet Σ′ recursively as follows:

v(0) = a0, v(f(t)) = v(t)+, v(t · s) = v(t)v(s),
v(c(t)) = c0v(t), v(at) = v(bt) = v(t).

(6.1)

Now let A = A′ai ∈ S0. We set A ◦ cj = A if i 6 j and A ◦ cj = Aaj if i > j.
We also set A ◦ cj = Λ if A is empty. We define a map w : S′0 → S0 as follows:

w(Λ) = Λ, w(Aai) = w(A)ai, w(Aci) = w(A) ◦ ci.

Finally, we set v(t) = w(v(t)) and o(t) = o(v(t)), where o is the ordinal of a word
in the system W1.

Note that for any words A,B ∈ S′0 we have w(AaiB) = w(A)w(aiB). This can
easily be proved by induction on the length of B. We shall often use this observation
without special mention in the proof of the next lemma.

Lemma 9. Let t1 and t2 be closed terms not containing d. If dt1 →W3 dt2 , then
o(dt2) 6 o(dt1). If t1 →W3 t2 is a critical reduction, then

o(dt1) < o(dt2).

Proof. First we note that for any term t the map v assigns a nonempty subword
A of the word v(t) = CAD to each subterm s of t. If the occurrence of s in t has
f -depth n, then A is obtained from v(s) by n applications of the function ( · )+. The
rightmost symbol in A corresponds to the rightmost occurrence of 0 in s, so that
it is some ai. Hence the word v(t) = w(CAD) has the form w(C)A′D′ for some
words A′ and D′ which can be obtained by cancelling out and renaming some of
the symbols cj occurring in A and D, respectively. (Generally speaking, A′ and D′
do not necessarily coincide with w(A) and w(D).)

To prove the first part of the lemma, as in Lemma 1, it suffices to show that
v(t1) ⊢ v(t2). We examine the applications of all the rules of W3.
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1. Using rules 1), 4) or 6) does not change the word v(t1), and therefore does
not change v(t1).

2. The rule af(0) → b(f(0) · 0). Let v(t1) = Can+1D; then v(t2) = Can+1anD.
Using induction on the length of D we shall show that

w(an+1D) ⊢ w(an+1anD),

which yields w(C)w(an+1D) ⊢ w(C)w(an+1anD) and proves the required result.
The basis of induction reduces to the obvious an+1 ⊢ an+1an. Now we discuss the
induction step.

If D = aiD1, then w(an+1D) = an+1w(D), and therefore

w(an+1D) ⊢ an+1 ∧ anw(D) ⊢ an+1anw(D) = w(an+1anD).

If D = ciD1, then we distinguish the following cases.
If i > n, then by the inductive assumption

w(an+1D) = w(an+1D1) ⊢ w(an+1anD1) = w(an+1anD).

If i = n, then

w(an+1D) = an+1w(anD1) = an+1w(ancnD1) = w(an+1anD).

If i < n, then

w(an+1D) = an+1w(aiD1) ⊢ an+1 ∧ anw(aiD1) ⊢ an+1anw(aiD1) = w(an+1anD).

3. The rule a(f(0 · x)) → b(f(0 · x) · (0 · f(x))). In this case v(t1) has the form
Can+1AD, where A ∈ S′n+1 ends with some ai, and v(t2) = Can+1AanAD. We
have w(an+1AD) = an+1A

′D′ for some A′ ∈ Sn+1 and D′ and w(an+1AanAD) =
an+1A

′anA
′D′ for the same A′ and D′. Here A′ in the second equality is the same

as in the first because A contains no symbols cj with j 6 n. In a similar way, D′ in
the second word is the same as in the first because A′ ends with the same ai as A.

As in Lemma 1 above, we obtain

an+1A
′D′ ⊢ an+1A

′ ∧ anA
′D′ ⊢ an+1A

′anA
′D′,

which proves the required result.
4. The rule f(0 · x) → c(0 · f(x)). In this case v(t1) has the form Can+1AD,

where A ∈ S′n+1, and v(t2) = CcnanAD. Then

w(Can+1AD) = w(C)an+1A
′D′

for some A′ ∈ Sn+1 and D′. In turn, w(CcnanAD) coincides with w(C)ananA
′D′

(if cn is not cancelled out) and with w(C)anA
′D′ (otherwise).

We obtain an+1A
′D′ ⊢ ananA

′D′ ⊢ anA
′D′, which proves the required result in

either case.
Note also that when the application of this rule is critical, the word C is empty

and cn is cancelled out, so v(t1) ⊢ anv(t2), and therefore o(t1) > o(t2).
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5. The rule f(0) → c(0). In this case v(t1) has the form Can+1D and
v(t2) = CcnanD. This case is similar to the previous one.

6. The rule 0 · x → c(x). In this case v(t1) has the form CanAD and
v(t2) = CcnAD. Let w(C) = C ′ai. If n < i, then w(CcnAD) = w(CanAD),
and there is nothing to prove. If n > i, then w(CcnAD) = C ′w(aiA)D′ and
w(CanAD) = C ′w(anA)D′. Here D′ is the same in both cases because the word A
ends with some letter ak, which is not cancelled out in w(anA). Now the required
result follows from the lemma below.

Lemma 10. For each n > i and any words A and D′ , w(anA)D′ ⊢ w(aiA)D′ .

Proof. Our argument uses induction on the length of A. If A is the empty word,
then the result is obvious.

If A = ajA
′, then

w(anA)D′ = anw(ajA
′)D′ ⊢ aiw(ajA

′)D′ = w(aiA)D′.

If A = cjA
′, then we consider three cases.

If j < i, then

w(anA)D′ = anw(ajA
′)D′ ⊢ aiw(ajA

′)D′ = w(aiA)D′.

If j > n, then by the inductive hypothesis

w(anA)D′ = w(anA
′)D′ ⊢ w(aiA

′)D′ = w(aiA)D′.

If i 6 j < n, then by the inductive hypothesis

w(anA)D′ = anw(ajA
′)D′ ⊢ w(ajA

′)D′ ⊢ w(aiA
′)D′ = w(aiA)D′.

The proof is complete.

Note also that when the application of this rule is critical, v(t1) = a0v(t2), so
that o(t1) > o(t2).

7. The rule f(c(x)) → c(f(x)). In this case v(t1) has the form Ccn+1AD, where
A ∈ S′n+1, and v(t2) = CcnAD. Let w(C) = C ′ai; then w(Ccn+1AD) has the form
C ′w(aicn+1A)D′ and w(CcnAD) = C ′w(aicnA)D′. It is sufficient to show that

w(aicn+1A)D′ ⊢ w(aicnA)D′.

We examine three cases. If i 6 n, then

w(aicn+1A)D′ = w(aiA)D′ = w(aicnA)D′.

If i > n+ 1, then by Lemma 10

w(aicn+1A)D′ = aiw(an+1A)D′ ⊢ aiw(anA)D′.

If i = n+ 1, then by Lemma 10

w(aiA)D′ ⊢ w(anA)D′,
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and therefore

w(aicn+1A)D′ = w(aiA)D′ ⊢ ai ∧ w(anA)D′ ⊢ aiw(anA)D′ = w(aicnA)D′.

8. The rule c(x) · y → c(x · y). This does not change v(t1).
9. The rule b(c(x)) → c(c(x)). In this case v(t1) has the form CcnAD, where

A ∈ S′n, and v(t2) = CcncnAD. Let w(C) = C ′ai; then w(CcnAD) has the form
C ′w(aicnA)D′ and w(CcncnAD) = C ′w(aicncnA)D′. It is sufficient to show that

w(aicnA)D′ ⊢ w(aicncnA)D′.

If i > n, then

w(aicnA)D′ = w(aianA)D′ ⊢ ai ∧ anw(anA)D′ ⊢ aianw(anA)D′ = w(aicncnA)D′.

If i 6 n, then

w(aicnA)D′ = w(aiA)D′ = w(aicncnA)D′.

Lemma 9 is proved.

From Lemmas 8 and 9 we obtain the following.

Corollary 3. Assume that d does not occur in t. Then there is no infinite chain
of transformations in W3 starting with the term dt.

Remark 1. The involved definitions of the functions v and o and the complicated
proof of Lemma 9 are related to noncritical applications of the zero reduction
rule 0 · x→ c(x). The example f(0) · (0 · f(0)) → f(0) · f(0) shows that converting
terms in W3 into terms in the system W2 by forgetting all the auxiliary symbols
(including c) we can increase the ordinals of the corresponding words. There are
no similar reduction rules in W2 and W1, so this problem does not arise.

Now we complete the proof of Theorem 4. Using induction on the number of
occurrences of symbols d in an arbitrary term s we show that there can be no
infinite chain of transformations of the form s = s0 → s1 → · · · . Without loss
of generality assume that s is a closed term. We have already dealt with the case
when s does not contain d.

We look at the deepest occurrence of d in s, that is, we represent s in the form
s = u[d(t)], where t does not contain d. Note that any transformation of s using the
rules ofW3 either occurs in the subterm d(t) or preserves this subterm. In the second
case the transformation s→ s1 reduces to transforming the context u[x] → u1 using
the same rule and then replacing all the occurrences of x in u1 with d(t). (There
can be more than one such occurrence of x in u1.) Hence to each term si we can
connect a term ui and a finite string of terms of the form dti1, dti2, . . . , dtiki

such
that si is obtained by replacing the consecutive occurrences of x in ui with dtij
(the terms tij do not contain d). Here the sequence of terms ui can be produced
using the same rules as were used to produce the si, excluding their application to
the distinguished terms dtij , which do not affect the ui.

Since u = u0 contains fewer occurrences of d than s, it follows from the inductive
assumption that starting from some step n the term ui does not change. Hence
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for i > n each transformation proceeds within one of the terms dti1, dti2, . . . , dtik,
where k = kn is fixed. By Corollary 3 the chain of transformations in each term dtij
terminates, so the whole sequence also terminates.

The authors are indebted to M. R. Pentus, who found several flaws in the first
version of this paper.
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