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Provability algebraic view

We view consistency assertion (along with higher reflection
principles) as a function

ϕ 7−→ Con(S + ϕ)

acting on a suitable algebra of sentences. (In principle, on
the whole Lindenbaum–Tarski algebra of S .)

Minimal substructures closed under this map (and some other
operations) can provide suitable ordinal notations.

Using these notations we classify consequences of theories of a
specific logical complexity such as Π0

1 or Π0
2.
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Why truthpredicates?

Truthpredicates are tightly related to reflection principles and
are convenient in our framework.

Theories of iterated truth are mutually interpretable with
various standard theories of predicative strength (ramified
analysis, iterated Π0

1-comprehension).

The study leads to some simplifications of the previous
approach (going to weak positive provability logic).



Reflection principles

Notation:

2S(ϕ) ‘ϕ is provable in S’

Trn(σ) ‘σ is the Gödel number of a true Σn-sentence’

Reflection principles:

R0(S) Con(S)

Rn(S) ∀σ ∈ Σn (2Sσ → Trn(σ)), for n ≥ 1.

Rn(S) ⇐⇒ Con(S + all true Πn-sentences)



Reflection calculus RC

Language: α ::= > | (α1 ∧ α2) | nα n ∈ ω
Example: α = 3(2> ∧ 32>), or shortly: 3(2 ∧ 32).

Sequents: α ` β.

RC rules:

1 α ` α; α ` >; if α ` β and β ` γ then α ` γ;

2 α ∧ β ` α, β; if α ` β and α ` γ then α ` β ∧ γ;

3 nnα ` nα; if α ` β then nα ` nβ;

4 nα ` mα for n > m;

5 nα ∧mβ ` n(α ∧mβ) for n > m.

Ex. 3 ∧ 23 ` 3(> ∧ 23) ` 323.



Arithmetical interpretation of RC

Let S be a reasonable theory. Interpretation αS of α in S :

>S = >; (α ∧ β)S = (αS ∧ βS);

(nα)S = Rn(S + αS).

Suppose N � S .
Theorem. α ` β in RC iff S ` αS → βS .



Interpretation of RC in GLP

RC can be seen as a variable-free {∧,3}-fragment of
polymodal provability logic GLP.

Interpretation: 3(2> ∧ 32>) 7→ 〈3〉(〈2〉> ∧ 〈3〉〈2〉>)

Theorems (E. Dashkov).

1 GLP is a conservative extension of RC (also with variables);

2 RC with variables is polytime decidable;

3 RC with variables enjoys finite model property.

Weak positive modal logic systems similar to RC with
variables have independently been formulated by
Zakharyaschev et al. in their work on description logic.
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RC as an ordinal notation system
Define:

α ∼ β if (α ` β and β ` α);

α <n β if β ` nα.

Let W denote the set of all RC formulas.

Theorem.

1 Every α ∈W is equivalent to a word (formula without ∧);

2 (W /∼, <0) is isomorphic to (ε0, <).

The ordinal o(0k) = k . If α = α10α20 · · · 0αn, then

o(α) = ωo(α−n ) + · · ·+ ωo(α−1 ),

where (132)− = 021.

Ex. o(1012) = ωo(01) + ωo(0) = ωω
1+ω0

+ ω = ωω+1 + ω
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Reduction property

R1
n(S) = Rn(S), Rk+1

n (S) = Rn(S + Rk
n (S))

Suppose U ⊆ Πn+2 and S ` U.
Th. Rn+1(S) ≡n {Rk

n (S) : k < ω} modulo U,
where ≡n denotes conservativity for Πn+1-formulas.

Example. Modulo elementary arithmetic EA:

I Σ1 ≡ R2(EA) ≡1 {Rk
1 : k < ω} ≡ PRA (Parsons–Mints);

Key idea: Suppose α = (n + 1)β.
Define α[[0]] := nβ, α[[k + 1]] := n(β ∧ α[[k]]).
Then α[[0]] <0 α[[1]] <0 α[[2]] · · · → α.

Reduction: αS ≡n {α[[k]]S : k < ω}.
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Consistency proof for PA

Th. Transfinite induction over (W , <0) proves Con(PA).

Work in S = EA, 3 means ConS . We prove ∀α3αS . Claim:

PRA ` ∀β <0 α3βS → 3αS .

Assume ∀β <0 α3βS .
If α = 0β, then 3βS , hence 33βS since PRA ` R1(S).
If α = 〈n + 1〉β, then ∀k 3α[[k]]S , because α[[k]] <0 α.
By Reduction (provably in PRA):

αS ≡n {α[[k]]S : k < ω}.

Therefore ∀k 3α[[k]]S yields 3αS .



Iterated reflection and analysis of PA

Wn is the set of words in the alphabet {k ∈ ω : k ≥ n}.

Let Sn
α ≡ S + {Rn(Sn

β) : β <n α} over (Wn, <n).

Let S be a Πn+1 extension of PRA.
Theorem. For any α ∈Wn, S + αS ≡n Sn

α.

Cor. PA ≡n PRAn
ε0

(U. Schmerl)

1 For n = 0: Consistency proof for PA (Gentzen);

2 For n = 1: Characterizing provably recursive functions of PA
(Schwichtenberg–Wainer).



Tarskian truthpredicates

T (x) ‘x is the Gödel number of a true arithmetical sentence’.

Let L(T ) be the extension of the language of PA by T .

Tarskian principles for truth:

∀ϕ (At[ϕ]→ (T [ϕ]↔ T0[ϕ]));

∀ϕ,ψ (T [ϕ ∧ ψ]↔ (T [ϕ] ∧ T [ψ]));

∀ϕ (T [¬ϕ]↔ ¬T [ϕ]);

∀ϕ (T [∀x ϕ(x)]↔ ∀x T [ϕ(x)]).

Theories:
BT is just PRA plus Tarskian truth; PA(T ) is BT + full induction.

NB: PA(T ) ≡ ACA, second order arithmetic with arithmetical
comprehension and full induction.



Higher reflection principles

Extending arithmetical hierarchy to L(T ):

Πω are arithmetical formulas;

Πω+n are Πn(T )-formulas, n ≥ 1.

Higher reflection:

Rω+1(S) := ∀ϕ ∈ Πω (2S(ϕ)→ T (ϕ)) (global arithmetical
reflection)

Rω(S) := {Rn(S) : n < ω} (uniform reflection)

Fact: Rω+1(S) is equivalent to uniform reflection for
Πω+1-formulas: ∀x (2Sϕ(x)→ ϕ(x)), where ϕ ∈ Πω+1.

Warning: Rω(S) is an infinite schema, not a sentence!



Induction and reflection

Fact. BT is conservative over PRA (Kotlarski,Krajewski,Lachlan
model-theoretically; Halbach syntactically).

Modulo BT:

Rω(BT) ≡ PA;

Rω+1(BT) ≡ I ∆0(T ) (Kotlarski);

full reflection ≡ full induction.



Reduction formulas

Let ≡α denote conservativity for Π1+α-formulas. Let S ` U.

Th. Rα+1(S) ≡α {Rk
α(S) : k < ω} modulo U, provided U is an

extension of BT of the following complexity:

U ⊆ Πα+2 if α < ω;

U ⊆ Πω if α = ω;

U ⊆ Πα+1 if α > ω.

This is:

For α < ω, the standard reduction;

For α > ω, a relativization of the standard reduction:
Πk 7→ Πk(T );

Key new case: α = ω. For S = BT this result is due to
H. Kotlarski.



Reflection calculus RCΩ

Fix some infinite ordinal Ω, for L(T ) we choose Ω = ω2.

Language: α ::= > | (α1 ∧ α2) | xα x < Ω

We interpret x as Rx and ∧ as union of two schemata.
Warning: Formulas now denote schemata, not individual sentences!

Axioms are as before, with the following modifications:

xα ∧ yβ ` x(α ∧ yβ) for x > y , y /∈ Lim;

(x + 1)xα ∼ (x + 1)α, for x ∈ Lim;

y(xα ∧ xβ) ` y(xα ∧ β), for y ≤ x ∈ Lim.



RCΩ as an ordinal notation system

Define: α <x β iff β ` xα.
Let W denote the set of all RCΩ words.

Theorem.

1 (W /∼, <0) is a well-ordering;
2 W /∼ is closed under reduction:

If α = (x + 1)β then α[[k]] as before;
If α = xβ with x ∈ Lim, then α[[k]] := xkβ.



Iterated reflection

Progressions Sx
α are now defined over (Wx , <x).

Theorem. For any α ∈Wx , S + αS ≡x Sx
α.

Cor.

I ∆0(T ) ≡ω BTωω ≡n BTn
εω

, for n < ω;

PA(T ) ≡ω BTωε0
≡n BTn

εε0
.



Words and ordinals

0 . . . 1 . . . 101 . . . 11 . . . n . . . ω
1 . . . ω . . . ω2 . . . ω2 . . . ωn . . . ε0

0ω . . . 10ω . . . ω0ω . . . 1ω . . . ωω . . . (ω + 1)
ε0 + 1 . . . ε0 + ω . . . ε0 · 2 . . . ε0 · ω . . . ε1 . . . εω

ω(ω + 1) . . . (ω + 1)(ω + 1) . . .
εω+1 . . . εω·2 . . .

Let Crx be the x-th critical class (enumerated by Veblen ϕx

function). Let o(α) be the order type of {β ∈W : β <0 α}.

Th. o(Wωx ) = Crx ∪ {0}
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Iterated Tarskian truth

Theories RTα are in the language with α-many Tarskian
truthpredicates Tβ, for β < α. These theories are tightly related to
ramified analysis systems (S. Feferman 64), as well as to iterated
arithmetical comprehension (see the book by V. Halbach for
accurate definitions).

Fact: RT<α ≡ (Π0
1-CA)<ωα.

We believe that everything done for a single truthpredicate
works for the theories RTα (with the system RCωα).


