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A b s t r a c t .  This paper introduces the concept of n-valued groups and studies 
their algebraic and topological properties. We explore a number of examples. 
An important  class consists of those that  we call n-coset groups; they arise as 
orbit spaces of groups G modulo a group of automorphisms with n elements. 
However, there are many examples that  do not arise from this construction. We 
see that  the theory of n-valued groups is distinct from that  of groups with a given 
automorphism group. There are natural concepts of the action of an n-valued 
group on a space and of a representation in an algebra of operators. We introduce 
the (purely algebraic) notion of an n-Hopf algebra and show that  the ring of 
functions on an n-valued group and, in the topological case, the cohomology has 
an n-Hopf algebra structure. The cohomology algebra of the classifying space of a 
compact Lie group admits the structure of an n-Hopf algebra, where n is the order 
of the Weyl group; the homology with dual structure is also an n-Hopf algebra. 
In general the group ring of an n-valued group is not an n-Hopf algebra but it 
is for an n-coset group constructed from an abelian group. Using the properties 
of n-Hopf algebras we show that  certain spaces do not admit the structure of an 
n-valued group and that  certain commutative n-valued groups do not arise by 
applying the n-coset construction to any commutative group. 

1. I n t r o d u c t i o n  

Mul t iva lued  mapp ings  arise na tu ra l ly  in m a n y  par t s  of ma thema t i c s .  A 
very  famil iar  example  is t ha t  given by the  roots  of  a po lynomia l  of  degree 
n. Th is  m a p p i n g  can be  regarded  ei ther  as a mul t iva lued  funct ion of the  
coefficients of  the  po lynomia l  or as a single valued funct ion C n --+ (C)  n 
where  (C)  n denotes  the  symmet r i c  p roduc t  (and in this fo rm it is a dif- 
f eomorph ism) .  F rom a geometr ic  viewpoint ,  coverings give rise to na tu r a l  
general isa t ions  of  this example  and  several  o ther  classes of mul t iva lued  map-  
pings  have been  intensively s tudied  in a lgebraic  geomet ry  (see, for example  
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[H]). A particularly important class consists of those defined by algebraic 
correspondences and some of them arise naturally in the study of certain 
dynamical systems ([BP], [V]). 

The aim of this paper is the study of the algebraic and topological pro- 
perties of multivalued groups and we focus almost entirely on the case of 
n-valued groups. The general concepts associated with multivalued groups 
have been intensively studied from many viewpoints and in many contexts; 
a large bibliography is given in the survey article [Li]. The multivalued 
groups that  we study here can be regarded as a special class of hypergroups 
but  our emphasis on the n-valued case enables us to make a much more 
detailed analysis. An important class of examples are those we call n-coset 
groups; they arise as orbit spaces of groups G modulo a group A of auto- 
morphisms where A has n elements and give particular cases of Delsarte's 
explicit construction ([De]) in the theory of hypergroups. However, there 
are many examples that do not arise from this construction and we also 
give examples of 2-coset groups which arise as orbit spaces of two different 
groups. Thus we see that the theory of n-valued groups is distinct from that 
of groups with a given automorphism group. We introduce the concepts of 
actions and representations of n-valued groups; applications of these ideas to 
the study of some dynamical systems are given in [BV]. The definitions we 
introduce are entirely compatible with those that are familiar in the theory 
of groups and hypergroups [Li]. 

The topological aspects of multivalued mappings and branched coverings 
have been studied a great deal (see, for example [Ar], [Do]) and an important 
aspect is the study of the transfer map [BEG]. In another paper we make a 
fuller study of the notion of an n-ring homomorphism which can be regarded 
as a transfer and indeed is a generalisation of the classical trace. Some of the 
formulae that  are satisfied by n-ring homomorphisms are multiplicative in 
nature and give rise to rather surprising identities (and which are therefore 
satisfied by the classical trace). 

Given a group G and a contravariant functor F ,  such as a ring of functions 
on G or cohomology, it is natural to consider the Hopf algebra structure on 
F(G). If G is an n-valued group, then F(G) inherits an algebraic structure 
and it is natural to call it an n-Hopf algebra; we define this concept using 
purely algebraic axioms. Its main property is that the diagonal map is 
an n-ring homomorphism. The idea of an n-Hopf algebra gives a way of 
interpolating between a general co-algebra and a Hopf algebra (which is a 
l -Hopf  algebra). By analogy with the result ofH.  Hopf ([S] page 269) about  
the cohomology ring structure of topological groups, one can use information 
about  n-Hopf algebras to show that certain spaces cannot admit an n-valued 
group structure. In particular, we show that C P  2 does not admit a 2-valued 
group structure; this result has been extended by T. E. Panov [P]. 

2-valued formal groups were introduced in [BN] in order to describe the 
Pontryagin classes of tensor products of vector bundles and were a natural  
development of the formal group methods used in algebraic topology. The 
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theory of n-valued formal groups, with emphasis on their applications in 
algebraic topology, has been developed in a series of papers, starting with 
[B1] and summarised in the survey paper [B2]; the algebraic theory was de- 
veloped by A. Kholodov [Khl] and [Kh2]. The global theory was introduced 
in [B3] and the motivation came from problems arising in constructing in- 
tegrable systems based on addition theorems and the basic ideas were fur- 
ther developed in [BG]. The present paper introduces new concepts on which 
further developments of the theory can be based. A preliminary version of 
some of this work was prepared in 1994 and a summary [BR] has appeared. 
The paper has the following other sections: 

Main definitions. 
Examples and basic properties. 
Multivalued group structures on euclidean spaces and spheres. 
Actions and representations. 
Hopf algebras. 
Commutative, singly generated 2-coset groups. 
Examples of group algebras. 

1.1. A c k n o w l e d g m e n t s  

We are grateful to Toby Bailey and Antony Maciocia who, in 1993, calcu- 
lated the 2-valued groups of order < 4. The list they produced showed that  
there are a wide number of possibilities. We are also indebted to a referee 
who made a number of helpful suggestions. 

During the period when this work was carried out, V. M. Buchstaber was 
supported by a Royal Society Kapitza Fellowship in April 1993 and by an 
EPSRC Visiting Fellowship at the University of Edinburgh for six months 
over the period May 1994 to November 1996. 

2. M a i n  de f in i t ions  

If X is a space, let ( X )  n denote its n-fold symmetric product, i.e., ( X )  n = 

xn/~n where the symmetric group ~n acts by permuting the coordinates. 
An n-valued multiplication on X is a map 

# :  X x X - +  ( X F .  

1. p is associat ive  if the following diagram commutes 

1xD 
x 1 ( x p  • x . ( x  x x p  (~)~ 

x ~ ( x ) ~  ~ 

lx#-~ DxI ~(~)n 
x x ( x p  . ( x  x x )  ~ 
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where (1 x D)([xi ,x2, . . . , z~] ,x)  = [ (x i ,x ) ,  (x2, x ) , . . . ,  (xn,x)]  and D x 1 
has a similar definition. 

2. A strong left unit eL E X satisfies the condi t ion tha t  

#(eL, X) = IX, X , . . . ,  X] =: D(x). 

A weak left unit satisfies the condit ion tha t  x E #(eL,x),, i. e., there  is a 
map  EL: Z --+ (X) n-1 such tha t  #(eL, x) = [EL(x),x]. 

One also has the corresponding concept  of a right unit  and some obvious 
variants.  We usually assume tha t  there  is a s trong (two-sided) unit  e. If  
there  are bo th  s trong left and right units, it is easy to check tha t  they  must  
be equal. 

3. W he n  there  is a unit,  e, one can consider the existence of inverses. 
One requires a map  inv : X --+ X;  it gives a strong left inverse if 

#( inv(x) ,  x) = D(e) 

and a weak left inverse if e E #( inv(x) ,  x). There  are some interest ing examp- 
les where inv has to be taken to be a mult ivalued map. Similarly one can 
consider r ight inverses and two-sided inverses. 

For applications,  the following seems the most  useful. 

D e f i n i t i o n  2.1.  An n-valued group s t ruc ture  on X is a mapping  

x ( X F  

which is associative together  with a strong (two sided) unit  e E X and a 
weak (two sided) inverse inv : X ~ X. 

D e f i n i t i o n  2 . 2 .  A m a p  f : X -+ Y is a homomorph ism of n-valued groups 
if f(e) = e , f ( i nv (x ) )  = i nv ( f (x ) )  for all x E X and #r ( f ( x ) , f ( y ) )  = 
( f ) ~ # x ( x ,  y) for all x, y E X,  i.e., the following diagram commutes  

# x  
x • x , ( x )  

f •  

~Y 
Y • r . ( r )  

( f )  n 

Such a mapping  could be called a strong homomorphism. There  are 
weaker variants  t ha t  may  be useful in some circumstances.  
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3. E x a m p l e s  a n d  bas ic  p r o p e r t i e s  

(1) For each m E N,  an n-valued group can be regarded as an example 
of an ran-valued group by using the composit ion 

(D) TM 

G x C  �9 (G) . (c) 

(2) If  f : G1 ~ G2 is a (strong) homomorphism between two n-valued 
groups, then  Ker ( f )  = {x e G1 I f (x )  = e} is an n-valued group. 

(3) n-coset groups. 
Let G be any group and A a group of automorphisms of G with  # A  = n. 

Then  one can define an n-valued group structure on X = G / A  as follows. 
Let  7r : G --+ G/A  be the quotient map and define # : X x X ~ (X)  n by 

#(x,  y) = ~r(#o(Tr -1 (x), 7r-l(y))) where tto denotes the mult ipl icat ion on G. 
An n-valued group of this type will be called an n-eoset group. 
An impor tan t  special case is when # A  = 2, say A = {1, a}; then  the 

elements of X can be wri t ten  as {g, ga} and # as 

{g, ga} . {h, h a} = [{gh, g~ha}, {gha,gah}]. 

Another  impor tan t  example is the quotient of Z by its au tomorphism 
group; it arises natural ly  in the s tudy  [BV] of certain dynamical  systems. 
The quotient  can be identified with W = (k I k > 0, k E Z} and, wi th  this 
identification, the product  of k and ~ is [k + 6, ]k - ~1]. 

P r o p o s i t i o n  3.1. Let X = G/A  be a 2-coset group; then x * y = [z, z] if 
and only if either x or y is the image of a point fixed under A. 

Proof. Let x = {g, ga} and y = {h, ha}. Then, if x * y = [z,z], one has 
either gh = gh ~ or gh = gah. So either g or h is fixed under a. The other 
implication also follows from the formula given above for the product  *. [] 

W h e n  G is a commutat ive  group, we can consider the involution defined 
by the map g --+ g-1.  In the special case of a cyclic group, it is easy to 
construct  the mult ipl icat ion table for G/A. 

P r o p o s i t i o n  3.2. There is an example of a noncommutative group with an 
automorphism of order two whose associated 2-coset group is isomorphic to 
that obtained from the integers with its nontrivial automorphism. 

Proof. Let G be the infinite dihedral group, G = <a, b I a2 = b2 = e} with 
the au tomorphism a interchanging a and b. The elements of the 2-valued 
group G / A  are u2n = {(ab) ~, (ba) n } and u2~+1 = {b(ab) n, a(ba) n } for n > 0. 
The mult ipl icat ion is given by uk * ue = [uk+t, Ulk_el] and so this 2-valued 
group is isomorphic wi th  the example W considered above. [] 

Another  impor tan t  special case is where G is finite and A = G acts 
by inner automorphisms.  In this case X can be identified wi th  the set of 
conjugacy classes in G. 
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(4) Let H C G be a subgroup with # H  = n. Then the right coset 
space G / H  admits an n-valued multiplication using the formula Hx.Hy  := 
{Hxhy I h E H}. In this case, H is a strong left unit and a weak right 
unit. A two sided weak inverse is given by the multivalued map inv(Hx) := 
{ H x - l Y  I Y E H}. This often does not give an n-valued group. 

(5) However, X = H \ G / H  admits an n-valued group structure by the 
formula H x H . H y H  := {HxhyH I h C H}. In this case, H is a strong two 
sided unit and H x - I H  is a weak two sided inverse for HxH. 

(6) If G is a group and s is an indeterminate, let G -- G LJ {s}. Then 
has a 2-valued group structure by 

~(s ,  s) = e, 
~(~, e) = , ( e ,  s) = s, 
, ( s ,  g) = , ( g ,  ~) = g for all g e G \ {e) ,  

#(gl,g2) = { glg2 if gig2 • e, 
{e,s} if gig2 = e and gl # e. 

A straightforward application of Proposition 3.1 shows that  this example 
does not, in general, arise as a 2-coset group; indeed if G = Z / m  and m > 2 
then this is not a 2-coset group although for m = 2, one obtains the 2-coset 
group arising from Z/4 modulo its nontrivial automorphism. 

(7) The construction of the previous example introduces a square root 
s of the element e and, more generally, one can construct the multivalued 
extension of two groups G1 and G2 giving an exact sequence 

0 " G2 * G " G1 " 0 

where the multiplication * in G is defined as 

u , v  = u f o r u C G l , v c G 2 ,  
V l  * V  2 -~- V l V 2  forv~,v2 E G 2 ,  

j~ { G 2 }  when u l u 2  = e ~ G 1 ,  
Ul u2 [ ulu2 otherwise. 

(8) Let G denote the cyclic group of order m generated by the element 
x,. We define a 2-valued 'deformation' of G. Its elements can be identified 
with those of G and the multiplication is given by (with 0 _< r, s < m) 

x r+s f o r r + s < m ,  
~(x r , x  8) = {x r+8-% x~+~+l-.~} for m _< r + s. 

When m = 2, it is easily checked that  this example is isomorphic to the 
quotient of the cyclic group with three elements by its nontrivial automor- 
phism. On the set with two elements there is only one other 2-valued group 
structure, namely, the cyclic group. For m > 2, one can use Proposition 3.1 
to show that  this example does not arise as a 2-coset group. 

The following is a classification result for a class of finite 2-valued groups. 
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P r o p o s i t i o n  3.3. Let X = {x0 ,x l , . . .  , x m - 1 }  be a 2-valued group on a set 

with m elements  with multiplication �9 such that Xr*X, = Xr+s for  r + s  < m.  

Then either xr  * xs = x r + s - m  or [xr+s-m,  X r + s - m + J  for  r + s > m.  

Proof. It is clear that  x0 is the strong unit and that  inv(xJ  = Xm-1 since it 
cannot be one of the other elements. Let x l  * Xm-1 = [Xo, xe]. If g = 0 then 
X is the cyclic group and if g = 1 we get the deformed cyclic group of the 
previous example. Now suppose that  ~ > 1. Then, by associativity, the fol- 
lowing are equal: x m - e  * (x l  * x m - j  = X m - g  * [x0, xg] = [ X m - s  X r n - g ,  x0, xg] 
and ( X m - e * x l )  *Xm-1  = [Xm-g+l, Xm-g+l]*Xm-1 = [Xp, Xp, Xq, Xq] for some 
p, q and this is a contradiction. [] 

4. Mul t iva lued  group s tructures  on euc l idean  spaces  and spheres  

The spaces (C) n = c n / E n  and C n are identified using the map 

S: C n --+ C n 

whose components a re  g iven  b y  (zl, z 2 , . . .  , Zn) --+ er(Zl ,  z 2 , . . .  , Zn), 1 "( r < 
n, where er denotes the r th  elementary symmetric polynomial. It is often 
convenient to write the map S as the polynomial z n - e l z  n-1 + e2z n-2  - 

. . .  + (-1)~en whose roots are [zl, z2 , . . . ,  z~]. The projectivisation of the 
map S induces a diffeomorphism between (CP1) n and CP% 

4.1. T h e  addi t ive  n-valued group s tructure  on C 

Consider (C, +) with its automorphism z -+ wz  of order n, where w is a 
primitive n th  root of unity. We obtain an n-valued group structure on C / A  

where A denotes a cyclic group of order n. But C / A  is diffeomorphic to C 
by the mapping C / A  --+ C defined by z -+ z n. The multiplication is then 
given, for x, y 6 C by 

r ~ n  ) : l < r < n ] .  

The unit is 0 and the inverse of z is (-1)~z. Using the map S, one obtains 
the following polynomials for low values of n (note the interesting numerical 
coefficients): 

n = 2 :  

z 2 - 2 ( x + y ) z +  ( x -  y)2 = ( z + y + x ) 2  _ 4 ( x y + y z + z x ) ,  

n = 3 :  

z 3 - 3 ( x + y ) z 2 §  2 - 7 x y + y 2 ) z  - ( x + y )  3 -- ( z - x - y )  a - 2 7 x y z ,  

n=4: 

z 4 - 4 ( x §  2 - 6 2 x y §  2 - 4 ( x a + 3 1 ( x + y ) x y + y 3 ) z + ( x - y )  4 
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= ((z + y + x) 2 - 4(xy  + yz  + zx))  2 - 27(z + y + x ) x y z ,  

n ~ 5 :  

z 5 - 5(x + y)z  4 + 5(2x 2 - 121xy + 2y2)z 3 - 5(2x 3 + 381(x + y ) x y  + 2y3)z 2 

+5(x  4 - 121x3y + 381x2y 2 - 121xy 3 + y 4 ) z -  ( x -  y)5 

= ( z  - x - y ) 5  + 5 4 ( 5 ( x y  _ x z  - ~ z )  - ( z  - ~ - y ) 2 ) ~ y ~ .  

4.2.  T h e  a d d i t i v e  n ! - v a l u e d  g r o u p  s t r u c t u r e  o n  C n 

Using the map S, C n inherits an n!-valued group s t ructure  from the usual 
addi t ion on C ~. 

In the case n = 2, the multiplication map can be wri t ten as the compo- 
sition 

# Dx1  
C 2x0 2 , Cx(C) 2 , (CxO) 2 . 

Using the identification induced by the map S, the mul t ip l ica t ion/ i  can be 
wri t ten  as 

(xi,  x2)*(yi,  Y2) = (xi+x2,  2(y i+y2)+x ix2 ,  (Yi-Y2)2+(xi+x2)(xiY2+ylx2)) .  

4.3.  T h e  m u l t i p l i c a t i v e  2 - v a l u e d  group s tructure  o n  C 

Consider C* := (C \ {0},.) with its automorphism z --+ z -1 of order 2. 
The space C * / A  is identified with C using the map C* -+ C given by 
7r(z) = � 8 9  + z -1) and ~r-l(x) = x :k (x 2 - 1)}. Then 

x *  y = [xy + ((x 2 - 1)(y 2 - 1))�89 - ((x 2 - 1)(y 2 - 1))}]. 

This formula can be rewrit ten as the quadrat ic  z 2 - 2xyz  + x 2 + y2 _ 1. 
The unit  is 1 and the inverse of each element is itself. Under the change of 
variables x, y, z -+ x + 1, y + 1, z + 1 the polynomial  becomes z 2 - 2(x + y + 
x y ) z  + (x - y)2. 

Remark  4.1. The multiplication arising in Example 4.1 occurs as the n- 
valued formal group for cohomology and tha t  in Example 4.3 arises similarly 
in K- t he o ry  [BN]. 

Remark  4.2. It is proved in [B1], [B2] tha t ,  up to local change of coordinates,  
there are only two different 2-valued formal group laws on C,  the usual  
additive group and the one described in Example 4.1 above. 

Example  4.3 has a generalisation giving a multiplicative n!-group struc- 
ture on C n-1. It is given by the above coset construction where the sym- 
metr ic  group En acts on the commutat ive  group 

M = { Z l ,  z 2 , . . .  , Zn : Z l Z 2 . . .  Zn  ~--- 1} 

(with pointwise multiplication) by permuting the coordinates. The group 
M is isomorphic to C* • . . .  • C* (with n - 1 copies) and the quotient  by 
the symmetr ic  group is diffeomorphic to C n-1. 
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4.4. 2-va lued  g r o u p  s t r u c t u r e  ar i s ing  f r o m  C m 

The space c m / +  can be identified with the space Sym m of all m • m 
symmetric matrices of rank 1 by the map u E C TM --+ X ( u )  = u u  T. A 

calculation shows that  the product of X, Y C Sym m is given by the roots of 
the quadratic 

Z | - (Ol(X,Y) | Z-4- Z | O I ( X , Y ) )  + 02(X,Y)  

where |  Y) = X + Y, E)2(X, Y) = (X + y)| _ X~2 and X12 is X(u -I- 
v ) - X - Y  where u, v are defined (up to sign) by X = X ( u ) ,  Y = X ( v ) .  This 
is a direct generalisation of Example 4.1. Explicitly, if (32(X, Y) = (Oijkt) 

then Oijkt = x i j x k ~  - xkjYi~ -- x i~yk j  + YijYkl.  
The properties of the symmetric products (cm) n and multidimensional 

analogues of the algebraic equations are considered in detail in [GKZ]. 

4.5. 2 -va lued  g r o u p  s t r u c t u r e  on C P  1 

For a lattice A C C, the corresponding Weierstrass p - function defines 
a holomorphic mapping C/A --+ C P  1 and identifies C P  1 with the 2-coset 
group derived from the automorphism x ~ - x  of C/A. From the addition 
formula for p (see, for example [WW]) one obtains that  the 2-coset group 
structure on C P  1 is given (in the standard affine chart) by 

= - - x  - y +  -- 
x * y - x  y + ~ Y , ~ Y 

where x~ = 4x 3 - g2x - g3 and Yl, Y are similarly related. Hence the 2-valued 
structure is determined as the roots of the equation 

(z  + x + y ) ( 4 x y z -  g3) = x y  + y z  + z x  - - 4 ]  " 

The referee pointed out that  this form of the addition law for the 
function is given in [HC] page 171. 

We can also consider the Jacobi elliptic function sn(u) related (in the 
standard notation) to p via ~(u) = e~ + 1/sn2(u); its square defines an 
identification of C P  1 with the above 2-coset group and yields slightly more 
general formulae. The addition formula is 

2 k 
sn(u + v ) =  sn(u)(p(sn (v))2 + s n ( v ) ( p ( s n 2 ( u ) ) }  

1 - 

where p( t )  : 1 - 26t  + k2 t  2. Letting x = sn2(u) and y = sn2(v) gives that  
the 2-valued multiplication on C P  1 is 

x , y :  

(1)2]  2 - 

, i - 
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Ident ifying the symmetr ic  square of C with the space of quadrat ic  polyno-  
mials, the right hand side of this formula becomes 

z 2 - 2 x p ( y )  + YP(X) z + - y)2  

because xp(y)  - yp(z)  = (x - y)(1 - k2xy). Also, we have 

xp(y)  + yp(x) = (x + y)(1 + k2xy) - 45xy 

and hence (1 - k2xy)2z 2 - 2[(x + y)(1 + k2xy) - 45xy]z + x 2 - 2xy + y2 __ 
x 2 + y2 + z 2 _ 2k2xyz (x  + y + z) - 2(xy + yz  + zx)  + k4x2y2z 2 + 85xyz.  

In the  local coordinates  (x : 1), (y : 1), (z : 1) one has 

(x + y + z - k2xyz)  2 = 4(xy  + yz  + zx  - 25xyz).  

W h e n  k = 5 -- 0 we have the addit ive 2-valued group s t ruc ture  on C and 
when k = 0, 5 = - 1 / 4  we have the mult ipl icat ive s t ructure .  In the  general  
case, we can use the change of coordinates  

(x, y, z) --+ (Ax,  Ay,  Az)  

to ob ta in  a family of 2-valued group s t ructures  on C which are all equivalent 
topologically. 

Using the identif ication given by the map S we obta in  

P r o p o s i t i o n  4 .1 .  The map # : C P  1 • C P  1 --+ C P  2 defined by 

 ((x0 : x l ) ,  (y0 : y l ) )  = 

( ( x o Y o - k 2 X l Y l )  2 : - 2  ((x0yl +xlyo)(xoYo +k2x l y l ) -45xoYox ly l )  : ( x l y o - x o y l ) ~  

defines a 2-valued group structure on C P  1 if  and only if  k (k  2 -  52) ~ O, i.e., 
the elliptic curve for sn(u) is nondegenerate. 

Proof. The  map # is not  well defined at the point  (x, y) = ((x0 : xl), (?4o : yl)) if 
and only if the values of each of the three coordinates  of the produc t  is zero. 
The  vanishing of the first and last coordinates  is equivalent to the  condi t ion 
tha t  e i ther  x0 = x l  = 0 or y~ = k2y~ and x = y in C P  1. Subs t i tu t ing  the  
second of these into the second coordinate  yields the equat ion 2yoyl(y~ + 

2 2  2 2  k Y l ) -45YoY l  = 0 and we are assuming tha t  we also have y02 = k2y 2 without  
Yo--Yl  = 0 .  So e i t h e r k = 0 o r y ~ + k 2 y  2 - 2 5 y o y l = O a n d s o k  2 - 5 2  . Th e  

result  follows. [] 

By using the results of [ST], [C] one can find mult ivalued group s t ruc tures  
on C P  n and by [BS] also on weighted project ive spaces. 
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4.6 .  A n o n c o m m u t a t i v e  2 -va lued  g r o u p  o n  R 3 

The Heisenberg groups admit an automorphism of order 2 and so give rise to 
examples of 2-valued groups. The simplest example of a Heisenberg group 
is on R 3 with multiplication 

( x , > t ) ( x ' , y ' , t ' )  = (x + x ' , y  + y ' , t  + t' + 

and the automorphism changes the sign of the first two coordinates. One 
obtains a 2-valued group structure on the quotient space, which is easily 
seen to be homeomorphic to R 3. 

Similar constructions apply to Heisenberg groups in higher dimensions 
(associated to arbitrary bilinear forms) as defined, for example in [Au]. 

4.7. A 2 - va lued  g r o u p  o n  S 3 

Let G be a group and g E G an element whose square is central. Then the 
quotient of G by the inner automorphism induced by conjugation by g gives 
an example of a 2-valued group. As a special case, let G -- S 3, the unit 
quaternions and let g be a purely imaginary unit quaternion then g2 = _ 1 
and so is central. The quotient under conjugation by g is homeomorphic to 
S 3 as one sees as follows. 

First, by choosing the complex structure appropriately, one can assume 
(with no loss of generality) that  g = i. Secondly, every point of S 3 can be 
written in the form 

zl cosO + j z2s inO with z l , z2  E S1; 

this describes S 3 a S  the join of two circles, the first being S 1 C C and the 
second being j S 1 , i.e., S 3 = S 1 , j  S 1 . The action of conjugation by i preserves 
the join structure; it is trivial on the first circle and multiplication by - 1  on 
the second. The quotient is therefore homeomorphic to S 3 regarded as the 
join S 1 �9 :~1 where ~1 denotes the circle j S 1 / -  1. So one obtains a 2-valued 
group structure on S 3. 

5. A c t i o n s  and  r e p r e s e n t a t i o n s  

D e f i n i t i o n  5.1. I f X  is an n-valued group and Y a set, an action of X on Y 
is a mapping r : X • Y ~ (Y)~ such that  the following diagram commutes. 

l x 6  D x l  
Xx(XxY) , X X (y)n , ( X x y ) n  

# x l  1xD 
( X x X )  x Y  , ( X )  n x Y . ( X x y ) n  

~ n 

(y) 

For example, X acts on itself. 
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Another  example is: Let  H C G be a subgroup of order  n then  the n- 
valued group defined on the double coset space X -- H\G/H acts on the 
coset space Y = H\G by 

HxH.Hy := {Hxhy h E H}. 

D e f i n i t i o n  5.2.  A representa t ion  of an n-valued group X in an algebra A 
is a map  p :  X --+ A such tha t  p(e) = 1 and Avp(#(x ,  y)) = p(x)p(y) where 
Avp(#(x ,  y)) denotes  the  average value of p on the set #(x,  y), i.e., 

_1 f i  p(zi) if # ( x , y )  --- [ zz , z2 , . . . , z~ ] ,  then  A v p ( # ( x , y ) )  = n 
i = l  

An im por t an t  special case is when A is the algebra of endomorphisms  of 
a vector  space V. In this case, one has a linear representation of X on the 
vector  space V. 

5 .1 .  E x a m p l e s  

(1) W he n  X is a (single-valued) group these definitions agree with the 
usual definitions of a group act ion and of a representat ion.  

(2) If X is an n-valued group tha t  acts on the set Y and V denotes  
the vector  space spanned by Y, one obtains a representa t ion  of X on V as 
follows: 

If  r  y) = [Yl, Y~, . . . ,  Y~], let p(x) denote  the linear t ransformat ion  de- 
fined by 

1 
Y --+ - (Yl  +Y2 + - . .  +Y~).  n 

It  is tr ivial  to verify tha t  p defines a representa t ion  in the above sense. 

(3) As a special case consider the regular representa t ion  of the 2-valued 
deformat ion  of Z/m (Example  7 above). The  genera tor  is mapped  to  the 
rn • m mat r ix  

0 0 0 - . .  0 
1 0 0 . . .  0 ~ 

0 1 0 --- 0 0 

: : : " . .  : 

0 0 0 . . .  0 0 
0 0 0 . . .  1 0 

(4) Group algebras. 
For an n-valued group X,  the group algebra C(X) is the C vector  space 

spanned by X with mult ipl icat ion induced by 

xy = (zl + z2 +. . .  + Zn)/n 
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where the product of x and y in X is [zl, z2 , . . . ,  zn]. 
One has two linear representations of X in C(X) by left and right mul- 

tiplication. For example, left multiplication is defined by 

xy = Av(z * y) 

on the elements of X and extended by linearity. The obvious map X -+ 
C(X) is a representation. Any representation X -+ A has a unique extension 
to an algebra homomorphism C(X) -+ A. 

(5) Let C(S  1) denote the algebra of trigonometric polynomials on the 
circle. The subalgebra A of even polynomials has basis {cos(k0) I k _> 0}. 
The map p : W -+ A defined by p(k) = cos(k0) is a representation of W 
because the identity 

cos(k0)cos(e0) = (cos(k + e)0 + cos(k - e)0)/2 

becomes p(k)p(e) = Avp(k * g). Indeed, the linear map C ( W )  --+ A induced 
by p is an isomorphism. 

This representation can also be thought of as a map pl : W -+ C[t] where 
p'(k) = pk(t), the kth Chebyshev polynomial and so this representation is 
called the Chebyshev representation of W .  Note that  the elements of C[t] 
can be regarded as functions on the 2-coset group corresponding to the 
involution e iO -+ e -iO on S 1. 

This last example can be regarded as a special case of the following result 
which the referee kindly suggested that  we should include. 

P r o p o s i t i o n  5.1. Let X be the n-coset group G/A. Then the group algebra 
C(X)  is isomorphic to C(G) A, the subalgebra of A-invariants in the group 
algebra C(G). 

Proof. The map C(X) ~ C(G) is defined as the linear extension of the map 

1 E g ~ .  
s E A  

The image of this map clearly lies in C(G) A and it is easily checked that it 
is multiplicative. [] 

6. H o p f  a lgeb ra s  

When X has an n-valued group structure and F is a contravariant functor 
from a suitable category of spaces to a category of algebras then F(X)  can 
be given a Hopf algebra like structure. We investigate this general situation 
by first considering the important example where F(X)  is the ring C[X] of 
all complex valued functions on X. 
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Def in i t i on  6.1. The map Av : C[X] -+ C[(X) "~] is defined by 

Av( f ) [x l ,x~ ,  ,xm] 1 k f  ( 
m 

i=1  

Analogously, the maps err : C[X] --+ C[(X) m] are defined by means of 
e~[f(xl),  f ( x 2 ) , . . . ,  f(xm)], the elementary symmetric functions ([Mac]). 

De f in i t i on  6.2. If #(x, y) = [zl, z2,..., Zn] and f e C[X], let A f E C [ X •  ~- 
C[X] | C[X] be defined by 

1 n 

-E  ( A f ) ( x , y )  = Av( f ) (# (x , y ) )  = n f(zi) .  
i=1  

Remark 6.1. In general, one takes C[X x X] to be C[X]~C[X].  

L e m m a  6.1. h gives a coassociative coalgebra structure on C[X] and so, 
by duality, an associative algebra structure on C[X]* = Hom(C[X], C), the 
dual space of C[X]. 

Proof. Consider the map Av : C[X] --+ C[(X) ~2] and compose with the 
diagram for the associativity of an n-valued multiplication. [] 

In the case of a single-valued group, this gives a Hopf algebra structure 
on C[X] and indeed, a dual pair (C[X], C[X]*) of Hopf algebras. 

De f in i t i on  6.3. An n-Hopf algebra structure on a commutative algebra A 
over the field C with multiplication m : A | A ~ A and unit r/: C ~ A, a 
map of algebras, consists also of 

�9 a counit e : A -+ C, which is a map of algebras, 
�9 an antipode s : A --+ A, which is a map of algebras, 
�9 a diagonal A : A --+ A| a linear map making A into a coassociative 

coalgebra and 
�9 a map P : A -+ (A N A)[t] which assigns to each a E A a monic 

polynomial of degree n 

& ( t )  = t n - Z l e  n - 1  + . . .  + 

with fl~ = fl~ (a) C A | A. 

These are related in the following way. 
series 

For each a E A, introduce the 

a q 

as(t) := ~ t-gg7 E A[[t-1]]. 
q_>0 
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Axiom 1. The polynomial Pa(t) is such that 

A(aq) _ 1 d~ln(Pa(t)). Aaa(t)  = E tq+l n 
q>0 

Axiom 2 (unit). If 7(1) is denoted by 1, then A(1) = 1 @ 1. 

Axiom 3 (eounit). Let i l , i2 : A Q A -+ A be defined by i~(a | b) = 
e(b)a and i2(a | b) = e(a)b; then the composites i~A, i2A : A -+ A | A --+ A 
are both  equal to the identity. 

Axiom 4 (antipode). The map s : A --+ A satisfies m(1 @ s)Pa(7]e(a)) = 
0 and m(s  @ 1)Pa(ve(a)) = 0. 

Remark 6.2. An n-bialgebra will satisfy all these axioms except that  the 
existence of an antipode will not be assumed. 

Remark 6.3. In a future paper we hope to explore the properties of n-Hopf 
algebras over more general rings. 

L e m m a  6.2. A 1-Hopf algebra is a Hopf algebra (in the usual sense). 

Pro@ In this case P~(t) = t - / 3  with fl E A @ A, and by Axiom 1, 

1 
A ~ a ( t )  - 

t - ~ '  

SO A ( a  n) -~ [~n for each n a n d  therefore  A(a n) = ~n _~ ( A a ) n .  

For a l ,a~  e A, consider ala~ = �89 + a ~ )  2 - a ~ - 4 ] ;  thus 

A(a la~ )  = ~ [ A ( ( a l  + a2) 2) - A(a~) - A(a~)] 

= l [ ( A ( ( a l )  + A(a2))  2) - A ( a l )  2 - A(a2)  2] = A ( a l ) A ( a 2 ) .  

Hence, and using Axiom 2, one sees that  A is a ring homomorphism. 
The counit axiom for a Hopf algebra is exactly Axiom 3 above. 
By Axiom 4, m(1 | s)A(a) = ~ ( a )  = m(s  | 1)A(a), and so s gives an 

antipode in the Hopf algebra sense. [] 

D e f i n i t i o n  6.4. A morphism of n-Hopf algebras is a morphism of the un- 
derlying algebras and coalgebras which also commutes with the antipodes. 

P r o p o s i t i o n  6.3. If  X is an n-valued group, then C[X] is an n-Hopf algeb- 
ra. 
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Proof. By Lemma 6.1, C[X] with comultiplication A is a coassociative coal- 
gebra. We now check that  Axioms 1 and 2 hold for pointwise multiplica- 
tion. Using the n-valued multiplication #, we introduce for each function 
f C C[X] functions /3~(f) �9 C [ X  • X] by ~ ( f ) ( x , y )  = Gr f ( # ( x , y ) )  
where ar is the r- th elementary symmetric function. Then let Pf( t )  = 
t n --/311~ n-1  + . . .  -F (--1)n/3n, the polynomial whose set of roots is f (#(x ,  y)). 
Because ( fq)(x)  = ( f ( x ) )  q, it is straightforward to check that  

A(f ) _ 1 
A i(t) = tq+l  n tit 

q_0 

When A = C[X], one can identify A |  with C[XxX]  and il : A |  -+ A 
is given as follows: For f : X x X --+ C, the map i l f  : X ~ C is i l f ( x )  = 
f ( e ,  x). Similarly i 2 f ( x )  = f ( x ,  e). It is now easy to check that,  for r �9 A, 
i lAr  = (r + . . .  + r  = r This verifies Axiom 3. 

The polynomial m ( l |  ) for f �9 A is of degree n and its roots are 
f ( z l ) , . . . ,  f ( z~)  where x * inv(x) = [Zl,..., Zn]. But, since e �9 [Zl,..., z~], one 
has that  m ( l |  for all x e X .  Similarly, m ( s |  
This verifies Axiom 4. [] 

In a future paper, we intend to explore the converse of Proposition 6.3 
and we will prove it, at least in the case where X is finite. 

P r o p o s i t i o n  6.4. I f  X is a topological n-valued group, then H2*(X; C) the 
even dimensional part of the eohomology algebra of X is an n-Hopf  algebra. 

Proof. The diagonal, A :  H2*(X; C) ~ Y2*(X; C ) |  H2*(X; C), is defined 
as follows. Let =1 : X n ~ X denote the map induced by projection onto 
the first factor, T : H*(X~; C) -~ H*((X)n; C) the transfer homomorphism, 
it : X x X  --+ (X)  ~ the map defining the multiplication and ~ : H ~ * ( X x X ; C )  -+ 
H 2. (X; C) |  2. (X; C) be a splitting induced by the Kiinneth isomorphism. 
Then A = t{it~-~;. Using the properties of transfer maps (see e.g. [SE]), the 
proof follows that  of Proposition 6.3. [] 

As an application we show that  C P  2 does not admit a topological 2- 
valued group structure. 

Consider the cohomology algebra H of C P  2 with C coefficients, so 

r.J x q 1 -I- ~22 -F x2 ( t 2 + t x + x 2 )  g = C[x]/x  3 = 0 and ~-~-~>0 tq+l - t ~ - t3 

We regard H |  as the quotient of the polynomial algebra on two generators 
x,y.  If C P  2 admits a 2-valued group structure~ there is a diagonal map 
A : H -~ H |  with A(x) -- x + y  and A(x 2) = x 2 + A x y + y  2 where ), �9 C 
is to be determined. Since H is a 2-Hopf algebra, there is a polynomial 
P~(t) �9 H | Hit] say Px(t) = t 2 -/31t +/32 such that  

t a d l n P ~ ( t )  = 2(t 2 + tA (x )  + A(x2)) 
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so t 3 ( 2 t -  ~1) = 2(t 2 + tA(x)  + A(x2))(t 2 - flit + ~2), that  is t 4 - t3~1/2 = 
t4+ t  3 (A(x) - ~ t )  +t2 (A(x 2) - ~1 A (x) +}32) + t  (~2A (x) - ~ I A  (x2))-]- ~ 2 A  (X2) �9 

Comparing coefficients gives Pl : 2A(x) = 2(x + y), fib : ~lA(x)  - A ( x  2) = 
x 2 + (4 - A)xy + y2/~2A(x) - /31A(x 2) = 0, which gives that  2(1 + A)(x2y + 
xy 2) = (5 - ),)(x2y + xy 2) so A = 1 and finally, /~2A(x 2) = 0 which gives 
that  2 + ( 4 -  A)A = 0. This yields the required contradiction when compared 
with the equation ), = 1 obtained above. 

P r o p o s i t i o n  6.5. Let H be a commutative Hop/algebra over C with diag- 
onal A and G a finite group of automorphisms of H. Let A be the subalgebra 
of elements invariant under G. Then the linear map A G : H -+ H | H 
defined by Aa(x)  = • }-~9( 9 | 1)A(x) gives a diagonal A a : A --+ A | A 
which makes A into an n-Hopf algebra. 

1 For x E H, let ~x = n }-~g gx. The following is easy to check. 

L e m m a  6.6. If  t9 E H | H, then ~ E A | A if and only if (7~ | ~)~ = ft. 

L e m m a  6.7. For a E A, Aa(a)  = (~ | ~)A(a). 

Proof. Since g E G is an automorphism of H one has that  if A(a) = ~ i  a~| 
i | ~all : | a" A ( ~ a ) : ~  Eg,iga~ g i. Hence then A(ga) ~ g a ~  g i so 

Proof of Proposition 6.5. For a 

~ G ( ~ o ( t ) )  : 

1 
: - E ( g |  1)A(a) 

n 
g 

1 1 
: - E ( g |  1 ) -  E ( h |  h)A(a) 

?% n 
g h 

1 
- n2 ~ ( g h |  

_ 1 ~ ( 9 |  
n 2 

g,h 

: (~| [] 

E A, 
aq ) AG(Z t- ~ 

q>_O 

i )~t_~) = 

n 
q>__o g 

1 1 
: - E ( g  | 1) n (t - A~) 

g 
1 

1 E (t (g| 1)A(a)) n 
g 

= _ d 
1 E ~ l n ( t -  (9 | 1)A(a) 
n 

g 

_ ! dlnl-[(t_ (9 | n ~ ( ~ ) ) .  
n dt ~ 

g 

A c ( a )  
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Let Pa(t) = J i g ( t -  (g | 1)A(a)) = t n - tilt n-1 + . . .  § (--1)n/~n. Then 
we need to check that /?i  E A | A . However, this is easy since each fli is 
a symmetric function of the elements {(g | 1)A(a) I g E G}. The other 
axioms will be easily verified by the interested reader. [] 

Definition 6.5. An n-coset group is called very commutative if it has the 
form G / A  where G is commutative. 

We also remark that if G is a group of automorphisms of the Hopf algebra 
H,  it is also a group of automorphisms of the dual H*. Consequently, if the 
diagonal of H is cocommutative then H* is also an n-Hopf algebra. Hence, 
we obtain 

Proposition 6.8. Let X be a very commutative n-coset group; then C[X]* 
is an n-Hopf  algebra. 

This proposition can be used to show that certain commutative n-valued 
groups are not very commutative n-coset groups. 

Important  examples of commutative, cocommutative n-Hopf algebras are 
given by the cohomology of classifying spaces of connected Lie groups. By 
Proposition 6.5, H*(BG)  is an n-Hopf algebra where n denotes the cardi- 
nality of the Weyl group W ( G )  of the compact, connected Lie group G. This 
follows since H* (BG) can be identified with the W(G)-invariant subalgebra 
of the polynomial Hopf algebra H* (BT)  where T denotes a maximal torus 
of the group G. Using a proof similar to that of Proposition 6.8, one sees 
the following 

Proposition 6.9. I f  G is a Lie group, then H , ( B G )  is an n-Hopf  algebra. 

A geometric realisation of the diagonal of the n-Hopf algebra H* (BG) can 
be obtained by applying the Becker-Gottlieb transfer [BEG] to the fibration 
B T  --+ B G  with fibre G/T.  

There are other examples of polynomial algebras that admit n-Hopf alge- 
bra structures; many can be constructed as a consequence of the Shephard- 
Todd-Chevalley theorem on the invariants of reflection groups acting on 
polynomial algebras ([ST], [C]). 

7. Commutative, singly-generated 2-coset groups 

If A C X is a subset of an n-valued group, then the subgroup generated 
by A consists of those elements obtained under any number of successive 
multiplications of elements of A and their inverses. We will pay particular 
attention to the case where G is a group, a is an automorphism of G of 
order 2 and X = G/o~ is the corresponding 2-coset group. In this case, 
the subgroup generated by A C X is the image of the subgroup generated 
by the inverse image of A in G. We note that  there are noncommutative, 
one-generator subgroups of 2-coset groups. For example, let G be a free 
group on two generators and ~ the automorphism that interchanges the two 
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generators.  Then  X = G / a  is noncommutat ive  but  generated by the image 
of one of the generators of G. If  the generators are denoted by a and b and 
the product  in X is , ,  then  

Cab, ba} * {a2b 2, b2a 2 } = [{aba2b 2, bab2a2}, {ba3b 2, abaa2}] 

but  

{a2b 2, b2a 2 } * Cab, ba} = [{a2b2ab, b2a2ba}, {b2aab, a2b3 a}] 

and these are not equal. 

P r o p o s i t i o n  7.1. Let G be a group with involution a and for g E G, let 
h = g~. Then the element {g, h} E X generates a commutative subgroup of 
X if and only if either 9h = h 9 or g 2 = h 2. 

Pro@ We can assume tha t  g h r  hg. The product  of {g, h} wi th  {g2, h 2} 
is [{93, h3}, {gh 2, h92}] and in the opposite order it is [{93, h3}, {h29, g2h}]. 
If  these are equal then  we have either g h2 = h2g or gh 2 = g2h; the lat ter  
implies tha t  h = g. 

Similarly, the product  of {g, h} with C93, h 3 } is [{g 4, h4}, {g h3, hg3}] and 
in the opposite order it is [{94, h4}, {gah, hag}]. If these are equal, then  we 
have either gh 3 = g3h and so g 2 = h 2 or gh 3 = h93. In the la t ter  case, if 
we also have tha t  gh 2 = h29, then  one has tha t  gh = h9. Since the relat ion 
g 2 = h 2 implies 9 h2 = h29, the result is proved in one direction. 

Conversely, consider the group 

K = < a , b  [ a 2 = b  2 >  

(which is the fundamenta l  group of the Klein bottle) and its automorphism c~ 
which interchanges a and b. Let X denote the corresponding 2-coset group. 
To complete the proof of the proposition, it is enough to show tha t  X is 
commutat ive .  There is an epimorphism of K onto D~o, the infinite dihedral  
group; its kernel is the cyclic group generated by c = a 2 = b 2 and forms the 
centre of K.  The automorphism a acts trivially on the centre, so one has an 
exact sequence 

0 -~ Z --+ X --+ W --+ 0. 

Every element of X can be wri t ten as Xn,m where 

{(ab)n/2c m, (ba)n/2cm} for n even, 
xn,m = {b(ab)n-1/2c m,a(ba)n-1/2cm} for n odd. 

W i t h  this notat ion,  a tedious, direct calculation shows tha t  the multiplica- 
t ion in X is given by 

Xk,~ * Xn,m : [Xk-t-n,~+m, Xlk-nl,bt-m+min(k,n)] 

and so is commutat ive.  [] 
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Rather surprisingly, the 2-coset group X is isomorphic to the 2-coset 
group (Z x Z)/r  where r is the involution that interchanges the factors and 
so is very commutative. Consider the map 

q : Z •  •  

defined by 
q(m, n) = (Ira - hi, rain(m, n)) 

which induces a bijection between (Z • Z)/r  and Z+ x Z. It is easily checked 
that  when the 2-coset multiplication is rewritten via q, it is given by exactly 
the same formulae as that on the subscripts described above for X. 

The 2-coset group X has the universal property that  it maps onto any 
commutative singly generated 2-coset group and so plays a role similar to 
that  of the integers in the theory of groups. However, note that  in the closely 
related situation of a pair consisting of a group and an automorphism of 
order two, there is no universal object since (Z • Z, r)  and (K, c~) do not 
admit equivariant maps from one onto the other. 

8. E x a m p l e s  of  g r o u p  a lgeb ra s  

If X is finite, then the group algebra C(X) can be identified with the dual 
C[X]* of the algebra C[X] of functions on X. As we have seen, when X is an 
n-valued group, C[X] is an n-Hopf algebra and if X is a very commutative 
n-coset group, the dual C(X) is, by Proposition 6.8, also an n-Hopf algebra. 

Def in i t i on  8.1. An element x E C(X) is called a geometric element if 
- -  x | x .  

Elements of C[X] arising as evaluation at points of X are geometric. In 
a general Hopf algebra such elements are called group like (see [K]). 

It will be convenient, in the cases where the algebra C(X) is a quotient 
of a polynomial algebra C[x], to identify C(X x X) ~ C(X) | C(X) with 
a quotient of C[x, y] where, by abuse of notation, we denote x | 1 by x and 
l |  b y y .  

First we study all the (four) examples of 2-valued group structures on a 
set with three elements. 

(1) If X is the cyclic group of order 3, then the algebra structure on C(X) 
is given by C[x]/(x 3 = 1). We have A(x k) = x~y k. 

(2) When X is the deformed cyclic group of order 3 (Example 3.8), then 
C(X) -~ C[x]/(2x 3 = x + 1) and A(x k) = xky k for k = 0, 1, 2. 

This algebra can be regarded as being deformed in the category of hy- 
peralgebras from the previous example. 

(3) Consider Z/4/a whose group algebra is naturally 

c[ 1, = + 1, = = 1) .  
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Wri t ing  x 1 = X and  x2 = 2z2-1 ,  one sees t h a t  it is i somorphic  to C [x]/(x 3 -  x) .  

One has A(xk)  = x k y k  for k = 1, 2 so A(x)  = x y  and A ( x  2) = A ( l + x 2 ) / 2  = 
(1 + x 2 y 2 ) / 2  = (1 + (2x 2 - 1)(2y 2 - 1) ) /2  = 1 - x 2 - y2 + 2x2y2.  

This  example  can  also be  regarded  as a de fo rmat ion  of E x a m p l e  1. 

(4) T h e  example  Z / 5 / a  has  group a lgebra  

C[Xl, ~2]/(~x~1 = ~ + 1, 2~1x2 -- ~ t  + ~ ,  2 ~  = x l  + 1) 

and A(xk )  = xkyk  for k = 1, 2. Wri t ing  xl  = x and x2 = 2x 2 - 1, the  group  
a lgebra  becomes  C [ x ] / ( 4 x  3 -- 2x 2 + 3x - 1). 

(5) T h e  de fo rmed  cyclic group of order m is the  genera l i sa t ion  of E x a m p l e  
2 above.  I ts  group a lgebra  is C [ x ] / ( 2 x  TM - x - 1) and  A ( x  k) = x k y  k for 

0 < k < m - 1. Wri te  the  series 

X q 

E tq+l 
q>_O 

m - - 1  o using the  re la t ion  x m : (x  + 1)/2  as E k = o  ak( t )  xk So 

m - - 1  

1 = ( t - x )  E a k ( t ) x k  
k = 0  

m - 1  

= ( t a o ( t ) - a r ~ ( t ) / 2 ) + ( t a l ( t ) - a , ~ ( t ) / 2 ) x +  E ( t a k ( t ) - a k _ l ( t ) ) x  k. 
k = 2  

Hence,  tao( t )  - a m _ l ( t ) / 2  = 1 , t a k ( t )  - a k - l ( t )  = 0 for 2 < k < m - 1, 

and  ta l  (t) - ao(t)  = a m - l  (t) /2 .  
Solving these equat ions  gives 

2t m - 1  - 1 

ao(t)  = 2t,~ _ t -  1' 

Hence 

2 t i n - k - 1  

ak( t )  - 2t,~ _ t -  1 
for l < k < m - 1 .  

1) 
E tq+l 2t m -~ t - 1 x " 
q>_O 

We therefore obtain 

zx t~f  - 2 t i n - t - l \  i - - ~  2 

This  shows t h a t  C ( X )  is not  a 2-Hopf  a lgebra  for m > 2 and  so X is not  
a very c o m m u t a t i v e  2-coset group. 
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(6) T h e  extension example  Z / m  U {s} has group a lgebra  C [ x ] / ( x  m+l - x )  
and  A ( x  k) = x k y  k for 0 _< k < m,  A ( x  m) = 1 - x  m - y m + 2 x m y m .  A 

calcula t ion  gives t h a t  

I K.~m § \ 
x q 1 I 3- X TM _ ~k=i ~_ | 

t q+i t t m - i ] 
q>_0 

and  hence 

This  shows tha t  C ( X )  is not  a 2-Hopf  a lgebra  for m > 2 and  so X is not  
a very c o m m u t a t i v e  2-coset group. 

(7) Consider  the  universal  c o m m u t a t i v e  one genera tor  2-coset g roup  X; 
its g roup  a lgebra  C ( X )  is a po lynomia l  a lgebra  wi th  one genera to r  over the  
a lgebra  k of  Lauren t  po lynomia ls  in the centra l  e lement  c of  the  group  K 
and  which is fixed under  the  a u t o m o r p h i s m  a .  So, 

C ( X )  = k[x], k = C[c, c -1] and  x = (a + b)/2.  

T h e  geomet r ic  e lements  in C ( X )  are {PnC'~Im �9 Z , n  > 0} where  

((ab) s + (ba)S) /2  if  n = 2s, 
Pn = (b(ab) s + a (ba)S ) /2  if n = 2s + 1. 

T h e  d iagonal  A : k[x] -+ k | k[x,  y] induces an a lgebra  h o m o m o r p h i s m  

k --+ k | k and  A(pn)  -- Pnqn with  P0 = 1 ,pl  -- x and  2xpn = Pn+l 3- Cpn-1 
for n > 1. To see this  one needs to use the  facts  t h a t  c = a S = b 2 and  t h a t  
a(ab) ~ -- cb(ab) s -1  to show tha t  (a + b)((ab) ~ + (ba) ~) = b(ab) ~ 3- a(ba) s § 
cb(ab) s -1  3- ca(ba) s-1 and (a + b)(b(ab) s 3- a(ba) s) = (ab) s+i 3- (ba) s+i 3- 

c( b) + setting 

= 

n>O 
one calcula tes  easily t h a t  (1 - 2xu  + c u 2 ) p ( x ,  u)  = 1 - xu .  For c = 1 one 
therefore  has  t h a t  the  geometr ic  e lements  are the  Chebyshev  polynomials .  

Wri t ing  A(c)  = clc2 and A(x)  = xy ,  and using P2 = 2x 2 - c f rom above,  
one gets t h a t  A ( x  2) = (P2q2 + c l c 2 ) / 2  = 2x2y  ~ - e l y  2 - c2x 2 + clc2. Hence 
the  quadra t i c  po lynomia l  in the  definit ion of a 2-Hopf  a lgebra  becomes  for 
this case, P~(t )  = t 2 - 2 x y t  + c2x 2 + c l y  e - clc2. 

W h e n  c = 1 and  so Cl = c2 = 1, this  po lynomia l  becomes  t 2 - 2 x y t + x  ~ + 
y2 _ 1 which is the  po lynomia l  t h a t  defines the  mul t ip l ica t ive  2-valued g roup  
s t ruc tu re  on C t h a t  we considered earlier. This  re la t ion  is a consequence of 
the  dua l i ty  theory  for n-valued groups t ha t  we intend to s tudy  in ano the r  

paper .  
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