1 Linear independence

A subset L C R" is called a linear space, if it is closed under 4+ and multi-
plication by a real number, that is,

e .yl = ZT4+YeL;

ezcl = MelL forall \eR

If Ly C L, are linear spaces, then L is called a subspace of L.

Examples. {0}; R?; the set of vectors {\a : A € R}, where @ is any fixed
vector.

Important example. The set of all solutions of a homogeneous system of
linear equations Az = 0 is a linear space.

Proof. We have to show that L = {Z : AZ = 0} is closed under + and
A-. If AT =0 and Ay =0, then A(T + ) = AT + Ay = 0, using properties
of matrix multiplication. Similarly, A(\Z) = \Az =

.O |

Definition. Linear span of vectors Ti,...,Z; is the minimal linear space
L containing all of them. It can also be defined as the set of all linear
combinations of the form A\;Z1 +-- -+ ATy for Ay, ..., A\ € R". (Check that

it is indeed a linear space!) Denoted L = (Z1,... , ).

Definition. Zi,...,Zj are linearly dependent if there is a nontrivial linear
combination of them, which is equal O:

ATy + -+ N =0,
where not all \; = 0. Otherwise, Zi, ... ,Zy are called linearly independent.!
Examples.

1. Any set of vectors containing 0 is linearly dependent.

2. If £ # 0, then {z} is linearly independent.

'In the list zy,..., s some vectors may occur several times in which case they are
linearly dependent (why?). So, the notion of linear dependence really applies to multisets
of vectors.



Important example. Consider n vectors €; = (0...010...0), where 1
occurs in position ¢. These are linearly independent.
Proof: consider a linear combination

/\lél++)\nén:()

Look at the i-th component of the vector on the left hand side. It is the sum
of the -th components of vectors A;e;. But ¢-th component of €; equals 0,
unless j = %, so only A;e; remains, whose ¢-th component is );. But on the
right hand side we have 0, whose i-th component is 0, so A\; = 0. This can
be done for any i, so all coefficients have to be 0.

Definition. Dimension dim(L) of a vector space L is the maximal number
k such that there are k linearly independent vectors in L.

Examples. dim({0}) = 0; dim((z)) = 1, if Z # 0; dim(R") = n. (We
already know n linearly independent vectors é; in R”. We shall see below
that there cannot be more than n linearly independent vectors in R™.)

Problem. Given k arbitrary vectors, how to check if they are linearly in-
dependent?

Solution: Write the given vectors as columns in a matrix X = (21| - - - |7y).
Consider a vector A of k (unknown) coefficients A1, ... , A\x. We have in matrix
notation

Xj\z)\lf1+"'+)\k.fk,

hence the vectors are linearly independent if and only if the system of linear
equations X\ = 0 has only the trivial solution A = 0. But we can solve sys-
tems of linear equations by Gaussian elimination method. Bring the matrix
X to a staircase form and examine, if all of its columns are basis columns
(corresponding to basis variables of the associated system).

Example. Consider from this point of view the case of n 4+ 1 vectors in
R™. Matrix X will have n + 1 column and only n rows. So, there cannot be
more than n “steps” in the staircase form of it. “Steps” correspond precisely
to basis variables, therefore there has to be at least one parametric variable!
Conclusion: n+1 vectors in R” cannot be linearly independent, dim(R") = n.



2 Rank of a matrix

Definition. Column rank of a matrix A is defined as the maximum number
k such that there are k linearly independent vectors among its columns. Row
rank of A is defined similarly. Denoted rk.,(A) and rk,,,(A), respectively.

Theorem 1 For any matriz A, rk.(A) = rk,..(A).

Proof. The proof consists of 4 steps:
1. Elementary transformations preserve column rank.
2. Elementary transformations preserve row rank.

3. One can bring any matrix by elementary transformations to a staircase
form.

4. For a staircase matrix both ranks are equal.

We already know 3.

Proof of 1. We know that elementary transformations preserve the set of
solutions of the system of linear equations with a given matrix. Consider a
matrix A’ corresponding to a maximal linearly independent set of columns of
A2 The system A’\ = 0 has only a trivial solution (by linear independence).
Hence, the transformed system has the same property, and the corresponding
columns of the transformed matrix A have to be linearly independent, too.
Therefore, column rank does not decrease. But it also cannot increase, be-
cause elementary transformations are invertible. (Otherwise, the rank would
decrease under the inverse transformation.)

Proof of 2. Again, it is sufficient to show that the rank does not decrease.
The transformation of type @ — Aa, where A\ # 0, obviously maps a linearly
independent set of vectors (containing or not containing @) to a linearly
independent one. The claim is also obvious for the transposition of two rows,
because the set of rows remains the same.

Consider now the transformation

a—a+b

applied to a pair of rows of A.
We need a little lemma.

2That is, any linearly independent set of rk., (A) columns.



Lemma 1 AssumeZ4,... , T are linearly independent vectors, buty, %1, ... , Ty
are linearly dependent. Theny € (Z1,...,Tk), that is, § equals a linear com-
bination of x;.

Proof. Assume
Mof + MZy + -+ \eZp = 0.

If \g = 0, we also obtain \; = 0 for ¢ > 1 from the linear independence of
Z1,...,Tr. Otherwise, we have

_ A1 _ Ak _
= ——1 — "+ — —1T
Yy )\0 1 )\0 ks
q.e.d.
Consider now a maximal linearly independent set of rows a1, ... ,a; in A.

If @ does not occur in this set, the same rows will occur in the transformed
matrix, so the rank does not decrease.

So, assume that @ occurs in this set, say @ = a;. Consider the row b. If
b,as, ... ,a are linearly independent, we are done, because b is also a row of
the transformed matrix (we found k linearly independent rows).

If this is not the case, b € L := (@, ... , ax) (use the lemma). Now either
a+b, @y, . .. ,ay are linearly independent, and we are done for the same reason
as above, or they are linearly dependent and then @ + b € L. Together with
b € L this implies @ = (@ + b) — b € L contradicting the assumption that
a, ds, ... ,a, were linearly independent.

Proof of 4. In a staircase matrix (simplified by Jordan elimination) both
ranks equal the number of “steps” in the stairs: all (say, k) nonzero raws form
a maximal linearly independent set. Basis columns are just the columns of
the form é;, for 7 < k. As we have seen, they are linearly independent.

We only need to see that there cannot be more than £ linearly indepen-
dent columns. We proceed as follows. A staircase matrix can be simplified
even further by elementary transformations with its columns. These change
neither column nor row ranks, because they are equivalent to the elementary
row transformations with the transposed matrix. Using elementary column
transformations one can bring the staircase matrix to a form where each row
is either a zero vector, or is one of the vectors ¢;, for i < k. A set of more
then k£ columns of such a matrix would always contain a zero vector thus
being linearly dependent, q.e.d.



Thus, rank of matrix makes sense independently of whether we consider
rows or columns and can be denoted 7k(A) = rk,..(A) = 1k, (A).

Transposition of a matrix maps columns to rows and vice versa, hence we
also have

Corollary 2 rk(A) = rk(AT).

3 Bases and coordinates

Definition. A list of vectors Zi,...,Z; is called a basis in a vector space
L if the following conditions hold:

1. {Z1,...,Zk) =L ;
2. Ty,...,T, are linearly independent.

Theorem 2 If Z,,...,ZT; is a basis in L, then for every vector §j € L there
are uniquely defined M1, ..., \y € R such that

gz/\l.fl‘f‘""i‘)\ki'k.
These coefficients are called coordinates of § with respect to the given basis.

Proof. Existence follows from Condition 1. If there were another linear
combination
y=NZ1+ -+ N Ty,

we would have (subtracting the second from the first)
0= (A= A)Z1L+ -+ (A — Xp) T
Condition 2 then implies A\; — A} = 0, for all 7, q.e.d.
Bases are usually given by matrices whose colums are the basis vectors,

which we write as (Zi|- - -|Zg)-

Important example. The standard basis in R" consists of vectors é;, i =
1,...,n introduced above. The corresponding matrix is the unit matrix £ .
Coordinates of any vector w.r.t. the standard basis are just its components.



Example. The vectors Z; = (1,2) and Z, = (1,3) form a basis in R?.
Indeed, they are linearly independent. Yet, together with any other vector
7 they form a linearly dependent system, because dim(R?) = 2. Hence by
Lemma 1 g € <f1,.’f32>.

In a similar manner it is easy to see that, if dim(L) = n, then any set of
n linearly independent vectors in a vector space L is a basis.

Problem. Given a basis and a vector Z in L find its coordinates.

Solution: assume a basis in L is given by its matrix X. The coordinate
vector \ satisfies the following equation: XA = Z. To find A solve the
corresponding system of linear equations. (Its unique solvability precisely
means that the coordinates are uniquely defined.)

Theorem 3 If dim(L) = k, then any basis in L has exactly k elements.

Proof. It cannot have more than & elements, because those basis vectors
have to be linearly independent. Assume the basis has m < k elements,
given by an n x m matrix X, and consider the matrix whose columns are the
coordinates of a maximal linearly independent system of k vectors #1,... , ¥k
(which exists because dim(L) = k) in the given basis. This is an m X k
matrix, say A. By the solution of the previous Problem, we have Xa; = ;,
where a; is the i-th column of A. In matrix notation this can be written as
XA=Y, whereY = (41 | ... | T)-

The column rank of A is equal to its row rank, which is < m. But then
the colums of A have to be linearly dependent, that is, a nontrivial solution
AX = 0 exists. Then the same \ satisfies

(XA = X(A\) = X0=0.

Hence we have YA = 0, which gives a nontrivial linear combination of the
linearly independent set of k£ vectors, a contradiction, q.e.d.

Consider a special case of R*. Any linearly independent set of n vectors
forms a basis in R*. The corresponding matrix X is a n X n matrix of rank
n. Such matrices are called regular. If 7k(X) < n, it is called singular.

Changing a basis. If you go from one basis, say éi,...,é, , to another

basis €,...,é,, you can uniquely define the corresponding n x n transfer



matriz S, whose columns are the coordinates of the new basis vectors w.r.t.
the old one. It satisfies the following matrix equation:

(€] --len) = (ex -~ len)S.

Also notice that matrices (é,]---|é,) and (€&)|---|é,) can be thought of as
the transfer matrices from the standard basis to the given ones.

If you go now from €,... e, to a third basis €/,... ,e!! with a transfer
matrix S’, you obtain

(€f] - - len) = (8] ---|e,) ",

and hence

(€1]---len) = (&r] - |en)SS".
Thus, SS’ is the transfer matrix from the first to the third basis. We have
shown that transfer matrices multiply, if one changes basis several times.

Important problem. What is the relationship between the coordinates of
a vector in the first and the second basis?

Solution: Coordinates X' of a vector Z in basis &}, ... , &, satisfy Ex\ = 7,
where FEy = (€)|---|€),) is the matrix of the second basis. We have a similar
equation for the coordinates ) of Z in the first basis. But Fj is the product of
the matrix of the first basis and the transfer matrix: Fy = E;S. Therefore,

ElsXI =I= El/_\,

that is, A = S\ (coordinates are uniquely defined).

4 Inverse matrix

A matrix B is called inverse to A, if AB = BA = E. This is only possible,
if A and B are square n X n matrices.
Not every square matrix has an inverse (think about zero matrix), but if

the inverse exists, then it is uniquely defined.
Proof. If AB1 = BlA = F and AB2 = BQA = E, then

Bl == BlE = Bl(ABQ) == (BlA)BQ == EBQ == BQ.

The inverse to A, if exists, is denoted A~!. If the inverse exists, A is
called invertible.



Theorem 4 A is invertible if and only if A is reqular.

Proof. Assume A is invertible. To show that A is regular we invoke an
independently useful lemma.

Lemma 3 rk(BA) < rk(A).

Proof. Notice that any linear dependence among the columns of A with
coefficients A is expressed in matrix form by the equation A\ = 0. For such
A we also have

(BA)X = B(AX) = B0 = 0.

This means that the same linear dependence holds for the columns of the
matrix BA. Hence, its rank cannot exceed that of A, q.e.d.

From this lemma, assuming B is the inverse of A, we can conclude
n=rk(E) =rk(BA) <rk(A) <n,
hence rk(A) = n.

Assume A is regular, then its columns form a basis a,...,a, in R".
Let é1,...,€, be the standard basis. Consider the transfer matrix X from
ai,...,0, to €1,...,&,. Since transfer matrices multiply, we have AX = F

(go from the standard basis to the basis of column vectors of A and back).
Similarly, we have X A = E (go from the basis of colums of A to the standard
one and back), q.e.d.

Problem. How to calculate the inverse of a given matrix A?
Solution. Column vectors Z; of A~! satisfy the following systems of linear
equations:

A.Q_?l = él
ATy, = &y
Az, = e,
Here e, ... , €, are the standard basis vectors. Calculating solutions can be

done by bringing A to a unit matrix form by elementary transformations (fa-
miliar Gauss—Jordan elimination), while doing the same transformations to
a unit matrix. Transformations of the unit matrix simultaneously represent
those of all the right hand side vectors. The transformed unit matrix will be
the inverse of A.



5 Bilinear and quadratic forms

Bilinear form is a function f : R* x R®" — R satisfying the following condi-
tions, for any vectors Z, 7, Z', ' and numbers \:

AL, ) = Af(Z,9);
T+7,9) = f(z,9) + [(Z',9);
,/\g) - )‘f(i'ag);

,y+9) =19+ f(Z,7)

Kl

L f(
2. f(
3. f(
4. f(

Conditions 1 and 2 are called ‘linearity in the first argument’.

f is called symmetric, if f(Z,y) = f(g,Z). f is called skew-symmetric, if
f(i"g) = _f(ga j)

Given a basis €y, ... , &, (not necessarily standard), we can associate with
a bilinear form its matriz A = (a;;) such that a;; = f(€;,€;) for 1 <i,5 <n.
In other words, elements of the matrix are the values of f at all possible pairs
of basis vectors.

Let us see that this matrix uniquely determines the form. Indeed, if

=73, \€ and § =37 u;e;, then

f(z,y) = f(Z/\iei,ZMjej>
= Zf(/\iéiaz:]ﬂjéj)
= ZZf(/\z‘f;aﬂjéj)
- Z/\Zujf(éi,éj)

ij

This can be expressed as follows:

f(z,9) = A"Ap,



where A, i are the coordinate vectors of Z, 7 in the given basis, and A is the
matrix of f. Recalling that coordinates of a vector w.r.t. the standard basis
are just its components, we can simply write

f(z,9) =z"Aj,

if A is the matrix of the form in the standard basis.

Also notice that for any n x n matrix A the previous equation defines a
bilinear function (check it!). So, there is a canonical correspondence between
matrices and bilinear forms, provided a basis is fixed.

How does the matrix of a form change if one changes basis? Let S be the
transfer matrix, Z', 7' be the coordinates of Z, 7 in the first basis, and z", §"
in the second basis, respectively. We have 2’ = Sz” and ' = Sy”. Hence,

i,ITA:UI — (Si”)TA(Sg”) — f"T(STAS)y".

Since the matrix of a bilinear form in a given basis is uniquely defined, ST AS
must be the matrix of f in the second basis.

Example. Let a bilinear form be given in the standard basis by matrix

1 2 .. . . .
A= ( 3 5 ) Write its analytic expression in coordinates x, 2, Y1, Yo.

Answer: Calculating (z1,29)A ( zl ) yields
2
f(Z,9) = z1y1 + 32201 + 221Y2 + 572y,

Definition. Quadratic form is a function of the form
q(z) = f(Z,7),

where f is a symmetric bilinear form.
A quadratic form uniquely determines the associated symmetric bilinear

form, which can be recovered by
1
f(@,9) = 5(a(@ +9) —a(z) - a(y)).

Matriz of a quadratic form is the matrix of the corresponding bilinear form,
thus in a given basis we have

q(z) = AT A,

10



where ) are the coordinates of Z.

A basis is canonical for a quadratic form, if the form’s matrix is diagonal
and the string of diagonal elements a; has the form —1..- —11---10---0
(where some of —1’s, 1’s and 0’s may be missing).

Theorem 5 For every quadratic form there is a canonical basis.

The canonical basis need not be uniquely defined, the point is that at least
one exists! However, the matrix of the form in any canonical basis will be
the same. We shall show it later.

Proof (idea). You can do it with elementary transformations, if you apply
each elementary transformation symmetrically to the rows and the columns.
This cooresponds to applying to A the operations ST AS, for some (elemen-
tary) regular matrices S, q.e.d.

Typical excercise. Bring the quadratic form

1 2

2 4 1
1

to a canonical basis and find the corresponding transfer matrix.

Solution. To find the transfer matrix, the elementary transformations
applied to the rows of the matrix should also be applied to the unit ma-
trix. (The symmetrical transformations with the columns are ignored.) The
resulting matrix will be the transposition of the needed transfer matrix.

11
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Example. The following are all possible matrices of 2-dimensional quadratic
forms in a canonical basis and the corrsponding analytic expressions (in co-
ordinates T = (z1,Z2)):

(1) <(1] (1)) q(x) = 2 + x3;

@ (3 5) e =-at-ag
iy (3 1) a@ = —at+ag
@) (5 o) o =a

© (3 o) @ =-a

(vi) (g 8) ¢(z) = 0.

Matrices A of quadratic forms in a canonical basis are characterized by
two numbers: their rank rk(A) and index ind(A) = the number of —1’s in
the matrix.

13



Theorem 6 7k(A) and ind(A) are invariants, that is, do not depend on the
choice of a (canonical) basis.

As a corollary we obtain that the matrix of a form in any canonical basis
should be the same: the number of —1’s on the diagonal is determined by
ind(A) and the number of 0’s by 7k(A), respectively.

Proof. For rank this is easy to see, because multiplying a matrix by a
regular matrix does not change its rank: 7k(SA) < rk(A) by Lemma 3, and
rk(A) = rk(S1SA) < rk(SA) by the same lemma, hence 7k(SA) = rk(A).
But we also have

rk(AS) = rk((AS)T) = rk(STAT) = rk(AT) = rk(A).

It follows that for any transfer matrix S, rk(STAS) = rk(A).
Index of a quadratic form can be characterized as the maximal dimension
of a linear subspace L C R™ on which the form is negative definite:

Vie L (z#0=q(z) <0).

(The argument is not difficult, but we skip it.) Hence index is also invariant
and we can write ind(q) and rk(q) instead of rk(A) and ind(A).
If ind(q) = 0 and rk(q) = n, we say that the form is positive definite.
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