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Abstract. This paper introduces the concept of n-valued groups and studies
their algebraic and topological properties. We explore a number of examples.
An important class consists of those that we call n-coset groups; they arise as
orbit spaces of groups G modulo a group of automorphisms with n elements.
However, there are many examples that do not arise from this construction. We
see that the theory of n-valued groups is distinct from that of groups with a given
automorphism group. There are natural concepts of the action of an n-valued
group on a space and of a representation in an algebra of operators. We introduce
the (purely algebraic) notion of an n-Hopf algebra and show that the ring of
functions on an n-valued group and, in the topological case, the cohomology has
an n-Hopf algebra structure. The cohomology algebra of the classifying space of a
compact Lie group admits the structure of an n-Hopf algebra, where n is the order
of the Weyl group; the homology with dual structure is also an n-Hopf algebra.
In general the group ring of an n-valued group is not an n-Hopf algebra but it
is for an n-coset group constructed from an abelian group. Using the properties
of n-Hopf algebras we show that certain spaces do not admit the structure of an
n-valued group and that certain commutative n-valued groups do not arise by
applying the n-coset construction to any commutative group.

1. Introduction

Multivalued mappings arise naturally in many parts of mathematics. A
very familiar example is that given by the roots of a polynomial of degree
n. This mapping can be regarded either as a multivalued function of the
coefficients of the polynomial or as a single valued function C* — (C)™
where (C)™ denotes the symmetric product (and in this form it is a dif-
feomorphism). From a geometric viewpoint, coverings give rise to natural
generalisations of this example and several other classes of multivalued map-
pings have been intensively studied in algebraic geometry (see, for example
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[H]). A particularly important class consists of those defined by algebraic
correspondences and some of them arise naturally in the study of certain
dynamical systems ([BP], [V]).

The aim of this paper is the study of the algebraic and topological pro-
perties of multivalued groups and we focus almost entirely on the case of
n-valued groups. The general concepts associated with multivalued groups
have been intensively studied from many viewpoints and in many contexts;
a large bibliography is given in the survey article [Li]. The multivalued
groups that we study here can be regarded as a special class of hypergroups
but our emphasis on the n-valued case enables us to make a much more
detailed analysis. An important class of examples are those we call n-coset
groups; they arise as orbit spaces of groups G modulo a group A of auto-
morphisms where A has n elements and give particular cases of Delsarte’s
explicit construction ([De]) in the theory of hypergroups. However, there
are many examples that do not arise from this construction and we also
give examples of 2-coset groups which arise as orbit spaces of two different
groups. Thus we see that the theory of n-valued groups is distinct from that
of groups with a given automorphism group. We introduce the concepts of
actions and representations of n-valued groups; applications of these ideas to
the study of some dynamical systems are given in [BV]. The definitions we
introduce are entirely compatible with those that are familiar in the theory
of groups and hypergroups [Li].

The topological aspects of muitivalued mappings and branched coverings
have been studied a great deal (see, for example [Ar], [Do]) and an important
aspect is the study of the transfer map [BeG]. In another paper we make a
fuller study of the notion of an n-ring homomorphism which can be regarded
as a transfer and indeed is a generalisation of the classical trace. Some of the
formulae that are satisfied by n-ring homomorphisms are multiplicative in
nature and give rise to rather surprising identities (and which are therefore
satisfied by the classical trace).

Given a group G and a contravariant functor F, such as a ring of functions
on G or cohomology, it is natural to consider the Hopf algebra structure on
F(G). I G is an n-valued group, then F(G) inherits an algebraic structure
and it is natural to call it an n-Hopf algebra; we define this concept using
purely algebraic axioms. Its main property is that the diagonal map is
an n-ring homomorphism. The idea of an n-Hopf algebra gives a way of
interpolating between a general co-algebra and a Hopf algebra (which is a
1-Hopf algebra). By analogy with the result of H. Hopf ([S] page 269) about
the cohomology ring structure of topological groups, one can use information
about n-Hopf algebras to show that certain spaces cannot admit an n-valued
group structure. In particular, we show that CP? does not admit a 2-valued
group structure; this result has been extended by T. E. Panov [P].

2-valued formal groups were introduced in [BN] in order to describe the
Pontryagin classes of tensor products of vector bundles and were a natural
development of the formal group methods used in algebraic topology. The
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theory of n-valued formal groups, with emphasis on their applications in
algebraic topology, has been developed in a series of papers, starting with
[B1] and summarised in the survey paper [B2]; the algebraic theory was de-
veloped by A. Kholodov [Kh1] and [Kh2]. The global theory was introduced
in [B3] and the motivation came from problems arising in constructing in-
tegrable systems based on addition theorems and the basic ideas were fur-
ther developed in [BG]. The present paper introduces new concepts on which
further developments of the theory can be based. A preliminary version of
some of this work was prepared in 1994 and a summary [BR] has appeared.
The paper has the following other sections:

Main definitions.

Examples and basic properties.

Multivalued group struciures on euclidean spaces and spheres.
Actions and representations.

Hopf algebras.

Commutative, singly generated 2-coset groups.

Examples of group algebras.
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lated the 2-valued groups of order < 4. The list they produced showed that
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over the period May 1994 to November 1996.

2. Main definitions

If X is a space, let (X)™ denote its n-fold symmetric product, i.e., (X)" =
X"™ /%, where the symmetric group %, acts by permuting the coordinates.
An n-valued multiplication on X is a map

B X x X = (X)™

1. p is associative if the following diagram commutes

1xD
px1 (X)) x X

(X <Xy
X (X~

1% Dx1 4;,1

X x (X) (X x X)"




328 V. M. BUCHSTABER AND E. G. REES

where (1 x D)([z1,22,...,2z5],2) = [(z1,2), (22,%),...,(Tn,z)] and D x 1
has a similar definition.

2. A strong left unit e;, € X satisfies the condition that
pler,z) = [z, z,...,z] = D(z).
A weak left unit satisfies the condition that z € u(er,x),, i. e., there is a
map Er : X — (X)"~! such that pu(er,z) = [Er(z),z).

One also has the corresponding concept of a right unit and some obvious
variants. We usually assume that there is a strong (two-sided) unit e. If
there are both strong left and right units, it is easy to check that they must
be equal.

3. When there is a unit, e, one can consider the existence of inverses.
One requires a map inv : X — X; it gives a strong left inverse if

uinv(z), z) = D(e)

and a weak left inverse if e € u(inv(z), z). There are some interesting examp-
les where inv has to be taken to be a multivalued map. Similarly one can
consider right inverses and two-sided inverses.

For applications, the following seems the most useful.

Definition 2.1. An n-valued group structure on X is a mapping
pr X x X > (X)"
which is associative together with a strong (two sided) unit e € X and a

weak (two sided) inverse inv : X — X.

Definition 2.2. A map f: X — Y is a homomorphism of n-valued groups

if f(e) = e, f(inv(z)) = inv(f(z)) for all z € X and py(f(z), f(y)) =
(H"px(z,y) for all z,y € X, i.e., the following diagram commutes

ux
XxX (xHm
fxf "
By
YxY (y)»

Such a mapping could be called a strong homomorphism. There are
weaker variants that may be useful in some circumstances.
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3. Examples and basic properties

(1) For each m € N, an n-valued group can be regarded as an example
of an mn-valued group by using the composition

2) 5
GxG

@)"

(G)m’l’l.

(2) If f: Gy — G5 is a (strong) homomorphism between two n-valued
groups, then Ker(f) = {z € G1 | f(z) = e} is an n-valued group.

(8) n-coset groups.

Let G be any group and A a group of automorphisms of G with #A4 = n.
Then one can define an n-valued group structure on X = G/A as follows.

Let m : G — G/A be the quotient map and define p: X x X — (X)™ by
p(z,y) = 7(po(r 2 (z), 7~ (y))) where u, denotes the multiplication on G.

An n-valued group of this type will be called an n-coset group.

An important special case is when #A = 2, say A = {1, a}; then the
elements of X can be written as {g,¢9%*} and p as

{9,9%} = {h,h%} = [{gh, g*h*}, {gh®, g*h}].

Another important example is the quotient of Z by its automorphism
group; it arises naturally in the study [BV] of certain dynamical systems.
The quotient can be identified with W = {k | kK > 0,k € Z} and, with this
identification, the product of k and £ is [k + ¢,|k — £]].

Proposition 3.1. Let X = G/A be a 2-coset group; then z xy = [z, 2] if
and only if either z or y is the image of a point fized under A.

Proof. Let z = {g,9*} and y = {h,h®}. Then, if z xy = [z, 2], one has
either gh = gh® or gh = g®h. So either g or h is fixed under . The other
implication also follows from the formula given above for the product x. [

When G is a commutative group, we can consider the involution defined
by the map g — ¢~ '. In the special case of a cyclic group, it is easy to
construct the multiplication table for G/A.

Proposition 3.2. There is an example of a noncommutative group with an
automorphism of order two whose associated 2-coset group is isomorphic to
that obtained from the integers with its nontrivial automorphism.

Proof. Let G be the infinite dihedral group, G = (a,b | % = b% = e) with
the automorphism « interchanging a and b. The elements of the 2-valued
group G/A are uan, = {(ab)™, (ba)™} and uan41 = {b(ab)”,a(ba)"} for n > 0.
The multiplication is given by uy * ug = [Ug4e,ujx—¢)] and so this 2-valued
group is isomorphic with the example W considered above. O

Another important special case is where G is finite and A = G acts
by inner automorphisms. In this case X can be identified with the set of
conjugacy classes in G.
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(4) Let H C G be a subgroup with #H = n. Then the right coset
space G/H admits an n-valued multiplication using the formula Hz.Hy :=
{Hzhy | h € H}. In this case, H is a strong left unit and a weak right
unit. A two sided weak inverse is given by the multivalued map inv(Hz) :=
{Hz~'y | y € H}. This often does not give an n-valued group.

(5) However, X = H\G/H admits an n-valued group structure by the
formula HzH-HyH := {HzhyH | h € H}. In this case, H is a strong two
sided unit and Hz~1H is a weak two sided inverse for HzH.

(6) If G is a group and s is an indeterminate, let G = G U {s}. Then G
has a 2-valued group structure by

uis,s) = e
/'L(S7 6) = /1.(6, S) =8
p(s,g) = plg,s)=g forallgeG\{e},
_ f g2 if g2 Fe
;u’(glhqz) - { {e’ S} if glgz =€ aIld g]_ 74 €.

A straightforward application of Proposition 3.1 shows that this example
does not, in general, arise as a 2-coset group; indeed if G = Z/m and m > 2
then this is not a 2-coset group although for m = 2, one obtains the 2-coset
group arising from Z/4 modulo its nontrivial automorphism.

(7) The construction of the previous example introduces a square root

s of the element e and, more generally, one can construct the multivalued
extension of two groups 1 and G giving an exact sequence
0 — G2 — é —_ G]_ — 0

where the multiplication * in @ is defined as

uxv = u foru € Gi,v e Gy,
v1*v3 = wivg for vy, vy € Go,
{G2} when ujus =e € Gy,
UL * Uy = .
uyus  otherwise.

(8) Let G denote the cyclic group of order m generated by the element
z,. We define a 2-valued ‘deformation’ of G. Its elements can be identified
with those of G and the multiplication is given by (with 0 < r,s < m)

(@, z%) = Z"ts for v +s <m,
P T {zmremartetlemy form <7 +s.

When m = 2, it is easily checked that this example is isomorphic to the
quotient of the cyclic group with three elements by its nontrivial automor-
phism. On the set with two elements there is only one other 2-valued group
structure, namely, the cyclic group. For m > 2, one can use Proposition 3.1
to show that this example does not arise as a 2-coset group.

The following is a classification result for a class of finite 2-valued groups.
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Proposition 3.3. Let X = {z0,21,...,Zm_1} be a 2-valued group on a set
with m elements with multiplication x such that z,xzs = Trys for r+s < m.
Then either Tp * Ty = Trys—m OT [Tris—msTris—m+1) for 7+ s> m.

Proof. 1t is clear that z is the strong unit and that inv(z) = z,,—; since it
cannot be one of the other elements. Let 1 * 2,1 = [zg, z¢]. If £ = 0 then
X is the cyclic group and if £ = 1 we get the deformed cyclic group of the
previous example. Now suppose that £ > 1. Then, by associativity, the fol-
lowing are equal: Zy,—p* (T1 ¥ Tm_1) = Tm—g *[T0, Ze) = [Tm—2, Tm—e, To, Ts)
and (Zm—g*21) ¥ Tm—1 = [Tm—r41, Em—t41)¥*Lm—1 = [Tp, Tp, Ty, T4] for some
p,q and this is a contradiction. [J

4. Multivalued group structures on euclidean spaces and spheres

The spaces (C)" = C" /%, and C™ are identified using the map
S:C" - C"

whose components are given by (21, 22,...,2,) = er(21,20,...,2,), 1<r<
n, where e, denotes the rth elementary symmetric polynomial. It is often
convenient to write the map S as the polynomial 2” — e1 2"~ + e92" 2 —
...+ (—=1)"e, whose roots are [z1, 22,...,2,]. The projectivisation of the
map S induces a diffeomorphism between (CP!)" and CP™.

4.1. The additive n-valued group structure on C

Consider (C, +) with its automorphism 2z — wz of order n, where w is a.
primitive nth root of unity. We obtain an n-valued group structure on C/A
where A denotes a cyclic group of order n. But C/A is diffeomorphic to C
by the mapping C/A — C defined by z — 2™. The multiplication is then
given, for z,y € C by

:c*y:[(x%+wry%)“:1§r§n].

The unit is 0 and the inverse of z is (—1)"z. Using the map S, one obtains
the following polynomials for low values of n (note the interesting numerical
coefficients) :

ne==2:
22-2z+y)z+(z—y)? =(2+y+z)* - 4(zy+yz+22),
n=3:
22 —3(z+y) 22 +3(2x? = Tay+y?)z— (z+y)3 = (z—z—y)® - 27Tzy2,
n=4:

2t —4(x+y) 22 +2(32% — 622y +3y%) 22 — 4(23 + 31 (z +y)zy+y) 2+ (2 —y)*
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=((z+y+2)? - 4(zy +yz+22))? - 2" (2 + y + z)2y2,
n=2>5:

25 =5z +y)2* + 5227 — 121zy + 2y%)2® — 5(22° + 381(z + y)zy + 2y3) 2>
+5(z?* — 12123y + 381z%y% — 121zy® + y*)z — (z — y)°
=(z—xz—y)% +5*5(zy — zz — y2) — (2 ~ z — y)H)ayz.

4.2. The additive n!-valued group structure on C"

Using the map &, C™ inherits an n!-valued group structure from the usual
addition on C™.
In the case n = 2, the multiplication map can be written as the compo-
sition
i Dx1
C x (C)?

C? x C? (C x C)2.
Using the identification induced by the map S, the multiplication /i can be
written as

(z1,22)*(y1, y2) = (T1+22, 2(y1+y2) +T122, (y1—y2)? +H{(T1+T2) (Z1Y2+y172)).-

4.3. The multiplicative 2-valued group structure on C

Consider C* := (C\ {0},) with its automorphism z — z~! of order 2.
The space C*/A is identified with C using the map C* — C given by
m(2) = 2(z+271) and 771 (z) = z % (2? - 1)2. Then

zxy =[xy + (@ - 1)y - 1), 2y - (& - 1)(5* - 1))?].

This formula can be rewritten as the quadratic 22 — 2zyz + 22 +y2 — 1.
The unit is 1 and the inverse of each element is itself. Under the change of
variables z,y, 2 = 4+ 1,4 + 1,z + 1 the polynomial becomes 2% — 2(z +y +
zy)z + (z - y)*.

Remark 4.1. The multiplication arising in Example 4.1 occurs as the n-

valued formal group for cohomology and that in Example 4.3 arises similarly
in K-theory [BN].

Remark 4.2. 1t is proved in [B1], [B2] that, up to local change of coordinates,
there are only two different 2-valued formal group laws on C, the usual
additive group and the one described in Example 4.1 above.

Example 4.3 has a generalisation giving a multiplicative n!-group struc-
ture on G~ 1. It is given by the above coset construction where the sym-
metric group 3, acts on the commutative group

M= {z1,22,...,2n : Z122... 20, = 1}

(with pointwise multiplication) by permuting the coordinates. The group
M is isomorphic to C* x ... x C* (with n — 1 copies) and the quotient by
the symmetric group is diffeomorphic to C™~1.
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4.4. 2-valued group structure arising from C™

The space C™/+ can be identified with the space Sym,, of all m x m
symmetric matrices of rank 1 by the map u € C™ — X(u) = uu’. A
calculation shows that the product of X, Y € Sym,, is given by the roots of
the quadratic

Z®? - (0,(X,Y)®Z+Z®6:1(X,Y)) + 0:(X,Y)

where ©1(X,Y) = X 4V, 0,(X,Y) = (X +Y)®2 - X82? and X;, is X (u+
v)—X —Y where u, v are defined (up to sign) by X = X(u), Y = X(v). This
is a direct generalisation of Example 4.1. Explicitly, if ©2(X,Y) = (6;;ke)
then 0;jxe = TijThe — ThjYir — TieYrj + YijYrl-

The properties of the symmetric products (C™)™ and multidimensional
analogues of the algebraic equations are considered in detail in [GKZ].

4.5. 2-valued group structure on CP!

For a lattice A C C, the corresponding Weierstrass p - function defines
a holomorphic mapping C/A — CP! and identifies CP! with the 2-coset
group derived from the automorphism 2 — —z of C/A. From the addition
formula for p (see, for example [WW]) one obtains that the 2-coset group
structure on CP! is given (in the standard affine chart) by

1z —y\° 1z +y )
p— i _|_ — _ T — — — -  Z-
TTYTY ( z-y )’ R e y
where 27 = 423 — gz — g3 and y1, y are similarly related. Hence the 2-valued
structure is determined as the roots of the equation

kY=

2
(z+z +y)(dzyz — g3) = (wy+yz+zx—gf) :

The referee pointed out that this form of the addition law for the p
function is given in [HC| page 171.

We can also consider the Jacobi elliptic function sn(u) related (in the
standard notation) to p via p(u) = e; + 1/sn?(u); its square defines an
identification of CP! with the above 2-coset group and yields slightly more
general formulae. The addition formula is

sn(u) (p(s0(v)) % + sn(v) (p(sn*(u))*

sn(u +v) = 1 — k2sn?(u)sn2(v)

where p(t) = 1 — 20t + k2¢2. Letting z = sn?(u) and y = sn?(v) gives that
the 2-valued multiplication on CP? is

e ((xp(y))% - (yp(w))%>2 ((mp(y»% 5 (yp(w))%>2
v= 1— k2zy ’ 1—k2zy
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Identifying the symmetric square of C with the space of quadratic polyno-
mials, the right hand side of this formula becomes

zp(y) + yp(x) (z - y)?

2
-2
# (1 — k2zy)? ? (1 — k2zy)?

because zp(y) — yp(z) = (z — y)(1 — k?zy). Also, we have

zp(y) + yp(z) = (z + y)(1 + k’zy) — 497y

and hence (1 — k2zy)%22 — 2[(z + v)(1 + k3zy) — 40zy]z + 2° — 2zy + ¥ =
22 + y? + 22 = 2K2zyz(z + y + 2) — 2(zy + yz + 22) + k*2?y?2? + 8Sxyz.
In the local coordinates (z : 1), (y : 1), (2 : 1) one has

(z+y + 2 — k’zy2)? = d(zy + yz + 22 — 203y2).

When k = § = 0 we have the additive 2-valued group structure on C and
when k£ = 0,6 = —1/4 we have the multiplicative structure. In the general
case, we can use the change of coordinates

(z,y,2) = (Az, Ay, Az)

to obtain a family of 2-valued group structures on C which are all equivalent
topologically.
Using the identification given by the map & we obtain

Proposition 4.1. The map u: CP! x CP! — CP? defined by
p((zo:21), (Yo:91)) =
(@oyo—K*21y1)? : —2(@oy1 +21y0)@oyo + 5 T1y1) — 4020y T1Y1) : @1Y0 —Toy1)?)

defines a 2-valued group structure on CP! if and only if k(k*—6%) # 0, i.e.,
the elliptic curve for sn(u) is nondegenerate.

Proof. The map p is not well defined at the point x,y) = (o :21), (o:y1) if
and only if the values of each of the three coordinates of the product is zero.
The vanishing of the first and last coordinates is equivalent to the condition
that either £o = 1 = 0 or 92 = k%y? and x = y in CP". Substituting the
second of these into the second coordinate yields the equation 2yoy; (yg +
k2y2)—46y3y? = 0 and we are assuming that we also have y3 = k*y? without
yo = y1 = 0. So either k = 0 or y2 + k%y? — 20yoy; = 0 and so k* = §2. The
result follows. O

By using the results of [ST], [C] one can find multivalued group structures
on CP™ and by [BS] also on weighted projective spaces.
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4.6. A noncommutative 2-valued group on R?

The Heisenberg groups admit an automorphism of order 2 and so give rise to
examples of 2-valued groups. The simplest example of a Heisenberg group
is on R? with multiplication

(z,y, )=, v, t) = (@+ 2, y+ 9, t + ' +yz’)

and the automorphism changes the sign of the first two coordinates. One
obtains a 2-valued group structure on the quotient space, which is easily
seen to be homeomorphic to R3.

Similar constructions apply to Heisenberg groups in higher dimensions
(associated to arbitrary bilinear forms) as defined, for example in [Au].

4.7. A 2-valued group on S°

Let G be a group and g € G an element whose square is central. Then the
quotient of G by the inner automorphism induced by conjugation by g gives
an example of a 2-valued group. As a special case, let G = S°, the unit
quaternions and let g be a purely imaginary unit quaternion then g% = —~1
and so is central. The quotient under conjugation by ¢ is homeomorphic to
53 as one sees as follows.

First, by choosing the complex structure appropriately, one can assume
(with no loss of generality) that ¢ = i. Secondly, every point of S® can be
written in the form

21c080 + jzosinf with 2,2, € S*;

this describes S% as the join of two circles, the first being S' C C and the
second being 551, i.e., 2 = S1x5S'. The action of conjugation by i preserves
the join structure; it is trivial on the first circle and multiplication by —1 on
the second. The quotient is therefore homeomorphic to 3 regarded as the
join S % S! where S! denotes the circle S/ — 1. So one obtains a 2-valued
group structure on S3.

5. Actions and representations

Definition 5.1. If X is an n-valued group and Y a set, an actionof X on Y
is a mapping ¢ : X x Y — (Y)™ such that the following diagram commutes.

1x¢ Dx1
X x ()"

X x(XxY) (X xy)»

(¢)"
= )™

px1 1xD
(Xy*xY

(XxX)xY (X xY)" ()"

For example, X acts on itself.
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Another example is: Let H C G be a subgroup of order n then the n-
valued group defined on the double coset space X = H\G/H acts on the
coset space Y = H\G by

HzH-Hy:={Hzhy | h e H}.

Definition 5.2. A representation of an n-valued group X in an algebra A
is a map p: X — A such that p(e) = 1 and Avp(u(z,y)) = p(z)p(y) where
Avp(p(z,y)) denotes the average value of p on the set u(z,y), ie.,

: 1o
if p(z,y)=|[z1,%2,...,2n), then Avp(u(z,y)) = - Zp(zi).

i=1

An important special case is when A is the algebra of endomorphisms of
a vector space V. In this case, one has a linear representation of X on the
vector space V.

5.1. Examples

(1) When X is a (single-valued) group these definitions agree with the
usual definitions of a group action and of a representation.

(2) If X is an n-valued group that acts on the set ¥ and V denotes
the vector space spanned by Y, one obtains a representation of X on V as
follows:

If ¢(z,y) = [y1,9Y2,---,Ynl, let p(z) denote the linear transformation de-
fined by

1
y =~ +yz 4. ).
It is trivial to verify that p defines a representation in the above sense.

(3) As a special case consider the regular representation of the 2-valued
deformation of Z/m (Example 7 above). The generator is mapped to the
m X m matrix :

0 0 0 0%‘
10 0 0 3
01 0 0 0
0 0 0 0 0

| 0 0 0 1 0 |

(4) Group algebras.
For an n-valued group X, the group algebra C(X) is the C vector space
spanned by X with multiplication induced by

zy=(z1+z2+...+2z,)/n
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where the product of z and y in X is [z1,23,...,2,]
One has two linear representations of X in C(X) by left and right mul-
tiplication. For example, left multiplication is defined by

zy = Av(z * y)

on the elements of X and extended by linearity. The obvious map X —
C(X) is arepresentation. Any representation X — A has a unique extension
to an algebra homomorphism C(X) — A.

(5) Let C(S') denote the algebra of trigonometric polynomials on the
circle. The subalgebra A of even polynomials has basis {cos(k6) | k > 0}.
The map p : W — A defined by p(k) = cos(kf) is a representation of W
because the identity

cos(kf)cos(£8) = (cos(k + £)0 + cos(k — £)8) /2

becomes p(k)p(£) = Avp(k *£). Indeed, the linear map C(W) — A induced
by p is an isomorphism.

This representation can also be thought of as a map p' : W — C[¢] where
o' (k) = px(t), the kth Chebyshev polynomial and so this representation is
called the Chebyshev representation of W. Note that the elements of C[¢]
can be regarded as functions on the 2-coset group corresponding to the
involution e — ¢% on S*.

This last example can be regarded as a special case of the following result
which the referee kindly suggested that we should include.

Proposition 5.1. Let X be the n-coset group G/A. Then the group algebra
C(X) is isomorphic to C(G)?, the subalgebra of A-invariants in the group
algebra C(G).

Proof. The map C(X) — C(G) is defined as the linear extension of the map

1
m={ga|a€A}—>EZg°‘.
a€A

The image of this map clearly lies in C(G)4 and it is easily checked that it
is multiplicative. O

6. Hopf algebras

When X has an n-valued group structure and F’ is a contravariant functor
from a suitable category of spaces to a category of algebras then F(X) can
be given a Hopf algebra like structure. We investigate this general situation
by first considering the important example where F'(X) is the ring C[X] of
all complex valued functions on X.
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Definition 6.1. The map Av : C[X] — C[(X)™] is defined by
1 m
Av(f)[z1, 325y Tm] = - Zf(g;z)
i=1

Analogously, the maps o, : C[X] — C[(X)™] are defined by means of
er[f(z1), f(z2),..., f(zm)], the elementary symmetric functions ([Mac]).

Definition 6.2. If u(z,y)=[z1, 22,- .., 2n] and f € C[X], let AfeC[X xX ]2
C[X] ® C[X] be defined by

n

(A)(m,0) = AV(H)(u(o,) = - 3 1),

i=1

Remark 6.1. In general, one takes C[X x X] to be C[X]®C[X].

Lemma 6.1. A gives a coassociative coalgebra structure on C[X] and so,
by duality, an associative algebra structure on C[X]* = Hom(C[X], C), the
dual space of C[X].

Proof. Consider the map Av : C[X] — C[(X)"] and compose with the
diagram for the associativity of an n-valued multiplication. O

In the case of a single-valued group, this gives a Hopf algebra structure
on C[X] and indeed, a dual pair (C[X], C[X]*) of Hopf algebras.

Definition 6.3. An n-Hopf algebra structure on a commutative algebra A
over the field C with multiplicationm : A® A — A and unit : C — A4, a
map of algebras, consists also of
e a counit ¢ : A — C, which is a map of algebras,
e an antipode s : A — A, which is a map of algebras,
e a diagonal A : A — A®A, alinear map making A into a coassociative
coalgebra and
e amap P: A — (A® A)[t] which assigns to each ¢ € A a monic
polynomial of degree n

P,(t)=t" - But" .. 4+ (=1)"Bn

with 8, = Br(a) € A® A.
These are related in the following way. For each a € A, introduce the
series

() =3 é‘% € Al

g20
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Aziom 1. The polynomial P,(t) is such that

Aay(t) = 2 éq(fj) _ -le%ln(Pa(t)).

Aziom 2 (unit). If n(1) is denoted by 1, then A(1)=1® 1.

Agziom 3 (counit). Let iy,i2 : A® A — A be defined by i;(a ® b) =
e(b)a and i2(a ® b) = €(a)b; then the composites i1A,isA: A -+ AQA— A
are both equal to the identity.

Aziom 4 (antipode). The map s : A — A satisfies m(1 ® s)P,(ne(a)) =
0 and m(s ® 1)P,(ne(a)) = 0.

Remark 6.2. An n-bialgebra will satisfy all these axioms except that the
existence of an antipode will not be assumed.

Remark 6.8. In a future paper we hope to explore the properties of n-Hopf
algebras over more general rings.

Lemma 6.2. A 1-Hopf algebra is a Hopf algebra (in the usual sense).
Proof. In this case P,(t) =t — 3 with 8 € A® A, and by Axiom 1,

1
Aag(t) = ——
so A(a™) = g™ for each n and therefore A(a") = " = (Aa)".
For a1, a2 € A, consider ajay = §[(a1 + a2)? — a? — a3]; thus

Alme) = A +02)°) - Aa) - Aa)]

= SIA@) + A% - Aw)® - A)’] = Ale)Alas).

Hence, and using Axiom 2, one sees that A is a ring homomorphism.

The counit axiom for a Hopf algebra is exactly Axiom 3 above.

By Axiom 4, m(1 ® s)A(a) = ne(a) = m(s ® 1)A(a), and so s gives an
antipode in the Hopf algebra sense. O

Definition 6.4. A morphism of n-Hopf algebras is a morphism of the un-
derlying algebras and coalgebras which also commutes with the antipodes.

Proposition 6.3. If X is an n-valued group, then C[X] is an n-Hopf algeb-
Q.
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Proof. By Lemma 6.1, C[X] with comultiplication A is a coassociative coal-
gebra. We now check that Axioms 1 and 2 hold for pointwise multiplica-
tion. Using the n-valued multiplication p, we introduce for each function
[ € C[X] functions #,(f) € C[X x X] by B.(f)(z,y) = or f(u(z,y))
where o, is the r-th elementary symmetric function. Then let Py(t) =
" — 1" +.. .+ (—1)"B,, the polynomial whose set of roots is f(u(z,y)).
Because (f?9)(z) = (f(x))Y, it is straightforward to check that

Aap(ty = B L2y b ),

e ndi

When A = C[X], one can identify A® A with C[X xX]and i1 : AQA — A
is given as follows: For f: X x X — C, themap i;f : X —» Cis 4 f(z) =
f(e,z). Similarly i f(z) = f(z,e). It is now easy to check that, for ¢ € A,
i1Ad(z) = (p(z) + ... + ¢(z))/n = ¢(z). This verifies Axiom 3.

The polynomial m(1®s)Ps(t)(z) for f € A is of degree n and its roots are
f(z1),- .. f(zn) where z * inv(z) =[z1,.. ., z,]. But, since e € [z1,. .., 2,], one
has that m(1®9)Ps(f(e))(z)=0for all z € X. Similarly, m(s®1)Ps(f(e))=0.
This verifies Axiom 4. [

In a future paper, we intend to explore the converse of Proposition 6.3
and we will prove it, at least in the case where X is finite.

Proposition 6.4. If X is a topological n-valued group, then H**(X; C) the
even dimensional part of the cohomology algebra of X is an n-Hopf algebra.

Proof. The diagonal, A : H*(X;C) - H?>*(X;C) ® H**(X;C), is defined
as follows. Let m; : X™ — X denote the map induced by projection onto
the first factor, 7 : H*(X™; C) — H*((X)™; C) the transfer homomorphism,
g XxX — (X)™ the map defining the multiplication and x : H2*(Xx X;C) —
H?(X; C)®H?*(X; C) be a splitting induced by the Kiinneth isomorphism.
Then A = kurn}. Using the properties of transfer maps (see e.g. [SE]), the
proof follows that of Proposition 6.3. [

As an application we show that CP? does not admit a topological 2-
valued group structure.
Consider the cohomology algebra H of CP? with C coefficients, so

2 2 2
ch[m]/x;}:Oandzqzo%:%'i't%‘l—%:—(—tjtﬁJ'-—z).

We regard H® H as the quotient of the polynomial algebra on two generators
z,y. If CP? admits a 2-valued group structure, there is a diagonal map
A:H — H®H with A(z) = z+y and A(z?) = 22 + Azy +y? where A € C
is to be determined. Since H is a 2-Hopf algebra, there is a polynomial
P,(t) € H® H[t] say P;(t) = t? — 1t + (o such that

t3%Ian(t) = 22+ tA () + A(2?))
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s0 t3(2t — B1) = 2(t? + tA(z) + A(z?))(t* — Brt + Ba), that is t4 — 38, /2 =
1483 (A(2) = B1) +£2(A(2?) — BrA(2) +B2) +E(B2A(2) = F1A(22)) + B2 A (2?).
Comparing coefficients gives B; = 2A(z) = 2(z+y), B2 = Bi1A(z) - A(z?) =
2+ (4 — Nzy + 32, BoA(z) — B1A(z?) = 0, which gives that 2(1 + ) (z2y +
zy?) = (5 = A)(z?y + zy?) so A = 1 and finally, B2A(z?) = 0 which gives
that 2+ (4 —A)A = 0. This yields the required contradiction when compared
with the equation A = 1 obtained above.

Proposition 6.5. Let H be a commutative Hopf algebra over C with diag-
onal A and G a finite group of automorphisms of H. Let A be the subalgebra
of elements invariant under G. Then the linear map A : H - HQ H
defined by A%(z) = %Zg(g ® 1)A(z) gives a diagonal AC : A - A® A
which makes A into an n-Hopf algebra.

Forx € H, let nx = %Z ¢ 92 The following is easy to check.
Lemma 6.6. If fc HQ H, then € A® A if and only if (n @ )38 = B.
Lemma 6.7. Fora € A, A%(a) = (7 ® 1)A(a).
Proof. Since g € G is an automorphism of H one has that if A(a) =), a}®a],
then A(ga)=Y, ga} ® ga so A(ma)=1 Y, ; ga;®gaj. Hence

A%@) =~ 3 (9@ DA

= (7® W)A(a) O
Proof of Proposition 6.5. For a € A,

AS(ea(®) = A°CY =)

q20
1 A(a?)
= - QZ% 29:({] ® 1) tq+1

1 1
T on Z (t —(g® )A(a))
= - Z —ln t— (g ®1)A(a)

= ;Em I;I(t — (g @ 1)A(a)).
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Let Pu(t) = [[,(t — (9 ® DA(a)) = t* — fit" " + ...+ (=1)"Bn. Then
we need to check that §; € A ® A . However, this is easy since each §; is
a symmetric function of the elements {(¢ ® 1)A(a) | ¢ € G}. The other
axioms will be easily verified by the interested reader. O

Definition 6.5. An n-coset group is called very commutative if it has the
form G/A where G is commutative.

We also remark that if G is a group of automorphisms of the Hopf algebra
H, it is also a group of automorphisms of the dual H*. Consequently, if the
diagonal of H is cocommutative then H* is also an n-Hopf algebra. Hence,
we obtain

Proposition 6.8. Let X be a very commutative n-coset group; then C[X|*
is an n-Hopf algebra.

This proposition can be used to show that certain commutative n-valued
groups are not very commutative n-coset groups.

Important examples of commutative, cocommutative n-Hopf algebras are
given by the cohomology of classifying spaces of connected Lie groups. By
Proposition 6.5, H*(BG) is an n-Hopf algebra where n denotes the cardi-
nality of the Weyl group W (G) of the compact, connected Lie group G. This
follows since H*(B@) can be identified with the W (G)-invariant subalgebra
of the polynomial Hopf algebra H*(BT') where T' denotes a maximal torus
of the group G. Using a proof similar to that of Proposition 6.8, one sees
the following

Proposition 6.9. If G is a Lie group, then H,.(BG) is an n-Hopf algebra.

A geometric realisation of the diagonal of the n-Hopf algebra H*(BG) can
be obtained by applying the Becker-Gottlieb transfer [BeG] to the fibration
BT — BG with fibre G/T.

There are other examples of polynomial algebras that admit n-Hopf alge-
bra structures; many can be constructed as a consequence of the Shephard—
Todd-Chevalley theorem on the invariants of reflection groups acting on
polynomial algebras ([ST], [C]).

7. Commutative, singly-generated 2-coset groups

If A C X is a subset of an n-valued group, then the subgroup generated
by A consists of those elements obtained under any number of successive
multiplications of elements of A and their inverses. We will pay particular
attention to the case where G is a group, « is an automorphism of G of
order 2 and X = (/o is the corresponding 2-coset group. In this case,
the subgroup generated by A C X is the image of the subgroup generated
by the inverse image of A in G. We note that there are noncommutative,
one-generator subgroups of 2-coset groups. For example, let G be a free
group on two generators and «a the automorphism that interchanges the two
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generators. Then X = G/ is noncommutative but generated by the image
of one of the generators of G. If the generators are denoted by a and b and
the product in X is %, then

{ab,ba} * {a®b? b%a®} = [{aba®b?, bab®a®}, {ba®b?, ab®a?)]
but

{a®V?,b%a®} * {ab, ba} = [{a®b*ab, b*a®ba}, {b*a>b, a®ba}]
and these are not equal.

Proposition 7.1. Let G be a group with involution « and for g € G, let
h = g*. Then the element {g,h} € X generates a commutative subgroup of
X if and only if either gh = hg or g% = h2.

Proof. We can assume that gh # hg. The product of {g, h} with {g2, h?}
is [{g3, h%}, {gh?, hg?}] and in the opposite order it is [{g®, B3}, {h%g, g2R}].
If these are equal then we have either gh? = h%g or gh? = g2h; the latter
implies that h = g.

Similarly, the product of {g, h} with {g, h®} is [{g*, h*}, {gh®, hg®}] and
in the opposite order it is [{g*, h*}, {g3h, h3g}]. If these are equal, then we
have either gh® = ¢3h and so g2 = A% or gh® = hg>. In the Iatter case, if
we also have that gh? = h2g, then one has that gh = hg. Since the relation
g% = h? implies gh? = h2g, the result is proved in one direction.

Conversely, consider the group

K=<ab | a®=0 >

(which is the fundamental group of the Klein bottle) and its automorphism «
which interchanges ¢ and b. Let X denote the corresponding 2-coset group.
To complete the proof of the proposition, it is enough to show that X is
commutative. There is an epimorphism of K onto D, the infinite dihedral
group; its kernel is the cyclic group generated by ¢ = a? = b% and forms the
centre of K. The automorphism « acts trivially on the centre, so one has an
exact sequence
0=-Z->X—->W=0

Every element of X can be written as z,, ,, where

S {(ab)™2c™, (ba)™?c™} for n even,
) {b(ab) 1 2¢™, a(ba)?H2¢™)  for noodd.

With this notation, a tedious, direct calculation shows that the multiplica-
tion in X is given by

Tkt * Tnm — [mk-l-n,l-l—ma m|k—nl,€+m+min(k,n)]

and so is commutative. [
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Rather surprisingly, the 2-coset group X is isomorphic to the 2-coset
group (Z x Z)/ where 7 is the involution that interchanges the factors and
s0 is very commutative. Consider the map

qg:ZxZ 74 xZ

defined by
Q(m’ n) = (lm - nl’min(ma 'n'))

which induces a bijection between (Z x Z)/7 and Z x Z. It is easily checked
that when the 2-coset multiplication is rewritten via g, it is given by exactly
the same formulae as that on the subscripts described above for X.

The 2-coset group X has the universal property that it maps onto any
commutative singly generated 2-coset group and so plays a role similar to
that of the integers in the theory of groups. However, note that in the closely
related situation of a pair consisting of a group and an automorphism of
order two, there is no universal object since (Z x Z,7) and (K, a) do not
admit equivariant maps from one onto the other.

8. Examples of group algebras

If X is finite, then the group algebra C'(X) can be identified with the dual
C[X]* of the algebra C[X] of functions on X. As we have seen, when X is an
n-valued group, C[X] is an n-Hopf algebra and if X is a very commutative
n-coset group, the dual C(X) is, by Proposition 6.8, also an n-Hopf algebra.

Definition 8.1. An element z € C(X) is called a geometric element if
Alz)=zQuz.

Elements of C[X] arising as evaluation at points of X are geometric. In
a general Hopf algebra such elements are called group like (see [K]).

It will be convenient, in the cases where the algebra C(X) is a quotient
of a polynomial algebra C[z], to identify C(X x X) = C(X) ® C(X) with
a quotient of Clz,y] where, by abuse of notation, we denote z® 1 by z and
1®z by y. .

First we study all the (four) examples of 2-valued group structures on
set with three elements.

(1) If X is the cyclic group of order 3, then the algebra structure on C(X)
is given by C[z]/(z® = 1). We have A(z*) = zFy*.

(2) When X is the deformed cyclic group of order 3 (Example 3.8), then
C(X) = Clz]/(22° = z + 1) and A(z*) = zFyF for £ =0,1,2.

This algebra can be regarded as being deformed in the category of hy-
peralgebras from the previous example.

(3) Consider Z/4/« whose group algebra is naturally

C[‘Dlv:’:Z]/(Qm% =zo+ 1, 3130 = xl,mg =1).
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Writing 21 =z and 2z, =22?—1, one sees that it is isomorphic to C[z]/[(z®—z).
One has A(zg) = zpyg for k = 1,250 A(z) = zy and A(z?) = A(1+35)/2 =
(1+z212)/2=(1+ (222 - 1)(2y% - 1))/2 =1 — 2% — y? + 2272

This example can also be regarded as a deformation of Example 1.

(4) The example Z/5/a has group algebra
Clz1, 2]/ (222 = 2 + 1,2¢129 = 21 + 32,223 = 21 + 1)

and A(zy) = zxyg for k = 1,2. Writing z; = z and z2 = 222 — 1, the group
algebra becomes C[z]/(4z® = 232 + 3z — 1).

(5) The deformed cyclic group of order m is the generalisation of Example
2 above. Its group algebra is C[z]/(2z™ — = — 1) and A(z*) = z*y* for
0 < k < m — 1. Write the series

xq
P,
q2>0

using the relation z™ = (z + 1)/2 as Z;n:“ol ar(t)z*. So

m—1

1 = (t-2) ) ax(t)z*
k=0
= (tag(t)—am(t)/2)+ (tai(t) —am(t)/2)z+ i (tap(t) —ag—_1(t))z".
k=2

Hence, tag(t) — am_1(t)/2 = 1,tak(t) — ax-1(t) =0 for 2 < k <m —1,
and ta1(t) — ag(t) = am-1(t)/2.
Solving these equations gives

@) 2tm—1 — 1
Q = ——,
0 2m ¢ — 1
2tm—k-—1
ak(t):m for 1§k§m—1

Hence

Z $q _ 2 tm—'l'm_].
tatl T pm 1\ t—z 2/

g0

We therefore obtain

z? 2 tm—zmy™ 1
A = _ -\
Zt4+1 2tm—t—1( t—zy 2>
720

This shows that C(X) is not a 2-Hopf algebra for m > 2 and so X is not
a very commutative 2-coset group.
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(6) The extension example Z/mU{s} has group algebra Clz]/(z™*! — 1)
and A(z*) = zFy* for 0 < k < m, A(z™) = 1 — 2™ — y™ + 2z™y™. A
calculation gives that

q 1 m tm_k k
Z-:.E__lz_ 1+M
tat t tm -1

q>0
and hence
Z z9 _ 1 1+ ZE__‘II tm—kgkyk 4 (1 — 2™ — y™ 4 22™y™
o 1 t tm —1 '

This shows that C'(X) is not a 2-Hopf algebra for m > 2 and so X is not
a very commutative 2-coset group.

(7) Consider the universal commutative one generator 2-coset group X;
its group algebra C'(X) is a polynomial algebra with one generator over the
algebra & of Laurent polynomials in the central element ¢ of the group K
and which is fixed under the automorphism a. So,

C(X) = k[z],k = Cle,c™"] and z = (a+b)/2.
The geometric elements in C(X) are {p,c™|m € Z,n > 0} where

oy = { ((ab)® + (ba)*)/2  ifn=2s,
" (b(ab)® + a(ba)®)/2 ifn=2s+1.

The diagonal A : k[z] — k ® k[z,y| induces an algebra homomorphism
k— k®k and A(pn) = pngn with po = 1,p1 =  and 2zp, = Ppy1 + cPn1
for n > 1. To see this one needs to use the facts that ¢ = a? = b? and that
a(ab)® = cb(ab)*~! to show that (a + b)((ab)® + (ba)?) = b(ab)® + a(ba)® +
cb(ab)*~' + ca(ba)*~! and (a + b)(b(ab)® + a(ba)®) = (ab)**! + (ba)**' +
c(ab)® + c(ba)®. Setting

Pz, u) = an(:n)u”

n>0

one calculates easily that (1 — 2zu + cu?)P(z,u) = 1 — zu. For ¢ = 1 one
therefore has that the geometric elements are the Chebyshev polynomials.

Writing A(c) = ¢1c2 and A(z) = zy, and using p = 222 — ¢ from above,
one gets that A(z?) = (p2g2 + c162)/2 = 25%y? — e19? — 232 + c1c. Hence
the quadratic polynomial in the definition of a 2-Hopf algebra becomes for
this case, Pr(t) = t? — 2zyt + coz? + 9% ~ c1co.

When ¢ = 1 and so ¢; = ¢; = 1, this polynomial becomes t? — 2zyt + 2 +
y? — 1 which is the polynomial that defines the multiplicative 2-valued group
structure on C that we considered earlier. This relation is a consequence of
the duality theory for n-valued groups that we intend to study in another

paper.
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