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Thew-Function of the KdV Hierarchy 

V. M. Buchstaber and S. Yu. Shorina 

ABSTRACT. In this paper we construct a family of commuting multidimen
sional differential operators of order 3, which is closely related to the KdV 
hierarchy. We find a common eigenfunction of this family and an algebraic 
relation between these operators. Using these operators we associate a hy
perelliptic curve to any solution of the stationary KdV equation. A basic 
generating function of the solutions of stationary KdV equation is introduced 
as a special polarization of the equation of the hyperelliptic curve. We also 
define and discuss the notion of a w-function of a solution of the stationary 
g-KdV equation. 

Introduction 

At the present time various forms of solutions of the stationary g-KdV equations 
are known, including the representations with the T-function ([13]), 8-function 
([14, 15]), and u-function ([2, 3]); rational solutions can be expressed in terms 
of Adler-Moser polynomials ([1]). All these functions satisfy the equation 

(0.1) 20; log f = -u, 

where u = u(x, t 2 , ... , t9 ) is a solution of the stationary g-KdV equation. 
In this paper we construct a family of commuting multidimensional differential 

operators of third order starting with an arbitrary solution of the stationary g-KdV 
equation. Using these operators we solve the following well-known 

PROBLEM 1. Supplement (0.1) with natural conditions so that the problem 
have a unique solution. 

We call this solution aw-function of the KdV hierarchy. 
In [20] Novikov observed that each solution of the stationary g-KdV equation 

is a g-gap potential of the Schrodinger operator. It was shown in [2], [3] that 
the Kleinian u-function u(x, t 2 , ... , t 9 ) provides a solution of the g-KdV equation. 
This fact follows from a general result describing all algebraic relations between the 
higher logarithmic derivatives of the u-function. 

We are going to discuss also the following natural 
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PROBLEM 2. Describe all the relations between the higher logarithmic deriva-
tives 

ai1 +···+i9 

. . . logw(x, t2 , ... , t9 ), where ii+···+ i 9 2 2, 
ax•i at~2 ••• at~9 

following from the construction of thew-function of the KdV hierarchy. 

A solution of this problem is given in Section 8. 
In [16] Krichever introduced the concept of the Baker-Akhiezer function as 

a common eigenfunction of the operators .C and A (see Section 1 for definitions). 
This function is characterized by its analytic properties, including the behavior at 
singular points. In Subsection 10.2 we express this function in terms of the common 
eigenfunction of our family of commuting differential operators. 

The results of this paper were partially announced in [5], [6]. 

1. Preliminaries 

This section is a brief review of basic facts about the KdV hierarchy. See [19] 
for more details. 

The classical KdV (Korteweg-de Vries) equation is 

(1.1) :tu= ~(u"' - 6uu'), 

where u is a function of real variables x and t; the prime means differentiation with 
respect to x. 

Denote .C = a~ - u the Schrodinger operator with the potential u. The second 
term here means the operator of multiplication by the function u; we will use similar 
notation throughout the paper. Let also 

(1.2) Ai= a~ - ~(uax + axu) =a~ - ~uax - ~u'. 
Then, as it was first noticed in [18], the KdV equation is equivalent to the condition 

[Ai,.C] = -~(u"' - 6uu'). 

Denote '.D a ring of differential operators with coefficients in the ring of smooth 
functions in variables x and t. Consider the action of the operator a I at on the ring 
'.D defined by the formula 

(1.3) :t (L fk(t, x)a~) = L afk~~, x) a~. 
k~O k~O 

Then for the operator .C we obtain the equality 

a a 
-.C=--u 
at at · 

So, equation (1.1) is equivalent to 

a 
at.C = [Ai,.C]. 

For every differential operator B E '.D define its formal conjugate B* as follows: 
take, by definition, 

(1.4) a; = -ax' f* = f' 
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where f is an operator of multiplication by the function f, and assume * to be a 
ring anti-homomorphism: 

(1.5) 

for all B1,B2 E '.D. 
We call an operator B symmetric if B* = B, and anti-symmetric if B* = -B. 

Thus, the operator .C is symmetric whereas the operator A1 is anti-symmetric. 
Consider the subring '.D 1 c '.D generated by Ox and the multiplication operator 

u. Supply the ring '.D 1 with the grading such that 

(1.6) deg u = 2, deg Ox = 1. 

Thus, deg u(k) = deg a~u = k + 2. The operators .C and A1 are then homogeneous 
of degree 2 and 3, respectively. 

DEFINITION 1.1. Denote by QI. the linear space of anti-symmetric differential 
operators A such that the commutator [A, .CJ is an operator of multiplication by a 
function. 

THEOREM 1.1 ([18]). The space QI. has a basis Ao, A1, ... , where Ak = a;k+l + 
L Pk,iO~ is a homogeneous degree 2k + 1 differential operator of order 2k + 1, and 
Pk,i is a differential polynomial in u of degree 2k + 1 - i. 

The recurrence relation for the operators Ak can be found in [8]. The operator 
A1 is given by (1.2). The operators Ao and A2 are 

Ao= Ox, 

!:i5 5 ( !:i3 !:i3 ) 15 !:l 5 ( II !:l !:l ") A2 = Ux - 4 Uux + UxU + SUUxU + 16 U Ux + UxU . 

Denoterk[u] = [Aki.C],sothatr1[u] = :!(u111 -6uu1),r2[u] = 116 (u<5l-1Quu"'-
20u'u" + 30u2u'), etc. Suppose now that u depends on x and an infinite set of 
variables ti, t 2 , .... The equation 

(1.7) 

is called the gth higher KdV equation. 
The family of equations ( 1. 7) is called the KdV hierarchy. 
The action of differential operators Otk on the ring '.Du is defined similarly to 

(1.3). 

LEMMA 1.1. The operators Ak satisfy the following "zero curvature" condition: 
OtkAm - OtmAk = [Ak, Am], or, equivalently, [8tk - Ak, Otm - Am]= 0. 

The expression 

1 2 1 I -1 
(1.8) R = 4ax - 2u ax - u, 

is called the Lenard operator; here 8;1 is an operator of integration with respect 
to x. Note that the Lenard operator R is multivalued, and to fix its value we need 
to choose the integration constant. 

THEOREM 1.2. Functions rk[u] are related by the Lenard operator: 

rk+l[u] = R(rk[u]). 

For example r = u' and r = 1.u"' - :J.uu' = l.fJ2u' - 1.u'u - uu' = R(r ) ,o ' 1 4 2 4X 2 O· 
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DEFINITION 1.2. The equations 
g-1 

(1.9) rg[u] + L akrk[u] = 0, 
k=O 

where ak are constants, are called higher stationary g-KdV (or Novikov) equations. 

THEOREM 1.3. A function u is a solution of (1.9) if and only if it satisfies 
the relation Rg ( u') = 0 for some choice of the integration constants; this choice 
depends on the constants ak. 

See [9] for a proof. 
If one replaces the function u with u+c where c is a constant, then the operator 

Ak becomes Ak + c '2::~01 Ck;iAi for some constants Ck;i where Ck;k-1 =f. 0. We can 
choose the constant c so that to achieve the equality ag-l = 0 in the decomposition 

of the operator A= Ag+ '2:1::~ akAk· 

2. A family of commuting multidimensional differential 
operators of order 3 

In this section we describe a family {Uk} of differential operators commuting 
with each other and with the Schrodinger operator. In this aspect they resemble 
the operators Ok+l - Ak, but unlike {Ak} they are multidimensional operators of 
the third order. 

Let {u1, u2, ... , ug} be a sequence of functions of variables t1 = x, t2, ... , tg. 
Denote Oi = a I 8ti. Suppose that the first derivatives of the function U1 are linearly 
independent, i.e., '2:f=1 ci8i(u1) = 0 only if c1 =···=cg= 0. This condition means 
that the function u1 = u 1 ( t 1 , ... , tg) essentially depends on all its arguments, i.e., 
there is no linear projection 7f : cg --+ cg-l such that u = 1f*u, where u is a function 
on cg-l. 

Denote 

[, = o; - U1, 

2 1 1 
Ak = 8x8k - 2(u18k + 8ku1) - 4(uk8x + 8xuk), 

where k = 1, ... , g. Note that A 1 coincides with the operator A1 given by (1.2). 
Define the formal conjugation * on the space of multidimensional differential 

operators by formulas (1.5) together with the rule 8i = -8i for i > 1. The operators 
Ak are anti-symmetric: Ak = -Ak· 

In the ring of differential operators in variables t 1 , ... , tg consider the subring 
'.Dg generated by the operators 81 , ... , Og and ui, ... , Ug. Define the grading on '.Dg 
using formulas (1.6) and assuming also that deg Uk = 2k and deg Ok = 2k - 1. It is 
clear that the operators C, and Ak are homogeneous, deg C, = 2, deg Ak = 2k + 1. 

LEMMA 2.1. The commutator [£, Ak] is a multiplication operator if and only 
if u~ = 8ku1 for all k. If this condition is satisfied, then 

(2.1) [C,Ak] = ~(u%' - 2u~uk - 4u1uU. 

Proof. The assertion follows from the formula 

[C,Ak] = (-2u%+28kuU8x+(-u~+aku1)8;+aku~ -u18ku1 - ~uku~ - ~u%'. D 
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LEMMA 2.2. Let K be an anti-symmetric differential multidimensional operator 
of order 3. Suppose the commutator [K, L'.] is a multiplication operator, and the 
coefficients in derivatives of order 3 are constants. Then K = Li::;i::;g ciAi + 
1/Jiai + ¢, where Ci are constants, and the functions 1/Ji and¢ do not depend on x. 

Proof. Let 

K = L Sijk OiOjOk + L fij OiOj + L gi Oi + h, 
l::;i,j,k$g 

where Sijk are constants such that Sijk = Sikj Sjik, and all the fij, gi, h are 
functions of t 1, ... , t9 . The anti-symmetry implies that fij = 0 for all i,j, and 

Ll:'Oi$g ~t = 2h. We have 

Since the commutator [L'., K] is a multiplication operator, the coefficients of 
OiOj and 8i in the last formula are zeros. 

It follows from the linear independence of the first derivatives of the function 
u1 that Sijk = 0 when i, j -1- 1. If i -1- 1, then one has 2g~ = -3sui ffx u1. 

From the condition that the coefficient of Bx vanishes, we obtain 

EJ2u 
g~ + 2h' + 3 L sui a·ax = 0. 

1$i$g i 

Put ci = 3slli = sui + slil +sill; 1/;1 = gi + 1/2 2:f=1 ciui, 1/Jk = gk + 2:f=1 ciu1 
for k -1- 1, and ¢ = h + 2:f=1 ciu;. Then the functions 1/Ji, i = 1, ... , g, and ¢ do 
not depend on x and K = Li$i$g ciAi + 1/Jiai + ¢. D 

Denote 

Ui = Ai - 8i+i, for i < g; 

U9 = A9 . 

The operators Ui are anti-symmetric and homogeneous. 

LEMMA 2.3. The following conditions are equivalent: 

(1) [L'.,Uk] = 0. 
(2) -8k+1L'. = [L'.,Ak]· 
(3) 8k+1u1 = u~+l = ~(u~' - 2u~uk -4u1u~) fork< g, 

4u1u~) = 0. 

Proof. The asertion follows from the equality 

and (u"' - 2u1 u -g 1 g 

The last condition in Lemma 2.3 allows us to express the functions uk by 
recursion in terms of u 1 and its x-derivative, up to the choice of a function that 
does not depend on x. 
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COROLLARY 2.1. Under the hypotheses of Lemma 2.3, functions ui are related 
by the Lenard operator R (see (1.8)): 

(2.2) 8i+1u 1 = R(u~) = R.,i+ 1 (u~). 

For i =gone has 0 = 89+lu1 = 'R.,9(u~). 

COROLLARY 2.2. The operators {Uk} commute with [, if and only if the func
tion u1(x) is a solution of the stationary g-KdV equation. 

LEMMA 2.4. The operators Ui, Uj commute for all 1 :::; i, j :::; g if and only if 
the functions { ui} satisfy condition (3) of Lemma 2.3 and the following equalities: 

(2.3) OiUj = OjUi, 

(2.4) U~Ui - U~Uk + 28i+1Uk - 20k+1Ui = 0, 1:::; i, k:::; g. 

The lemma is proved by direct calculation. 
Note that (2.3) implies the existence of a function z(t1 , ... , t 9 ) that satisfies 

OiZ = Ui. 
The fact that the operators Ui commute is equivalent to the zero curvature 

conditions for the operators Ai: 

(2.5) 

3. A generalized translation associated with the KdV hierarchy 

In this section we develop the technique of a generalized translation from [3]. 
For 'T/ E JR define an operator D'l acting on the space of functions of one variable 

as (D'1f)(~) = 2cfE'7)f('T)). Define the operator B by the rule 

B(f, h)(~, 'T/) = 2(~~~ 'T/) (f(~)h('T/) - f('T/)h(~)) = j(~)(D'1h)(~) - g(~)(D'1f)(0. 
It possesses the following properties: 

e B(f, h)(~, 'T/) = -B(h, !)(~, 'T/). 
o B(f, h)(~, 'T/) = B(f, h)('T/, ~). 
o B is a bilinear operator. 
o If J(~) and h(O are polynomials, then B(f, h)(~, 'T/) is also a polynomial. 

e B(f,~-1)(C'T/) = f(~Jf~-=-~~'T/)'T/_ 
• B(l, 2~- 1 ) = 1. 

Define also an operator Bk acting on the set of k-tuples of functions of one 
variable as follows: 

Tik ck-1 
i=l .,,, 

fi(6) h(6) 
fi(6) h(6) 

where W(fa, ... ,~k) is the Vandermonde determinant. Note that B1(f) f, 
B2(f, g) = B(f, g). 
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Let fi be a function of variables~; t 1 , ... , t9 , so that one has 

k 

OjBk(f1, ... 'fk)(6, ... '~k) = L Bk(f1, ... 'Ojli, ... 'fk)(6, ... '~k)· 
i=l 
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For a fixed function h define (TF !)(~, 71) = (T(h)lf)(~, 71) = B(f, h)(~, 77). 

LEMMA 3.1. The operators TF satisfy the associativity condition TFT[ = r;r; 
and the commutativity condition TFT[ = T[TF. 

Proof. Calculate T[TF f: 

'rTrif = ~T (~71 f(~)h(71) - f(71)h(0 h(T) _ 771 f(T)h(71) - f(71)h(T) h(~)) 
~ ~ 2(~-T) 2(~-77) 2(7-71) 

= e712T2 

f(0h(71)h(T)(T- 1- 71- 1 ) + f(71)h(T)h(~)(~-l- T-1 ) + f(T)h(~)h(71)(71- 1- ~- 1 ) 
X-'--'---'-~--'-~~~~--'--'---'----'---'-~~---'-~--'--'---'--'--'---'-~~---'-

4(~ -T)(~ - 71)(71- T) 
= B3(f(~), h(~), h(~)C 1 )(~, 71, T). 

This expression is invariant under all the permutations of the variables~' 71, T. The 
lemma is proved. D 

COROLLARY 3.1. The operator TF is an operator of commutative generalized 
translation and 

r; 1 = 2(/2 71) (h(77) - h(~)). 
In particular, r; 1 = 1 if and only if h(O = 2/~. 

REMARK 3.1. The generalized translation operator T>l(f) = U(~t-~f(ri) from 

[3] is equal tor; when h = 2/~. 

REMARK 3.2. Let h(~) = h_if ~ + h(~), where h(O is a function regular in a 
neighbourhood of the origin. Then for a function f (0 regular in a neighbourhood 
of the origin the function f(~, 71) = TF f is regular in a neighbourhood of the point 
-(~,71) = (0,0). 

DEFINITION 3.1. A polarization of a smooth function f(~) is a symmetric func
tion of two variables f (~, 71) such that f (~, ~) = 2f (~). 

LEMMA 3.2. Let f ( ~, 71) be a polarization of a function f ( ~). Then 

(3.1) of(~,77)I of(~)_ 
o~ ~=ri o~ 

Proof. For a symmetric function f(~, 71) there exists a function h(s1, s2) such 
that f(~, 71) = h(~ + 71, ~71). Since 2f(~) = f(~, ~) = h(2~, e), one has 

of(~,71) I oh oh I oh 2 oh 2 
o~ = -;:J(~+77,~71)+-;:J(~+71,~71)71 =3(2~,~ )+-;:J(2~,~ K 

~=ri us1 us2 ~=ri s1 us2 

On the other hand, 

of(~)=~ oh(2~,e) = ~(2~,e) + ~(2~,e)~ = of(~,77) I . D 
o~ 2 o~ os1 os2 o~ ~=ri 
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EXAMPLE 1. Let J(e) = L::i9i(e)hi(e). Then the function 

J(e, 11) = :L (gi(e)hi(11) + 9i(11)hi(e)) 
i 

is a polarization of J(e). 

Let Fn be a set of smooth functions of n variables. 

DEFINITION 3.2. Let G: Ff---+ F1 and G: Ff---+ F2. The operator G is called 
a polarization of the operator G if the function G(fi, ... , fk) is a polarization of 
the function G(f1, ... , fk) for any Ji, ... , fk. 

Recall ([13]) that the one-variable Hirota operator He is given by 

HdJ(e),g(e)J = J'(e)g(e) - J(e)g'(e). 

LEMMA 3.3. The operator e2.,,B(f,g)(e,11) gives a polarization of the Hirota 
operator 

Proof. We need to prove that 

e 
~~B(f,g)(e,11) = 2 HdJ(e),g(e)J. 

Let 11 = e + e. Then !(11) = J(e) + ef'(O + O(e2 ) and g(17) = g(e) + eg'(e) + O(i::2). 

Hence 

B(f,g)(e,e + e) = e(~;/) (f(e)g'(e)i:: - g(e)J'(e)i:: + O(i::2)) 

e 
= 2 HdJ(e), g(e)J + o(i::). o 

Define the operators Di by the expansion 

iEZ 

LEMMA 3.4. Let f(e) = · · · +Jo + Jie + 12e + · · · . Then 

1 -k+l (Dkf)(e) = 2(· ··+Joe + · · · + fk-1). 

If !(0 = Jo +fie+ · · · + fnen is a polynomial, then (Dif)(e) = !Jo and 
(Dn+if)(e) = ! e-n J(e). 

It is clear that 

(3.2) 

Note one more property of the operators Di. 

LEMMA 3.5. Let J(e) be a polynomial. Then 

k>~>o Dk+m+1(f(e))17k(m = 2(17 ~ () (e 211!(11) - e ~ (!(()) 
- ' -

= :(B (i,D~J(e)) (17,(). 
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Define the operators di by the formula TFf(~) = 'L,(dd(~))77i. Then 

d;f(~) = f(~)Dih(~) - h(~)Dd(~). 
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From Lemma 3.1 using the standard methods we obtain the following result. 

LEMMA 3.6. The linear space spanned by the operators di, i = 1, ... , is an 
associative and commutative algebra with the following multiplication: 

i+j 

didj = 'L c~jdk, 
k=O 

where the structure constants crj are found from the expansion 

r;~k = 2 ~17 (~kh(77) - 77kh(~)) = L c~j~i7Jj. 
(~-77) i+j"~k 

For the sequence of function { u1 , ... , ug} of variables ti = x, t 2 , ... , tg we in
troduce the generating functions 

g g g 

u(~) = L ui~i, u'(~) = L u~~i, ... ' u(k)(O = L u1k)~i 
i=l i=l i=l 

(the prime here, as usual, means differentiation with respect to x). The following 
statement gives an expression of the third derivatives u~', ... , u~' in terms of the 
functions u1 , ... , ug and their first derivatives. Moreover, it allows us to express 
these derivatives by recursion as a differential polynomial in u 1 . Here is one of the 
key results of the paper. 

THEOREM 3.1. The sequence { u1, Uz, ... , ug} satisfies condition (3) of Lemma 
2. 3 if and only if the generating function u( ~) is a solution of the following equation: 

(3.3) u111 (~) + 2u~(2 - u(~)) - 4(C1 + ui) u'(~) = 0. 

Proof. We have 
g 

u 111 (0 + 2u~(2 - u(~)) - 4(C1 + u1) u'(~) = L(ut - 2u~ui - 4u1u~ - 4u~+ 1 )~i. 
i=l 

The coefficients of ~i on the right-hand side of this formula are all zero if and only 
if condition (3) of Lemma 2.3 holds. D 

Take, by definition, 
g 

8ku(~) = L 8kui~i. 
i=l 

LEMMA 3. 7. Equations (2.3) and (2.4) together are equivalent to the following 
equation: 

ak+iu(~) = c1aku(~) - ~uku'(O + ~uUu(O) - u~. 
This equation allows us to determine by recursion the partial derivatives 8k u( ~): 

(3.4) 

In what follows we assume that (3.3) and (3.4) hold for the function u(~). 
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COROLLARY 3.2. 

(3.5) 

(3.6) 

8ku'(() = Dk(2 - u(())u"(() - Dk(u"(())(2 - u(()), 

8ku"(0 = 4(C1 + u)8ku(() - 2u~(2 - u(()) 

+ Dk(u"(())u'(() - Dk(u'(())u"((). 

Let 8(ry) = L::f=1 ryi8i· Note that for a fixed rJ the operator 8(ry) is an operator 
of differentiation in the direction of the vector (ry, ry2 , ••• , ry9), i.e., 

COROLLARY 3.3. 

(8;8(() + 2(2 - u(())8x - 4(C1 + u1)8(())u = 0. 

Proof. Recall that 8iu1 = u~, and therefore u'(() = 8(()u1 and u"'(() 
8;8(()u. Now the statement follows from (3.3). D 

Denote 'Fe11 = T(2 - u(())i. In the sequel, the operator Te11 plays a special role, 
as is shown by the following theorem. 

THEOREM 3.2. 

(3.7) 

(3.8) 

(3.9) 

8(ry)u(() = 'Fe11 8xu((). 

8(ry)u'(() = 7e118;u((). 

8(ry)u"(() = 7e11 8~u(() - Bl(u'((), u"(()). 

Proof. These formulas follow from the definition of the operator 'Fe11 and equa-

tions (3.4), (3.5), (3.6). D 
Note that (3.7), (3.8) imply that 

[8x, 7e'7J8xu(() = 0. 

The associativity condition for the operator 'Fe11 is equivalent to the following 
relation, which will be used later: 

(3.10) 
(TJ 2 - u(ry) 

8 (() 2(( - ry) 2 - u(() 
1 T,'7 (, '( ) 

(2 - u(())2 ~ Te u ( . 

Now we describe the family of differential operators {Ui} using the method of 
generating function. 

LEMMA 3.8. The generating function of the sequence of operators ui is 

g 

I::ui(i = ~ ( (.C - C 1 )8(() + 8(()(.C - C 1)) + ~ ( (2 - u(())8x + 8x(2 - u(())). 
i=l 

4. The hyperelliptic curve associated with a solution of KdV 

THEOREM 4.1. Suppose the generating function u(() satisfies (3.3) and (3.4). 
Let 

(4.1) 4µ(() = u'(() 2 + 2u"(() (2 - u(()) + 4(C1 + u1) (2 - u(())2 • 

Thenµ(() = 4(-1 + 2:::~! 1 µi(i, where µi are constants, i = 1, ... , 2g. 
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Proof. It follows from (3.7), (3.8), (3.9) that 

o('f])µ(~) = 2u'(08('fl)u'(~) + 2(2 - u(~))8('fl)u"(~) - 2u"(08(17)u(~) 

+ 4u'('f7)(2 - u(~)) 2 - 8(C1 + u1)(2 - u(0)8('fl)u(~) = 0. 

51 

Therefore oiµj = 0, where 1 :S i :S g, 1 :S j :S 2g, and all the µi are constants. D 
Suppose uk = 0 fork> g. Equation (4.1) implies that 

(4.2) Uk+i = ~µk + Jk(u, u', u", ... , Uk, u~, u%), k = 1, ... , 2g, 

where Jk are polynomials. We see that the functions Uk, k = 2, ... , g, can be 
expressed by recursion in terms of the function u1, its derivatives, and the constants 
µi, namely 

(4.3) _ e ( I (2k-2) ) Uk - k U, U, ... , U , µ1, ... , µk-1 , 

where ek are polynomials. 
Note that the condition J~ = 0 is equivalent to the stationary g-KdV equation. 

For k > g one has Jk = -(1/4)µk> which provides integrals of the higher KdV 
equation (see [19]). 

Since 8ku1 = u~, the partial derivative of u1 with respect to tk can also be 
expressed in terms of derivatives with respect to x. Therefore the behavior of 
the function u1 along the coordinate axes t2, ... , tg can be reconstructed if its 
derivatives with respect to x are known. 

LEMMA 4.1. Let µi be constants. Then equation (4.1) implies equation (3.3). 
If equations (2.3) and (4.1) hold, then equation (3.4) also holds. 

Proof. The first statement of the lemma is clear. From the equality u~+l = 
(1/4)(u%' - 2u'uk - 4uu~) one obtains 

Ok+1u;,, = OmU~+l = (1/4)(8mu%' - 2u'./nuk - 2u'8muk - 4u;,,u~ - 4u8mu~) 

= Oku;,,+ 1 + (1/2)u%um - (1/2)u'./nuk. 

This equation proves that (3.5) holds. So (3.6) also holds. Integration of (3.5) 
with respect to x gives the formula Oku(~) = Dk(2 - u(~))u'(~) - Dk(u'(0)(2 -
u(~)) + cp(t2 , ... , tg), where the function <p does not depend on x. Combining the 
last equation with (4.1), we obtain 

0 = 48kµ(~) = 8k(u'(~) 2 + 2u"(0 (2 - u(~)) + 4(C1 + u1) (2 - u(~)) 2 ) 

= (8(C1 + u1)(u(~)) + 2u"(~)) cp(b ... , tg)· 

The function in parentheses cannot vanish identically as a function of x, and thus 
cp(t2 , ... ,tg)=:O. D 

Now we summarize the results obtained: 

THEOREM 4.2. The following statements are equivalent: 

(1) The function u 1 is a solution of a stationary g-KdV equation. 
(2) There exists a sequence of functions { u 1 , ... , ug} such that the operators 

.c = a; - U1 and ui = a;ai - ~(u18i + 8iu1) - i(uiOx + OxUi) - Oi+l, 
1 :S i :S g, commute. 

(3) There exists a sequence of functions { u 1 , ... , Ug} and a set of constants 
µ1, ... , µ2g such that the generating function u( ~) = I:;f=1 ui~i satisfies 
( 4.1). 
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In order to find the relation between the constants µk and the coefficients ai 
we need the following result. 

LEMMA 4.2. The operator U = u1.o- 1 + U2£9-2 + · · · + U9 

(1) commutes with the operator£; 
(2) is an operator of order 2g + 2 with the leading coefficient 1; 
(3) contains the differentiation with respect to x only. 

Proof. The first statement of the lemma is obvious. The leading term of U is 
a composition of the leading terms of the operators U1 and [,9 - 1 , so it is equal to 
a;g+2. This proves the second statement. Since Ui = 8i£ - ai+l - (1/2)ui8x + 
(1/4)u;, the sum Ui[, - Ui+l does not contain the differentiation with respect to 
ti+l · By recurrence, we get the third statement of the lemma. D 

THEOREM 4.3. Under the hypotheses of Theorem 4.2 the operator A can be 
decomposed as A= U1£ 9 - 1 + U2 £ 9 - 2 + · · · + U9 , where A= A9 + 2:,f~5 aiAi. The 
coefficients µk and ai satisfy the following relation: 

k-2 

(4.4) µk = 8ag-k-l + 4 L ag-i-lag-k+i 
i=l 

fork= 1, ... , g - 1. 

Proof. The first statement of the theorem follows from Lemma 4.2 and unique
ness of the operators Ak (see Theorem 1.1). 

The function Uk is a differential polynomial 

_ e ( I (2k) ) Uk - k U1, Ul, ... ,Ul ,µ1, ... ,µk-l · 

Let Ck be a constant term of ek. Then 

U1£g-l + U2£9 - 2 + ... + Ug = a;g+l - (1/2) L uka;g-2k-l + L 79i8~ 
= a;g+l - (1/2) L Cka;g-2k-1 + L J:a~, 

where 79i and J: are differential polynomials in u 1 without constant terms. On the 
other hand, A = a;g+l - (1/2) L aka;k+l + L J"ia~. Thus, ak = -(1/2)cg-k-1, 
and so it remains to find ck· The result now follows from (4.1). D 

The following corollary is one of the main results of the paper. 

COROLLARY 4.1. There is a canonical way to associate a solution u 1 of the 
stationary g-KdV equation with a hyperelliptic curve 

(4.5) r = {(~, y) E c2 1y2 =4µ(~)}. 

The coefficients µ 1 , ... , µ9 _ 1 are expressed in terms of the constants ai as in equa-

tion ( 4.4), and µ9 , ... , µ2 9 are found from ( 4.3) in terms of the values of uik) (to), 
k = 0, 1, ... , at some point t 0 E ([9. 

REMARK 4.1. In the case where the solution u1 is periodic as a function of x, the 
hyperelliptic curve constructed above coincides with the spectral curve introduced 
in [12]. Our construction uses only the local properties of the function u 1, while in 
[12] only periodic or rapidly decreasing functions are discussed. 

REMARK 4.2. The number of singular points on r is an important characteristic 
of the solution u 1 . This number can be expressed in terms of uik)(t0 ) using the 
resultant. 
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5. Fiber bundles associated with the stationary g-KdV equations 

The equations described by (1.9) are ordinary differential equations of order 
2g + 1, and so their solution u 1 is uniquely determined in a neighbourhood of a 
given point xo by the values Ck = u1k)(x0 ), k = 0, ... , 2g. Since the coefficients 
of the KdV equations are constants, we can take x 0 = 0. The stationary g-KdV 
equations depend on the numbers a0 , ... , ag-2, and so the space of all such equations 
is isomorphic to cg-l. 

The space Mg of all hyperelliptic curves r = {(~, y) E (['.2 I y2 = 4µ(~)} can be 
parametrized by the numbers µ 1 , ... , µ 2g, so it is isomorphic to C2g. 

Denote by Rg the space of solutions u of all stationary g-KdV equations such 
that u is regular at the point x 0 . As was explained above, we can identify the space 
Rg with C3g using coordinates (co, c1, ... , c2g, ao, ... , ag-2). 

There exists a canonical map 1fM : Rg ----+Mg, which sends a solution u to the 
hyperelliptic curve r described by (4.5). 

Denote by ilg the space of gth symmetric powers of hyperelliptic genus g curves. 
We consider the universal bundle (ilg, Mg, nu), where the natural projection nu: 
ilg ----+Mg is given by Jru9 (x E Symgr) = r. 

THEOREM 5.1. There is a canonical fiber-preserving birational equivalence Rg 
----+Ug. 

Proof. Let r be a hyperelliptic curve associated with the solution u1 of the 
stationary g-KdV equation (see Corollary 4.1). Let 6, ... ,~g be the roots of the 
equation 2 - u(O,~) = 0. Denote Yi = u'(O,~i). Equation (4.1) implies that 
YT= u'(O,~i) 2 = 4µ(~), so the point (~i,Yi) belongs tor. Thus we have a map v: 
Rg----+ ilg given by the formula v(ui) = (f, [(6, Y1), ... , (~g, Yg)]), where (~i, Yi) E f. 
Apparently, v is fiber preserving. 

On the other hand, if a curve r and a point [(6, y1 ), ... , (~g, Yg)] E Symgf 
are given, then in the case of distinct points ( 6, ... , ~g), it is possible to construct 
the point (c0 , ... , c2g, a0 , ... , ag_2) as follows. The constants ak are a solution of 
(4.4) where the parameters µi are known. The values ui(O) are the symmetric 
functions of 6, ... , ~g, namely ui(O) = 2 (-l)g-i o-g-;+1(6, ... ,~g)/o-g(6, ... , ~g)· 
Then the values u~(O) can be found as the coefficients of the generating function 

u'(O, ~),from the equations u'(O, ~i) =Yi· All higher derivatives ck = ulk)(O) can 
be found by recursion using equation (4.3). Thus the inverse rational map v- 1 is 
constructed. D 

In the case of the universal bundle of Jacobians over the moduli space of genus g 
hyperelliptic curves this theorem gives the famous results of Dubrovin and Novikov; 
see [12]. 

6. Algebraic relations between the operators £, U1 , ... , Ug 

The Burchnall-Chaundy lemma ( [7]) says that two commuting differential op
erators of one variable are always connected by an algebraic relation. In [16] the 
case of commuting differential operators of n variables was considered. In the same 
paper the author (I. M. Krichever) introduced a class of n-algebraic families of 
operators, i.e., families of commuting operators characterized by finite-dimensional 
algebraic manifolds. The family { £, U1 , ... , Ug} gives an example of n-algebraic 
operators from [16]. 



54 V. M. BUCHSTABER AND S. YU. SHORINA 

LEMMA 6.1. The operators .C, U1, ... , U9 satisfy the following algebraic relation: 

4(U1.Cg-1 +U2.Cg-2 + .. ·+Ug-1.C+Ug)2 = ( 4,e2g+1 + µ1.C2g-1 + µ2.C2g-2 +·. ·+ µ2g)· 

Using the notation U(z) = U1z9- 1 + U2z9-2 + · · · + U9 and 'ji,(z) = 4z29+l + 
µ 1z2g-l + · · · + µ 29 , one can write down this relation as 4U(.C)2 = 'ji,(.C). 

Proof. Denote 
1 1 I 

S· = -u 8 - -u 
i 2 i x 4 i· 

Then 

(6.1) 

We have 

which implies the equation 

L uiuj = L (ai.c - si - ai+1)(aj.c - sj - aj+i) 
i+j=k i+j=k 

= :z:= aiaj.c2 - 20iaj+1.c + ai+iaj+i 
i+j=k 

- (aisj + siaj).c + (8;+1Sj + siaj+1) + sisj. 

A direct calculation gives that 

SiSj = (lj4)uiUj o; + (lj8)(uiuJ - UjU~)Ox - (lj8)uiu'j + (1/16)u~uj, 
8xSi + Si8x = uia; - (1/4)u~'· 

Therefore, 

L uiuj.c29-i-j+i = a;.c29 - L (uia; - (1/4)u~').c29 -i 
l~i,j~g l~i~g 

= ,e29+1 + ui.C29 _ L ui.c29-i+l 

l~i~g 

- L ( uiu1 - (1/ 4)u~').C29-i-l 

+ L ((1/4)uiujul - (1/8)uiu'J + (1/16)u~uj).C2g-i-i. 
l~i,j~g 

We see that the coefficient of .c2g-i in this formula is exactly the coefficient of 
~i in the expression (1/16)(u'(~) 2 + 2u"(~)(2 - u(~)) + 4(u1 + ~- 1 )(2 - u(~)) 2 = 
(1/4)µ(~). D 

COROLLARY 6.1. Let w(t1 , t2 , ... , t9) be a common eigenfunction of the op
erators .C,U1 , ... ,U9, with the eigenvalues E,a1, ... ,a9. Let~= E-1, a(~)= 
'\'9 i 
ui=l ai~ . Then 

(6.2) 4a(~) 2 = µ(~). 
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7. A common eigenfunction of the family {Ui} 

In this section we construct a common eigenfunction of the family of commuting 
differential operators {Ui}. 

LEMMA 7.1. 

-3_ (Dj(2 - u(~))) = ~ (Di(2 - u(~))) 
8ti 2 - u(~) 8tj 2 - u(~) . 

Proof. It follows from the definition of the operators 8(77) and Di that the 

expression a~; ( Dj2<:_~(e~e))) equals the coefficient of (i77j in the expansion of the 

function 8(() 2 (~:!,.,) ;::::~i~j with respect to 77 and (. This function is equal to 

( 2 -~(e))2 ;,.,;<;u'(~) (see (3.10)). Since the generalized translation;,., is commuta
tive, this function is symmetric with respect to the variables (and 77. Consequently 
the coefficients of (i77j and (j 77i are equal. D 

COROLLARY 7.1. There exists a function F(~) = F(ti, ... , t 9 , ~) such that 

8iF = D;i:.~(i;))' 1 :::; i :::; g. The function F(O is uniquely determined up to 

an additive constant in a neighborhood of any point (f0 , fo) = (t~, ... , tg, fo) such 
that 2 - u(fo; fo) =f. 0. 

Consider also the function <I> = <I>( t 1 , ... , t 9 ; E = ~-l, a 1 , ... , a 9 ) given by 
g 

(7.1) <I>= J2 - u(O exp (2a(~)F(~)) exp(-2 L Di(a(~))ti), 
i=l 

where a(~) = I:f=1 ai~i. The function <I> is uniquely determined up to a multiplica
tive constant in a neighborhood of any point (f0 , fo, a) such that 2 - u(f0 ; fo) =f. 0. 

Let us find the derivatives of the function <I> with respect to x = ti and tk, 
k?. 2: 

(7.2) 

(7.3) 

(7.4) 

<I>'_ 4a(~) - u'(O <I> 
- 2(2-u(O) ' 

<I>"= (-u"(~)(u(O + u'(~))(4a(~) - u'(O) (4a(~) - u1 (~)) 2 ) <I> 
2(2 - u(~)) + 4(2 - u(~))2 

= 16a(~) 2 - 2u11 (~)(2 - u(~)) - u1 (~) 2 <I> 
4(2-u(~))2 ' 

8 .<I> = (4a(~)Dk(2 - u(~)) - 8ku(~) _ 2D ( (!:)))<I> 
k 2(2-u(~)) k a"' . 

LEMMA 7.2. The function <I> is an eigenfunction of the operator £ with the 
eigenvalue E =f. 0 if and only if~ = E-1 and {~, 4a(~)} E r, where r is a curve 
defined by equation ( 4.5). 

Proof. Equation ( 4.1) implies that 

(£ - E)<I> = (4a(~)2 - µ(~) - (C1 - E)) <I>. 
2 - u(~) 

The function in parentheses vanishes identically if and only if 4a(~) 2 - µ(~) 
(~-l - E)(2 - u(~)). Differentiating the last formula with respect to x, we obtain 
that (~-l - E)u'(~) = 0. Hence ~-l = E and 4a(~) 2 = µ(0. D 
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THEOREM 7.1. Suppose that 4a(~)2 = µ(~). Then 

(1) The function <I> is a common eigenfunction of the family .C, U1, ... ,U9 , 

with eigenvalues E = ~- 1 , a 1 , ... , a 9 • 

(2) The space of common eigenfunctions of the operators .C, U1 , ... , U9 with 
eigenvalues E = ~- 1 , a 1 , ... , a9 is one-dimensional. 

Proof. Express the operators Uk as 

(7.5) Uk= 8k(a; - (u1 + C 1)) + C 18k - (l/2)uk8x + (1/4)u~ - 8k+1· 

Let W be a common eigenfunction of .C, Uk with the eigenvalues indicated. Then 

(7.6) (C18k - (l/2)uk8x + (1/4)u~ - 8k+1) w = akw. 

This allows us to express all partial derivatives Ok W in terms of W and w', namely 
1 

akw = Dk(2 - u(~))w' + 2nk(u'(~))w - 2Dk(a(~))w, 1:::; k:::; g -1. 

Fork= g - 1 one gets from (7.6) that 

C 189 _1 '11 - (1/2)u9 -1 w' + (1/4)u~_ 1 '11 = a 9 '11. 

Therefore, 

C.1 ( D9 (2 - u(~))w' + ~D9 (u'(~))w - 2D9 (a(~))) 
- (l/2)u9 w' + (1/4)u~W - a 9 '11=0. 

Using Lemma 3.4 and (3.2) we obtain 

(2 - u(~))w' = ((1/2)u'(~) + a(~))w. 

Thus, 
w' -(1/2)u'(~) +a(~) 

W 2 - u(~) 
and 

a~w = Dk(2 - u(~)) -(l/;~~l~~ a(~) + (1/2)Dk(u'(0) - 2Dk(a(0) 

= a(~)Dk(2 - u(~)) - (1/2)8ku(~) _ 2D ( (C)) k = 2 
2-u(~) ka.,,, , ... ,g. 

We see that¥ = ¥, k = 1, ... , g. Therefore, W = .A<I>, where .A is a constant. D 
Consider now the special case E = 0. 

THEOREM 7.2. The space of common eigenfunctions of the operators .C,U1, ... , 
U9 with eigenvalues 0, ai, ... , a 9 , where 4a~ = µ 29 , is one-dimensional. 

Proof. Let <I> 0 be a common eigenfunction of operators .C, U1, ... , U9 with eigen
values 0, a 1, ... , a9 . Since .C<I>0 = 0, equation (6.1) implies that 

Uk<I> 0 = (-(l/2)uk8x + (1/4)u~ - Ok+i)<I>0 = ak<I>0 . 

Therefore, 

(7.7) 8k<I>0 = -((1/2)uk-18x - (1/4)u~_ 1 + ak-1)<I>0 , k = 2, ... ,g, 

and 

(7.8) 
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It follows from (7.7) and (7.8) that 

0 Uk-1(4a9 - u~) - u9(4ak-l - u~_ 1 ) 0 
()kip = ip . 

4u9 

Since the logarithmic derivatives are uniquely defined, the space of eigenfunc-
tions with eigenvalues E = 0, a 1, ... , a 9 = (1/4)Vf129 is one-dimensional. D 

Note that the function 'P can be expressed as 

(7.9) 'P = expF, 

where 

(7.10) F= (2a(~)F-2LDi(a(~))ti+~log(2-u(0)). 
We have 

(7.11) 
a·F = Di(2 - u(~))(4a(~) - u'(~)) - Di(4a(0 - u'(~))(2 - u(O) 

' 2(2-u(~)) · 

Using the notation 8(ry) = l:f=1 ryiai, we can rewrite these formulas as 

a(ry)F = -1.!J_ (2 - u(ry))(4a(~) - u'(O) - (4a(ry) - u'(ry))(2 - u(~)) 

~-TJ 4(2-u(~)) 

~'7(4a(~) - u'(~)) 

2(2 - u(O) 

L 7 3 Th f t . (C) J::i F- 4n(l;)-u'(I;) :fi h R EMMA . . e unc zon X ., = u1 = 2(2 -u(I;)) satis es t e iccati equa-

tion x'(~) + x(~) 2 = U1 + C 1 . Moreover, 

1 - ~ TJ 
2 - u(ry) 8(TJ)F = 2(~ - TJ) (x(~) - x(TJ)). 

Denote by V the hypersurface in (('.9+1 = { ( ~, a 1, ... , a 9 )} defined by equa
tion (6.2). Recall that r = {~, y E C2 I y2 = 4µ(~)}. In coordinates E, °'i the 
hypersurface V is given by the equation 

( E 9 -1 E 9 -2 )2 E29 +1 29 -1 4 a1 + a2 + · · · + a 9 = 4 + µ1E + · · · + µ29 , 

and the curve r is given by the equation ry2 = 4(4E29+1 + µ 1E 2g-l + ... + µ 29 ), 

where TJ = y~-9 . 

Define the projection 7r: V __, r by the formula 7r(~,a1 , ... ,a9 ) = (~,2a(0). 
In what follows we will regard the curve r as a subvariety of V using the canonical 
embedding i: r <-> V defined as i(~, ry) = (~, 0, 0, ... , ry). Let V* = 7f-1(f*), where 
f* = {(~,y) E f; ~ # 0}. 

Recall that C* ={~EC I~# O}. The function 'Pin equation (7.1) is defined 
on the space (['.9 x C* x (['.9 parametrized by coordinates t 1, ... , t9 , ~, a 1, ... , a 9 . 

Consider this space as a graded space using the following grading: deg tk = 1 -
2k, deg~= -2, degak = 2k + 1. Take also degµi = 2i + 2. Then the equation 
4a(~) = µ(~) defining the variety V* is homogeneous. 
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LEMMA 7.4. Let <I> be a common eigenfunction of the operators £, U1, ... , U9 

with eigenvalues E = ~- 1 , 0:1, ... , o:9 • Let ')'2, ... , /'g E C be arbitrary constants. 
Then the function iP =<I> exp(/'2t2 + · · · + ')'9 t9 ) is also a common eigenfunction of 
these operators with eigenvalues given by E = ~- 1 , 0!1 = 0:1 - ')'2, 0!2 = 0:2 - ')'3 + 
~12, ... , ai = o:i - 'Yi+l +~'Yi, ... , a9 = o:9 + ~'Yg· 

Proof. Take 1'1 = 0. It is obvious that ai4' 
CiP = EiP. From (7.5) one obtains that 

- 1 1 1 -
Uk<I> = (C fA - 2,uk8x + 4u~ - Ok+i)<I> 

a~;p + /'k, k = 1, ... , g, and 

= exp(/'2t2 + · · · + ')'9 t 9 ) (Uk<I> + (C11'k - ')'k+1)<I>). 

Therefore, 

where 

(7.12) 

Note that I:L1 ai~i = I:f=1 o:i~i. 
Assume that deg 1'k = 2k - 1. 

D 

COROLLARY 7.2. Equation (7.12) defines a free action of the graded addi
tive group cg-l with coordinates ')'2 , ... , 1'g on the variety V*. The quotient space 
V* /CY-1_ is f*. The vector bundle V* --+ f* is trivial. 

Proof. Define the maps : f* xc9 - 1 --+ V* by the formulas(~, y, ')'2, ... , 1'g-2) = 
(~, t, -')'2, ~-1 1'2 - ')'3, ... , ~-11'9 ). This is the required trivialization. D 

Consider the case u1 = 0. In this case the operators Uk and £ are 

(7.13) 

LEMMA 7.5. Let 0:1, ... ,0:9 and~ satisfy the equation (I:f= 1 o:i~i) 2 = ~- 1 . 
Then the function 

(7.14) 

is a common eigenfunction of operators (7.13) with eigenvalues E = ~- 1 , o:1 , ... , o:9 . 

Proof. The logarithmic derivatives of the function <I>0 are given by 

8k<I>o _ ~ .ci-k+l 
- 00:i<,, . 

<I>o i=k 

It is clear that 8~<I>o = ~- 1 <I>o and Uk<I>o = (~- 1 8k - Ok+i)<I>o = o:k<I>o. D 
The function <1> 0 can be obtained from the formula (7.1) by rescaling. This fact 

will be proved in Subsection 10.2. 
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8. Basic generating function for the solution 
of the stationary g-KdV equation 

59 

Denote µ(~, ry) = 4~-l + 4ry-1 + 2 I:,f=1 µ2i~i'f/i + I:,f~~ µ2i+l (~ + ry)~i'f/i. We 
have µ(~, ~) = 2µ(0 andµ(~, ry) = µ(ry, ~), soµ(~, ry) is a polarization ofµ(~) (see 
Definition 3.1). 

Consider the function 

Q(~, ry) = u'(~)u'(ry) + (2 - u(~))u"(ry) + u"(~)(2 - u(ry)) 

+ 2(2 - u(~))(2 - u(ry)) (C1 + ry- 1 + 2u1). 

The function Q(~, ry) is a polarization of the function on the right-hand side of (4.1). 
Therefore Q(~, ~) = µ(~, ~). Equations (3.1) and (4.1) imply that 

8µ(~, ry) I = aQ(~, ry) I . 
8~ f,=77 f)~ f,=77 

Denote also 

P(~)=~4(82µ(~,'f/)I _82Q(Cry)I )· 
8 8~ ary t.=77 8~ ary t.=77 

LEMMA 8.1. The function 

(8.1) 
e 'f/2 

P(~, ry) = 4(~ - ry)2 (2µ(~, ry) - Q(~, ry)) 

is a polarization of P(O. 

Proof. It is obvious that P(~, ry) is symmetric. Direct calculations show that 

P(~) = ~4 (2 ()2µ(~,'f/) I - 282µ(~) + (8u'({))2 - 28u"(0 au(~) 
8 8~2 f,=77 8~2 8~ 8~ 8~ 

+4C2 0~~~) (2 - u(~)) + 4(C1 + u1) ( 8~~~)) 2) = ~ J~ P(~, ry). D 

COROLLARY 8.1. P(~, ry) is a polynomial of degree g in the variables~ and 'f/· 

Define functions Pij as coefficients in the expansion 
g g 

(8.2) P(~,'f/) = LLPij~i'f/j· 
i=l j=l 

LEMMA 8.2. Pli = Pil = U;. 

Proof. The assertion follows from the formula I:,f=1 Pli~i = P(;, 77 ) 177 __,o = u(~). 
D 

This result motivates the following definition. 

DEFINITION 8.1. The function P(C ry) is called the basic generating function 
for the solution u1 of the stationary KdV equation. 

The coefficient of ry2 in (8.1) is equal to 
g 

(8.3) 2 LP2;~i = -3(2 - u(O)(u1+2C1) - u"(~) + µ1~ + 12c1. 
i=l 
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Therefore, 

(8.4) u~' = 3uiu1 + 6ui+l - 2p2,; + µ181;, 

where 8;1 is the Kronecker symbol. 
It will be shown later (see Subsection 10.1) that if u1 = 2p99 is a solution 

of the stationary KdV equation from [3], then u; = 2pg,g-i+l, u~' = 2p99g,g-;+1, 

P2,; = 2pg-l,g-i+l· In this case equation (8.4) becomes the basic relation for p
functions (see (4.1) in [3]). All the results of [3] for the p-functions, derived from 
the basic relation, are thus true for an arbitrary solution of the stationary KdV. 

LEMMA 8.3. 8(()P((, TJ) = 8(()P((, TJ). 

Proof. We have 

e 2e 
8(()P((, ri) = 8(( _ ri)((TJ- ()(ri _ () ( u"(O(u'(ri)(2 - u(()) - u'(()(2 - u(ri))) 

- u"(ri)(u'(0(2 - u(()) - u'(()(2 - u(())) 

+ u"(()(u'(()(2 - u(ri)) - u'(ri)(2 - u(()))) 

( T) (2 I 

+ 4(( _ ()(ri _ () u (()(2 - u(())(2 - u(ri)) 

- 4(( _(TJ~~~ ~ () u'(ri)(2 - u(())(2 - u(()) 

( 2 TJ ( I 

+ 4(( _ ri)(( _ () u (()(2 - u(ri))(2 - u(()) 

= ~B3(u"((), u'((), (2 - u(())) + B3(u'((), 2 - u((), (2 - u(())C 1). 

Thus, 8(()P(C ri) is symmetric as a function of variables(, TJ, (. 0 

COROLLARY 8.2. There exists a function¢= ¢(t1 , ... , t9 ) such that P((, ri) = 
8(()8(ri)¢. 

COROLLARY 8.3. P'((, TJ) = 8(ri)u((). 

Proof. Indeed, 

P'((,ri) = 8(()~((,ri) I 
~ (--+O 

2d ~ ri) (u'(()(2 - u(ri)) - (2 - u(())u'(ri)) = 8(ri)u((). O 

Note that it follows from Theorem 3.2 that 8xP((, ri) = ~,..,8xu((). 

9. A construction of the w-function 

Consider the equation 

(9.1) 20; logw = -u1, 

with the initial conditions 

(9.2) w(O) = 1, 8kw(O) = 0, k = 1, ... , g; 

here u 1 = u 1 (ti, ... , t 9 ) is a solution of the stationary g-KdV equation with respect 
tox=t1 . 
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THEOREM 9.1. There exists a differentiable solution w of (9.1), (9.2) such that 
the functions 

(9.3) Uk = -20x0k log w, k = 1, ... , g, 

satisfy the hypotheses of Theorem 4.2. 

DEFINITION 9.1. The solutions of (9.1) described in Theorem 9.1 are called 
special. 

THEOREM 9.2. Let Pij(t) be as in (8.1) and (8.2). Then there is a unique 
special solution of (9.1) such that 

(9.4) 

for all i,j. 

Proof. The existence of a required solution of (9.4) follows from Corollary 8.2. 
The function w is defined by (9.4) up to a factor exp(.Ao + .A 1t 1 + · · · + .A9 t 9 ). All 
the constants Ai are uniquely determinated by the initial conditions (9.2). D 

This result completed the solution of Problem 1. 

DEFINITION 9.2. The special solution (9.1) described in Theorem 9.2 is called 
the w-function of the solution u of the stationary g-KdV equation. 

The relations between the higher logarithmic derivatives of the w-function are 
obtained using the the technique of generating function. For example 

L~ir/(kaia1 ak logw = 8(()P(~, 77). 
ijk 

This function was calculated in Lemma 8.3. 
The solution u is a point of the space R 9 (see Section 5). Consequently, we can 

treat the w-function as a function w : <C9 x R 9 __, <C. 
The rest of this section is devoted to an explicit construction of thew-function, 

starting with the given solution u of the KdV equation. 
Denote t = (x, t 2 , ... , t 9 ) and put 

l 1x1x cp(t) = - u(t) dx. 
2 0 0 

Then equation (9.1) implies that w(t) = exp(a(t) - cp(t)) where a"(t) = 0. 
Therefore, a(t) = a 1 (t)x + a 0 (t), where t = (t2 , ... , t9 ). The initial condition (9.2) 
now gives a 0 (0) = 0, ai (0) = 0, and Okao(O) = 0, k = 2, ... , g. It follows from (9.3) 
that 

(9.5) 

The set of equations (9.5) with the initial condition a 1 (0) = 0 has a unique 
solution a 1 (t). It follows from (9.4) that 28iajao(t) = 28iOjcp(t) - 28if)j ai(t)x -
Pi1(t). These equations with the initial condition a 0 (0) = 0, akao(O) = 0, k = 
1, ... , g, have a unique solution a 0 (t). 
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10. Applications 

10.1. Kleinian er-function. Consider hyperelliptic Kleinian functions er(t), 
(i(t) = 8i loger(t), and f?ij(t) = -28i8j loger(t). The function 2p99 (t) is a solution 
of the stationary KdV equation (see (3]). 

COROLLARY 10.1. Let z E C,9 be a point where er(z) =J 0. Then the function 

er(t+z) 
w(t) = cr(z) exp (-((z), t) 

is thew-function of the solution 2p99 (t + z). 

Proof. The functions ui = 2p9,9-i+1 and Pij = 2p9-i+l,9-j+l satisfy equations 
(8.1), (9.4) (see [2]). The corollary now follows from the uniqueness of the w
function. D 

Let B9 be the polynomials from [l]. The second logarithmic derivatives of B9 

give solutions of the higher KdV equations. As was proved in [4], the polynomial 
B9 is, up to a linear change of variables, a rational limit 0'9 of the er-function of 

genus g. Denote G(t) = 8dog0'9(t). 

COROLLARY 10.2. Let z E C,9 be a point where 0'9 (z) =J 0. Then the function 

0'9 (t+z) ; ~ ) 
w(t) = 0'

9
(z) exp \-((z), t 

is the w-function of the solution u = -2(log B9 )". 

10.2. The homogeneity condition. The results obtained in this subsection 
follow from the uniqueness theorems for thew-functions. 

LEMMA 10.1. Suppose that u(x, t 2, ... , t 9 ) is a solution of the stationary g
KdV equation with respect to x. Take KE C*. Then the function u(x, t 2 , ... , t9 ) = 
K2 u(Kx, K3 t 2 , ... , K29- 1t 9 ) is also a solution of the stationary g-KdV equation. Un
der the transformation u ____, u the constants µi and ai change to /J,i = µiK 2i+2 , 

ai = /'l,29-2iai· 

Proof. Let { u 1 = u, u2, ... , u9 } be a sequence of functions from Theorem 4.2. 
Then the functions 

(10.1) ~. ( t t ) - 2i . ( 3t 29-lt ) Ui X, 2, ... , 9 - K Ui KX, K 2, ... , K 9 

satisfy the hypotheses of Lemmas 2.3 and 2.4. Therefore by Theorem 4.2 the func
tion u is a solution of the stationary KdV equation. The values /J,i are determined 
by (4.1); the values ai are found from (4.4). D 

Thus we have an action of the group C* on the space R 9 . It is obvious that 
under this action the initial values Cj = uUl(O) are transformed as Cj = K 2J+lcj. 

Denote by w the w-function of the solution u. 
LEMMA 10.2. Thew-functions w and w of the solutions u and u are related as 

follows: 
~(t ) - ( 3 29-l ) W 1, ... , t 9 - W KX, K t2, ... , K t 9 . 

Proof. The functions Ui, ui are related by equation (10.1). It follows from (8.1), 
(9.4) that 

-28i8jw(ti, ... , t9 ) = Pii = K 2i+2j-2Pij = -28i8jw(Kx, K 3t2, ... , K29 - 1t 9 ). 
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Since thew-function is unique, this completes the proof. D 
Consider now thew-function as a function on the space CY x Ry. 

THEOREM 10.l. Thew-function satisfies the following homogeneity condition: 

w(ti, ... , ty, ao, ... , ay-2, co, ... , c2y) 
- ( t 2y-lt -2y -4 -1 -2y-l ) -w K i, ... ,K y,K ao, ... ,K ay-2,K co, ... ,K C2y. 

Proof. The theorem follows directly from Lemmas 10.1 and 10.2. D 
Consider the function u(~) = l:f=1 ui~i· It follows from (10.1) that 

(10.2) ~( t t ·C)- ( .3t 2y-lt. -2c) UX, 2, ... , y,c, -UKX,K 2, ... ,K, y,K c,. 

THEOREM 10.2. Let Cf>( ti, ... , ty; ~- 1 , a 1, ... , ay) be a common eigenfunction 
of the operators .C, U1 , ... , Uy with the eigenvalues E = ~-l, a 1 , ... , ay (see Section 
7). Then the function 

(10.3) 

is regular as a function of K in the vicinity of the origin, and 

Proof. Denote t = (t1 K, ... , tyK2y-l ). Using (7.9), (7.11), one gets 

a~'ii! = K,2i-l ( 8iF) (t; cl K,-2' 0'.1K-3' ... 'O'.yK-2y-l) 

Cf> 

- e-i (2 ""'1·::::··(4aj~j - u'/i')~jK,2j+l) 
- 4(2 - u1(t)~K2 - · · ·) ~ 

j<i j2'.i 

+ L>. Uj (t)e K,2j L<. ( 40'.j~j - uj (t)e K,2j+l )) . 

J_i J i 

Note that t--+ (0, ... , 0) and ui(t) --+ ui(O) as K--+ 0. Therefore we obtain 

a~'ii! = L aj~j-i+1 + O(K). o 
Cf> j2'.i 

This allows us to obtain a deformation of the function Cf>. We see that Cf> tends 
to the function Cf> 0 of (7.14) as K--+ 0. 

Consider the space L =CY x C* x CY with coordinates (t1 , ... , ty; ~' a 1 , ... , ay)· 
Consider also an action of the group C* on the space L given by the formula 
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This defines a projection p : L -+ M where M = L/C*. Take a small c > 0 and 
denote 

LE:= {(ti,. .. ,t9 ;~,0:1, ... ,o:9 ) EL: 1~12 c}, 

8Lc={(t1, ... ,t9 ;Co:1,.· .. ,0:9 )EL: l~l=c}. 

Glue the boundary 8LE: to the space M using the projection p to obtain the space 
ZE: =LE: Up Iv!. 

Let c2 < c. Then there is a map LE:-+ LE:2 defined by the formula 

where,.,,= c- 1 12 c~/2 . This map sends the boundary 8LE: to the boundary 8LE: 2 , so 
it can be lifted to a map ZE: = LE: U M -+ Zc2 = LE: 2 U Jvf. Denote Z = limc_,o ZE: 
and recall that C* x V* C L. 

Consider the embedding C,9 x V* -+ Z. This embedding covers the embedding 
f* -+ r. Approaching the limit point in r corresponds to ~ -+ 0 in the space 
Jvf C Z. So we get the following result: 

THEOREM 10.3. On the space Z there is a function $ such that $IL = <I> and 
<]?IM= <I>o. 

If~-+ 0, then for the restriction <I>l 1 = <I>(ti, ... ,t9 ,~- 1 ,o,o, ... ,0:9 ) one has 

<I> ,...., exp ( 2::1:5j:5g o:9 ~9-Hl tj). Take a local parameter k = o:9~9 . It now follows 

from the equation (a9 ~9) 2 = µ(~) = 4~- 1 + O(~) that <I>,...., exp(2.:J=1 k2J- 1tj)· 
So, the restriction <I>l 1 has the same analytic properties as the Baker-Akhiezer 

function ([16]) of the solution u. By the uniqueness of the Baker-Akhiezer function 
we conclude that <I>l 1 coincides with the Baker-Akhiezer function. 

11. Examples 

In this section we demonstrate the key constructions of the paper in the cases 
g = 1andg=2. 

11.1. g = 1. We start with a solution u of the classical stationary KdV equa
tion u"' - 6uu1 = 0. Suppose that x = 0 is a regular point of the function u. Then 
the solution u with given values c0 = u(O), c1 = u'(O), c2 = u"(O) is unique in a 
neighbourhood of the point x = 0. 

The key equation ( 4.1) becomes 

4(4C1 + µ1~ + µ2e) = (u') 2e + 2u"~(2 - u~) + 4(C1 + u)(2 - u~) 2 ; 

hence µ 1 = u" - 3u2 , µ 2 = (1/4)((u')2 - 2u"u + 4u3 ). It is easy to see that 
µ~ = 0 and µ~ = 0. Therefore µ 1, µ2 are constants and so µ 1 = c2 - 3c6, µ 2 = 
(1/4)(ci - 2c2co + 4c5). 

The equation of the hyperelliptic curve is 

4(4C1 + µ1~ + µ2e) = y2. 

Thew-function is w = exp(-¢(x)), where ¢(x) = ~fox J; u(x)dx. 
The birational equivalence v : R 1 -+ U1 is given by the formula v( u1) 

(r, (~,y)), where~= 2/co, y = 2ci/co. 
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Let <I> be a common eigenfunction of the operators ,C and U1 = A 1 with the 
eigenvalues E = ~- 1 and a, respectively. Then the logarithmic derivative of the 
function <I> is 

<I>' 4a~-u'(x)~ 

<I> 2(2 - u(x)~) ' 
where 4a~ = 2J~4~-_-1_+_µ_1_~_+_µ_2~-2 . Therefore Bx log <I> "' ~- 1 / 2 as ~ __, 0. Let 

z EC be such that u(z) = 2~- 1 and u'(z) = 4a. Then 

F- 1 ( • c-l ) = F-'( . ) = ~ u'(z) - u'(x) 
x,.., , a x, z ( ) ( ) . 2uz-ux 

11.2. g = 2. It follows from the equation [£, A2 + a0 A 0 ] = 0 that u(5l -
l0uu(3 ) - 20u"u' + 30 u2u1 + l6a0 u' = 0. Equation (4.4) implies that µ 1 = Sa0 . We 
have u(O = u~ + u2~2 . The equation (4.1) gives 

4(4c 1 + µi~ + µ2e + µ3e + µ4e) 

= ~(-12u2 - l6u2 + 4u11 ) + e(4u3 - Suu2 + (u') 2 - 2uu11 + 4u~) 
+ e(su2u2 + 4u~ + 2u'u~ - 2u2u11 - 2uu~) + ~4 (4uu~ + (u~) 2 - 2u2u~). 

Therefore, u2 = ~(u11 -3u2 -Sa0 ). Now we can describe µ 2 , µ3 and µ4 as constants 
in the following ordinary differential equation for u: 

µ2 = ~ ( 4u<4l - lOuu" - 5( u') 2 + l0u3 + l6a0u) , 

1 
µ3 = 16 (2u1u111 - 2uu<4 l - 2(u") 2 - 15u4 + Su2u11 - l6u2a0 + 12u2u' + 64a0), 

µ4 = ~((u111 ) 2 + l6(u") 2u - 2u"u(4) + 12(u')2u" + 6u2u<4l + 32u5 - 30u"u3 
64 
- l2u'"u'u - l60aouu" + l32aou3 + l6aou(4 ) - 96ao(u') 2 + 256a6u). 

Finally, the birational equivalence v : R2 __, U2 is given by the formula v( ui) 
v(co, ... , c4, ao) = (r, [(6, Y1), (6, y2)]). Here for the construction of r the coef
ficients µ 1,µ2,µ3,µ 4 are used, obtained from the formula above by substitution 
Ck for u(kl. The pairs (~i,Yi) are the following ones: 6,6 are the roots of the 
equation 2 - co~ - i ( c2 - 3c5 - Sao )~2 = 0 and Y1, Y2 are defined by the formula 
Yi= c1~i + i(c3 - 6c1co). 
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