Provability algebras for theories of Tarskian truth

Lev Beklemishev

Steklov Mathematical Institute, Moscow

November 7, 2011

- Work in progress.
- Joint work with Evgeny Dashkov.
- Influenced by Henryk Kotlarski's study of inductive satisfaction classes.

Provability algebraic view

- We view consistency assertion (along with higher reflection principles) as a function

$$
\varphi \longmapsto \operatorname{Con}(S+\varphi)
$$

acting on a suitable algebra of sentences. (In principle, on the whole Lindenbaum-Tarski algebra of S.)

- Minimal substructures closed under this map (and some other operations) can provide suitable ordinal notations.

Provability algebraic view

- We view consistency assertion (along with higher reflection principles) as a function

$$
\varphi \longmapsto \operatorname{Con}(S+\varphi)
$$

acting on a suitable algebra of sentences. (In principle, on the whole Lindenbaum-Tarski algebra of S.)

- Minimal substructures closed under this map (and some other operations) can provide suitable ordinal notations.
- Using these notations we classify consequences of theories of a specific logical complexity such as Π_{1}^{0} or Π_{2}^{0}.

Provability algebraic view

- We view consistency assertion (along with higher reflection principles) as a function

$$
\varphi \longmapsto \operatorname{Con}(S+\varphi)
$$

acting on a suitable algebra of sentences. (In principle, on the whole Lindenbaum-Tarski algebra of S.)

- Minimal substructures closed under this map (and some other operations) can provide suitable ordinal notations.
- Using these notations we classify consequences of theories of a specific logical complexity such as Π_{1}^{0} or Π_{2}^{0}.

Why truthpredicates?

- Truthpredicates are tightly related to reflection principles and are convenient in our framework.
- Theories of iterated truth are mutually interpretable with various standard theories of predicative strength (ramified analysis, iterated Π_{1}^{0}-comprehension).
- The study leads to some simplifications of the previous approach (going to weak positive provability logic).

Reflection principles

Notation:
$\square_{S}(\varphi) \quad$ ' φ is provable in S^{\prime}
$\operatorname{Tr}_{n}(\sigma) \quad$ ' σ is the Gödel number of a true Σ_{n}-sentence'
Reflection principles:
$R_{0}(S) \quad \operatorname{Con}(S)$
$R_{n}(S) \quad \forall \sigma \in \Sigma_{n}\left(\square_{S} \sigma \rightarrow \operatorname{Tr}_{n}(\sigma)\right)$, for $n \geq 1$.
$R_{n}(S) \Longleftrightarrow \operatorname{Con}\left(S+\right.$ all true Π_{n}-sentences $)$

Reflection calculus $R C$

Language: $\alpha::=\top\left|\left(\alpha_{1} \wedge \alpha_{2}\right)\right| n \alpha \quad n \in \omega$
Example: $\alpha=3(2 \top \wedge 32 \top)$, or shortly: $3(2 \wedge 32)$.
Sequents: $\alpha \vdash \beta$.
RC rules:
(1) $\alpha \vdash \alpha ; \quad \alpha \vdash \mathrm{T} ; \quad$ if $\alpha \vdash \beta$ and $\beta \vdash \gamma$ then $\alpha \vdash \gamma$;
(2) $\alpha \wedge \beta \vdash \alpha, \beta$; if $\alpha \vdash \beta$ and $\alpha \vdash \gamma$ then $\alpha \vdash \beta \wedge \gamma$;
(3) $n n \alpha \vdash n \alpha$; if $\alpha \vdash \beta$ then $n \alpha \vdash n \beta$;
(1) $n \alpha \vdash m \alpha$ for $n>m$;
(0) $n \alpha \wedge m \beta \vdash n(\alpha \wedge m \beta)$ for $n>m$.

Ex. $3 \wedge 23 \vdash 3(T \wedge 23) \vdash 323$.

Arithmetical interpretation of $R C$

Let S be a reasonable theory. Interpretation α_{S} of α in S :

- $T_{S}=T_{;}(\alpha \wedge \beta)_{S}=\left(\alpha_{S} \wedge \beta_{S}\right)$;
- $(n \alpha)_{S}=R_{n}\left(S+\alpha_{S}\right)$.

Suppose $\mathbb{N} \vDash S$.
Theorem. $\alpha \vdash \beta$ in RC iff $S \vdash \alpha_{S} \rightarrow \beta_{S}$.

Interpretation of $R C$ in GLP

- RC can be seen as a variable-free $\{\wedge, \diamond\}$-fragment of polymodal provability logic GLP.
- Interpretation: 3 $2 \top \wedge 32 \top) \mapsto\langle 3\rangle(\langle 2\rangle \top \wedge\langle 3\rangle\langle 2\rangle \top)$

Theorems (E. Dashkov).
(1) GLP is a conservative extension of RC (also with variables);
(2) RC with variables is polytime decidable;
(3) RC with variables enjoys finite model property.

- Weak positive modal logic systems similar to RC with
variables have independently been formulated by
Zakharyaschev et al. in their work on description logic.

Interpretation of $R C$ in GLP

- RC can be seen as a variable-free $\{\wedge, \diamond\}$-fragment of polymodal provability logic GLP.
- Interpretation: 3 $2 \top \wedge 32 \top) \mapsto\langle 3\rangle(\langle 2\rangle \top \wedge\langle 3\rangle\langle 2\rangle \top)$

Theorems (E. Dashkov).
(1) GLP is a conservative extension of RC (also with variables);
(2) RC with variables is polytime decidable;
(3) RC with variables enjoys finite model property.

- Weak positive modal logic systems similar to RC with variables have independently been formulated by Zakharyaschev et al. in their work on description logic.

$R C$ as an ordinal notation system

Define:

- $\alpha \sim \beta$ if $(\alpha \vdash \beta$ and $\beta \vdash \alpha)$;
- $\alpha<_{n} \beta$ if $\beta \vdash n \alpha$.

Let W denote the set of all RC formulas.

Theorem.

(1) Every $\alpha \in W$ is equivalent to a word (formula without \wedge);
(2) $\left(W / \sim,<_{0}\right)$ is isomorphic to $\left(\varepsilon_{0},<\right)$.

The ordinal $o\left(0^{k}\right)=k$. If $\alpha=\alpha_{1} 0 \alpha_{2} 0 \cdots 0 \alpha_{n}$, then
where $(132)^{-}=021$.

$R C$ as an ordinal notation system

Define:

- $\alpha \sim \beta$ if $(\alpha \vdash \beta$ and $\beta \vdash \alpha)$;
- $\alpha<_{n} \beta$ if $\beta \vdash n \alpha$.

Let W denote the set of all RC formulas.

Theorem.

(1) Every $\alpha \in W$ is equivalent to a word (formula without \wedge);
(2) $\left(W / \sim,<_{0}\right)$ is isomorphic to $\left(\varepsilon_{0},<\right)$.

The ordinal $o\left(0^{k}\right)=k$. If $\alpha=\alpha_{1} 0 \alpha_{2} 0 \cdots 0 \alpha_{n}$, then

$$
o(\alpha)=\omega^{o\left(\alpha_{n}^{-}\right)}+\cdots+\omega^{o\left(\alpha_{1}^{-}\right)}
$$

where (132) ${ }^{-}=021$.
Ex.

$R C$ as an ordinal notation system

Define:

- $\alpha \sim \beta$ if $(\alpha \vdash \beta$ and $\beta \vdash \alpha)$;
- $\alpha<_{n} \beta$ if $\beta \vdash n \alpha$.

Let W denote the set of all RC formulas.

Theorem.

(1) Every $\alpha \in W$ is equivalent to a word (formula without \wedge);
(2) $\left(W / \sim,<_{0}\right)$ is isomorphic to $\left(\varepsilon_{0},<\right)$.

The ordinal $o\left(0^{k}\right)=k$. If $\alpha=\alpha_{1} 0 \alpha_{2} 0 \cdots 0 \alpha_{n}$, then

$$
o(\alpha)=\omega^{o\left(\alpha_{n}^{-}\right)}+\cdots+\omega^{o\left(\alpha_{1}^{-}\right)}
$$

where (132) ${ }^{-}=021$.
Ex. $o(1012)=\omega^{o(01)}+\omega^{o(0)}=\omega^{\omega^{1}+\omega^{0}}+\omega=\omega^{\omega+1}+\omega$

Reduction property

$R_{n}^{1}(S)=R_{n}(S), \quad R_{n}^{k+1}(S)=R_{n}\left(S+R_{n}^{k}(S)\right)$
Suppose $U \subseteq \Pi_{n+2}$ and $S \vdash U$.
Th. $R_{n+1}(S) \equiv_{n}\left\{R_{n}^{k}(S): k<\omega\right\}$ modulo U, where \equiv_{n} denotes conservativity for Π_{n+1}-formulas.

Example. Modulo elementary arithmetic EA:

$$
I \Sigma_{1} \equiv R_{2}(E A) \equiv \equiv_{1}\left\{R_{1}^{k}: k<\omega\right\} \equiv \text { PRA (Parsons-Mints); }
$$

Key idea: Suppose $\alpha=(n+1) \beta$.
Define $\alpha \llbracket 0]:=n \beta, \alpha \llbracket k+1]:=n(\beta \wedge \alpha \llbracket k])$. Then $\alpha \llbracket 0 \rrbracket<_{0} \alpha \llbracket 1 \rrbracket<0 \alpha \llbracket 2 \rrbracket$.

Reduction property

$R_{n}^{1}(S)=R_{n}(S), \quad R_{n}^{k+1}(S)=R_{n}\left(S+R_{n}^{k}(S)\right)$
Suppose $U \subseteq \Pi_{n+2}$ and $S \vdash U$.
Th. $R_{n+1}(S) \equiv_{n}\left\{R_{n}^{k}(S): k<\omega\right\}$ modulo U, where \equiv_{n} denotes conservativity for Π_{n+1}-formulas.

Example. Modulo elementary arithmetic EA:
$I \Sigma_{1} \equiv R_{2}(E A) \equiv_{1}\left\{R_{1}^{k}: k<\omega\right\} \equiv \operatorname{PRA}$ (Parsons-Mints);
Key idea: Suppose $\alpha=(n+1) \beta$.
Define $\alpha \llbracket 0 \rrbracket:=n \beta, \alpha \llbracket k+1 \rrbracket:=n(\beta \wedge \alpha \llbracket k \rrbracket)$.
Then $\alpha \llbracket 0 \rrbracket<_{0} \alpha \llbracket 1 \rrbracket<_{0} \alpha \llbracket 2 \rrbracket \cdots \rightarrow \alpha$.
Reduction: $\alpha_{S} \equiv_{n}\left\{\alpha \llbracket k \rrbracket_{S}: k<\omega\right\}$.

Consistency proof for PA

Th. Transfinite induction over $\left(W,<_{0}\right)$ proves Con (PA).
Work in $S=\mathrm{EA}, \diamond$ means Cons. We prove $\forall \alpha \diamond \alpha_{S}$. Claim:

$$
\mathrm{PRA} \vdash \forall \beta<0 \alpha \diamond \beta_{S} \rightarrow \diamond \alpha_{S} .
$$

Assume $\forall \beta<_{0} \alpha \diamond \beta_{S}$.
If $\alpha=0 \beta$, then $\diamond \beta_{S}$, hence $\diamond \diamond \beta_{S}$ since PRA $\vdash R_{1}(S)$.
If $\alpha=\langle n+1\rangle \beta$, then $\forall k \diamond \alpha \llbracket k \rrbracket_{s}$, because $\alpha \llbracket k \rrbracket<_{0} \alpha$.
By Reduction (provably in PRA):

$$
\alpha_{S} \equiv_{n}\left\{\alpha \llbracket k \rrbracket_{S}: k<\omega\right\} .
$$

Therefore $\forall k \diamond \alpha \llbracket k \rrbracket s$ yields $\diamond \alpha_{s}$.

Iterated reflection and analysis of PA

W_{n} is the set of words in the alphabet $\{k \in \omega: k \geq n\}$.
Let $S_{\alpha}^{n} \equiv S+\left\{R_{n}\left(S_{\beta}^{n}\right): \beta<_{n} \alpha\right\}$ over $\left(W_{n},<_{n}\right)$.
Let S be a Π_{n+1} extension of PRA.
Theorem. For any $\alpha \in W_{n}, S+\alpha_{S} \equiv_{n} S_{\alpha}^{n}$.
Cor. $\mathrm{PA} \equiv{ }_{n} \mathrm{PRA}_{\varepsilon_{0}}^{n}(\mathrm{U}$. Schmerl)
(1) For $n=0$: Consistency proof for PA (Gentzen);
(2) For $n=1$: Characterizing provably recursive functions of PA (Schwichtenberg-Wainer).

Tarskian truthpredicates

- $T(x)$ ' x is the Gödel number of a true arithmetical sentence'.
- Let $\mathcal{L}(T)$ be the extension of the language of PA by T.

Tarskian principles for truth:

- $\forall \varphi\left(A t[\varphi] \rightarrow\left(T[\varphi] \leftrightarrow T_{0}[\varphi]\right)\right)$;
- $\forall \varphi, \psi(T[\varphi \wedge \psi] \leftrightarrow(T[\varphi] \wedge T[\psi]))$;
- $\forall \varphi(T[\neg \varphi] \leftrightarrow \neg T[\varphi])$;
- $\forall \varphi(T[\forall x \varphi(x)] \leftrightarrow \forall x T[\varphi(\underline{x})])$.

Theories:
$B T$ is just PRA plus Tarskian truth; $\mathrm{PA}(T)$ is $B T+$ full induction.
NB: $\mathrm{PA}(T) \equiv A C A$, second order arithmetic with arithmetical comprehension and full induction.

Higher reflection principles

Extending arithmetical hierarchy to $\mathcal{L}(T)$:

- Π_{ω} are arithmetical formulas;
- $\Pi_{\omega+n}$ are $\Pi_{n}(T)$-formulas, $n \geq 1$.

Higher reflection:

- $R_{\omega+1}(S):=\forall \varphi \in \Pi_{\omega}\left(\square_{S}(\varphi) \rightarrow T(\varphi)\right)$ (global arithmetical reflection)
- $R_{\omega}(S):=\left\{R_{n}(S): n<\omega\right\}$ (uniform reflection)

Fact: $R_{\omega+1}(S)$ is equivalent to uniform reflection for $\Pi_{\omega+1}$-formulas: $\forall x\left(\square_{S} \varphi(\underline{x}) \rightarrow \varphi(x)\right)$, where $\varphi \in \Pi_{\omega+1}$.

Warning: $R_{\omega}(S)$ is an infinite schema, not a sentence!

Induction and reflection

Fact. BT is conservative over PRA (Kotlarski,Krajewski,Lachlan model-theoretically; Halbach syntactically).

Modulo BT:

- $R_{\omega}(\mathrm{BT}) \equiv \mathrm{PA}$;
- $R_{\omega+1}(\mathrm{BT}) \equiv I \Delta_{0}(T)$ (Kotlarski);
- full reflection \equiv full induction.

Reduction formulas

Let \equiv_{α} denote conservativity for $\Pi_{1+\alpha}$-formulas. Let $S \vdash U$.
Th. $R_{\alpha+1}(S) \equiv_{\alpha}\left\{R_{\alpha}^{k}(S): k<\omega\right\}$ modulo U, provided U is an extension of BT of the following complexity:

- $U \subseteq \Pi_{\alpha+2}$ if $\alpha<\omega$;
- $U \subseteq \Pi_{\omega}$ if $\alpha=\omega$;
- $U \subseteq \Pi_{\alpha+1}$ if $\alpha>\omega$.

This is:

- For $\alpha<\omega$, the standard reduction;
- For $\alpha>\omega$, a relativization of the standard reduction:
$\Pi_{k} \mapsto \Pi_{k}(T)$;
- Key new case: $\alpha=\omega$. For $S=\mathrm{BT}$ this result is due to H. Kotlarski.

Reflection calculus RC_{Ω}

Fix some infinite ordinal Ω, for $\mathcal{L}(T)$ we choose $\Omega=\omega 2$.
Language: $\alpha::=\top\left|\left(\alpha_{1} \wedge \alpha_{2}\right)\right| x \alpha \quad x<\Omega$
We interpret x as R_{x} and \wedge as union of two schemata.
Warning: Formulas now denote schemata, not individual sentences!

Axioms are as before, with the following modifications:

- $x \alpha \wedge y \beta \vdash x(\alpha \wedge y \beta)$ for $x>y, y \notin \operatorname{Lim} ;$
- $(x+1) x \alpha \sim(x+1) \alpha$, for $x \in \operatorname{Lim}$;
- $y(x \alpha \wedge x \beta) \vdash y(x \alpha \wedge \beta)$, for $y \leq x \in \operatorname{Lim}$.

RC_{Ω} as an ordinal notation system

Define: $\alpha<_{x} \beta$ iff $\beta \vdash x \alpha$.
Let W denote the set of all RC_{Ω} words.

Theorem.

(1) $\left(W / \sim,<_{0}\right)$ is a well-ordering;
(2) W / \sim is closed under reduction:

- If $\alpha=(x+1) \beta$ then $\alpha \llbracket k \rrbracket$ as before;
- If $\alpha=x \beta$ with $x \in \operatorname{Lim}$, then $\alpha \llbracket k \rrbracket:=x_{k} \beta$.

Iterated reflection

Progressions S_{α}^{x} are now defined over $\left(W_{x},<_{x}\right)$.
Theorem. For any $\alpha \in W_{x}, S+\alpha_{S} \equiv_{x} S_{\alpha}^{x}$.
Cor.

- $I \Delta_{0}(T) \equiv{ }_{\omega} \mathrm{BT}_{\omega}^{\omega} \equiv_{n} \mathrm{BT}_{\varepsilon_{\omega}}^{n}$, for $n<\omega$;
- $\mathrm{PA}(T) \equiv_{\omega} \mathrm{BT}_{\varepsilon_{0}}^{\omega} \equiv_{n} \mathrm{BT}_{\varepsilon_{\varepsilon_{0}}}^{n}$.

Words and ordinals

Let $C r_{x}$ be the x-th critical class (enumerated by Veblen φ_{x} function). Let $o(\alpha)$ be the order type of $\{\beta \in W: \beta<0 \alpha\}$

Th. $o\left(W_{\omega^{x}}\right)=C r_{x} \cup\{0\}$

Words and ordinals

$$
\begin{array}{ccccccccccc}
0 & \ldots & 1 & \ldots & 101 & \ldots & 11 & \ldots & n & \ldots & \omega \\
1 & \ldots & \omega & \ldots & \omega 2 & \ldots & \omega^{2} & \ldots & \omega_{n} & \ldots & \varepsilon_{0} \\
0 \omega & \ldots & 10 \omega & \ldots & \omega 0 \omega & \ldots & 1 \omega & \ldots & \omega \omega & \ldots & (\omega+1) \\
\varepsilon_{0}+1 & \ldots & \varepsilon_{0}+\omega & \ldots & \varepsilon_{0} \cdot 2 & \ldots & \varepsilon_{0} \cdot \omega & \ldots & \varepsilon_{1} & \ldots & \varepsilon_{\omega} \\
\omega(\omega+1) & \ldots & (\omega+1)(\omega+1) & \ldots & & & & &
\end{array}
$$

Let $C r_{x}$ be the x-th critical class (enumerated by Veblen φ_{x} function). Let $o(\alpha)$ be the order type of $\{\beta \in W: \beta<0 \alpha\}$.

Th. $o\left(W_{\omega^{x}}\right)=C r_{x} \cup\{0\}$

Words and ordinals

$$
\begin{array}{ccccccccccc}
0 & \ldots & 1 & \ldots & 101 & \ldots & 11 & \ldots & n & \ldots & \omega \\
1 & \ldots & \omega & \ldots & \omega 2 & \ldots & \omega^{2} & \ldots & \omega_{n} & \ldots & \varepsilon_{0} \\
0 \omega & \ldots & 10 \omega & \ldots & \omega 0 \omega & \ldots & 1 \omega & \ldots & \omega \omega & \ldots & (\omega+1) \\
\varepsilon_{0}+1 & \ldots & \varepsilon_{0}+\omega & \ldots & \varepsilon_{0} \cdot 2 & \ldots & \varepsilon_{0} \cdot \omega & \ldots & \varepsilon_{1} & \ldots & \varepsilon_{\omega} \\
\omega(\omega+1) & \ldots & (\omega+1)(\omega+1) & \ldots & & & & & \\
\varepsilon_{\omega+1} & \ldots & \varepsilon_{\omega \cdot 2} & \ldots & & & & &
\end{array}
$$

Let $C r_{x}$ be the x-th critical class (enumerated by Veblen φ_{x} function). Let $o(\alpha)$ be the order type of $\left\{\beta \in W: \beta<_{0} \alpha\right\}$.

Th. $o\left(W_{\omega^{x}}\right)=C r_{x} \cup\{0\}$

Iterated Tarskian truth

Theories $R T_{\alpha}$ are in the language with α-many Tarskian truthpredicates T_{β}, for $\beta<\alpha$. These theories are tightly related to ramified analysis systems (S. Feferman 64), as well as to iterated arithmetical comprehension (see the book by V. Halbach for accurate definitions).

Fact: $R T_{<\alpha} \equiv\left(\Pi_{1}^{0}-\mathrm{CA}\right)_{<\omega \alpha}$.

- We believe that everything done for a single truthpredicate works for the theories $R T_{\alpha}$ (with the system $\mathrm{RC}_{\omega \alpha}$).

