Provability algebras for theories of Tarskian truth

Lev Beklemishev

Steklov Mathematical Institute, Moscow

November 7, 2011

- Work in progress.
- Joint work with Evgeny Dashkov.
- Influenced by Henryk Kotlarski's study of inductive satisfaction classes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Provability algebraic view

• We view consistency assertion (along with higher reflection principles) as a function

 $\varphi \longmapsto \mathsf{Con}(S + \varphi)$

acting on a suitable algebra of sentences. (In principle, on the whole Lindenbaum–Tarski algebra of S.)

- Minimal substructures closed under this map (and some other operations) can provide suitable ordinal notations.
- Using these notations we classify consequences of theories of a specific logical complexity such as Π_1^0 or Π_2^0 .

Provability algebraic view

• We view consistency assertion (along with higher reflection principles) as a function

 $\varphi \longmapsto \mathsf{Con}(S + \varphi)$

acting on a suitable algebra of sentences. (In principle, on the whole Lindenbaum–Tarski algebra of S.)

- Minimal substructures closed under this map (and some other operations) can provide suitable ordinal notations.
- Using these notations we classify consequences of theories of a specific logical complexity such as Π⁰₁ or Π⁰₂.

Provability algebraic view

• We view consistency assertion (along with higher reflection principles) as a function

 $\varphi \longmapsto \mathsf{Con}(S + \varphi)$

acting on a suitable algebra of sentences. (In principle, on the whole Lindenbaum–Tarski algebra of S.)

- Minimal substructures closed under this map (and some other operations) can provide suitable ordinal notations.
- Using these notations we classify consequences of theories of a specific logical complexity such as Π⁰₁ or Π⁰₂.

・ロト・4日・4日・4日・4日・1000

Why truthpredicates?

- Truthpredicates are tightly related to reflection principles and are convenient in our framework.
- Theories of iterated truth are mutually interpretable with various standard theories of predicative strength (ramified analysis, iterated Π⁰₁-comprehension).
- The study leads to some simplifications of the previous approach (going to weak *positive provability logic*).

Reflection principles

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Notation:

 $\Box_{S}(\varphi) \qquad \stackrel{`}{\varphi} \text{ is provable in } S'$ $Tr_{n}(\sigma) \qquad \stackrel{`}{\sigma} \text{ is the Gödel number of a true } \Sigma_{n}\text{-sentence'}$

Reflection principles:

 $\begin{array}{ll} R_0(S) & \operatorname{Con}(S) \\ R_n(S) & \forall \sigma \in \Sigma_n \, (\Box_S \sigma \to \operatorname{Tr}_n(\sigma)), \text{ for } n \ge 1. \\ R_n(S) \iff \operatorname{Con}(S + \operatorname{all true} \, \Pi_n \operatorname{-sentences}) \end{array}$

Reflection calculus RC

Language: $\alpha ::= \top | (\alpha_1 \land \alpha_2) | n\alpha$ $n \in \omega$ Example: $\alpha = 3(2 \top \land 32 \top)$, or shortly: $3(2 \land 32)$.

Sequents: $\alpha \vdash \beta$.

RC rules:

- $\ \ \, \textbf{0} \ \ \, \alpha \wedge \beta \vdash \alpha, \beta; \quad \text{ if } \alpha \vdash \beta \text{ and } \alpha \vdash \gamma \text{ then } \alpha \vdash \beta \wedge \gamma;$

- $n\alpha \vdash m\alpha$ for n > m;
- $on \alpha \wedge m\beta \vdash n(\alpha \wedge m\beta) \text{ for } n > m.$
- **Ex.** $3 \land 23 \vdash 3(\top \land 23) \vdash 323$.

Arithmetical interpretation of RC

Let S be a reasonable theory. Interpretation α_S of α in S:

- $\top_{S} = \top$; $(\alpha \land \beta)_{S} = (\alpha_{S} \land \beta_{S});$
- $(n\alpha)_S = R_n(S + \alpha_S).$

Suppose $\mathbb{N} \models S$. **Theorem.** $\alpha \vdash \beta$ in RC iff $S \vdash \alpha_S \rightarrow \beta_S$.

Interpretation of RC in GLP

- RC can be seen as a variable-free {∧, ◇}-fragment of polymodal provability logic GLP.
- Interpretation: $3(2\top \land 32\top) \mapsto \langle 3 \rangle (\langle 2 \rangle \top \land \langle 3 \rangle \langle 2 \rangle \top)$

Theorems (E. Dashkov).

- GLP is a conservative extension of RC (also with variables);
- O RC with variables is polytime decidable;
- **O** RC with variables enjoys finite model property.
 - Weak positive modal logic systems similar to RC with variables have independently been formulated by Zakharyaschev et al. in their work on description logic.

Interpretation of RC in GLP

- RC can be seen as a variable-free {∧, ◊}-fragment of polymodal provability logic GLP.
- Interpretation: $3(2\top \land 32\top) \mapsto \langle 3 \rangle (\langle 2 \rangle \top \land \langle 3 \rangle \langle 2 \rangle \top)$

Theorems (E. Dashkov).

- GLP is a conservative extension of RC (also with variables);
- RC with variables is polytime decidable;
- **8** RC with variables enjoys finite model property.
 - Weak positive modal logic systems similar to RC with variables have independently been formulated by Zakharyaschev et al. in their work on description logic.

RC as an ordinal notation system

Define:

- $\alpha \sim \beta$ if $(\alpha \vdash \beta \text{ and } \beta \vdash \alpha)$;
- $\alpha <_n \beta$ if $\beta \vdash n\alpha$.

Let W denote the set of all RC formulas.

Theorem.

- Every $\alpha \in W$ is equivalent to a *word* (formula without \wedge);
- **2** $(W/\sim,<_0)$ is isomorphic to $(\varepsilon_0,<)$.

The ordinal $o(0^k) = k$. If $\alpha = \alpha_1 0 \alpha_2 0 \cdots 0 \alpha_n$, then

$$o(\alpha) = \omega^{o(\alpha_n^-)} + \dots + \omega^{o(\alpha_1^-)},$$

where $(132)^- = 021$.

Ex. $o(1012) = \omega^{o(01)} + \omega^{o(0)} = \omega^{\omega^1 + \omega^0} + \omega = \omega^{\omega+1} + \omega$

RC as an ordinal notation system

Define:

- $\alpha \sim \beta$ if $(\alpha \vdash \beta \text{ and } \beta \vdash \alpha)$;
- $\alpha <_n \beta$ if $\beta \vdash n\alpha$.

Let W denote the set of all RC formulas.

Theorem.

Every α ∈ W is equivalent to a word (formula without ∧);
(W/~,<₀) is isomorphic to (ε₀, <).

The ordinal $o(0^k) = k$. If $\alpha = \alpha_1 0 \alpha_2 0 \cdots 0 \alpha_n$, then

$$o(\alpha) = \omega^{o(\alpha_n^-)} + \cdots + \omega^{o(\alpha_1^-)},$$

where $(132)^- = 021$.

Ex. $o(1012) = \omega^{o(01)} + \omega^{o(0)} = \omega^{\omega^1 + \omega^0} + \omega = \omega^{\omega+1} + \omega$

RC as an ordinal notation system

Define:

- $\alpha \sim \beta$ if $(\alpha \vdash \beta \text{ and } \beta \vdash \alpha)$;
- $\alpha <_n \beta$ if $\beta \vdash n\alpha$.

Let W denote the set of all RC formulas.

Theorem.

Every α ∈ W is equivalent to a word (formula without ∧);
(W/~,<₀) is isomorphic to (ε₀,<).

The ordinal $o(0^k) = k$. If $\alpha = \alpha_1 0 \alpha_2 0 \cdots 0 \alpha_n$, then

$$o(\alpha) = \omega^{o(\alpha_n^-)} + \cdots + \omega^{o(\alpha_1^-)},$$

where $(132)^- = 021$.

Ex. $o(1012) = \omega^{o(01)} + \omega^{o(0)} = \omega^{\omega^1 + \omega^0} + \omega = \omega^{\omega+1} + \omega$

Reduction property

 $R_n^1(S) = R_n(S), \quad R_n^{k+1}(S) = R_n(S + R_n^k(S))$

Suppose $U \subseteq \prod_{n+2}$ and $S \vdash U$. **Th.** $R_{n+1}(S) \equiv_n \{R_n^k(S) : k < \omega\}$ modulo U, where \equiv_n denotes conservativity for \prod_{n+1} -formulas.

Example. Modulo elementary arithmetic EA: $I\Sigma_1 \equiv R_2(EA) \equiv_1 \{R_1^k : k < \omega\} \equiv PRA \text{ (Parsons-Mints)};$

Key idea: Suppose $\alpha = (n+1)\beta$. Define $\alpha \llbracket 0 \rrbracket := n\beta$, $\alpha \llbracket k + 1 \rrbracket := n(\beta \wedge \alpha \llbracket k \rrbracket)$. Then $\alpha \llbracket 0 \rrbracket <_0 \alpha \llbracket 1 \rrbracket <_0 \alpha \llbracket 2 \rrbracket \cdots \to \alpha$.

Reduction: $\alpha_{S} \equiv_{n} \{ \alpha \llbracket k \rrbracket_{S} : k < \omega \}.$

Reduction property

 $R_n^1(S) = R_n(S), \quad R_n^{k+1}(S) = R_n(S + R_n^k(S))$

Suppose $U \subseteq \prod_{n+2}$ and $S \vdash U$. **Th.** $R_{n+1}(S) \equiv_n \{R_n^k(S) : k < \omega\}$ modulo U, where \equiv_n denotes conservativity for \prod_{n+1} -formulas.

Example. Modulo elementary arithmetic EA:

 $I\Sigma_1 \equiv R_2(EA) \equiv_1 \{R_1^k : k < \omega\} \equiv PRA \text{ (Parsons-Mints)};$

Key idea: Suppose $\alpha = (n+1)\beta$. Define $\alpha[\![0]\!] := n\beta$, $\alpha[\![k+1]\!] := n(\beta \land \alpha[\![k]\!])$. Then $\alpha[\![0]\!] <_0 \alpha[\![1]\!] <_0 \alpha[\![2]\!] \cdots \to \alpha$.

Reduction: $\alpha_{S} \equiv_{n} \{ \alpha \llbracket k \rrbracket_{S} : k < \omega \}.$

Consistency proof for PA

Th. Transfinite induction over $(W, <_0)$ proves Con(PA).

Work in S = EA, \diamond means Con_S. We prove $\forall \alpha \diamond \alpha_S$. Claim:

 $\mathsf{PRA} \vdash \forall \beta <_{\mathbf{0}} \alpha \diamond \beta_{\mathbf{S}} \rightarrow \diamond \alpha_{\mathbf{S}}.$

Assume $\forall \beta <_0 \alpha \diamond \beta_5$. If $\alpha = 0\beta$, then $\diamond \beta_5$, hence $\diamond \diamond \beta_5$ since PRA $\vdash R_1(5)$. If $\alpha = \langle n+1 \rangle \beta$, then $\forall k \diamond \alpha \llbracket k \rrbracket_5$, because $\alpha \llbracket k \rrbracket <_0 \alpha$. By Reduction (provably in PRA):

 $\alpha_{S} \equiv_{n} \{ \alpha \llbracket k \rrbracket_{S} : k < \omega \}.$

Therefore $\forall k \diamond \alpha [k]_S$ yields $\diamond \alpha_S$.

Iterated reflection and analysis of PA

 W_n is the set of words in the alphabet $\{k \in \omega : k \ge n\}$.

Let $S_{\alpha}^{n} \equiv S + \{R_{n}(S_{\beta}^{n}) : \beta <_{n} \alpha\}$ over $(W_{n}, <_{n})$.

Let *S* be a Π_{n+1} extension of PRA. **Theorem.** For any $\alpha \in W_n$, $S + \alpha_S \equiv_n S_{\alpha}^n$.

Cor. $PA \equiv_n PRA^n_{\varepsilon_0}$ (U. Schmerl)

• For n = 0: Consistency proof for PA (Gentzen);

For n = 1: Characterizing provably recursive functions of PA (Schwichtenberg–Wainer).

Tarskian truthpredicates

- T(x) 'x is the Gödel number of a true arithmetical sentence'.
- Let $\mathcal{L}(T)$ be the extension of the language of PA by T.

Tarskian principles for truth:

- $\forall \varphi (At[\varphi] \rightarrow (T[\varphi] \leftrightarrow T_0[\varphi]));$
- $\forall \varphi, \psi (T[\varphi \land \psi] \leftrightarrow (T[\varphi] \land T[\psi]));$
- $\forall \varphi (T[\neg \varphi] \leftrightarrow \neg T[\varphi]);$
- $\forall \varphi \ (T[\forall x \ \varphi(x)] \leftrightarrow \forall x \ T[\varphi(\underline{x})]).$

Theories:

BT is just PRA plus Tarskian truth; PA(T) is BT + full induction.

NB: $PA(T) \equiv ACA$, second order arithmetic with arithmetical comprehension and full induction.

Higher reflection principles

Extending arithmetical hierarchy to $\mathcal{L}(\mathcal{T})$:

- Π_{ω} are arithmetical formulas;
- $\Pi_{\omega+n}$ are $\Pi_n(T)$ -formulas, $n \ge 1$.

Higher reflection:

- *R*_{ω+1}(*S*) := ∀φ ∈ Π_ω (□_S(φ) → *T*(φ)) (global arithmetical reflection)
- $R_{\omega}(S) := \{R_n(S) : n < \omega\}$ (uniform reflection)

Fact: $R_{\omega+1}(S)$ is equivalent to uniform reflection for $\Pi_{\omega+1}$ -formulas: $\forall x \ (\Box_S \varphi(\underline{x}) \to \varphi(x))$, where $\varphi \in \Pi_{\omega+1}$.

Warning: $R_{\omega}(S)$ is an infinite schema, not a sentence!

Induction and reflection

Fact. BT is conservative over PRA (Kotlarski,Krajewski,Lachlan model-theoretically; Halbach syntactically).

Modulo BT:

- $R_{\omega}(\mathsf{BT}) \equiv \mathsf{PA};$
- $R_{\omega+1}(BT) \equiv I\Delta_0(T)$ (Kotlarski);
- full reflection \equiv full induction.

Reduction formulas

Let \equiv_{α} denote conservativity for $\prod_{1+\alpha}$ -formulas. Let $S \vdash U$.

Th. $R_{\alpha+1}(S) \equiv_{\alpha} \{R_{\alpha}^{k}(S) : k < \omega\}$ modulo U, provided U is an extension of BT of the following complexity:

- $U \subseteq \Pi_{\alpha+2}$ if $\alpha < \omega$;
- $U \subseteq \Pi_{\omega}$ if $\alpha = \omega$;
- $U \subseteq \prod_{\alpha+1}$ if $\alpha > \omega$.

This is:

- For $\alpha < \omega$, the standard reduction;
- For $\alpha > \omega$, a relativization of the standard reduction: $\Pi_k \mapsto \Pi_k(T)$;
- Key new case: $\alpha = \omega$. For S = BT this result is due to H. Kotlarski.

Reflection calculus RC_{Ω}

Fix some infinite ordinal Ω , for $\mathcal{L}(T)$ we choose $\Omega = \omega 2$.

Language: $\alpha ::= \top | (\alpha_1 \land \alpha_2) | x \alpha \qquad x < \Omega$

We interpret x as R_x and \wedge as union of two schemata. Warning: Formulas now denote schemata, not individual sentences!

Axioms are as before, with the following modifications:

- $x\alpha \wedge y\beta \vdash x(\alpha \wedge y\beta)$ for $x > y, y \notin Lim$;
- $(x+1)x\alpha \sim (x+1)\alpha$, for $x \in \text{Lim}$;
- $y(x\alpha \wedge x\beta) \vdash y(x\alpha \wedge \beta)$, for $y \leq x \in Lim$.

RC_{Ω} as an ordinal notation system

Define: $\alpha <_{x} \beta$ iff $\beta \vdash x\alpha$. Let *W* denote the set of all RC_{Ω} words.

Theorem.

- $(W/\sim, <_0)$ is a well-ordering;
- **2** W/\sim is closed under reduction:
 - If $\alpha = (x+1)\beta$ then $\alpha[k]$ as before;
 - If $\alpha = x\beta$ with $x \in \text{Lim}$, then $\alpha[[k]] := x_k\beta$.

Iterated reflection

Progressions S_{α}^{\times} are now defined over $(W_{\times}, <_{\times})$.

Theorem. For any $\alpha \in W_x$, $S + \alpha_S \equiv_x S^x_{\alpha}$.

Cor.

•
$$I\Delta_0(T) \equiv_{\omega} \mathsf{BT}_{\omega}^{\omega} \equiv_n \mathsf{BT}_{\varepsilon_{\omega}}^n$$
, for $n < \omega$;

• $\mathsf{PA}(T) \equiv_{\omega} \mathsf{BT}^{\omega}_{\varepsilon_0} \equiv_n \mathsf{BT}^n_{\varepsilon_{\varepsilon_0}}$.

Words and ordinals

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Let Cr_x be the x-th critical class (enumerated by Veblen φ_x function). Let $o(\alpha)$ be the order type of $\{\beta \in W : \beta <_0 \alpha\}$.

Th. $o(W_{\omega^x}) = Cr_x \cup \{0\}$

Words and ordinals

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Let Cr_x be the x-th critical class (enumerated by Veblen φ_x function). Let $o(\alpha)$ be the order type of $\{\beta \in W : \beta <_0 \alpha\}$.

Th. $o(W_{\omega^{\times}}) = Cr_{\times} \cup \{0\}$

Words and ordinals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let Cr_x be the *x*-th critical class (enumerated by Veblen φ_x function). Let $o(\alpha)$ be the order type of $\{\beta \in W : \beta <_0 \alpha\}$.

Th. $o(W_{\omega^{\times}}) = Cr_{\times} \cup \{0\}$

Iterated Tarskian truth

Theories RT_{α} are in the language with α -many Tarskian truthpredicates T_{β} , for $\beta < \alpha$. These theories are tightly related to *ramified analysis* systems (S. Feferman 64), as well as to iterated arithmetical comprehension (see the book by V. Halbach for accurate definitions).

Fact: $RT_{<\alpha} \equiv (\Pi_1^0 \text{-} CA)_{<\omega\alpha}$.

• We believe that everything done for a single truthpredicate works for the theories RT_{α} (with the system $RC_{\omega\alpha}$).