
D
R

A
FT

Chapter 1

Preliminaries

1. Basic First Order Logic

1.1. Language. A first order language LΣ is specified by its signature Σ,
which consists of three disjoint alphabets Pred, Func, and Const of predicate,
function, and constant symbols, respectively, and a function

arity : Pred ∪ Func → N \ {0}

that assigns to each predicate and function symbol its (nonzero) number of
arguments. In addition, LΣ has two fixed countable alphabets of free and bound
variables

FreeVar = {a0, a1, a2, . . . },

BoundVar = {v0, v1, v2, . . . },

and the following special symbols:

Boolean connectives: → (implication), ¬ (negation);

Universal quantifier: ∀ (for all);

Punctuation marks: () (brackets) and , (comma).

An arbitrary finite string of symbols of the above alphabets is called an ex-

pression. Certain expressions are called terms and formulas. Terms are defined
by the following inductive clauses:

1. Free variables and constant symbols are terms.

2. If f is a function symbol of arity n, and t1, . . . , tn are terms, then the
expression f(t1, . . . , tn) is a term.

(In this kind of definition it is always implicitly assumed that an expression is
a term only if it can be inductively constructed by Clauses 1 and 2.)

Formulas are defined as follows:

1

D
R

A
FT

2 Draft version 25.02.2006, Lev D. Beklemishev

1. If P is a n-ary predicate symbol, and t1, . . . , tn are terms,
then P (t1, . . . , tn) is a formula (called atomic formula).

2. If A,B are formulas, then so are (A→ B) and (¬A).

3. If A is a formula, and a is a free variable occurring in A, then, for every
bound variable x not occurring in A, the expression (∀xAa

x) is a formula.
(Here Aa

x denotes the result of replacing all occurrences of the variable a
in A by x.)

Formulas without any occurrences of quantifiers are called quantifier free or
open. To stress that a variable a occurs in A one usually writes A as A(a) (notice
that the parentheses here are not the formal symbols of our language); then Aa

x

can be written as A(x). More generally, for a formula A(b1, . . . , bn), in which
free variables b1, . . . , bn occur, A(t1, . . . , tn) denotes the result of simultaneous
substitution of terms t1, . . . , tn for all occurrences of b1, . . . , bn, respectively, in
A.

To enhance readability, on practice one adopts various notational conven-
tions, such as omitting superfluous parentheses, using a, b, c instead of a0, a1,
a2, etc. Other standard boolean connectives, ∧ (conjunction), ∨ (disjunction),
↔ (equivalence), and the existential quantifier ∃ are treated as suitable abbre-
viations:

A ∨B = (¬A) → B

A ∧B = ¬(A→ ¬B)

A↔ B = (A→ B) ∧ (B → A)

∃xAa
x = ¬(∀x(¬Aa

x))

1.2. Models. Models are natural semantical structures for a first order lan-
guage. Let M be a nonempty set. By a n-ary predicate on M we mean a subset
of Mn = M ×M × · · · ×M (n times); an n-ary function on M is a function
Mn → M . For a n-ary predicate Q one often writes Q(x1, . . . , xn) instead of
〈x1, . . . , xn〉 ∈ Q; similarly, f(x1, . . . , xn) means f(〈x1, . . . , xn〉).

A model of a signature Σ is a nonempty set M together with a mapping
that assigns to each predicate symbol P of Σ a predicate PM on M of the same
arity, to each function symbol f a function fM on M of the same arity, and
to each constant symbol c an element cM ∈ M . Such a mapping is called the
interpretation of Σ in M . The set M is called the universe or the domain of
the model. We shall denote the model and its universe by the same letter M
and often identify the two concepts in free speach.

Remark 1.1. Mathematical standards provide certain defaults for the choice
of the signature and its interpretation in a model. For example, in the context of
integers, ‘+’ denotes the usual addition operation, ‘=’ is the equality relation, ‘0’
is 0. So, (Z,=,+, 0) denotes the model with the universe Z, the binary predicate
=, the binary function +, and the constant 0. The subscript Z is omitted

D
R

A
FT

Provability, Computability and Reflection 3

everywhere without causing confusion. We shall also follow other standard
notational conventions, such as, e.g., writing a1 = a2 instead of =(a1, a2), and
a1 + a2 instead of +(a1, a2).

Let M be a model. By an evaluation of a subset V ⊆ FreeVar in M we
mean an arbitrary function e : V → M . The evaluation is uniquely extended
in a natural way to a function from the set of terms, whose free variables are
contained in V , to M according to the following rules:

1. e(c) = cM , for any constant symbol c;

2. e(f(t1, . . . , tn)) = fM (e(t1), . . . , e(tn)), for any n-ary function symbol f
and terms t1, . . . , tn.

For formulas A, whose free variables are in V , the relation M �e A, to be read
“formula A is valid under the evaluation e in M ,” or “the evaluation e satisfies

A in M ,” is defined by the following inductive clauses:

1. M �e P (t1, . . . , tn) ⇐⇒ PM (e(t1), . . . , e(tn)), if P (t1, . . . , tn) is an
atomic formula;

2. M �e (B → C) ⇐⇒ M 2e B or M �e C;

3. M �e (¬B) ⇐⇒ M 2e B;

4. M �e (∀xAa
x) ⇐⇒ M �e′ A, for every evaluation e′ : V ∪ {a} →M such

that e′(b) = e(b) for all b ∈ V \ {a}.

(Notice that the free variable a does not occur in (∀xAa
x), but may possibly

be contained in V .)

Clauses 1–4 are sometimes referred to as Tarski conditions for satisfaction.
If b1, . . . , bn includes all the free variables of A, and an evaluation e maps each
bi to an element xi ∈ M , one often writes M � A[b1/x1, . . . , bn/xn], or even
M � A[x1, . . . , xn], instead of M �e A.

Formulas without (occurrences of) free variables are called sentences. Sat-
isfaction of such formulas in a model does not depend on the evaluation of free
variables and is completely determined by the structure of the model itself.
Hence, in any model each sentence is either true (valid) or false (not valid).

Every term t, whose (free) variables are exactly b1, . . . , bn, defines on a model
M a n-ary function tM : 〈x1, . . . , xn〉 7→ e(t), where e is the evaluation mapping
bi to xi ∈M . Such functions are called term definable in M . Every formula A,
whose free variables are exactly b1, . . . , bn, defines a n-ary predicate AM on M :

AM (x1, . . . , xn) ⇐⇒ M � A[b1/x1, . . . , bn/xn].

Such predicates are called definable in M . A function is definable in M , iff its
graph is.

D
R

A
FT

4 Draft version 25.02.2006, Lev D. Beklemishev

Example 1.1. In the language of the model (Z,≤) the only terms are variables,
hence any term definable function is the identity. On the other hand, the relation
a2 = a1 + 1 is definable by the formula

a1 ≤ a2 ∧ ∀v0 (v0 ≤ a2 → (v0 ≤ a1 ∨ a2 ≤ v0)).

Hence, the successor function s(x) := x+ 1 is definable in (Z,≤).

1.3. Morphisms. Let M and M ′ be two models of the same signature Σ. A
homomorphism φ : M → M ′ is a mapping of M to M ′ that preserves all the
functions, predicates, and constants of Σ, i.e., for all n-ary P ∈ Pred, f ∈ Func,
and c ∈ Const

PM (x1, . . . , xn) ⇒ PM ′(φ(x1), . . . , φ(xn))

φ(fM (x1, . . . , xn)) = fM ′(φ(x1), . . . , φ(xn))

φ(cM) = cM ′

It is immediate that composition of homomorphisms is a homomorphism. A
homomorphism φ : M → M ′ is an isomorphism, if it has an inverse, that is, a
homomorphism ψ such that

φ ◦ ψ = idM ′ , ψ ◦ φ = idM ,

where idM is the identity homomorphism of M onto M : idM (x) = x.
A submodel of M is any subset N ⊆ M containing all constants of M and

closed under all the functions of M , i.e.

1. cM ∈ N , for all c ∈ Const;

2. x1, . . . , xn ∈ N ⇒ fM (x1, . . . , xn) ∈ N , for all n-ary f ∈ Func.

Predicates, functions and constants ofN are, by definition, those ofM restricted
to the domain N .

A homomorphism φ : M → M ′ is an (isomorphic) embedding, iff N :=
rng(φ) is a submodel of M ′, and φ is an isomorphism of M and N . Every
embedding is a one-to-one homomorphism, but the converse, in general, is not
true. A one-to-one homomorphism of M into M ′ is an embedding iff for every
n-ary predicate P ∈ Pred one has

PM ′(φ(x1), . . . , φ(xn)) ⇒ PM (x1, . . . , xn),

for all x1, . . . , xn ∈M .
A congruence of a model M is an equivalence relation ∼ preserving all the

functions and predicates of M : if x1 ∼ y1, . . . , xn ∼ yn then

1. PM (x1, . . . , xn) ⇐⇒ PM (y1, . . . , yn), for all n-ary P ∈ Pred;

2. fM (x1, . . . , xn) ∼ fM (y1, . . . , yn), for all n-ary f ∈ Func.

D
R

A
FT

Provability, Computability and Reflection 5

If ∼ is a congruence of a model M , then all the functions and predicates of
M are correctly defined on the set M/∼ of equivalence classes with respect
to ∼. The resulting structure is called the factormodel of M w.r.t. ∼. The
canonical mapping that assigns to each element x ∈M its equivalence class [x]
is a homomorphism. This homomorphism is onto and strong in the sense that,
for every predicate P ∈ Pred and every tuple y1, . . . , yn of elements of M/∼ such
that PM/∼(y1, . . . , yn), there exist x1, . . . , xn ∈M such that PM (x1, . . . , xn) and
[xi] = yi for i = 1, . . . , n.

Vice versa, if φ : M → M ′ is a homomorphism, then the binary relation ∼
on M defined by

x ∼ y ⇐⇒ φ(x) = φ(y)

is a congruence. The canonical mapping φ̄ : [x] 7→ φ(x) is a homomorphism of
M/∼ into M ′. If φ is strong, then φ̄ is an embedding. If, besides, φ is onto,
then φ̄ is an isomorphism of M/∼ and M ′.

The validity of first order formulas is preserved under isomorphisms of mod-
els: if φ : M → M ′ is an isomorphism, then for every formula A, whose free
variables are among b1, . . . , bn, one has

M � A[b1/x1, . . . , bn/xn] ⇐⇒ M ′
� A[b1/φ(x1), . . . , bn/φ(xn)],

for all x1, . . . , xn ∈ M . The same holds, if M ′ is the factormodel M/∼ for
a congruence ∼ of M , and φ is the canonical homomorphism x 7→ [x]. By
transitivity, it follows that the validity of formulas is preserved under any strong
onto homomorphisms of models.

1.4. Hilbert-style proof system. We fix a first order language LΣ. Hilbert-
style proof system in LΣ is given by the following logical axiom schemata and
inference rules:

Axiom schemata:

A1. A→ (B → A)

A2. (A→ (B → C)) → ((A→ B) → (A→ C))

A3. (¬A→ B) → ((¬A→ ¬B) → A)

A4. ∀xA(x) → A(t), where t is any term (and x ∈ BoundVar
does not occur in A(a))

Inference rules:

R1. A, A→ B

B

R2.
A→ B(a)

A→ ∀xB(x)
(a does not occur in A, x does not occur in B(a))

Everywhere above A,B and C are arbitrary formulas of LΣ. Rule R1 is called
modus ponens, and R2 is a version of generalization rule.

D
R

A
FT

6 Draft version 25.02.2006, Lev D. Beklemishev

A first order theory T is any set of formulas of LΣ, called extralogical axioms

of T . A proof or a derivation of a formula A in a theory T is a finite sequence
of formulas that ends with A, and such that each formula occurring in the
sequence is either a logical axiom (that is, has the form A1–A4 above), or is an
extralogical axiom of T , or follows from some previous formulas by one of the
inference rules. A formula A is provable in T , if it has a proof in T (denoted
T ⊢ A). Provable formulas are also called theorems of T . ⊢ A denotes the fact
that A is provable in pure logic, that is, without any extralogical axioms. Two
theories are deductively equivalent, if they have the same set of theorems.

A formula is refutable in T , if T ⊢ ¬A. A theory T is inconsistent, if there
is a formula, which is simultaneously provable and refutable in T ; otherwise T
is consistent. If T is inconsistent, then any formula of LΣ is provable in T .

We say that M is a model of a theory T , if M is a model of the signature
Σ, and every (extralogical) axiom of T is valid in M under any evaluation of its
free variables; it then follows that every theorem of T must be valid in M , too.
We denote this fact M � T . The following result has fundamental importance.

Theorem 1.2 (Gödel’s Completeness Theorem). A first order theory T
is consistent, if and only if there is a model M such that M � T .

Corollary 1.3. A sentence A is provable in a theory T iff A is valid in every
model of T , i.e. iff, for all models M , M � T implies M � A. In particular, A is
provable in pure logic, iff A is valid in any model of Σ.

Another important corollary is the following theorem.

Theorem 1.4 (Compactness Theorem). A theory T has a model iff every
finite subset of the set of extralogical axioms of T does.

Models M and N of the same signature Σ are called elementary equivalent, iff
for every sentence A in LΣ

M � A ⇐⇒ N � A.

The elementary theory of a model M is axiomatized by the set of all sentences
valid inM . Thus, models are elementary equivalent, iff their elementary theories
coincide. Obviously, isomorphic models are elementary equivalent.

A submodel N ⊆M is called an elementary submodel, iff for all formulas A
whose free variables are among b1, . . . , bn and any tuple x1, . . . , xn of elements
of N

M � A[b1/x1, . . . , bn/xn] ⇐⇒ N � A[b1/x1, . . . , bn/xn].

Clearly, in this case M and N are automatically elementary equivalent; the
converse, however, need not be true in general.

Let Σ be a signature. By the cardinality card(Σ) of Σ we mean the cardi-
nality of the joint alphabet Pred ∪ Func ∪ Const of its predicate, function, and
constant symbols. Cardinality of a model is the cardinality of its universe.

D
R

A
FT

Provability, Computability and Reflection 7

Theorem 1.5 (Löwenheim-Skolem Theorem). Any infinite modelM of sig-
nature Σ has an elementary submodel of cardinality max(ℵ0, card(Σ)). In par-
ticular, any infinite model of a countable signature has a countable elementary
submodel.

In this book we shall exclusively deal with countable languages and theories.
Löwenheim-Skolem theorem shows that in such a situation it is possible, in
principle, to only deal with countable models. It should be noted, however,
that it is not always mathematically fruitful to get rid of higher infinities in this
way. 1

1.5. Some helpful facts. There are a few basic facts on Hilbert-style proof
system that will often be, explicitly or implicitly, referred to in this book. All
of them are almost trivial consequences of Gödel’s completeness theorem. On
practice, however, they are usually proved directly, by purely syntactical manip-
ulations, and are relied upon in the proofs of Gödel’s theorem. The advantage
of syntactical proofs is that they are constructive, and this is very essential
for the questions of arithmetization of metamathematics. On the other hand,
these proofs usually are more cumbersome — an expected consequence of our
somewhat arbitrary choice of the proof system.

Lemma 1.6 (Deduction Theorem). Let T be a theory, and A be a sentence
in the language of T . Then, for all formulas B,

T ∪ {A} ⊢ B ⇐⇒ T ⊢ A→ B.

The theory T ∪{A} is sometimes denoted T +A. By Compactness we obtain
the following corollary.

Corollary 1.7. Let T be a set of sentences. Then T ⊢ B, iff there are
A1, . . . , An ∈ T such that

⊢ A1 → (A2 → . . . (An → B) . . .).

We notice that any theory T is deductively equivalent to a set of sentences
(which is obtained by binding all the free variables occurring in the axioms of
T by outer universal quantifiers). This operation is usually called the universal

closure.

Lemma 1.8 (Renaming bound variables). Assume that bound variables x
and y do not occur in a formula A(a). Then

⊢ ∀xA(x) ↔ ∀yA(y).

1For example, uncountable cardinals naturally arise in, and are very essential for, the
ordinal analysis of (relatively weak) fragments of second order arithmetic, although the whole
theory can be reformulated in terms of countable hierarchies of primitive recursive functions,
without any mention of cardinals.

D
R

A
FT

8 Draft version 25.02.2006, Lev D. Beklemishev

Let C be a formula in which an n-ary predicate symbol P occurs, and let
A(b1, . . . , bn) be a formula not containing any bound variables of C. C(P/A)
denotes, roughly, the result of substituting A for all occurrences of P in C. More
precisely, for atomic formulas we have

P (t1, . . . , tn)(P/A) = A(b1/t1, . . . , bn/tn),

the substitution leaves the other atomic formulas unchanged and distributes
over boolean connectives and quantifiers.

Lemma 1.9 (Substitution of equivalent formulas). Assume that formu-
las A(b1, . . . , bn) and B(b1, . . . , bn) do not contain any bound variables occurring
in C. Then the equivalence

⊢ A(b1, . . . , bn) ↔ B(b1, . . . , bn)

implies

⊢ C(P/A) ↔ C(P/B).

Notice that combined applications of the previous two lemmas allow one to
rename bound variables bound by quantifiers that may occur quite deep within
a formula.

We say that a formula A is in prenex normal form, iff A has the form
Qx1Qx2 . . .QxnA0(x1, . . . , xn), where Q denotes indifferently one of the quan-
tifiers ∀ or ∃, and A0 is quantifier-free.

Lemma 1.10 (Prenex Normal Form Theorem). To every formula A one
can effectively associate a formula A′ in prenex normal form such that ⊢ A↔ A′.

It has to be noted that prenex normal form of a formula is, in general, not
unique. (It is, of course, unique modulo logical equivalence.)

1.6. Equality. Most of the first order theories we shall deal with in this book
are theories with equality. First order language with equality is a language whose
signature Σ contains a distinguished binary predicate symbol =. A model with

absolute equality is a model M for a language with equality such that = is
interpreted as the equality relation {〈x, x〉 | x ∈M} on M .

Equality axioms are the following ones:

1. a1 = a1

2. a1 = a2 → a2 = a1

3. a1 = a2 → (a2 = a3 → a1 = a3)

4. a1 = b1 ∧ a2 = b2 ∧ · · · ∧ an = bn → (P (a1, . . . , an) ↔ P (b1, . . . , bn))

5. a1 = b1 ∧ a2 = b2 ∧ · · · ∧ an = bn → (f(a1, . . . , an) = f(b1, . . . , bn))

D
R

A
FT

Provability, Computability and Reflection 9

for all n-ary f ∈ Func and P ∈ Pred. These axioms are obviously valid in every
model with absolute equality (for any evaluation of their free variables).

A theory with equality is a first order theory T in a language with equality
that contains equality axioms. In this context, the other extralogical axioms of
T are usually called mathematical axioms.

It is immediate that in any model M satisfying the equality axioms, the
interpretation of = is a congruence of M . Hence, the factormodel M/=M in-
terprets = as the equality relation, that is, is a model with absolute equality.
Since factorization preserves the validity of first order formulas, we obtain the
following versions of Gödel’s completeness and Compactness theorems.

Corollary 1.11. A first order theory with equality is consistent, iff it has
a model with absolute equality. A theory with equality T has a model with
absolute equality, iff every finite subset of the set of mathematical axioms of T
does.

In the following, unless specified otherwise, we shall always deal with theories
with equality. When speaking about models we shall omit the words “with
absolute equality”.

1.7. Definitional extensions. Let T and U be first order theories such that
the language of U contains that of T . U is conservative over T , iff every theorem
of U in the language of T is provable in T . The simplest conservative extensions
of theories are definitional ones. They come in the following two basic types.

Introducing a predicate symbol. Let A(a1, . . . , an) be a formula in the
language of T , whose free variables are exactly those shown. Consider a theory
U which has, in addition to the language of T , a new n-ary predicate symbol
P . Axioms of U are those of T together with the formula

P (a1, . . . , an) ↔ A(a1, . . . , an).

Then U is conservative over T .
Model-theoretically, this fact is clear: any model M of T can be expanded to

a model of U by defining the interpretation of P as the predicate AM (x1, . . . , xn).
A constructive syntactical proof is also easy. For any formula B in the language
of U , let B− denote the formula B(P/A′), where A′ is the result of renaming all
the bound variables of A in order to make them disjoint from the variables of B.
Since all the axioms and rules of our Hilbert-style proof system are schematic,
it is can be easily shown that T ⊢ B−, whenever U ⊢ B, by induction on the
length of the proof of B in U . For formulas B in the language of T , obviously,
B− coincides with B, whence the conservativity. Moreover, for this translation
we have B ↔ B− provably in U , for all formulas B in the language of U .

Introducing a function symbol. We say that a formula F (a1, . . . , an, b)
defines a function within a theory T , iff T proves

∃y (F (a1, . . . , an, y) ∧ ∀z (F (a1, . . . , an, z) → y = z)).

D
R

A
FT

10 Draft version 25.02.2006, Lev D. Beklemishev

(This formula is usually abbreviated by ∃!yF (a1, . . . , an, y).) For such a formula
F we introduce a new n-ary function symbol f and consider a theory U in the
extended language which, in addition to the axioms of T , has the axiom

F (a1, . . . , an, f(a1, . . . , an)).

Then U is conservative over T . Indeed, any model M of T can be expanded to
a model of U by defining the interpretation of f as the (unique) n-ary function
on M whose graph is FM (x1, . . . , xn, y).

2. Turing Machines and Computability

The general notion of computability is as basic as those of provability and truth.
Even the most ancient computing device, abacus, which is essentially a method
of moving pebbles from one hole to another according to a certain finite set of
rules, provides a universal model of computation, i.e., is capable of simulating
any computational procedure. Nowadays, hundreds of different computational
models are known. For theoretical purposes one usually takes the simple model
of a Turing machine.

2.8. Turing machines. Informally speaking, a Turing machine consists of
a tape, a head, and a control device. The tape is linear and two-way infi-
nite. It is divided into cells, which contain symbols of a given alphabet A =
{S0, S1, . . . , Sn}; the symbol S0 will be interpreted as a blank cell. At any given
moment the head reads the content of exactly one cell and passes this informa-
tion to the control device. The control device finds itself in one of the finitely
many inner states Q = {q0, q1, . . . , qm}. It operates the head according to its
program, which consists of finitely many commands of the following three basic
types:

• If the control device is in a state qi and the head reads a symbol Sj , then
the content of the cell must be replaced by Sk and the control device must
change its state to qr (this command is abbreviated by qiSjSkqr).

• If the control device is in a state qi and the head reads a symbol Sj , then
the head must move one cell to the right and the control device must
change its state to qr (abbreviated qiSjRqr).

• If the control device is in a state qi and the head reads a symbol Sj , then
the head must move one cell to the left and the control device must change
its state to qr (abbreviated qiSjLqr).

We assume that the program is consistent in the sense that it does not contain
a pair of different commands with the same two initial symbols qiSj .

The machine works stepwise, starting from a configuration where all but
finitely many symbols written on the tape are blank, the head reads the leftmost
nonblank symbol (unless all the symbols are blank), and the control device is

D
R

A
FT

Provability, Computability and Reflection 11

in a distinguished initial state q0. Steps of the computation correspond to
the execution of the commands of the program. Since there are no conflicting
instructions, the behaviour of the machine is deterministic, that is, at most one
command can be executed at a time. In principle, there exist two possibilities:

1. The machine stops, not having a command corresponding to its current
inner state and the symbol it reads. Then the content of the tape is
called the result of the computation of the machine on a given initial
configuration.

2. The machine never stops. In this situation the result of the computation
is undefined.

Now we give the formal definitions. A Turing machine is a triple T = 〈A,Q,P 〉,
where

• A = {S0, S1, . . . , Sn} is an alphabet of tape symbols.

• Q = {q0, q1, . . . , qm} is a set of inner states, A ∩Q = ∅.

• P (program) is a finite set of quadruples (commands) of the form qiSjSkqr,
qiSjLqr, qiSjRqr, where Sj , Sk ∈ A, qi, qr ∈ Q, L and R are two extra
symbols not occurring in A ∪ Q, and different commands from P begin
with different pairs of symbols qiSj .

A configuration of a Turing machine T is a word of the form XqiY , where
X and Y are words in the alphabet A, Y 6= Λ (empty word), and qi ∈ Q. XY
is called the tape word of the configuration XqiY . A configuration is called
initial, iff qi is the initial state q0, X = Λ, and Y = S0 or begins with a tape
symbol different from S0. A machine T transforms a configuration α into a
configuration β (denoted α −→

T
β), iff one of the following conditions holds:

1. α has the form XqiSjY , β = XqrSkY and qiSjSkqr ∈ P ,

2. α has the form XSkqiSjY , β = XqrSkSjY and qiSjLqr ∈ P ,

3. α has the form qiSjY , β = qrS0SjY and qiSjLqr ∈ P ,

4. α has the form XqiSjY (Y 6= Λ), β = XSjqrY and qiSjRqr ∈ P ,

5. α has the form XqiSj , β = XSjqrS0 and qiSjRqr ∈ P .

A machine T stops in a configuration α, iff there is no β such that α −→
T
β.

A computation protocol of a machine T is a finite sequence of configurations
α0, . . . , αk such that α0 is an initial configuration, αi−→

T
αi+1 for i = 0, 1, . . . , k−

1, and T stops in the configuration αk. We let α=⇒
T
β iff there is a computation

protocol α0, . . . , αk of a machine T such that α0 = α and αk = β.
Let Σ and ∆ be any two finite alphabets, and let Σ∗ and ∆∗ denote the

sets of all words in Σ and ∆, respectively. A partial function f : Σ∗ → ∆∗ is
computed by a Turing machine T = 〈A,Q,P 〉, iff A ⊃ Σ∪∆, the blank symbol

D
R

A
FT

12 Draft version 25.02.2006, Lev D. Beklemishev

does not belong to Σ ∪ ∆, and for all words X ∈ Σ∗, Y ∈ ∆∗, f(X) = Y holds
exactly when for some configuration β, q0XS0 =⇒

T
β and the tape word of β has

the form W1YW2, where the words W1,W2 consist entirely of blank symbols.
Notice that f(X) is undefined exactly for those X that either the machine T
starting from q0XS0 never stops, or stops in a meaningless configuration.

A (partial) function f : Σ∗ → ∆∗ is computable or partial recursive, iff
there is a Turing machine that computes it. We give a separate definition of a
computable n-ary partial function f : Nn → N.

Let n denote the usual binary expansion of a number n ∈ N: 0 = 0, 1 = 1,
2 = 10, 3 = 11, etc. We consider an alphabet Σ containing the following
symbols: 0, 1, ♯. A sequence of numbers 〈k1, . . . , kn〉 is then coded in Σ∗ by a
string of the form k1♯k2♯ · · · ♯kn. By definition, a (partial) function f : Nn → N

is computable, iff the corresponding partial word function f : Σ∗ → Σ∗ defined
by

f : k1♯k2♯ · · · ♯kn 7−→ f(k1, . . . , kn)

is computable.
The famous Church-Turing Thesis expresses the fact that the notion of Tur-

ing machine adequately formalizes the intuitive idea of comutability.

Church-Turing Thesis. Every intuitively computable word function, in par-
ticular, every intuitively computable number-theoretic function, is Turing ma-
chine computable.

Of course, Church-Turing Thesis cannot be proved or disproved mathemat-
ically. Its validity is rather established experimentally, by modelling other for-
malizations of computability via Turing machines. We shall rely upon Church-
Turing Thesis on a number of occasions in this book by presenting informal
descriptions of algorithms instead of exhibiting the concrete Turing machines
claimed to exist.

?? Space, time

2.9. Recursive and recursively enumerable sets. First, we fix some stan-
dard terminology and notation concerning partial functions. By a partial n-ary
function on N we mean any function f : D → N, where D ⊆ Nn. The
set D is called the domain of f and denoted dom(f); range of f is the set
rng(f) = {f(x) | x ∈ D}. For a partial function f , f(x)↑ means that f(x) is
undefined or diverges, that is, x 6∈ dom(f); f(x)↓ means that f(x) converges,

that is, x ∈ dom(f). We write f(x) ≃ g(x), if either f(x)↑ and g(x)↑, or f(x)↓,
g(x)↓, and f(x) = g(x). An n-ary function f is total, iff dom(f) = Nn.

Cantor’s standard pairing function

c(x, y) =
(x+ y)(x+ y + 1)

2
+ x

establishes a one-to-one correspondence between N × N and N. It enumerates
pairs (x, y) of natural numbers in the order

(0, 0); (0, 1); (1, 0); (0, 2); (1, 1); (2, 0); (0, 3); . . .

D
R

A
FT

Provability, Computability and Reflection 13

c(x, y) is total recursive, and so are the inverse projection functions π0, π1

uniquely defined by the equations

π0(c(x, y)) = x, π1(c(x, y)) = y.

Using c one can define a recursive bijection cn : Nn → N as follows:

cn(x1, . . . , xn) = c(x1, c(x2, . . . c(xn−1, xn) . . .)).

Notice that in this case, for 1 ≤ i < n,

xi = π0((π1)
i−1(cn(x1, . . . , xn))).

So, the n-dimensional projection functions πn
i can be defined by

πn
i (x) = π0((π1)

i−1(x)), for 1 ≤ i < n;

πn
n(x) = (π1)

n−1(x).

Let f be a partial n-ary function on N, and let f ′ : N → N be defined by

f ′(x) ≃ f(πn
1 (x), . . . , πn

n(x)).

Then, obviously, f is computable iff f ′ is and, moreover, the value of f can be
recovered by

f(x1, . . . , xn) ≃ f ′(cn(x1, . . . , xn)).

The correspondence f ; f ′ allows in many situations to speak about unary
computable functions, rather than about n-ary functions for an arbitrary n.

A subset X ⊆ N is called decidable or recursive, iff its characteristic function

χX(x) =

{
1, if x ∈ X
0, if x 6∈ X

is computable. Informally, X is decidable, if there is an algorithm deciding in
finitely many steps whether x ∈ X or x 6∈ X, for any given x. Notice that χX

is a total function, that is, the decision algorithm converges everywhere.
Since χX∩Y (x) = χX(x) · χY (x), and χN\X(x) = 1 − χX(x), decidable sets

are closed under boolean operations. Decidable sets include all finite sets, as well
as many other familiar sets, such as the set of even numbers, the set of prime
numbers, etc. Since there are only countably many computable functions, there
do exist undecidable subsets of N. Decidable n-ary predicates are similarly
defined: P (x1, . . . , xn) is decidable, iff the function

χP (x1, . . . , xn) =

{
1, if P (x1, . . . , xn)
0, if not P (x1, . . . , xn)

is computable.
A set X ⊆ N is recursively enumerable (r.e.), iff for some computable (par-

tial) function f : N → N, X = rng(f). Intuitively, r.e. sets are those that can
be generated by some effective procedure.

D
R

A
FT

14 Draft version 25.02.2006, Lev D. Beklemishev

Lemma 2.1. For any subset X ⊆ N the following properties are equivalent:

(i) X is recursively enumerable;

(ii) X = ∅ or X = rng(f), for some total recursive function f : N → N;

(iii) For some recursive binary relation R(x, y),

X = {x ∈ N | ∃yR(x, y)};

(iv) X = dom(f), for some partial recursive function f .

Lemma 2.2 (Graph Theorem). A partial n-ary function f is computable, iff
its graph {〈x1, . . . , xn, y〉 | f(x1, . . . , xn) = y} is r.e.

Lemma 2.3 (Post’s Theorem). X ⊆ N is decidable, iff both X and N \ X
are r.e.

The definition r.e. sets can be extended to arbitrary n-ary predicates via the
effective coding of n-tuples of numbers described above. Besides, both decidable
and r.e. sets of numbers can be obviously generalized to the sets of words in
an arbitrary finite alphabet. Typical examples of r.e. sets are provided by the
following lemma.

Lemma 2.4. Let T be a first order theory formulated in a finite language. If
the set of extralogical axioms of T is r.e., then so is the set of its theorems. In
particular, any finitely axiomatized theory has an r.e. set of theorems.

Proof. Any formula in the language of T is a word in a finite alphabet. More
precisely, it can be identified with a word in a finite alphabet, if one suitably
encodes the alphabets of free and bound variables. E.g., one can stipulate that
ai and vi are the following words in the 3-letter alphabet {a, v, ♯}:

ai = a ♯ · · · ♯
︸ ︷︷ ︸

i times

a

vi = v ♯ · · · ♯
︸ ︷︷ ︸

i times

v

An effective enumeration of the set of theorems of T can be described in the
following way (using the Church-Turing thesis). Let f(n) be a total recursive
enumeration of the set of axioms of T . Construct finite sets of formulas Tn

inductively as follows. T0 = ∅; Tn+1 is the union of Tn and the set of all
formulas A such that A is either a logical axiom of length n, or follows from
some formulas in Tn by an application of modus ponens or generalization rules,
or A = f(n). Clearly, for each n, Tn ⊂ T , and, moreover, any theorem of T
eventually belongs to some Tn, because any T -proof uses only finitely many
logical and extralogical axioms. Let g(n, i) denote the i-th formula in the set
Tn (say, using a fixed lexicographic ordering of formulas). Since Tn is effectively
generated, g(n, i) is computable as a (partial) function of n and i; hence the
function h(n) = g(π0(n), π1(n)) is partial recursive and enumerates the set of
all theorems of T , q.e.d.

D
R

A
FT

Provability, Computability and Reflection 15

2.10. Universal Turing Machine. One of the fundamental ideas of the
theory of computation is that prograpms can not only be executed themselves,
but also be used as initial data by the other programs. Any operational system
works in a similar way: if one feeds it (the name of) an executable program P
together with a suitable input for P , it would try to apply P to the given input.
Of course, if anything goes wrong — P is not an executable program, or the
format of P does not fit the format of the input we gave it — the system will
issue an error message. But the point is that through this mechanism a single

program (operational system) is able to model any other (arbitrary) algorithm.
The theoretical analog of the operational system is the notion of a universal
function (Turing machine) introduced below.

First, we need some effective coding of Turing machines. There is a lot
of freedom in the choice of such a coding; just to be specific, we develop an
approach based on binary expansions of numbers, which will also be used in
other situations throughout this book.

Since the alphabets of any Turing machine T = (A,Q,P) are finite, we can
fix a sufficiently large constant c such that all the symbols can be coded (in
some way) as binary strings of length c, that is, we have an injective function

code : A ∪Q ∪ {R,L} −→ {0, 1}c.

Then we let

code(Q) = code(q0) ∗ · · · ∗ code(qm),

code(A) = code(S0) ∗ · · · ∗ code(Sn),

where ∗ denotes the concatenation of binary strings. Commands are coded as
particular strings of length 4c, e.g.,

code(qiSjRqk) = code(qi) ∗ code(Sj) ∗ code(R) ∗ code(qk),

and similarly for the other types of commands. If P = {C1, . . . , Cr} then we let

code(P) = code(C1) ∗ · · · ∗ code(Cr).

For a binary string s = an−1 . . . a0, let psq denote the number whose binary
expansion is 1an−1 . . . a0, that is,

psq = 2n + an−1 · 2
n−1 + · · · + a1 · 2 + a0.

A Turing machine T = (A,Q,P) can then be encoded, using Cantor’s coding
of quadruples, as follows:

pT q = c4(pcode(A)q, pcode(Q)q, pcode(P)q, c).

Clearly, different Turing machines have different codes, and the coding is
effective in the sense that one can effectively reconstruct the machine, that is,
its alphabets and the program, from its code.

D
R

A
FT

16 Draft version 25.02.2006, Lev D. Beklemishev

Let φn
i denote the partial function Nn → N computed by the Turing machine

coded by i. For definiteness, we stipulate that φn
i is the empty function, if i

does not encode any Turing machine (whose tape alphabet contains {0, 1, ♯}).
A universal function for the class of all computable partial n-ary functions

is an (n+ 1)-ary function Φn such that for all i, x1, . . . , xn ∈ N,

Φn(i, x1, . . . , xn) ≃ φn
i (x1, . . . , xn).

Lemma 2.5.

1. Φn is computable.

2. For every partial recursive n-ary function f , there is an i (called the index

of f) such that
Φn(i, x1, . . . , xn) ≃ f(x1, . . . , xn).

3. There is a total recursive m-ary function Sn
m such that for every partial

recursive n+m-ary function f there holds

Φn(Sn
m(y1, . . . , ym), x1, . . . , xn) ≃ f(y1, . . . , ym, x1, . . . , xn).

Theorem 2.6. The set K := {x | Φ1(x, x)↓} is r.e. and undecidable.

Proof. K is r.e. being the domain of the computable function Φ1(x, x). Assume
that the characteristic function

χK(x) =

{
1, if Φ1(x, x)↓
0, otherwise

is computable. Then the function

h(x) =

{
0, if χK(x) = 0
↑, if χK(x) = 1

is computable, too. Let m be any index of h, that is,

h(x) ≃ Φ1(m,x).

Then we have

h(m)↓ ⇔ χK(m) = 0 ⇔ Φ1(m,m)↑ ⇔ h(m)↑,

which is a contradiction, q.e.d.

D
R

A
FT

Chapter 2

Gödel’s Incompleteness

Theorems

1. Formal arithmetic:

Computability and Truth

In this section we establish a fundamental relationship between the notions of
Computability and Truth in formal arithmetic. Our technical goal is to show
that all computable functions and r.e. relations are definable in the language
of arithmetic. In fact, for a natural class of arithmetical Σ1 formulas there is
an exact match between the power of computation and the expressive power
of arithmetical language, that is, r.e. predicates are exactly those definable by
Σ1 formulas in the standard model. In particular, the correspondence allows
to consider the Σ1 fragment of the arithmetical language as a kind of high-
level programming language and an alternative model of computation. The
proof of the arithmetical definability of r.e. predicates, thus, has the format of
constructing an interpreter of Turing machines in the language of arithmetic.

At the same time, the same correspondence yields a fundamental theorem of
logic: the set of all true arithmetical formulas does not have an effective (r.e.)
axiomatization. This result implies a version of Gödel’s famous First Incom-
pleteness Theorem stating that there is a true arithmetical sentence, which is
unprovable in the classical axiomatic system of Peano arithmetic PA. Moreover,
no r.e. extension of PA, whose axioms are true, can be complete in this sense.
This version of Gödel’s theorem will be further improved in the next section,
where the notion of Provability is studied in greater detail.

1.11. Standard model and Peano arithmetic. The language of arith-
metic is a first order language containing binary predicate symbols = and ≤;
binary function symbols + and ·; unary function symbols S and exp; and a
constant 0. The standard model of arithmetic is a model with the universe

17

D
R

A
FT

18 Draft version 25.02.2006, Lev D. Beklemishev

N = {0, 1, 2, . . . } such that all the symbols have their usual interpretation: =
is the equality relation; ≤ is the ordering relation; + and · are the addition and
multiplication operations; S is the successor function S(x) = x + 1; exp is the
base 2 exponentiation function exp(x) = 2x; 0 is 0.

Formulas in the above language are called arithmetical. In writing them
we shall follow the usual notational conventions such as omitting superfluous
parentheses; using infix notation for =, ≤, + and · (that is, writing e.g. x ≤ y
instead of ≤(x, y)); writing 2x instead of exp(x); and so forth.

Peano Arithmetic PA is a first order theory with equality formulated in the
arithmetical language and having the following mathematical axioms:

P1. ¬S(a) = 0

P2. S(a) = S(b) → a = b

P3. a+ 0 = a

P4. a+ S(b) = S(a+ b)

P5. a · 0 = 0

P6. a · S(b) = a · b+ a

P7. exp(0) = S(0)

P8. exp(S(a)) = exp(a) + exp(a)

P9. a ≤ 0 ↔ a = 0

P10. a ≤ S(b) ↔ (a ≤ b ∨ a = S(b))

P11. A(0)∧∀x(A(x) → A(S(x))) → ∀xA(x), for all arithmetical formulas A(a),
possibly containing other free variables.

The last axiom is called the induction axiom schema. It formalizes the usual
principle of mathematical induction applied to the predicates definable in the
language of arithmetic. The following lemma and its corollary are immediate.

Lemma 1.1. N � PA, that is, all theorems of PA are valid in the standard
model.

Corollary 1.2. PA is consistent.

Gödel’s famous First Incompleteness Theorem, in the most narrow formula-
tion, states that the converse of Lemma 1.1 does not hold, that is, there exists
a valid arithmetical sentence which is unprovable in PA. Thus, PA is properly
included in the full true arithmetic TA — the theory axiomatized by the set
of all true arithmetical sentences. We shall prove Gödel’s theorem later in this
chapter. For now, let us notice (following Kreisel [?]) that, from the point of
view of the foundations of mathematics, this raises the question about the status
of PA: if PA is incomplete, what makes it better than any other incomplete
system of arithmetic, and why is it important to study it? We do not want to go
deeply into these matters, especially at this early point, yet it would be unfair
to the philosophically inclined reader, if we completely avoid them.

D
R

A
FT

Provability, Computability and Reflection 19

1.12. What is so special about PA? Peano arithmetic plays a prominent
role in the investigations on proof theory and foundations of mathematics, as
well as in mathematical logic as a whole. This is largely due to the following
widely accepted thesis that we, for convenience, dub “Peano’s.”

Peano’s Thesis. PA naturally formalizes all finitary mathematics.

The status of this statement is similar to the Church-Turing thesis in that
it relates the informal concept of “finitary mathematics” to the formal concept
of PA. Very roughly, finitary, or concrete, mathematics deals with finite ob-
jects, such as numbers, graphs, finite fields, . . . and concrete, explicitly definable
constructions with these objects. It includes, e.g., the elementary number the-
ory, combinatorics, large parts of algebra and discrete mathematics. Although
Peano’s thesis cannot be proved or disproved mathematically, there is much
evidence supporting it.

(a) Indeed, large portions of finitary mathematics, like those mentioned
above, have either been explicitly formalized, or developed to such a degree
of detalization that their formalizability in PA became evident. Nowadays au-
tomated deduction systems are used to construct formal analogues of mathe-
matical proofs.

(b) Other approaches to the formalization of finitary mathematics, e.g., the
one based on the concept of a hereditarily finite set, yield systems equivalent to
PA (modulo suitable translations). For example, an alternative formulation of
PA is obtained by replacing the infinity axiom, in the standard formulation of
Zermelo-Fraenkel set theory, by its negation.

(c) Finally, there is proof-theorists’ experience of formalization in PA. We
hope, the reader of this book will eventually develop his own intuition as to
what is and what is not formalizable in PA.

The notion of “finitary mathematics,” which mainly refers to a certain area
of conventional mathematical practice, is not to be confused with the philo-
sophical concept of “finitism.” The latter was developed in the context of the
so-called Hilbert’s Programme of justifying infinitary methods in mathematics
using the means not involving, in any form, the notion of actual infinity. From
the strictly finitist point of view even PA is not acceptable, essentially because
the quantifiers ranging over an infinite domain (especially complex combinations
of them) are not unequivocally finitistically meaningful. See the introductory
part of Hilbert and Bernays [?] for a discussion.

Hilbert himself never developed any formal system capturing the notion of
finitistic proof — actually, it was not necessary for the aims of his program, only
the usual mathematics had to be formalized. Since then, a few good candidates
for such systems have been proposed (see e.g. Kreisel [?]). We shall also mention
one such system later. However, as Hilbert’s Programme, in its most radical
formulation, failed, these questions became less urgent than they have been,
and nowadays mainly present a historical and philosophical interest.

?? Consistency of PA is infinitary. Analytic methods in number theory. PA
can talk about infinite objects, provided they have some kind of finite descrip-
tions. Many results apply to arbitrary theories.

D
R

A
FT

20 Draft version 25.02.2006, Lev D. Beklemishev

1.13. Bounded formulas. Can we effectively decide, whether a given arith-
metical formula is true or false? We shall soon prove that, in general, we cannot.
The problem is with the quantifiers: one cannot check the truth of ∀xA(x) sim-
ply by looking through all x = 0, 1, 2, However, there are large enough
subclasses of the class of arithmetical formulas for which the truth or falsity can
be effectively recognized.

Let the expressions ∀x ≤ t A(x) and ∃x ≤ t A(x) abbreviate the formulas
∀x (x ≤ t→ A(x)) and ∃x (x ≤ t∧A(x)), respectively, where t is any term (not
containing the variable x). Occurrences of quantifiers of this kind are called
bounded, and bounded or elementary formulas are those, all of whose quantifiers
are bounded. The class of elementary formulas is denoted ∆0(exp), to stress
the fact that the exponentiation function is explicitly present in the language.
Notice that, by definition, quantifier-free formulas are elementary. Elementary

predicates are those definable by elementary formulas in the standard model.

Lemma 1.3. Elementary predicates are decidable.

Proof. We give an informal description of the decision algorithm associated
with an arbitrary elementary formula A(a1, . . . , an). The algorithm inputs a tu-
ple of numbers x1, . . . , xn and outputs 1 or 0 depending on whether A[x1, . . . , xn]
is true or false. (We call this procedure the evaluation of A.) The formula A is
analyzed according to the following instructions.

• t1 = t2: Compute the values of the terms t1, t2; return 1 if the values
coincide, return 0 otherwise.

• t1 ≤ t2: Compute the values of t1, t2; return 1 if the value of t1 is less
than or equal to that of t2, return 0 otherwise.

• B → C: Evaluate separately B and C; return 1 if B returns 0 or C returns
1; return 0 otherwise.

• ¬B: Evaluate B; return 1 if B returns 0 and vice versa.

• ∃v ≤ t A(v, a1, . . . , an): Compute the value m of t; for x = 0, 1, . . . ,m
evaluate A[x, x1, . . . , xn]; return 1, as soon as an x ≤ m is found such that
A[x, x1, . . . , xn] evaluates to 1; return 0, if no such x is found.

• ∀v ≤ t A(v, a1, . . . , an): evaluated dually.

Notice that according to the above clauses an elementary formula, for any tuple
of numbers, evaluates to 0 or to 1, that is, the algorithm terminates on any
input. It is also clear that a formula evaluates to 1 if and only if it is valid.
By Church-Turing Thesis this means that elementary formulas define decidable
predicates in the standard model of arithmetic, q.e.d.

A rough estimate of the complexity of the evaluation procedure allows us
to sharpen the previous result. Let the iterated exponentiation function 2x

n be
defined by the equations 2x

0 = x, 2x
n+1 = 22

x

n . Multiexponential functions are
those of the form 2x

n for a fixed n. Since 2x grows faster than any polynomial,
we easily obtain the following lemma.

D
R

A
FT

Provability, Computability and Reflection 21

Lemma 1.4. For every arithmetical term t(a1, . . . , am) there is an n such that
t(x1, . . . , xm) ≤ 2x1+···+xm

n , for all (sufficiently large) x1, . . . , xn ∈ N.

This lemma can be restated as saying that the rate of growth of arithmetical
terms is multiexponentially bounded.

Lemma 1.5. Elementary predicates are decidable in mutiexponential number
of steps of the length of the input.

Proof. First we need to estimate the complexity of the term evaluation procedure.
It is somewhat easier to estimate the amount of space (= memory) used. Indeed, the
simple “school” algorithms for addition and multiplication are obviously polytime and
use, respectively, linear O(n) and quadratic O(n2) amount of space (where n is the
size of the input). We recommend the reader to check these claims for himself.

For exponentiation, any reasonable algorithm computing 2x uses the amount of
memory of order 2O(n), where n is the size of x. For example, one can represent a
number x with the binary expansion an . . . a1a0 in the form

(. . . (an · 2 + an−1) · 2 + · · · + a1) · 2 + a0

and compute a sequence of zeros of length x starting from a single 0 corresponding to
the bit an, and applying for i = n, . . . , 1 (n times) the operation of duplicating the
string, followed by adding an extra 0 in case ai = 1. Then if one adds the symbol
1 at the beginning of that sequence, one obtains the binary expansion of 2x. The
complexity of this algorithm is easily estimated using the fact that the duplication
operation uses linear space.

Now we notice that an upper space bound for a computation of a function f(g(x), h(x))
can be obtained by composition of the space bounds for f and the sum of those for g
and h (assuming those bounds grow faster than the identity function). By induction,
using Lemma 1.4, we conclude that the space complexity of the evaluation procedure
for any arithmetical term t on input of size n can be bounded by a multiexponential
function.

Now we estimate the complexity of the evaluation procedure for elementary for-
mulas. The multiexponential bound is proved by induction. For atomic formulas the
result follows from our bound for the evaluation of terms. The treatment of boolean
connectives is straightforward, so let us consider the principal case of a bounded exis-
tential quantifier.

To decide whether ∃v ≤ t A[x1, . . . , xk] holds we must first evaluate the term t,
say to a number y, and then check for all x ≤ y whether A[v/x, x1, . . . , xk] holds. The
evaluation of t consumes multiexponential space, and we can organize our computation
in such a way that the validity of formulas A[x, x1, . . . , xk] is checked independently for
different x ≤ y. That is, the piece of tape used for the evaluation of A[0, x1, . . . , xk]
is then erased and reused for the evaluation of A[1, x1, . . . , xk] and so on. Thus, it
is sufficient to give a multiexponential bound on the complexity of the evaluation of
A[x, x1, . . . , xk] in the worst case.

By induction hypothesis, A[x, x1, . . . , xk] can be checked using the amount of space
bounded by 2m+n

c for some constant c, where m is the size of x, and n is the size of
x1, . . . , xk. At worst, the bound is 2

|y|+n
c , and for the size |y| of y we have a bound

of a similar form 2n
d , because the term t has multiexponential rate of growth. So, the

worst case estimate for the complexity of the evaluation of A[x, x1, . . . , xk] for x ≤ y is

D
R

A
FT

22 Draft version 25.02.2006, Lev D. Beklemishev

2
2n

d
+n

c ≤ 2n
c+d+1 for sufficiently large n. This proves a multiexponential bound on the

space complexity. At the cost of iterating exponentiation one more time we obtain a
similar bound for the time complexity, q.e.d.

1.14. Arithmetical hierarchy. Elementary formulas are the simplest kind
of formulas we shall deal with, and now we are going to classify arbitrary arith-
metical formulas according to their logical complexity. The most common mea-
sure of logical complexity of a formula is the depth of quantifierchanges, which
leads to the classical arithmetical hierarchy.

For n ≥ 0 the classes of Σn and Πn formulas are inductively defined as
follows. Σ0 and Π0 formulas are elementary formulas. Σn+1 formulas are those
of the form ∃x1 . . . ∃xmA(x1, . . . , xm), where A is a Πn formula. Πn+1 formulas
are those of the form ∀x1 . . . ∀xmA(x1, . . . , xm), where A is a Σn formula. In
other words, Σn formulas are bounded formulas prefixed by n alternating blocks
of similar quantifiers, starting from ∃, and Πn formulas are defined dually. The
classes of Σn and Πn formulas are denoted Σn and Πn, respectively.

Lemma 1.6. Every arithmetical formula is logically equivalent to a Σn formula,
for some n.

Proof. Add a dummy existential quantifier in front of the given formula (tak-
ing, e.g., ∃x (x = x∧A) instead of A) and transform it to a prenex normal form
by the usual algorithm, q.e.d.

For obvious reasons, the above lemma also holds for the class Πn instead of
Σn. The same trick of introducing dummy quantifiers also yields the following
lemma.

Lemma 1.7. For all n, each of the classes Σn and Πn is contained both in Σn+1

and Πn+1.

By extension of terminology, we shall often call Σn any formula logically
equivalent to a Σn formula in the sense of our official definition. The next
lemma obviously follows from the rules of predicate logic.

Lemma 1.8. Modulo logical equivalence:

1. The classes Σn and Πn are closed under ∨,∧.

2. A ∈ Σn ⇐⇒ ¬A ∈ Πn, and dually.

3. The class Πn is closed under the universal quantification,
the class Σn is closed under the existential quantification.

From the computational point of view, the most interesting class of formulas
is Σ1.

Lemma 1.9. Any predicate definable by a Σ1 formula is recursively enumerable.

D
R

A
FT

Provability, Computability and Reflection 23

Proof. We describe an effective evaluation procedure associated with a given
Σ1 formula B of the form ∃x1 . . . ∃xnA(x1, . . . , xn), with A elementary.

Choose some effective enumeration of sequences of natural numbers 〈x1, . . . , xn〉
of length n. Evaluate A[x1, . . . , xn] for all such tuples in the order of this
enumeration using the evaluation procedure for elementary formulas (Lemma
1.3). Terminate and return 1 as soon as a tuple 〈x1, . . . , xn〉 is found such that
A[x1, . . . , xn] evaluates to 1; loop forever, if there is no such a tuple.

Clearly, the above procedure terminates if and only if B is true. Thus, the
predicate defined by B is the domain of a computable function, q.e.d.

1.15. Arithmetic as a programming language. The evaluation procedure
gives a Σ1 formula A(a1, . . . , an) the interpretation of a program that on input x1, . . . , xn

outputs 1 if and only if A[x1, . . . , xn] is true. Thus, arithmetic can be considered as
a specific programming language. The analogy goes deeper than it might seem at the
first sight, so let us briefly discuss some of the apparent differences and similarities
between arithmetic and the usual programming languages.

First of all, standard programming languages, such as FORTRAN or C++, are op-

erational in the sense that their basic constructions are operators telling the computer
what we want it to do, rather than the statements asserting the truth or falsity of par-
ticular propositions. In contrast, arithmetical language, by its nature, is declarative.
The operational interpretation is provided by the evaluation procedure for Σ1 formu-
las. There is a good deal of freedom in the choice of this procedure. For example, one
may search for an x ≤ n such that A[x] holds by looking through x = n, n − 1, . . . , 0
rather than in the opposite order — the result will be the same. This is parallel to
the situation with compiling high-level programming languages: specification usually
allows for numerous different realizations of the compilers. In fact, our evaluation pro-
cedure, when formalized, becomes a compiler from the high-level arithmetical language
to the low-level language of Turing machines.

Second, the arithmetical “programs” evaluate predicates rather than the functions.
It has long been understood in recursion theory and programming that this is not a
serious restriction: computable functions can be defined on the basis of the notion of
r.e. set. The correspondence is provided by the Graph theorem ??. On practice this
means that we can always interpret the process of computation of a function as the
(unbounded) search for its value, which falls within the formalism of the “arithmetic
programming.”

With this understanding, the operational reading of Σ1 formulas reveals many
other common features with the usual high-level programming languages. Thus,
boolean logic provides for a version of the if-then-else operator, and bounded quan-
tifiers, formalizing bounded search, are the analogs of loops, or for operators. Finally,
the unbounded existential quantifier is naturally interpreted as the unbounded search
or, if you like, as a while operator.

Since the arithmetical language has built-in constructs for the main programming
operators, it is not surprising that it is as powerful as all other universal languages, that
is, all computable functions and relations can be represented in arithmetic. Moreover,
to program within the formalism of arithmetic is generally easier than to operate
the low-level Turing machines, especially because the language of first order logic is
relatively well attuned to the ordinary human language.

Another difference between arithmetic programming and languages such as PAS-

CAL is that in arithmetic there is only one type of data — nonnegative integers —

D
R

A
FT

24 Draft version 25.02.2006, Lev D. Beklemishev

and correspondingly not too many basic functions. However, the ordinary types, such

as binary strings, lists, arrays, records, etc. can always be introduced via encoding

— after all, within the real computers all these objects also look more or less like

strings of zeros and ones! To develop some such coding is our objective in the next

two subsections.

1.16. Bounded definitional extensions. In order to enable arithmetic to
talk about objects other than the numbers and formulate complex mathematical
facts or constructions, one uses the standard method of definitional extensions.
However, it is not difficult to see that, in general, the quantifier complexity of
the formulas in the extended language differs from that of their translations in
the original language. For us it will be important that the complexity of the
translated bounded formulas is preserved. For this reason we introduce bounded

definitional extensions. Under the programming interpretation of arithmeti-
cal language, the role of defined predicates and functions is similar to that of
subroutines.

Let L be a first order language containing that of PA. Bounded formulas
of L are defined similarly to the elementary formulas and denoted ∆0(L). It is
understood that any function symbols of L may be used in bounding terms.

Let T be a theory formulated in L, and let A(b1, . . . , bn) be a bounded
formula with all the free variables shown. We add to the signature of L a new
n-ary predicate symbol P , and let a theory U be obtained from T by adding
the axiom

P (b1, . . . , bn) ↔ A(b1, . . . , bn).

U is called a bounded definitional extention of T by the predicate symbol P ,
and the language of U is denoted L(P).

Being a particular kind of definitional extension, the theory U is conservative
over T and admits the canonical translation (·)− of L(P) formulas into L formu-
las. Essentially, B− is the result of replacing all occurrences of the subformula
P in B by A, possibly with some bound variables of A renamed. In addition to
all the usual properties of the canonical translation (see Section 1.1.7) we have
the following one.

Lemma 1.10. B ∈ ∆0(L(P)) implies B− ∈ ∆0(L).

Proof. Substituting a bounded formula in a bounded formula we obtain a
bounded formula, q.e.d.

Now we consider bounded definitional extensions of T by new function sym-
bols. Let F (a1, . . . , an, b) be a bounded formula of L such that T proves

1. ∃! y F (a1, . . . , an, y);

2. F (a1, . . . , an, b) → b ≤ t(a1, . . . , an), for some L term t.

Then we can introduce an n-ary function symbol f into the language of T and
add the axiom

F (a1, . . . , an, f(a1, . . . , an)),

D
R

A
FT

Provability, Computability and Reflection 25

thus obtaining a conservative definitional extension U of T formulated in the
language L(f). Notice that U proves that the new function is bounded by a
suitable L term:

f(a1, . . . , an) ≤ t(a1, . . . , an).

General properties the canonical translation (·)− obviously hold for U . In
addition we have the following lemma.

Lemma 1.11. If B is a bounded formula in L(f), then B− is provably equivalent
to a bounded L formula within T .

Proof. It will be enough to prove this lemma for atomic formulas B. The
latter are of the form P (t1, . . . , tk), for some L(f) terms t1, . . . , tk and a pred-
icate symbol P of L. As usual, we argue by induction on the total number of
occurrences of the symbol f in t1, . . . , tk.

Assume, for example, that f occurs in t1. Choose an innermost such occur-
rence; then t1 can be rewritten in the form t′1(f(s1, . . . , sn)), where the terms
si do not contain the symbol f , and t′1 has one occurrence of f less than t1.
Since f is provably majorized by a certain L term t, the canonical translation
of P (t1, . . . , tk) is provably equivalent to the formula

∃x ≤ t(s1, . . . , sn) [(P (t′1(x), t2, . . . , tk))− ∧ F (s1, . . . , sn, x)],

where (P (t′1(x), t2, . . . , tk))− is provably equivalent to a bounded formula by the
induction hypothesis, q.e.d.

Of course, bounded definitional extensions can be applied repeatedly. In
this way several function and predicate symbols can be introduced into a given
theory.

Notice that by Lemmas 1.10 and 1.11, the arithmetical hierarchy is invariant
w.r.t. bounded definitional extensions of the arithmetical language. That is, we
can identify Σn and Πn formulas in the original and in the extended language
(via the canonical translation). Also notice that any term in a bounded defini-
tional extension of the language of arithmetic is majorized by a (monotonically
increasing) arithmetical term; hence it has mutiexponential rate of growth and
any term definable function in this language can also be introduced in a suitable
bounded definitional extension.

1.17. Coding binary strings, words, and sequences. Now we are ready
to develop some basic coding machinery. The particular details of the coding
are inessential. For now, it will only be essential for us that all the functions
and predicates defined below are introduced in a bounded definitional extension
of TA, i.e., in the standard model. We start with the coding of binary strings.

Binary strings. Recall that each positive number x can be uniquely repre-
sented in the form

x = an · 2n + an−1 · 2
n−1 + · · · + a1 · 2 + a0,

D
R

A
FT

26 Draft version 25.02.2006, Lev D. Beklemishev

where a0, . . . , an ∈ {0, 1} and an 6= 0. The string of digits anan−1 . . . a0 is called
the binary expansion of x; ai is the i+ 1 st bit of x (denoted bit(x, i)). We also
denote |x| = n; the binary length of x equals |x| + 1.

Thus, binary expansion provides a one-to-one correspondence between bi-
nary strings and positive natural numbers: a string an−1 . . . a0 is coded by the
number whose binary expansion is 1an−1 . . . a0; in particular, the empty string
Λ is coded by 1. Notice that |x| equals to the length of the string coded by x.

We start with some obvious abbreviations (confusing the alphabets of free
and bound variables):

x 6= y :↔ ¬ x = y

x < y :↔ x ≤ y ∧ x 6= y

x− y = z :↔ (y ≤ x ∧ x = z + y) ∨ (¬ y ≤ x ∧ z = 0)

The term S(S(. . . S(0) . . .)) (n times) that names the number n will be denoted
n or just n, when there is no danger of confusing it with a variable. Such terms
will be called numerals.

Now we define the set of binary strings, the length of the string function,
the concatenation function, and the bit(x, i) function.

String(x) :↔ x 6= 0

|x| = y :↔ (x = 0 ∧ y = 0) ∨ (2y ≤ x ∧ x < 2y+1)

x ∗ y = z :↔ z = x · 2|y| + (y − 2|y|)

bit(x, i) = y :↔ y ≤ 1 ∧ ∃u ≤ x ∃v < 2i x = 2i+1 · u+ 2i · y + v

Notice that the function x∗y returns a meaningless result, if x or y do not code
any strings (i.e. equal 0). Also notice that the functions |·|, ∗, and bit satisfy all
the requirements of bounded definitional extensions; the rate of growth bounds
are obvious, in each case.

Apart from binary strings, we also have to be able to work with the words

in an arbitrary finite alphabet Σ, and finite sequences of such words. Elements
of the alphabet Σ will be called characters.

Since Σ is finite, we can choose in advance a certain constant c ∈ N and
code all the characters as different binary strings of length c (in an arbitrary
way). We shall call such strings bytes. Character words, i.e., words in Σ, will
be coded as binary strings by concatenating the bytes corresponding to their
characters. Sequences of words will be coded as the words in the alphabet Σ
extended by a special separator symbol (which will belong to the bytes but not
to the characters). Finally, everything will be coded into natural numbers via
the standard binary coding decribed in the previous sections. The numerical
code, or the Gödel number, of an object a will be denoted paq. We do not
distinguish between Gödel numbers and the corresponding numerals. Now we
turn to the formal definitions.

D
R

A
FT

Provability, Computability and Reflection 27

Characters and bytes. Let Σ = {C0, . . . , Cn}. Pick a number c such
that 2c ≥ n + 2. To the symbols of Σ we associate, e.g., the following codes:
pCiq = 2c+i, for 0 ≤ i ≤ n, and p;q = 2c+n+1 (an extra separator symbol). For
whatever comes below, the particular assignment of these codes is not essential,
except that all of them must correspond to different binary strings of length c.
Now we ∆0(exp) define the sets of characters and bytes as follows.

Char(x) :↔ x = pC0q ∨ · · · ∨ x = pCnq

Byte(x) :↔ String(x) ∧ |x| = c

Finite sets will often be defined similarly to the predicate Char(x) above, that
is, by simply enumerating all of their elements. We shall not always write such
formulas out explicitly.

Words. We define the set of words, that is, sequences of bytes, length of word
function ‖·‖, subword relation, and a function byte(x, i) that recovers the (i+1)-
st byte of a word x. Notice that the concatenation of words, in our coding,
happens to be the same operation as the concatenation of the corresponding
binary strings. The empty word Λ is coded by 1.

Word(x) :↔ String(x) ∧ ∃k ≤ x |x| = c · k

‖x‖ = y :↔ (Word(x) ∧ c · y = |x|) ∨ (¬Word(x) ∧ y = 0)

x ⊆w y :↔ Word(x) ∧Word(y) ∧

∃v, w ≤ y (Word(v) ∧ y = v ∗ x ∗ w)

byte(x, i) = y :↔ [Word(x) ∧Byte(y) ∧

∃v, w ≤ x (Word(v) ∧ ‖v‖ = i ∧ x = v ∗ y ∗ w)] ∨

[¬(Word(x) ∧ i < ‖x‖) ∧ y = 0]

Empty(x) :↔ x = 1

Character words are then defined as follows:

ChWord(x) :↔ Word(x) ∧ ∀i < ‖x‖ Char(byte(x, i))

Sequences. Sequences 〈w1, . . . , ws〉 of character words are coded as the words
of the form w1;w2; . . . ;ws where ; is the extra separator symbol. The empty
sequence 〈 〉, unlike the empty word, will be coded by 0. Also notice that for
any character word w, p〈w〉q = pwq, in particular, p〈Λ〉q = 1.

Thus, the predicate expressing that x codes a sequence, the concatenation
function (denoted x; y), the subsequence relation, and the predicate “the char-

D
R

A
FT

28 Draft version 25.02.2006, Lev D. Beklemishev

acter word x occurs in the sequence y” can be defined as follows.

Seq(x) :↔ x = 0 ∨ [Word(x) ∧

∀i < ‖x‖ (Char(byte(x, i)) ∨ byte(x, i) = p;q)]

x; y = z :↔ (x = 0 ∧ z = y) ∨ (y = 0 ∧ z = x) ∨

(x 6= 0 ∧ y 6= 0 ∧ z = x ∗ p;q ∗ y)

x ⊆s y :↔ Seq(x) ∧ Seq(y) ∧

∃u, v ≤ y (Seq(u) ∧ Seq(v) ∧ y = u;x; v)

x ∈s y :↔ ChWord(x) ∧ x ⊆s y

1.18. Simulating Turing machines in arithmetic. Our goal in this sec-
tion is the following fundamental theorem.

Theorem 1.12. Every r.e. predicate is definable in the standard model of arith-
metic by a Σ1 formula.

Proof. The idea of the proof is quite natural: for a given Turing machine T
we want to express the predicate CompT (x, z) saying, roughly, that “x codes
an input of T , and z codes the protocol of a (terminating) computation of T
on input x.” Since the protocol z explicitly contains all necessary information
about the computation, we may expect CompT (x, z) to be ∆0(exp) definable
(all quantifiers will be bounded by multiexponential functions of z). And then,
the predicate expressing the termination of the machine T on input x could be
defined by ∃z CompT (x, z). To implement this idea, we have to spell out in the
language of arithmetic all the definitions of Section ??.

Consider a Turing machine T = 〈A,Q,P 〉, with A = {S0, . . . , Sn} and Q =
{q0, . . . , qm}. The alphabet of characters Σ associated with T consists of tape
symbols, inner state symbols, and extra symbols L and R, that is, Σ = A ∪
Q ∪ {L,R}. We work with the natural Gödel numbering of Σ described in the
previous section. The predicates A(x), Q(x) defining the finite sets of tape and
inner state symbols are introduced by enumerating their elements, in the same
way as the predicate Char(x) defining the set of characters is. The set of tape
words can then be defined by

TpWord(x) :↔ Word(x) ∧ ∀i < ‖x‖ A(byte(x, i))

Commands. Any command w of a Turing machine is a particular character
word of length 4. It is obtained by concatenation of the corresponding char-
acters, that is, for w = qiSjLqr, one has pwq = pqiq ∗ pSjq ∗ pLq ∗ pqrq, and
similarly for the other types of commands. Since the program of the Turing
machine consists of only finitely many commands, say w0, . . . , wk, we can also
define the set of commands by enumeration:

P (x) :↔ x = pw0q ∨ · · · ∨ x = pwkq

D
R

A
FT

Provability, Computability and Reflection 29

Configurations and transitions. To better understand the following defi-
nitions the reader is invited to look up Section ??. The set of configurations of
a Turing machine is easily defined as follows.

Config(z) :↔ Word(z) ∧ ∃u, v, q ⊆w z

(TpWord(u) ∧ TpWord(v) ∧

Q(q) ∧ ¬Empty(v) ∧ z = u ∗ q ∗ v)

The transition relation x−→
T
y asserting that the machine T transforms a config-

uration x into a configuration y (in one step) can be spelled out by the following
formula:

Config(x) ∧ Config(y)∧

∃u, v, p, q, a, b ⊆w x ∗ y

[TpWord(u) ∧ TpWord(v) ∧Q(p) ∧Q(q) ∧A(a) ∧A(b)∧

[(x = u ∗ p ∗ a ∗ v ∧ y = u ∗ q ∗ b ∗ v ∧ P (p ∗ a ∗ b ∗ q))

∨(x = u ∗ b ∗ p ∗ a ∗ v ∧ y = u ∗ q ∗ b ∗ a ∗ v ∧ P (p ∗ a ∗ pLq ∗ q))

∨(x = p ∗ a ∗ v ∧ y = q ∗ pS0q ∗ a ∗ v ∧ P (p ∗ a ∗ pLq ∗ q))

∨(x = u ∗ p ∗ a ∗ v ∧ ¬Empty(v) ∧ y = u ∗ a ∗ q ∗ v ∧ P (p ∗ a ∗ pRq ∗ q))

∨(x = u ∗ p ∗ a ∧ y = u ∗ a ∗ q ∗ pS0q ∧ P (p ∗ a ∗ pRq ∗ q))
]

]

This formula directly mirrors the definition of the −→
T

relation in Section ??.

Computations. Now we define a formula Init(x, z) expressing the predicate
“z is an initial configuration with an input word x,” a formula Stop(z) “z is
a stopping configuration,” and a formula Comp(x, z) expressing that z is the
protocol of a terminating computation on input x.

Init(x, z) :↔ Config(z) ∧ z = pq0q ∗ x

Stop(z) :↔ Config(z) ∧ ¬∃q, a, p (Q(q) ∧A(a) ∧ P (p) ∧

q ∗ a ⊆w z ∧ ∃v ⊆w p p = q ∗ a ∗ v)

Comp(x, z) :↔ Seq(z) ∧ ∃v ∈s z Stop(v) ∧ ∀u, v, w ≤ z

(z = u; v;w ∧ ChWord(v) →

(Init(x, v) ∨ ∃y ∈s u y −→
T
v))

Now we complete the proof of Theorem 1.12. Let R(x1, . . . , xn) be an n-ary
r.e. predicate. Then for some Turing machine T , whose alphabet contains at
least the symbols {0, 1, ♯}, T terminates on input

code(k1) ♯ · · · ♯ code(kn)

D
R

A
FT

30 Draft version 25.02.2006, Lev D. Beklemishev

iff R(k1, . . . , kn) holds. (Here code(ki) denotes the binary expansion of the
number ki understood as a string of symbols 0 and 1 of the alphabet of T .) The
function code(x) can be introduced by

code(x) = y :↔ ChWord(y) ∧ ‖y‖ = |x| + 1 ∧

∀i ≤ |x| [(bit(x, i) = 1 → byte(y, i) = p1q)

∧ (bit(x, i) = 0 → byte(y, i) = p0q)]

Therefore we have

R(k1, . . . , kn) ⇐⇒ N � Termin[k1, . . . , kn],

where the termination predicate Termin(a1, . . . , an) is defined by the Σ1 for-
mula

∃z Comp(code(a1) ∗ p♯q ∗ · · · ∗ p♯q ∗ code(an), z),

q.e.d.

Theorem 1.12 gives an important computational characterization of arith-
metical Σ1-predicates. Post’s theorem immediately yields the following corol-
lary.

Corollary 1.13. A predicate is decidable, iff it is definable in the standard
model both by a Σ1 and by a Π1 formula.

The following theorem, together with Lemma 1.5, gives a computational
characterization of elementary predicates.

Theorem 1.14. Every predicate decidable in multiexponential number of steps
of the length of the input is elementary.

Proof. To simplify notations, we only give a proof for unary predicates. Let R(x) be
a predicate decidable in multiexponential number of steps of the length of x, i.e., of
|x| + 1. Consider a Turing machine T such that, depending on whether R(x) is true
or false, on input coding the binary expansion of x, T terminates in a configuration
of the form Xqi1Y or Xqi0Y after ≤ 2

|x|+1
m steps of the computation. R(x) can be

defined by the formula

∃z (Comp(code(x), z)∧
∃q, u, v⊆wz (Q(q) ∧ Stop(u ∗ q ∗ p1q ∗ v) ∧ u ∗ q ∗ p1q ∗ v ∈s z).

Clearly, for the proof it is sufficient to give a multiexponential bound on z.

Let N be the number of steps in a computation z, thus N ≤ 2
|x|+1
m . Notice that,

for all i < N , ‖(z)i+1‖ ≤ ‖(z)i‖+ 1, because the length of a configuration of a Turing
machine cannot increase more than by 1 in one step. Hence, ‖(z)i‖ ≤ ‖(z)0‖ + i for
all i, and

‖z‖ ≤ N +
N

X

i=0

(‖(z)0‖ + i) ≤ ‖(z)0‖ · (N + 1) + O(N2).

D
R

A
FT

Provability, Computability and Reflection 31

We may also assume that ‖(z)0‖ = |x| + 3 for our particular way of coding initial
configurations, so

‖z‖ ≤ (|x| + 3) · (2|x|+1
m + 1) + O((2|x|+1

m)2) ≤ 2
|x|+1
m+1

for sufficiently large x. Now we recall that |z| = ‖z‖ · c, for some constant c depending
on our coding of characters, and z ≤ 2|z|+1. Hence z can be bounded by a term of the
form

2c·2
|x|+1

m+1
+d

for some constants c, d, and m, which has the required rate of growth, q.e.d.

1.19. Gödel’s First Incompleteness Theorem. Having done all the nec-
essary technical work in the previous section, now we are ready to obtain several
forms of Gödel’s First Incompleteness Theorem.

Theorem 1.15. The set of all true arithmetical sentences is not r.e.

Proof. Let K be an r.e. nonrecursive set, and let K(a) be its Σ1 definition in
the standard model. For any n ∈ N we have

n 6∈ K ⇐⇒ N � ¬K(n).

If the set of true arithmetical sentences were r.e., so would be the set of all
n such that N � ¬K(n), and hence, the complement of K. Then, by Post’s
Theorem, K would be decidable, a contradiction, q.e.d.

Corollary 1.16. The full true arithmetic TA is neither r.e., nor has an r.e.
axiomatization.

Proof. An r.e. axiomatization of TA would generate a recursive enumeration
of the set of all true arithmetical sentences, q.e.d.

Let T be a consistent arithmetical theory. T is semantically complete, if
every true arithmetical sentence is provable in T . T is syntactically complete, if
for every sentence A, either T ⊢ A or T ⊢ ¬A. A theory T is sound, if N � T ,
that is, if all theorems of T are true. Obviously, soundness implies consistency.
We also have the following lemma.

Lemma 1.17.

1. Semantically complete consistent theories are syntactically complete.

2. If T is syntactically complete and sound, then T is semantically complete.

3. Any semantically complete consistent theory is deductively equivalent to
TA.

Hence, for sound theories the notions of syntactical and semantical completeness
are equivalent (and often simply called completeness).

D
R

A
FT

32 Draft version 25.02.2006, Lev D. Beklemishev

Corollary 1.18.

1. Consistent r.e. theories are semantically incomplete.

2. Sound r.e. theories are (syntactically and semantically) incomplete.

3. PA is incomplete.

Remark 1.19. The previous corollary is sometimes called a weak form of Gödel’s
First Incompleteness Theorem. It can be improved in several ways. First, the
assumptions of soundness and recursive enumerability of theories can be weak-
ened. Second, concrete meaningful examples of true unprovable sentences can
be exhibited. These improvements will be obtained in the next section using
slightly more advanced methods.

2. Provability and Computability

In the previous section we arrived at the fundamental relationship between the
notions of Computability and Truth in formal arithmetic: a predicate is r.e., iff
it is definable in the standard model by a Σ1-formula. In this section we study
two classical models of computation related to the concept of Provability: the
first one is the numerability of r.e. sets, and the second one is the dual numerabil-

ity of pairs of disjoint r.e. sets (or, equivalently, partial 0–1-valued functions).
Whereas in the case of Σ1-definability the computation mechanism corresponds
to the evaluation procedure for Σ1-formulas, here it can be understood as a
proof-search procedure. We shall see that, under some minimal assumptions
on the class of theories under consideration, this mechanism provides adequate
models of computation. As a payoff we shall obtain the classical results in the
theory of formal systems: Gödel-Rosser incompleteness theorem, undecidability
and recursive inseparability results.

2.20. Σ1-completeness. Let Γ be a class of arithmetical sentences. A theory
T is called Γ-complete, if T ⊢ A, for all A ∈ Γ such that N � A. Thus, Γ-
completeness is a restricted version of semantical completeness introduced in
Section 2.1.19. T is Γ-sound, if for all A ∈ Γ, T ⊢ A implies N � A. Obviously,
since all axioms of PA are true, it is Γ-sound for any Γ.

Let BA (Basic Arithmetic) be the arithmetical theory obtained from PA by
replacing the induction axom schema IA by the single axiom

P11. a ≤ b ∨ b ≤ a.

By induction on b it is not difficult to show that P11 is provable in PA.
Therefore we obtain the following lemma.

Lemma 2.1. BA is a finitely axiomatized subtheory of PA.

D
R

A
FT

Provability, Computability and Reflection 33

Basic arithmetic only plays a technical role in this book. It is very weak
as far as the provability of universal statements is concerned. For example, it
does not prove the commutativity of addition and multiplication (see Excercise
??). Nonetheless, the following important theorem shows that BA, and all the
more so PA, has the full power of reasoning about the existential statements
(Σ1-sentences).

Theorem 2.2. BA is Σ1-complete.

Proof. The idea of the proof is simple: truth of a Σ1-sentence can be effectively
verified by means of the evaluation procedure described in Lemma 1.9. Such a
verification essentially is a BA-proof of the sentence. Below we give a rather
pedantic elaboration of this idea, because later we would like to formalize the
very proof of Theorem 2.2 inside (a sufficiently weak fragment of) PA.

Lemma 2.3. For any m,n ∈ N, BA proves

(i) m+ n = m+ n

(ii) m · n = m · n

(iii) exp(n) = exp(n)

Proof. Each of the statements is proved by external induction on n. Recall
that 0 is 0 and n+ 1 is S(n).

(i) Basis: m+ 0 = m, by P3.
Induction step. Assume we have a proof of m + n = m+ n. Consider the

following sequence of formulas:

1. m+ n = m+ n (assumption)

2. S(m+ n) = S(m+ n) (1, equality)

3. m+ S(n) = S(m+ n) (P4)

4. m+ S(n) = S(m+ n) (2, 3, equality)

This sequence essentially is a BA-proof of m+ n+ 1 = m+ n+ 1 from the
assumption m+n = m+ n. Appending it to the proof of m+n = m+ n given
by the induction hypothesis (and inserting a few obvious intermediate steps) we
obtain a BA-proof of m+ n+ 1 = m+ n+ 1.

Similar proofs of (ii) and (iii) are left as an easy excercise for the reader,
q.e.d.

Lemma 2.4. For any arithmetical term t(b1, . . . , bm) and any k1, . . . , km, l ∈ N,

N � t(k1, . . . , km) = l =⇒ BA ⊢ t(k1, . . . , km) = l.

Proof. External induction on the build-up of t. If t is a variable or a constant
0, the claim is obvious. For compound terms the claim follows by induction
hypothesis from Lemma 2.3. For example, if t has the form t1 + t2, then for

D
R

A
FT

34 Draft version 25.02.2006, Lev D. Beklemishev

some l1, l2 ∈ N the formulas t1(k1, . . . , km) = l1 and t2(k1, . . . , km) = l2 are
provable. Now we can construct the following derivation:

1. t1(k1, . . . , km) = l1 (assumption)

2. t2(k1, . . . , km) = l2 (assumption)

3. t1(k1, . . . , km) + t2(k1, . . . , km) = l1 + l2 (1, 2, equality)

4. l1 + l2 = l1 + l2 (Lemma 2.3)

5. t1(k1, . . . , km) + t2(k1, . . . , km) = l1 + l2 (3, 4, equality)

Successor, multiplication, and exponentialtion functions are treated similarly,
q.e.d.

Lemma 2.5. For all m,n ∈ N,

(i) If m ≤ n, then BA ⊢ m ≤ n;

(ii) If m 6= n, then BA ⊢ ¬m = n;

(iii) If m < n, then BA ⊢ ¬n ≤ m.

Proof. (i) By external induction on n.
Basis. For n = m the claim amounts to BA ⊢ m ≤ m. This is straightfor-

wardly proved by a separate (external) induction on m, using P9, P10, or can
be directly inferred from the axiom a ≤ b ∨ b ≤ a substituting m for a and b.

Induction step. Assume m ≤ n + 1, then either m ≤ n or m = n + 1. If
m ≤ n, then BA ⊢ m ≤ n by the induction hypothesis. If m = n + 1, then m
is graphically the same as S(n), so BA ⊢ m = S(n) by the equality axioms. In
any case,

BA ⊢ m ≤ n ∨m = S(n).

Hence BA ⊢ m ≤ S(n) by P10, q.e.d.

(ii) Without loss of generality we may assume that m < n. The argument
goes by induction on m. If m = 0, then n has the form S(n− 1), and the result
follows by P1. For m > 0, by the induction hypothesis, there is a BA-proof of
¬m− 1 = n− 1. Appending to that proof the following sequence of formulas

1. ¬m− 1 = n− 1 (assumption)

2. m = n→ m− 1 = n− 1 (P2)

3. ¬m = n (1, 2)

we obtain a BA-proof of ¬m = n, q.e.d.

(iii) The argument goes by external induction on m.
Basis. Assume 0 = m < n. Then n ≤ 0 implies n = 0 by P9, which implies

a contradiction by (ii).
Induction step. Assume m + 1 < n. Then n ≤ S(m) implies n ≤ m ∨

n = S(m) by P10. However, n ≤ m yields a contradiction by the induction
hypothesis, and n = S(m) implies a contradiction by (ii). Hence, BA ⊢ ¬n ≤
S(m), q.e.d.

D
R

A
FT

Provability, Computability and Reflection 35

Lemma 2.6. For each m ∈ N, BA proves

a ≤ m↔ (a = 0 ∨ · · · ∨ a = m).

Proof. From P9, P10 by external induction on m, q.e.d.

Lemma 2.7. For any bounded formula A(b1, . . . , bm) and any k1, . . . , km ∈ N,

(i) N � A(k1, . . . , km) ⇒ BA ⊢ A(k1, . . . , km);

(ii) N 2 A(k1, . . . , km) ⇒ BA ⊢ ¬A(k1, . . . , km).

Proof. (i) and (ii) are proved simultaneously by induction on the build-up of
A. We consider the following cases.

1. A is an atomic formula of the form t1(b1, . . . , bm) = t2(b1, . . . , bm).
If N � A(k1, . . . , km), then for some l ∈ N, by Lemma 2.4, we have BA-

proofs of t1(k1, . . . , km) = l and t2(k1, . . . , km) = l. From these proofs we obtain
a proof of t1(k1, . . . , km) = t2(k1, . . . , km) by the equality axioms.

If N 2 A(k1, . . . , km), then for some l1 6= l2 we haveBA-proofs of t1(k1, . . . , km) =
l1 and t2(k1, . . . , km) = l2, by 2.4. Lemma 2.5(ii) yields a proof of ¬l1 = l2,
hence we obtain a proof of

¬ t1(k1, . . . , km) = t2(k1, . . . , km)

using the equality axioms, q.e.d.

2. A is an atomic formula of the form t1(b1, . . . , bm) ≤ t2(b1, . . . , bm).
In this case, a similar argument, using Lemma 2.5 (i) and (iii), works.

3. A has the form B → C or ¬B.
In this case, the claim immediately follows from the induction hypothesis for

B and C.

4. A has the form ∀v ≤ t B(v, b1, . . . , bm).
(i) Assume N � A(k1, . . . , km). By Lemma 2.4, for some l ∈ N, BA proves

t(k1, . . . , km) = l. Hence, for all k ≤ l, N � B(k, k1, . . . , km), and by induction
hypothesis we have BA-proofs of the formulas B(k, k1, . . . , km), for all k ≤ l.
Now we append to these proofs the following formulas:

1. (a = 0 ∨ · · · ∨ a = l) → B(a, k1, . . . , km) (ind. hyp., equality)

2. a ≤ l → B(a, k1, . . . , km) (1, 2.6)

3. a ≤ t(k1, . . . , km) → B(a, k1, . . . , km) (2, equality)

4. ∀v (v ≤ t(k1, . . . , km) → B(v, k1, . . . , km)) (3)

The resulting sequence can be transformed into a proof of A(k1, . . . , km) by
inserting some obvious logical steps.

(ii) Assume N 2 A(k1, . . . , km). Then for some k ≤ l = t(k1, . . . , km) one
has N 2 B(k, k1, . . . , km), and hence

BA ⊢ ¬B(k, k1, . . . , km),

D
R

A
FT

36 Draft version 25.02.2006, Lev D. Beklemishev

by the induction hypothesis. To that proof we append the following formulas:

1. ¬B(k, k1, . . . , km) (assumption)

2. k ≤ l ∧ ¬B(k, k1, . . . , km) (1, 2.5(i))

3. k ≤ t(k1, . . . , km) ∧ ¬B(k, k1, . . . , km) (2, 2.4, equality)

4. ∃v (v ≤ t(k1, . . . , km) ∧ ¬B(v, k1, . . . , km)) (3)

This essentially yields a BA-proof of ¬A(k1, . . . , km), q.e.d.

Now we complete the proof of Theorem 2.2. The argument goes by induc-
tion on the build-up of a Σ1-formula A(b1, . . . , bm). If A is elementary, the
result follows by Lemma 2.7 (i). If A has the form ∃vA0(v, b1, . . . , bm) and
N � A(k1, . . . , km), then for some k we have N � A0(k, k1, . . . , km). By the
induction hypothesis it follows that BA proves A0(k, k1, . . . , km). From this we
can logically infer ∃vA0(v, k1, . . . , km), q.e.d.

Corollary 2.8.

1. Any arithmetical theory containing BA is Σ1-complete.

2. PA is Σ1-complete.

2.21. Numerating r.e. sets. Let T be an arithmetical theory. A rela-
tion R(x1, . . . , xn) is said to be numerated in T , iff there exists a formula
A(x1, . . . , xn) such that for all k1, . . . , kn ∈ N

R(k1, . . . , kn) ⇐⇒ T ⊢ A(k1, . . . , kn).

The formula A is then called a numeration of R. Obviously, if T is an r.e. theory,
any predicate numerated in T is also r.e. On the other hand, the predicates
numerated in TA coincide with those definable in the standard model and thus
are not necessarily r.e.

If T is r.e., numerability provides a model of computation: in order to check
whether R(k1, . . . , kn) holds, one can enumerate all the T -proofs and search for a
proof of the corresponding numerical instance of A. Thus, A can be interpreted
as a program for computing R.

Lemma 2.9. For any r.e. predicate R, there is a Σ1-formula A such that A
numerates R in any Σ1-sound theory T containing BA.

Proof. Let A be a Σ1-definintion of R in the standard model. By Σ1-
soundness, T ⊢ A(k1, . . . , kn) implies N � A(k1, . . . , kn) and R(k1, . . . , kn).
The converse follows by Σ1-completeness of T (Corollary 2.8), q.e.d.

The following important corollary shows that numeration of r.e. predicates
actually provides a universal model of computation for any sufficiently strong,
Σ1-sound theory T . In particular, as such a T one can take BA or PA.

D
R

A
FT

Provability, Computability and Reflection 37

Theorem 2.10. For any Σ1-sound r.e. theory T containing BA, the following
statements are equivalent:

(i) R has a numeration in T ;

(ii) R has a Σ1-numeration in T ;

(iii) R is Σ1-definable (in the standard model);

(iv) R is r.e.

Notice that later we shall be able to replace the assumption of Σ1-soundness
here by the mere consistency of T (Ehrenfeucht-Feferman). The same applies
to the following classical theorem.

Theorem 2.11. The set of theorems of any Σ1-sound theory T containing BA
is undecidable.

Proof. Take a Σ1-numeration K(a) of an undecidable r.e. set K. Observe that

n ∈ K ⇐⇒ T ⊢ K(n).

Hence, if T were decidable, so would be the set K, q.e.d.

Corollary 2.12 (Church). Pure first order logic (in the language of arith-
metic) is undecidable.

Proof. Let
∧
BA denote the conjunction of the universal closures of all ex-

tralogical axioms of BA (including the finitely many equality axioms). Then,
by Deduction theorem,

BA ⊢ A ⇐⇒ ⊢
∧
BA→ A,

for any formula A. Hence, if pure logic were decidable, so would be BA, con-
tradicting Theorem 2.11, q.e.d.

The following statement improves a version of Gödel’s First Incompleteness
Theorem given in the previous section.

Theorem 2.13. Any Σ1-sound arithmetical r.e. theory T is (syntactically and
semantically) incomplete.

Proof. Without loss of generality we may assume that T contains BA (adding
finitely many true Π1-axioms of BA to T preserves its Σ1-soundness). Let K(a)
be a Σ1-numeration of an undecidable r.e. set in T . If T were complete, ¬K(a)
would numerate the complement of K:

n 6∈ K ⇐⇒ T 0 K(n) ⇐⇒ T ⊢ ¬K(n),

which is impossible, because N \K is not r.e., q.e.d.

D
R

A
FT

38 Draft version 25.02.2006, Lev D. Beklemishev

2.22. Representing computable functions. The graph of any computable
function, being r.e., can be numerated in any Σ1-sound theory containing BA.
For technical purposes a different notion of representability of functions is tra-
ditionally considered. It will lead us to another natural model of computation
associated with r.e. theories.

Let f be an n-ary (partial) recursive function. We say that a formula
F (x1, . . . , xn, y) represents f in a theory T , iff for all k1, . . . , kn ∈ dom(f),

T ⊢ F (k1, . . . , kn, y) ↔ y = l, (2.1)

where l = f(k1, . . . , kn). Obviously, if F represents f in T , then the same holds
in any extension of T .

Lemma 2.14. Let T be a consistent theory containing BA, and f be a total
function. If a formula F represents f in T , then F numerates the graph of f in
T .

Proof. Let l = f(k1, . . . , kn), then

T ⊢ y = l → F (k1, . . . , kn, y)

implies T ⊢ F (k1, . . . , kn, l) by the equality axioms. On the other hand, assum-
ing T ⊢ F (k1, . . . , kn,m), from (2.1) we obtain T ⊢ m = l. If m 6= l, then by
Lemma 2.5 (ii) we would have BA ⊢ ¬m = l. Hence, T would be inconsistent,
contrary to our assumption, q.e.d.

Lemma 2.15. For any partial recursive function f , there is a Σ1-formula rep-
resenting f in (any extension of) BA.

Proof. For the sake of readability we only give a proof for unary functions f .
Pick a Σ1-formula F (x, y) defining the graph of f in the standard model. We
may assume that F (x, y) has the form

∃z1 . . . ∃zn F0(x, y, z1, . . . , zn),

where F0 is bounded. We define

F1(x, y, z) :↔ y ≤ z ∧ ∃z1, . . . , zn ≤ z F0(x, y, z1, . . . , zn)

F2(x, y, z) :↔ F1(x, y, z) ∧ ∀y′, z′ ≤ z (F1(x, y
′, z′) → y′ = y)

We show that the formula ∃z F2(x, y, z) represents f .
First of all, if f(m) = n, then for a sufficiently large k, F1(m,n, k) is true,

whence, by functionality of f , F2(m,n, k) also holds. By Σ1-completeness, the
formula ∃z F2(m,n, z) is provable in BA.

For the opposite direction we need an auxiliary lemma.

Lemma 2.16. For any m,n ∈ N such that m ≤ n,

(i) BA ⊢ a ≤ m→ a ≤ n,

D
R

A
FT

Provability, Computability and Reflection 39

(ii) BA ⊢ n ≤ a→ m ≤ a.

Proof. (i) Follows from Lemma 2.6.
(ii) W.l.o.g. we may assume m < n. By Lemma 2.5 (iii), n ≤ a implies

¬a = i, for each i < n. Therefore, by 2.6, we have ¬a ≤ m. Axiom P11 then
yields m ≤ a, q.e.d.

Now we complete the proof of Lemma 2.15 by showing

BA ⊢ F2(m, y, z) → y = n,

where n = f(m). Assume

F1(m, y, z) ∧ ∀y′, z′ ≤ z (F1(m, y
′, z′) → y′ = y), (2.2)

and let n, k satisfy
F1(m,n, k). (2.3)

Notice that n ≤ k, by the definition of F1, and by Σ1-completeness (2.3) is
provable. By P11 two cases are possible: k ≤ z or z ≤ k.

Suppose k ≤ z. Then n ≤ z by 2.16 (ii), and by (2.3) ∃z′≤z F1(m,n, z
′). By

(2.2) this implies n = y.
If z ≤ k, we notice that for any i, j such that i 6= n = f(m), N 2 F1(m, i, j).

Hence,
∀y′, z′ ≤ k (F1(m, y

′, z′) → y′ = n) (2.4)

is true and provable in BA. By (2.2) we have F1(m, y, z), therefore y ≤ z. Since

z ≤ k, by Lemma 2.6 we obtain
∨k

i=0
z = i, and thus

∨k
i=0

y ≤ i. Lemma 2.16
(i) then yields y ≤ k, so we can infer y = n from F1(m, y, z) and (2.4), q.e.d.

2.23. Dually numerating pairs of disjoint r.e. predicates. Numeration
A(x1, . . . , xn) of an r.e. predicate R(x1, . . . , xn) can be considered as a program
for computing the function

νA(x1, . . . , xn) :=

{
1, if T ⊢ A(x1, . . . , xn)
undefined, otherwise

In a sense, this model of computation is weak, because it neglects all negative
information that may appear in the process of computation. For example, if one
encounters a proof of ¬A(k) (and a priori knows that T is consistent), one can
conclude that k can never belong to R and stop the process of computation at
that point. Thus, with the same formula A one can associate a more informative
function:

δA(x1, . . . , xn) :=







1, if T ⊢ A(x1, . . . , xn)
0, if T ⊢ ¬A(x1, . . . , xn)
undefined, otherwise

Partial computable 0–1-valued functions are identified with pairs of disjoint r.e.
predicates (see Section ??). This leads us to the following important definition.

D
R

A
FT

40 Draft version 25.02.2006, Lev D. Beklemishev

Let T be a consistent theory. A formula A(x1, . . . , xn) is called a dual nu-

meration of a pair of disjoint r.e. predicates R(x1, . . . , xn) and S(x1, . . . , xn)
in T , iff A numerates R and ¬A numerates S in T . Equivalently, A dually
numerates the pair (R,S), iff the function δA ≃ χR,S , where

χR,S(x1, . . . , xn) :=







1, if R(x1, . . . , xn)
0, if S(x1, . . . , xn)
undefined, otherwise

We say that a formula A separates a pair of disjoint r.e. predicates R and S in
T , iff for all k1, . . . , kn ∈ N,

(i) R(k1, . . . , kn) =⇒ T ⊢ A(k1, . . . , kn);

(ii) S(k1, . . . , kn) =⇒ T ⊢ ¬A(k1, . . . , kn).

Obviously, A separates R and S, iff the function δA extends χR,S .

In the next section we shall prove that, for any sufficiently strong consistent
theory T , any pair of disjoint r.e. predicates can be dually numerated in T
(Putnam-Smullyan). Here we shall only prove a weaker fact.

Theorem 2.17. Any pair of disjoint r.e. predicates can be separated in (any
extension of) BA.

Proof. Consider any pair of disjoint r.e. predicates (R,S), and let F (x1, . . . , xn, y)
represent the partial recursive function χR,S(x1, . . . , xn) in BA. We claim that
the formula F (x1, . . . , xn, 1) separates R and S.

Indeed, by the definition of F we have

BA ⊢ F (k1, . . . , kn, y) ↔ y = 1, if R(k1, . . . , kn); (2.5)

BA ⊢ F (k1, . . . , kn, y) ↔ y = 0, if S(k1, . . . , kn). (2.6)

Therefore, ifR(k1, . . . , kn), thenBA ⊢ F (k1, . . . , kn, 1) by (2.5). If S(k1, . . . , kn),
then F (k1, . . . , kn, 1) implies 0 = 1 and a contradiction in BA by (2.6), q.e.d.

Remark 2.18. The formula separating the predicates R and S is Σ1 and works
for any extension of BA.

A formula A(x1, . . . , xn) binumerates a relation R(x1, . . . , xn) in T , iff A
separates R and the complement of R in T . Notice that, if the theory T is
consistent, A binumerates R just in case A dually numerates the pair (R,Nn\R).

By Post’s theorem, any predicate binumerated in a consistent r.e. theory is
decidable. From Theorem 2.17 we immediately obtain the following corollary.

Corollary 2.19. Any recursive predicate is binumerated by a suitable Σ1-
formula in (any extension of) BA.

D
R

A
FT

Provability, Computability and Reflection 41

2.24. Undecidability and Gödel-Rosser incompleteness theorems. As
a straightforward application of the ideas and techniques of the previous sub-
section we now obtain strong undecidability and incompleteness results.

Theorem 2.20. The set of theorems of any consistent arithmetical theory T
containing BA is undecidable. Moreover, the sets of provable and refutable
sentences of T are recursively inseparable.

Proof. It will be sufficient to prove the second claim of the theorem. Let P
and R denote the sets of (Gödel numbers of) provable and refutable sentences
of T , respectively.

Consider a pair of recursively inseparable, disjoint r.e. sets (X,Y), and let
a formula A separate this pair in T . (Such a formula exists by Theorem 2.17.)
Now assume, for a contradiction, that P and R are separated by a recursive set
C. Then the set {m | A(m) ∈ C} is recursive and separates X and Y :

m ∈ X ⇒ T ⊢ A(m) ⇒ A(m) ∈ P ⇒ A(m) ∈ C,
m ∈ Y ⇒ T ⊢ ¬A(m) ⇒ A(m) ∈ R ⇒ A(m) 6∈ C,

a contradiction.
Notice that the second claim of the theorem implies the first, because for

any consistent decidable extension T ′ of T , the (recursive) set of theorems of T ′

would separate P from R, q.e.d.

Theorem 2.21 (Gödel-Rosser). Let T be a consistent, r.e., arithmetical
theory containing BA. Then T is (syntactically and semantically) incomplete.

Proof. By Post’s theorem, the set of theorems of any syntactically complete
r.e. theory T is decidable, which contradicts the (first claim of the) previous
theorem, q.e.d.

3. Self-reference

Peano arithmetic was devised as a formal system sufficiently rich to encompass
all finitary mathematics. As the formal proofs are finite objects, in particular,
this means that PA has to be able to “reason about” itself. For example, it
makes sense to ask whether PA proves its own consistency, for the consistency
assertion is nothing but a statement about the existence of a particular finite
string of symbols with a rather simple syntactical description, and hence, PA
must “understand” what its own consistency means.

It was Gödel who first put the idea of self-reference to a fruitful mathematical
use, thus obtaining his celebrated Incompleteness Theorems. Since then, the
method was developed and brought to life a great number of results in logic and
recursion theory. Self-reference is also one of the main technical tools used in
this book. It is interesting that, despite the ever growing range of applications
of self-reference in arithmetic, the key “fixed point lemma” remains essentially
unchanged in its form since Gödel’s time. A proof of this lemma and some

D
R

A
FT

42 Draft version 25.02.2006, Lev D. Beklemishev

of its prominent applications, including Tarski undefinability theorem and the
original proofs of Gödel and Rosser incompleteness theorems, is the goal of this
Section. We compare different proofs of incompleteness theorems from the point
of view of their effectiveness and recursion-theoretic content. Finally, using a
self-referential construction due to Sheperdson, we establish the important, but
less well-known, theorems of Ehrenfeucht-Feferman and Putnam-Smullyan on
the universality of the computation models presented in the previous section.

3.25. Fixed point lemma. Consider a first order language LΣ of a finite
signature Σ. Recall that various syntactic objects of LΣ such as variables, terms,
formulas, proofs, . . . can be identified with certain expressions (words) in the
alphabet of predicate and function symbols of Σ together with the following
special symbols:

→ ¬ () , ∀ a v ♯

(see ??). Words, in turn, can be effectively encoded by numbers, e.g., via the
binary coding described in Section ??. We shall explicitly develop a suitable
coding in the next section, but for now it will only be essential for us that the
correspondence between words and their numerical codes (Gödel numbers) is
one-to-one and both ways computable. As usual, the Gödel number of a word
s will be denoted psq.

Lemma 3.1. Assume L contains the language of PA. Then BA represents the
following “substitution function:”

suba(x, y) :=







pA(a/y)q, if x = pA(a)q, A(a) is a formula,
a is a fixed free variable;

0, otherwise.

Proof. By Church-Turing thesis, since the Gödel numbering is effective, the
function suba is computable. Indeed, having x we can effectively recover the
formula A(a) such that pA(a)q = x (if such exists), effectively find all occurences
of a in A, replace them by y, and calculate the Gödel number of the resulting
expression. Thus, representability of suba in BA follows from Lemma 2.15,
q.e.d.

For the sake of readability we denote the formula representing suba in BA
by suba(x, y) = z.

Lemma 3.2 (Fixed Point Lemma). For every arithmetical formulaA(a), there
is a formula F such that

BA ⊢ F ↔ A(pFq).

Proof. Consider the formula

C(a) :↔ ∃y (suba(a, a) = y ∧A(y)).

Let m = pCq, then obviously suba(m,m) = pC(a/m)q. We define

F :↔ C(m),

D
R

A
FT

Provability, Computability and Reflection 43

and so suba(m,m) = pFq. Since suba is represented in BA, we obtain

BA ⊢ ∀y (suba(m,m) = y ↔ y = pFq).

It follows that F , that is, the formula ∃y (suba(m,m) = y ∧ A(y)), is provably
equivalent to ∃y (y = pFq ∧A(y)) and A(pFq), q.e.d.

Lemma 3.2 can also be generalized to arbitrary (finite) languages L contain-
ing that of arithmetic. In this situation the theory formulated in L, whose only
nonlogical axioms are those of BA, plays the role of BA.

The formula F is usually called the fixed point of A. Notice that the proof of
Lemma 3.2 not only shows the existence of a fixed point for every formula A(a),
but also provides an explicit example of such a fixed point. Fixed points of a
formula need not, in general, be unique, either graphically, or up to provable
equivalence.

Example 3.1. Let A(a) be the formula a = 0, and suppose the a priori Gödel
numbering is such that p0 = 0q equals 0. Then, trivially, both formulas 0 = 0
and 0 = 1 are the fixed points of A.

Fixed point lemma can be generalized to formulas containing additional
parameters. In order to formulate it we first introduce some useful notation.
The multiple substitution function is defined as follows:

subb1,...,bn
(x, y1, . . . , yn) := subb1(· · · (subbn

(x, yn), yn−1), · · · , y1).

Clearly, this function is total recursive and thus can be represented in BA. Let
B(a) and A(b1, . . . , bn) be any formulas. Then the formula

∃y (subb1,...,bn
(pAq, x1, . . . , xn) = y ∧B(y))

is usually abbreviated by B(pA(ẋ1, . . . , ẋn)q). Properly speaking, the expression
pA(ẋ1, . . . , ẋn)q is not an arithmetical term, nor can such a term be introduced
in a definitional extension of such a weak theory as BA.1 Yet, it is often conve-
nient to think of it as of a term denoting the function that computes the Gödel
number of A(k1, . . . , kn) from the numbers k1, . . . , kn. Notice that the variables
x1, . . . , xn are free in B(pA(ẋ1, . . . , ẋn)q).

Lemma 3.3 (Parametric Fixed Point Lemma).

(i) For every A(a, b1, . . . , bn), there is a formula F (b1, . . . , bn) such that

BA ⊢ F (b1, . . . , bn) ↔ A(pFq, b1, . . . , bn).

(ii) For every A(a, b1, . . . , bn), there is a formula F (b1, . . . , bn) such that

BA ⊢ F (b1, . . . , bn) ↔ A(pF (ḃ1, . . . , ḃn)q, b1, . . . , bn).

1Although this can be done in PA, cf. Section ??.

D
R

A
FT

44 Draft version 25.02.2006, Lev D. Beklemishev

Proof. (i) The proof of Lemma 3.2 remains unchanged, with the understanding
that now the formula A may implicitly contain the free variables b1, . . . , bn.

(ii) This follows from (i) applied to the formula

∃y (subb1,...,bn
(a, b1, . . . , bn) = y ∧A(y, b1, . . . , bn)),

q.e.d.

The following multiple fixed point lemma is a corollary of Lemma 3.3 (i).

Lemma 3.4. Suppose, for i = 1, . . . , n, we are given arithmetical formulas
Ai(a1, . . . , an). Then there are formulas F1, . . . , Fn such that, for all i = 1, . . . , n,

BA ⊢ Fi ↔ Ai(pF1q, . . . , pFnq).

(As before, the formulas Ai, and hence Fi, may contain additional parameters,
which we do not explicitly indicate.)

Proof. Consider the formula

A(a1, . . . , an, b) :↔
n∨

i=1

(Ai(a1, . . . , an) ∧ b = i).

We obviously have

BA ⊢ A(a1, . . . , an, i) ↔ Ai(a1, . . . , an),

for each 1 ≤ i ≤ n. Now, using lemma 3.2, let F (b) satisfy the fixed point
equation

BA ⊢ F (b) ↔ ∃y1 . . . ∃yn (A(y1, . . . , yn, b) ∧
n∧

i=1

subb(pFq, i) = yi).

For each 1 ≤ i ≤ n we have pF (i)q = subb(pFq, i), and this fact is verifiable in
BA, that is,

BA ⊢ ∀y (subb(pFq, i) = y ↔ y = pF (i)q).

It follows that, for any 1 ≤ k ≤ n, F (k) is provably equivalent to

∃y1 . . . ∃yn (A(y1, . . . , yn, k) ∧
n∧

i=1

yi = pF (i)q),

and hence to

Ak(pF (1)q, . . . , pF (n)q).

This means that one can take the formulas F (k) as Fk, q.e.d.

D
R

A
FT

Provability, Computability and Reflection 45

3.26. Tarski, Gödel and Rosser theorems. As immediate applications
of the method of self-reference we derive Tarski undefinability theorem and
give alternative (or rather, original) proofs of Gödel and Rosser incompleteness
theorems. The following theorem shows that the set of (Gödel numbers of) true
arithmetical sentences not only is not r.e., but also cannot be defined by any
arithmetical formula.

Theorem 3.5 (Tarski). There is no arithmetical formula T (a) such that, for
every arithmetical sentence A,

N � A↔ T (pAq).

Proof. Suppose, on the contrary, that there is such a formula. Let A be a
solution of the fixed point equation

BA ⊢ A↔ ¬T (pAq).

(Observe the similarity with the Liar paradox. The sentence A asserts: “I am
false.”) Then, by our assumption on T (a), N � A ↔ ¬A, which is a contradic-
tion, q.e.d.

The proof of Tarski theorem applies the fixed point lemma to a formula
only to show that the formula does not exist. In contrast, Gödel and Rosser
applied the same kind of argument to physically existing formulas thus obtaining
celebrated incompleteness results. The following statement can be called an

abstract version of Gödel and Rosser theorems.

Theorem 3.6. Let T be a consistent arithmetical theory, P (a) a formula, and
A a fixed point of ¬P (a) in T :

T ⊢ A↔ ¬P (pAq).

Then

(i) (Gödel) If P (a) numerates the set of (Gödel numbers of) theorems of T
in T , then T 0 A and T 0 ¬A.

(ii) (Rosser) If P (a) separates the sets of (Gödel numbers of) provable and
refutable sentences of T in T , then T 0 A and T 0 ¬A.

Proof. (i) Obviously, if P (a) numerates the set of theorems of T in T , then

T ⊢ A⇔ T ⊢ P (pAq) ⇔ T ⊢ ¬A,

which contradicts the consistency of T .
(ii) If P (a) separates provable and refutable sentences of T in T , then

T ⊢ A ⇒ T ⊢ P (pAq) ⇒ T ⊢ ¬A,

T ⊢ ¬A ⇒ T ⊢ ¬P (pAq) ⇒ T ⊢ A,

D
R

A
FT

46 Draft version 25.02.2006, Lev D. Beklemishev

and again, T is inconsistent in each case, q.e.d.

Notice that the statement of Theorem 3.6 is very general: it does not even
require that T is sufficiently strong and r.e. (Of course, one would need some
strength of T in order to ensure the existence of the fixed point A, which was
simply postulated above. However, the restriction that T is r.e. in various
situations can, indeed, be considerably weakened.)

We call a formula P (a) numerating the set of theorems of T in T a provability

predicate for T in T . The words “in T” are necessary, because, even if P (a)
expresses provability in T within T itself, it may fail to do so in the standard
model, if T is not sound. Recall that, so far, we were only able to construct (Σ1)
numerations of r.e. sets in Σ1-sound extensions of BA. In this case Theorem 3.6
(i) takes the form which is very close to Gödel’s original statement of his First
Incompleteness Theorem (see Notes below).

Theorem 3.7 (Gödel). Let T be an r.e. arithmetical theory containing BA,
P (a) a Σ1 provability predicate for T in BA, and

T ⊢ A↔ ¬P (pAq).

If T is consistent, then T 0 A. If T is Σ1-sound, then also T 0 ¬A.

Proof. The first part of the statement holds because

T ⊢ A ⇒ BA ⊢ P (pAq) ⇒ T ⊢ ¬A.

The second part holds because, if T is Σ1-sound, the Σ1-formula P (a) numerates
the set of theorems of T in T , q.e.d.

A formula P (a) separating provable and refutable sentences of T in T is
called Rosser-type provability predicate for T in T . Theorem 2.17 shows that
a Σ1 Rosser-type provability predicate (in any extension of BA) does exist for
every consistent r.e. arithmetical theory T containing BA, without any addi-
tional assumptions on soundness. Also notice that, if T is a Σ1-sound theory,
and P (a) a Σ1 Rosser-type provability predicate for T , then P (a) numerates
the theorems of T in T , and thus is, indeed, a provability predicate. Later we
shall see that the converse, in general, does not hold and, in fact, the canonical
“Gödel’s” provability predicate is not Rosser-type.

The original version of Rosser theorem dealt with a particular Rosser-type
provability predicate that we call Rosser’s. Let T be a consistent r.e. arithmeti-
cal theory and Σ1-formulas P (a) and R(a) define the sets of Gödel numbers of
provable and refutable formulas of T , respectively. Without loss of generalty
we may assume that P (a) has the form ∃yP0(a, y), where P0 is an elementary
formula, and, similarly, R(a) has the form ∃yR0(a, y). (Under a natural ele-
mentary Gödel numbering, e.g. the one described in the next section, and under
the assumption that the set of axioms of T is elementary, the formula P0(a, b)
can be chosen to express the predicate “b is the Gödel number of a proof of

D
R

A
FT

Provability, Computability and Reflection 47

the formula a in T ,” and R0(a, b) as “b is the Gödel number of a proof of the
negation of a in T .”)

Rosser’s provability predicate PR(a) is then defined as follows:

PR(a) :↔ ∃y (P0(a, y) ∧ ∀x ≤ y ¬R0(a, x)).

Informally, PR(a) says that there is a T -proof of a formula A, with pAq = a,
such that there is no T -proof of ¬A having a smaller Gödel number. Clearly,
PR(a) is a Σ1-formula.

Lemma 3.8. PR(a) separates the sets of provable and refutable sentences of T
in (any extension of) BA.

Proof. The proof is very similar to that of Lemma 2.15 and, in fact, easier. To
show that BA proves PR(pAq) for every provable sentence A, we notice that,
since T is consistent,

BA ⊢ ∃y (P0(pAq, y) ∧ ∀x ≤ y ¬R0(pAq, x)),

by Σ1-completeness.
To show that BA proves ¬PR(pAq) for every refutable sentence A we reason

as follows.
Since T ⊢ ¬A, for some n the Σ1-formula R0(pAq, n) is true and provable in

BA. Reasoning within BA assume P0(pAq, y). There are two cases: y ≤ n or
n ≤ y. In the first case, since T is consistent and R0(pAq, n) holds, the formula
∀z ≤ n ¬P0(pAq, z) is true and provable in BA by Σ1-completeness. But this
contradicts the assumption P0(pAq, y).

In the second case we obtain ∃x ≤ y R0(pAq, x) taking n for x. So, we have
shown that BA proves

∀y (P0(pAq, y) → ∃x ≤ y R0(pAq, x)),

which implies ¬PR(pAq), q.e.d.

Theorem 3.9 (Rosser). Let T be a consistent r.e. arithmetical theory con-
taining BA, and a sentence A satisfy

T ⊢ A↔ ¬PR(pAq).

Then T 0 A and T 0 ¬A.

3.27. Comparing incompleteness proofs. We round up the discussion of
Gödel’s First Incompleteness Theorem by comparing various proofs of incom-
pleteness for the simplest and the most important case of PA. We have five
proofs by now: 1.18, 2.13, 2.21, 3.7, and 3.9. They all use increasingly more and
more involved techniques, and apply to increasingly wider classes of theories.
Yet, are all of them really different in the situation where the simplest idea —
simulating Turing machines in arithmetic — already works?

D
R

A
FT

48 Draft version 25.02.2006, Lev D. Beklemishev

An important feature of the incompleteness proofs of Theorems 3.7 and 3.9
is their constructive character, that is, they allow to construct independent
sentences for a theory T explicitly and effectively.

Recall that a Σ1-formula numerating an r.e. set in BA is just the definition of
this set in the standard model (explicitly constructed in Theorem 1.12, given an
appropriate Turing machine program). Similarly, a formula separating a given
pair of disjoint r.e. sets is constructed in a more tricky way, but nonetheless
explicitly, in Theorem 2.17. Alternatively, one can take the above Rosser’s
provability predicate as a formula separating provable and refutable sentences
of a given (Σ1-sound, sufficiently strong, r.e.) theory T . Furthermore, the proof
of the fixed point lemma also provides an explicit construction of a fixed point.
Thus, Theorems 3.7 and 3.9 show two different ways to exhibit independent
sentences for T . In fact, these sentences can be effectively constructed from
a Turing machine enumerating the set of axioms of T . These sentences will
be fairly long, if one indeed proceeds via Theorem 1.12 — mainly because the
Turing machine enumerating T has a long program. Yet, for example, we can
estimate their arithmetical complexity without actually writing them out. (In
the next section, for a more delicate analysis, we will have to write them out,
but we shall do it by directly encoding the syntax of arithmetic in itself, thus
economizing our programming efforts.)

Corollary 3.10. Under the assumptions of Gödel-Rosser theorem 2.21, there
is an independent sentence for T of complexity Π1. (Its negation is also inde-
pendent and Σ1.)

Proof. Let
T ⊢ A↔ ¬P (pAq),

where P is a Σ1 Rosser-type provability predicate for T . We know that (under
the relevant assumptions) A is independent from T . Hence, so is the equivalent
Π1-sentence ¬P (pAq), and its Σ1 negation P (pAq), q.e.d.

Let us show that the recursion-theoretic proofs 1.18, 2.13, and 2.21, although
non-constructive in their present form, can be modified to produce examples of
independent sentences. Recall that the r.e. undecidable set K is creative, that
is, for any r.e. set Wm such that K ∩Wm = ∅, one can (effectively in m) find a
point x such that x /∈ K ∪Wm.

Let K(a) be a Σ1-formula numerating K in PA (or in the standard model).
As the proofs of 1.18, 2.13 go, under the assumption of completeness of PA,
¬K(a) numerates in PA the complement of K, which contradicts undecidability
of K by Post’s theorem. But in reality — we know that PA is actually incom-
plete — ¬K(a) only numerates a certain r.e. subset K ′ of the complement of
K. An index of this subset can be found effectively from the Gödel number of
¬K(a) and the index of an enumeration of the set of theorems of PA. Using
creativeness of K we obtain a number m such that m /∈ K ∪K ′, which implies
that neither K(m), nor ¬K(m) can be provable. So, creativeness of K yields
a constructive version of the first two proofs of Gödel’s theorem. Notice that

D
R

A
FT

Provability, Computability and Reflection 49

the example of an independent sentence thus obtained also has arithmetical
complexity Π1.

Now let us examine the recursion-theoretic content of the proof of 3.7, which
is based on the fixed point lemma and numerability of r.e. sets in PA. Recall
that provability in PA provides a universal model of computation: r.e. sets X
can be indexed by Gödel numbers of formulas A(a) such that, for all n ∈ N,

n ∈ X ⇐⇒ PA ⊢ A(n). (2.7)

For the provability model of computation one can, of course, reformulate all the
results valid for the Turing machine model. Recall that the creative set K was
defined as the diagonal set {x ∈ N | x ∈ Wx}. By (2.7), the role of Wx now
plays the set

{n ∈ N | PA ⊢ A(n)},

where pAq = x, or equivalently,

{n ∈ N | N � P (suba(x, n))},

where P (a) defines the set of theorems of PA in the standard model. The analog
of K is then defined (numerated) by the formula P (suba(a, a)).2

Repeating the constructive version of the proof of 2.13 above, we consider
the set numerated by ¬P (suba(a, a)) and calculate its index (Gödel number) m.
According to that proof, the sentence ¬P (suba(m,m)) has to be independent.
No doubt, the attentive reader has already noticed that we have just written
out the solution of the fixed point equation

N � A↔ ¬P (pAq)

given by the proof of the fixed point lemma. Thus, 3.7 boils down to essentially
the same proof as (the constructive versions of) 1.18 and 2.13; the only difference
is in the chosen model of computation.

For the analysis of Rosser’s theorem we use an effective version of the notion
of recursively inseparable pair of r.e. sets. Disjoint pairs of r.e. sets can be
identified with computable partial 0–1-valued functions (see Section ??). The
standard example of a recursively inseparable pair of r.e. sets is just the function
Φ(x, x) that cannot be extended to a total recursive one. It has the stronger
property that, for any computable 0–1-valued function f(x) extending Φ(x, x),
one can effectively (in the index of f) find an element m such that f(m)↑. A
pair of disjoint r.e. sets (R,S) or the corresponding characteristic function χR,S

having this property is called effectively inseparable.
The dual numerability model of computation indexes χR,S by the Gödel

number of a formula A such that A numerates R, and ¬A numerates S in PA.
The diagonalized universal function Φ(x, x) is then indexed by the Gödel num-
ber of the formula Q(suba(a, a)), where Q(a) dually numerates provable and

2In the discussion below we sloppily write P (suba(a, a)) instead of a more complex formula
∃y (P (y) ∧ suba(a, a) = y).

D
R

A
FT

50 Draft version 25.02.2006, Lev D. Beklemishev

refutable sentences in PA (we will see in the next subsection that such a for-
mula exists, which also shows that our representation of 0–1-valued computable
functions is adequate). If R and S are effectively inseparable, from any for-
mula B(a) such that δB extends χR,S , that is, if B separates R and S, we can
effectively find a number m such that δB(m)↑. This means that for the case
of Φ(x, x) neither B(m), nor ¬B(m) is provable in PA, and yields an effective
version of Gödel-Rosser theorem 2.21.

In order to compare it with the classical proof of Rosser’s theorem 3.9, we
notice that by the construction of Φ(x, x) (see Section ??) the number m that
effects the inseparability of Φ(x, x) is chosen as an index of the function

g(x) :=







0, if δB(x) = 1,
1, if δB(x) = 0,
undefined, otherwise.

This function coincides with δ¬B . Now, if P (a) separates the sets of prov-
able and refutable sentences of PA, the function corresponding to the for-
mula P (suba(a, a)) extends the one for Q(suba(a, a)). Hence, for B(a) one
takes P (suba(a, a)), m := p¬P (suba(a, a))q, and the independent sentence
¬P (suba(m,m)) coincides with the standard solution of the fixed point equation

N � A↔ ¬P (pAq).

This means that the (effective version of the) second proof of 2.21 is essen-
tially the same as the proof of Rosser’s theorem 3.9 modulo the choice of the
computation model.

Thus, we have encountered essentially only two different incompleteness
proofs — roughly, Gödel’s and Rosser’s. In the next section we shall see that
the canonical provability predicate for PA is not PA-provably equivalent to any
Rosser-type provability predicate. Moreover, the diagonal sentences produced
by Gödel’s and Rosser’s proofs are inequivalent. All this can be interpreted as
an evidence of the fact that the two proofs are essentially different.

3.28. Ehrenfeucht-Feferman and Putnam-Smullyan theorems. In the
previous chapter we have dealt with the two important models of computation
related to provability in formal theories: numerability of r.e. sets and dual nu-
merability of pairs of disjoint r.e. sets. Here we are concerned with the question
under what conditions these models are universal.

Let T be an r.e. theory containing BA. Theorem 2.10 shows that, if T
is Σ1-sound, a set is numerated in T iff it is r.e. Ehrenfeucht and Feferman
showed that the same is true under the mere assumption of the consistency
of T . Putnam and Smullyan strengthened this by showing that any pair of
disjoint r.e. sets is dually numerated in T , provided T is consistent. This means
that under the minimal assumtions on T dual numerability in T also provides
a universal model of computation. We present a proof of these results due to
Shepherdson.

D
R

A
FT

Provability, Computability and Reflection 51

First, we introduce some useful notation. Let ∃xA0(x) and ∃xB0(x) be any
two Σ1-formulas (possibly containing parameters), with A0 and B0 elementary.
We write ∃xA0(x) ≺ ∃xB0(x) to abbreviate the formula

∃x (A0(x) ∧ ∀y ≤ x ¬B0(y)).

Notice that, within BA, any Σ1-formula is provably equivalent to the one with
a single leading existential quantifier, e.g.,

BA ⊢ ∃x1∃x2A0(x1, x2) ↔ ∃x∃x1, x2 ≤ x A0(x1, x2).

Thus we shall sloppily use the ≺ notation for arbitrary Σ1-formulas (and formu-
las logically equivalent to them).3 On the proof-theoreticians’ slang the ≺ sym-
bol is usually called witness comparison, and one calls the numbers x satisfying
A0(x) and B0(x) witnesses of the formulas ∃xA0(x) and ∃xB0(x), respectively.

Theorem 3.11 (Putnam-Smullyan). Let T be a consistent, r.e., arithmeti-
cal theory containing BA. Then every pair of disjoint r.e. predicates has a Σ1

dual numeration in T .

Proof. To simplify notations, we shall only prove this theorem for the case
of unary predicates (sets). Let A(x) :↔ ∃yA0(x, y) and B(x) :↔ ∃yB0(x, y)
be the Σ1-formulas defining the given sets in the standard model, and let
P (x) :↔ ∃yP0(x, y) define the set of theorems of T , where A0, B0, P0 are ele-
mentary. Consider a solution of the following parametric fixed point equation
(Sheperdson’s fixed point):

BA ⊢ F (x) ↔ (P (neg(pF (ẋ)q)) ∨A(x)) ≺ (P (pF (ẋ)q) ∨B(x)) . (∗)

Here neg(z) represents in BA the function mapping the Gödel number of a
formula z to the Gödel number of its negation:

neg(z) :=

{
p¬Cq, if z = pCq, C a formula,
0, if no such C exists.

Obviously, formulas on both sides of ≺ can be translated as proper Σ1-formulas.
More carefully, P (neg(pF (ẋ)q)) is written as

∃y, z (pF (ẋ)q = y ∧ neg(y) = z ∧ P (z)).

By Lemma 3.3 (ii) a solution F (x) exists. We show that the formula F (x) dually
numerates (A,B) in T . There are four implications to prove.

(a) Assume T ⊢ F (n). Let m be the Gödel number of a proof of F (n) in T .
Since m witnesses the right hand side of ≺ and T ⊢ F (n), provably in T there
should be an earlier witness of the left hand side:

T ⊢ ∃x ≤ mP0(p¬F (n)q, x) ∨ ∃x ≤ mA0(n, x). (2.8)

3The formulas A1 ≺ B and A2 ≺ B, for graphically different logically equivalent A1 and
A2, in general, need not be BA-equivalent. Yet all the uses of ≺ notation in this book work
whichever of the equivalent variants the reader would take.

D
R

A
FT

52 Draft version 25.02.2006, Lev D. Beklemishev

Here we used the fact that, for the given numeral n, neg(pF (n)q) = p¬F (n)q
holds provably in BA.

Since T is consistent, the elementary formula

∀x ≤ m ¬P0(p¬F (n)q, x) (2.9)

is true and provable in BA. Combining (2.8) and (2.9) together we obtain
T ⊢ ∃x ≤ m A0(n, x). Therefore, N � ∃x ≤ m A0(n, x), for otherwise by
Σ1-completeness T would be inconsistent. Hence N � A(n).

(b) Assume N � A(n). Since A and B define disjoint sets, we have N 2 B(n),
and hence for some m witnessing A(n),

BA ⊢ A0(n,m) ∧ ∀x ≤ m ¬B0(n, x). (2.10)

Now we consider two cases. If ∀x ≤ m ¬P0(pF (n)q, x) is true, a witness of
A(n) appears earlier than any witness of P (pF (n)q) ∨ B(n). Hence the right
hand side of the fixed point equation (∗) is true and provable in BA by Σ1-
completeness. It follows that F (n) is provable in BA and T .

If ∀x ≤ m ¬P0(pF (n)q, x) is false, then, by the meaning of this formula,
again F (n) is provable in T . Thus we have shown that in each case T ⊢ F (n).
Notice that (a) and (b) just proved show that F (x) numerates A in T . The
proof of the fact that ¬F (x) numerates B in T is roughly symmetrical (with
the roles of A and B, F and ¬F interchanged). We leave it as an excercise for
the reader, q.e.d.

Corollary 3.12 (Ehrenfeucht-Feferman). Let T be a consistent, r.e.,
arithmetical theory containingBA. Then every r.e. predicate has a Σ1-numeration
in T .

Proof. For a given r.e. predicate A consider a formula dually numerating the
pair (A, ∅) in T , q.e.d.

Notice that, unlike for the case of Σ1-sound theories, the numeration con-
structed in Corollary 3.12 essentially depends on the theory T . Excercise ??
shows that this cannot be avoided.

3.29. Notes.

