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The w-Function of the KdV Hierarchy

V. M. Buchstaber and S. Yu. Shorina

ABSTRACT. In this paper we construct a family of commuting multidimen-
sional differential operators of order 3, which is closely related to the KdV
hierarchy. We find a common eigenfunction of this family and an algebraic
relation between these operators. Using these operators we associate a hy-
perelliptic curve to any solution of the stationary KdV equation. A basic
generating function of the solutions of stationary KdV equation is introduced
as a special polarization of the equation of the hyperelliptic curve. We also
define and discuss the notion of a w-function of a solution of the stationary
g-KdV equation.

Introduction

At the present time various forms of solutions of the stationary g-KdV equations
are known, including the representations with the 7-function ([13]), §-function
([14, 15]), and o-function ([2, 3]); rational solutions can be expressed in terms
of Adler-Moser polynomials ([1]). All these functions satisfy the equation

(0.1) 2021og f = —u,

where u = u(z,ts,...,tq) is a solution of the stationary g-KdV equation.

In this paper we construct a family of commuting multidimensional differential
operators of third order starting with an arbitrary solution of the stationary g-KdV
equation. Using these operators we solve the following well-known

PROBLEM 1. Supplement (0.1) with natural conditions so that the problem
have a unique solution.

We call this solution a w-function of the KdV hierarchy.

In [20] Novikov observed that each solution of the stationary g-KdV equation
is a g-gap potential of the Schrédinger operator. It was shown in [2], [3] that
the Kleinian o-function o(z,ts,...,t,) provides a solution of the g-KdV equation.
This fact follows from a general result describing all algebraic relations between the
higher logarithmic derivatives of the o-function.

We are going to discuss also the following natural
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42 V. M. BUCHSTABER AND S. YU. SHORINA

PRrROBLEM 2. Describe all the relations between the higher logarithmic deriva-

tives ‘
Hirtetig

Oz Ot ... otis
following from the construction of the w-function of the KdV hierarchy.

logw(z,ts,...,tg), whereiy +---+ig>2,

A solution of this problem is given in Section 8.

In [16] Krichever introduced the concept of the Baker—Akhiezer function as
a common eigenfunction of the operators £ and A (see Section 1 for definitions).
This function is characterized by its analytic properties, including the behavior at
singular points. In Subsection 10.2 we express this function in terms of the common
eigenfunction of our family of commuting differential operators.

The results of this paper were partially announced in [5], [6].

1. Preliminaries

This section is a brief review of basic facts about the KdV hierarchy. See [19]
for more details.
The classical KdV (Korteweg—de Vries) equation is

(1.1) %u= }L(u'" — 6uu’),
where u is a function of real variables z and ¢; the prime means differentiation with
respect to z.

Denote £ = 82 — u the Schrédinger operator with the potential u. The second
term here means the operator of multiplication by the function u; we will use similar
notation throughout the paper. Let also

3 3

_3_3 3 _2,9 _ 92
(1.2) A =03 4(u8x+3wu)—ax 2u3m 4

Then, as it was first noticed in [18], the KdV equation is equivalent to the condition
1
[41,L] = —Z(u"' — 6un’).

Denote ® a ring of differential operators with coefficients in the ring of smooth
functions in variables z and ¢. Consider the action of the operator §/0t on the ring
D defined by the formula

(1.9 2 ptmas | = 3 2l e

k>0 k>0

Then for the operator £ we obtain the equality

7] 7]

- = "o
So, equation (1.1) is equivalent to

7]

—a—tﬁ = [44,L].

For every differential operator B € © define its formal conjugate B* as follows:
take, by definition,

(1.4) 0y =—0z, [*=F,
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where f is an operator of multiplication by the function f, and assume * to be a
ring anti-homomorphism:

(1.5) (BiBy)* = B3Bi, (Bi+ By)" =Bj +Bj,
for all By, By € D.
We call an operator B symmetric if B* = B, and anti-symmetric if B* = —B.

Thus, the operator £ is symmetric whereas the operator A; is anti-symmetric.
Consider the subring ©; C ® generated by J, and the multiplication operator

u. Supply the ring ®; with the grading such that

(1.6) degu=2, degd,=1.

Thus, degu(*) = deg d¥u = k + 2. The operators £ and A; are then homogeneous
of degree 2 and 3, respectively.

DEeFINITION 1.1. Denote by 2 the linear space of anti-symmetric differential
operators A such that the commutator [A4, £] is an operator of multiplication by a
function.

THEOREM 1.1 ([18]). The space 2 has a basis Ag, A1, ..., where Ay = §2F+1
> Py ;0% is a homogeneous degree 2k + 1 differential operator of order 2k + 1, and
Py ; is a differential polynomial in u of degree 2k + 1 — 1.

The recurrence relation for the operators Ay can be found in [8]. The operator
A; is given by (1.2). The operators Ay and Ay are
Ao = 82)

Ay =00 — %(u@i + d3u) + %u@wu + 15—6(u”(9x + Ozu”).

Denote 7[u] = [Ag, L], so that r1[u] = (v —6uv’), rafu] = %(u(s) —10uu"" —
20u/u” + 30uu’), etc. Suppose now that u depends on z and an infinite set of
variables t1,ts,... . The equation
(1.7) O, u = rg[u]

is called the gth higher KdV equation.

The family of equations (1.7) is called the KdV hierarchy.

The action of differential operators &;, on the ring ©,, is defined similarly to
(1.3).

LEMMA 1.1. The operators Ay, satisfy the following “zero curvature” condition:
Ot Am — O, A = [Ak, An], or, equivalently, [0y, — Ak, 0, — Am] = 0.

The expression
1l 1,0
(1.8) R= 4635 U 0, —u,

is called the Lenard operator; here ;' is an operator of integration with respect
to z. Note that the Lenard operator R is multivalued, and to fix its value we need
to choose the integration constant.

THEOREM 1.2. Functions rilu] are related by the Lenard operator:

Th1[u] = R(re[u]).

) _ 1.,m 3,0 — 192,17 1,/ 1
For example, 7o =/, and r; = ju"’ — Suu’ = 705u’ — 5u'u — uu’ = R(ro).
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DEFINITION 1.2. The equations

g—1
(1.9) relu] + Z aprr[u] =0,
k=0

where ay, are constants, are called higher stationary g-KdV (or Novikov) equations.

THEOREM 1.3. A function u is a solution of (1.9) if and only if it satisfies
the relation RI(u') = 0 for some choice of the integration constants; this choice
depends on the constants ay,.

See [9] for a proof.

If one replaces the function v with u+c where c is a constant, then the operator
A becomes Ay + ch;OI ck;iA; for some constants ci,; where ci;p—1 # 0. We can
choose the constant ¢ so that to achieve the equality ag_; = 0 in the decomposition
of the operator A = A, + Z;’;;é apAp.

2. A family of commuting multidimensional differential
operators of order 3

In this section we describe a family {U} of differential operators commuting
with each other and with the Schrédinger operator. In this aspect they resemble
the operators Oy+1 — A, but unlike {Ax} they are multidimensional operators of
the third order.

Let {u1,u2,...,ug} be a sequence of functions of variables t; = z,t3,...,1,.
Denote 9; = 8/8t;. Suppose that the first derivatives of the function u; are linearly
independent, i.e., >7_; ¢;0;(u1) = Oonlyif¢; = - -+ = ¢4 = 0. This condition means
that the function u; = ui(t1,...,ty) essentially depends on all its arguments, i.e.,
there is no linear projection 7 : C9 — C9~! such that u = 7*%, where % is a function
on C9-1,

Denote

L= (92 — Ui,
1 1
§(ulak + Opur) — Z(ukaz + Opuk),
where k = 1,...,g. Note that A; coincides with the operator A; given by (1.2).
Define the formal conjugation * on the space of multidimensional differential
operators by formulas (1.5) together with the rule 8 = —9; for ¢ > 1. The operators
Ay are anti-symmetric: A = —Ap.
In the ring of differential operators in variables ¢;,...,¢, consider the subring
D, generated by the operators 0y,...,0; and u1,...,uy. Define the grading on ®,
using formulas (1.6) and assuming also that deguy = 2k and deg O, = 2k — 1. It is
clear that the operators £ and Aj, are homogeneous, deg £ = 2, deg A, = 2k + 1.

Ay = 828, —

LEMMA 2.1. The commutator [L, Ag] is a multiplication operator if and only
if uj, = Ogui for all k. If this condition is satisfied, then

(2.1) £, Ax] = i(u%' — 2ufuy — duquy,).

Proof. The assertion follows from the formula
1

3
(£, Ax] = (—2ufl + 20, 1)) 0y + (—u), + Opu1 )02 + Ottt — w1 Opuy — —2—uku'1 — Zuﬁ'. O
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LEMMA 2.2. Let K be an anti-symmetric differential multidimensional operator
of order 3. Suppose the commutator [K, L] is a multiplication operator, and the
coefficients in derivatives of order 3 are constants. Then K = 37, cihi +
;0; + @, where ¢; are constants, and the functions ¥; and ¢ do not depend on x.

Proof. Let
K = Z Sijk 8i8j8k + Z fij 3,'6]' + Z g; 0; + h,
1<4,5,k<g 1<i,j<g 1<i<g

where s;;1, are constants such that s;jz = s;; = sjik, and all the f;;, g;, h are
functions of ¢1,...,t;. The anti-symmetry implies that f;; = O for all 4,7, and
Pi<i<y e 99: — 9h. We have

0
LK) = > g/oi+2 ) gi0:0+ 1 +200:+ gig

i

1<i<g 1<i<g 1<i<g
+ Y s AR u8+38u88
98\ Ot,0t; 0ty atat 15 T 00, 1Tk
1<4,5,k<g

Since the commutator [£, K] is a multiplication operator, the coefficients of
0;0; and 0; in the last formula are zeros.

It follows from the linear independence of the first derivatives of the function
uy that s;j, = 0 when 4,7 # 1. If 7 # 1, then one has 2¢] = —3511i%u1

From the condition that the coefficient of 0, vanishes, we obtain

82
+2h/+3 Z S11i —F— Y =0.

1<i<g 6 Oz

Put ¢; = 35115 = 8115 + 101 + Sa11s Yr=g14+1/2 37 ciwi, Yk = gr + > 5_q ciug

for k # 1, and ¢ = h+ > 7_, cu;. Then the functions ¢;, ¢ = 1,...,g, and ¢ do

not depend on z and K = ZKKQ c;A; +1;0; + ¢. O
Denote

Ui = A; — i1, fori<g;
U, = A,

The operators U; are anti-symmetric and homogeneous.

LEMMA 2.3. The following conditions are equivalent:

1) [£,U] =0.
(2) =0k L =1L, AL
(3) Okrur = upyy = 3 (uy’ — 2ujug — duguy) for k < g, and (ug

dujuy) = 0.

" oy —

Proof. The asertion follows from the equality

[ﬁ,uk] = [ﬁ, .Ak] + 8k+1£ = [ﬁ,.Ak] - ak+1u1. Od

The last condition in Lemma 2.3 allows us to express the functions u; by
recursion in terms of u; and its z-derivative, up to the choice of a function that
does not depend on z.
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COROLLARY 2.1. Under the hypotheses of Lemma 2.3, functions u; are related
by the Lenard operator R (see (1.8)):

(2.2) Biprur = R(uf) = R (uy).
For i = g one has 0 = Og1u1 = RI(u}).

COROLLARY 2.2. The operators {Uy,} commute with L if and only if the func-
tion u1(z) is a solution of the stationary g-KdV equation.

LEMMA 2.4. The operators Us;, U; commute for all 1 < 4,5 < g if and only if
the functions {u;} satisfy condition (3) of Lemma 2.3 and the following equalities:

(23) 6‘,~uj = Bjui,
(2.4) UL U; — uiug + 20;41u — 20k 41u; =0, 1<4,k<g.

The lemma is proved by direct calculation.

Note that (2.3) implies the existence of a function z(t1,...,ty) that satisfies
05z = u;.

The fact that the operators U; commute is equivalent to the zero curvature
conditions for the operators A;:

(2.5) Oj+14;i — Oip1 Aj + [Ai, Aj] = 0.
3. A generalized translation associated with the KdV hierarchy

In this section we develop the technique of a generalized translation from [3].
For n € R define an operator D" acting on the space of functions of one variable
as (D"f)(¢&) = ﬂg{eﬁf(n). Define the operator B by the rule

B(f,h)(&,m) = %(f(i)h(n) — F(MA(&)) = F(E)(D"h)(E) — g(&)(D"f)(€)-

It possesses the following properties:

B(f,r)(&;m) = —B(h, £)(£,7)-
B(f,h)(&,m) = B(f,h)(n,£).

B is a bilinear operator.
If f(&€) and h(&) are polynomials, then B(f,h)(&,n) is also a polynomial.

B(f, ¢ (eom) = Lo L0,
° 8(1726_1) =1.

Define also an operator By acting on the set of k-tuples of functions of one
variable as follows:

Bi(fi,--5 fr) &y -5 k)

— Hlegf—l _1\0
T P Thagals &) <Z( V) "@"“"))

€Sk
file) fo(&) - fu(&a)
T, ekt fi(€e) fa(&2) .. fr(&2)

C2RIW (G a0 k) : : S
fiée) F2(86) - Fel(€r)
where W (&1,...,&) is the Vandermonde determinant. Note that Bi(f) = f,
By(f,9) = B(f,9)-
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Let f; be a function of variables &; ¢1,...,%,, so that one has

0;Bi(fiy s fi) (€1, -, Ek) Zsk Froees0ifieeos i) (Ensen s &)

For a fixed function A define (Tgf)(&, n) = (T(R){f)(&n) = B(f,h)(&,n).

LEMMA 3.1. The operators Tg’ satisfy the associativity condition Tg’ =17 TE77
and the commutativity condition Ty T = T{T.

Proof. Calculate T T} f:

prme & (o FOAM) = Fn)h(E)
17 = gy (e

() = o L= LMD, )

2(r —mn)

= &’

SO (T = n71) + FA()AE)(E = 771 + f(DAEAM N €71
4(E-7)E-mn—T7)

= B3(f(€), (&), (€)1 (&, m, 7).

This expression is invariant under all the permutations of the variables £, n, 7. The
lemma is proved. O

COROLLARY 3.1. The operator T" is an operator of commutative generalized
translation and

n,_ &N
T/ 1= 30 - )(h() h(€))-

In particular, T 1 =1 if and only if h(§) = 2/¢.

REMARK 3.1. The generalized translation operator D}(f) = Ef(gg:—;’f(") from
(3] is equal to T, when h = 2/¢.

REMARK 3.2. Let h(£) = h_1/€ + h(€), where h(€) is a function regular in a
neighbourhood of the origin. Then for a function f(£) regular in a neighbourhood
of the origin the function f(&,7n) = Tg’ f is regular in a neighbourhood of the point

(& m) = (0,0).
DEFINITION 3.1. A polarization of a smooth function f(£) is a symmetric func-
tion of two variables f(&,n) such that f(&,&) = 2f(¢&).

LeEMMA 3.2. Let f(&,m) be a polarization of a function f(£). Then

(3.1) %5&’”) _ 51;_(;)‘

&=n
Proof. For a symmetric function f(&,7) there exists a function h(sy, s2) such

that f(&,m) = h(€ +n,&n). Since 2f(€) = f(£,£) = h(2¢,£?), one has

O |, Os (& +m:8n) + 5 (& +m.&mn o Ba (26,€%) + 5-(26,€)¢.
On the other hand,

Of oy _ 1OR(26,€%) _ 6h 2 2y, _ OF(& n)’

&) =3 e = g5 XN+ o (26,66 = %ol o



48 V. M. BUCHSTABER AND S. YU. SHORINA

EXAMPLE 1. Let f(§) =3, 9i(§)hi(§). Then the function
F(&m =3 (9:(&)hi(n) + gi(m)ha(€))

is a polarization of f(€).
Let F, be a set of smooth functions of n variables.

DEFINITION 3.2. Let G : Ff — F; and G- FF — F,. The operator G is called
a polarization of the operator G if the function G(f1,..., fx) is a polarization of
the function G(f1,..., fr) for any fi,..., fk.

Recall ({13]) that the one-variable Hirota operator He is given by

He[£(£), 9()] = f'(©)g(&) — £(£)g'(9)-

LEMMA 3.3. The operator %B(f, 9)(&,m) gives a polarization of the Hirota
operator

Proof. We need to prove that

2
lim B(1,9)(61) = SHeL7(6), 0]
n—§

Let n =& +e. Then f(n) = f(&§) +ef'(§) + O(¢*) and g(n) = g(£) +4'(§) + O(e?).

Hence

£€+e)

B(£,9)(&:€ +€) = ==5— (f(§)g'(€)e — 9(§)f'(§)e + O(e?))

2
= CHA©.00)+06). D

Define the operators D; by the expansion

(D7F)(€) = > (D) (E)n'.

i€EZ
LEMMA 3.4. Let f(§) =+ fo+ fiE + f262+---. Then
(Df)E) = 50+ o€+ 4+ fioy)

If f(€) = fo+ fi€ + -+ + fa€™ is a polynomial, then (D1f)(&) = ifo and
(Dns1f)(E) = €7 f(8).

It is clear that
_ 1
(3.2) (Dr41f)(€) = €1 (Def)(E) + Efk-
Note one more property of the operators D;.

LEMMA 3.5. Let f(£) be a polynomial. Then

kem— & (M ey S
kzézommﬂmnnc - s (g_nf(n) -~ Cf(<))

~ =B (LDLA©) (1.0).
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Define the operators d; by the formula Tg F(6) =>2(d: f(€))nt. Then
di f(§) = f(§)Dih(§) — R(§)Dif(§)-
From Lemma 3.1 using the standard methods we obtain the following result.

LEMMA 3.6. The linear space spanned by the operators d;, 1 = 1,..., is an
associative and commutative algebra with the following multiplication:
i+j
didj = Zcfjdk,
k=0

where the structure constants cfj are found from the expansion

TIEE = s (€5hn) = 1h(©) = T che'n
it+j>k
For the sequence of function {u;,...,uq} of variables ¢t; = =,t3,...,t5 we in-
troduce the generating functions
g . g . g .
u@) =y wé, W)=Y ug, ..., u®E) =3 ul¢
i=1 i=1 i=1
(the prime here, as usual, means differentiation with respect to z). The following
statement gives an expression of the third derivatives uf’,...,uy’ in terms of the
functions u,,...,u, and their first derivatives. Moreover, it allows us to express

these derivatives by recursion as a differential polynomial in u;. Here is one of the
key results of the paper.

THEOREM 3.1. The sequence {u1,us,...,uq} satisfies condition (3) of Lemma
2.3 if and only if the generating function u(§) is a solution of the following equation:
(3.3) u”(€) + 21 (2 — u(§)) — 47 +ur) u'(€) = 0.

Proof. We have

g9
u”(€) +2u3 (2 - u(€)) — 47 +u) W(€) = Y (uf" — 2uhu; — dugu — dujy )€

=1

The coefficients of £ on the right-hand side of this formula are all zero if and only
if condition (3) of Lemma 2.3 holds. O
Take, by definition,

g
Opu(€) = Bpust’.
i=1
LEMMA 3.7. Equations (2.3) and (2.4) together are equivalent to the following
equation:
1 1
Op1u(§) = €7 0ku(§) — Fweu'(§) + Fur(u(€)) — v

2
This equation allows us to determine by recursion the partial derivatives Opu(€):

(34) Oku(€) = Di(2 — u(§))u'(€) — Di(u'(€))(2 — u(f)).
In what follows we assume that (3.3) and (3.4) hold for the function u(¢).
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COROLLARY 3.2.

(3.5) Bu’ (€) = Di(2 — u(§))u”(€) — Di(u”(£))(2 — u(f)),
Bpu’ (€) = 4(67" + w)Orul(€) — 2ui(2 — u(f))

(3.6)
+ Di(u” (€)W (€) — Di(u'(§) " (§)-
Let d(n) = Y_7_, n°0;. Note that for a fixed n the operator 9(n) is an operator
of differentiation i m the direction of the vector (n,72,...,19), i.e.,

0
O f(t1,... tg) = Ef(tl +71n,...,tg +7109)

7=0
COROLLARY 3.3.
(820(€) +2(2 — u(€))dr — 4(6™" +u1)A(€))u =0.

Proof. Recall that d;u; = ), and therefore u'(§) = 9(§)ur and u”(§) =
820(&)u. Now the statement follows from (3.3). ]

Denote 7;” = T'(2 —u(£))¢. In the sequel, the operator 7" plays a special role,
as is shown by the following theorem.

THEOREM 3.2.

3.7) d(n)u(§) = 7' 0zu(§).
(3.8) a(mu'(€) = T"02u(€).
(3.9) d(n)u” (€) = 7'85u(€) — B (u'(6), u”(£))-
Proof. These formulas follow from the definition of the operator Tgn and equa-
tions (3.4), (3.5), (3.6). O

Note that (3.7), (3.8) imply that
[0z, 7"10,u() = 0.
The associativity condition for the operator Tg’ is equivalent to the following

relation, which will be used later:

2 1 ,
(3.10) 9(0) 2(5-7—7 Ma- EEZ% = TR E O

Now we describe the family of differential operators {U;} using the method of
generating function.

LEMMA 3.8. The generating function of the sequence of operators U; is

Zue —E)0(E) + Q)L €7) + (2~ u(€)s + 8.2~ u(©)))-

4. The hyperelliptic curve associated with a solution of KdVv

THEOREM 4.1. Suppose the generating function u(§) satisfies (3.3) and (3.4).
Let

(4.1) 4p() = W()* + 20" (€) (2 — u(8)) + 46" +w) (2 - u(€))’.
Then u(€) = 461 + Z 9 W&, where p; are constants, i =1,...,2g.
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Proof. Tt follows from (3.7), (3.8), (3.9) that
O(m)u(€) = 2u'(£)A(nu' () + 2(2 — u(£))d(n)u” (&) — 2u” (€)0(n)u(é)
+4u'(1)(2 - u(é)® - 8(67 +u1)(2 — u(€)d(n)u(€) = 0.

Therefore O;u; =0, where 1 <4 < g, 1 < j < 2g, and all the u; are constants. O
Suppose uy, = 0 for k > g. Equation (4.1) implies that

1
(42) Uk+1 = Z:u'k+Jk(uaulvu”,-"auk7u;mu;é)1 k=1,...,2g,
where Ji are polynomials. We see that the functions ug, & = 2,...,9, can be

expressed by recursion in terms of the function u4, its derivatives, and the constants
1, namely

(4.3) up = O(u, o, ..., w7 ),

where Oy are polynomials.

Note that the condition J; = 0 is equivalent to the stationary g-KdV equation.
For k > g one has Jr = —(1/4)uk, which provides integrals of the higher KdV
equation (see [19]).

Since Oypu1 = uj, the partial derivative of u; with respect to ¢ can also be
expressed in terms of derivatives with respect to z. Therefore the behavior of
the function w; along the coordinate axes t3,...,t; can be reconstructed if its
derivatives with respect to = are known.

LEMMA 4.1. Let u; be constants. Then equation (4.1) implies equation (3.3).
If equations (2.3) and (4.1) hold, then equation (3.4) also holds.

Proof. The first statement of the lemma is clear. From the equality uj , =
(1/4)(uy — 2u'ug, — 4uuy,) one obtains

Okt1Up, = Oy yy = (1/4)(Opmuy’ — 2ul uk — 2u'Omur, — dun,uy, — 4udpnuy,)

= aku:n+1 + (1/2)u§c'um — (1/2)uﬁ1uk.
This equation proves that (3.5) holds. So (3.6) also holds. Integration of (3.5)
with respect to z gives the formula Gpu(§) = Dp(2 — u(&))w'(€) — Dr(u’(£))(2 —

u(§)) + ¢(t2,...,ty), where the function ¢ does not depend on z. Combining the
last equation with (4.1), we obtain

0= 48uu(€) = Ox(u'(€)° +2u"(€) (2 — u(€)) +4(6" +w1) (2~ u(§))?)
= (867 +ur)(u(€)) +2u"(€)) (t2, - - -, tg)-
The function in parentheses cannot vanish identically as a function of z, and thus

o(ta,...,tq) =0. O
Now we summarize the results obtained:

THEOREM 4.2. The following statements are equivalent:

(1) The function uy is a solution of a stationary g-KdV equation.

(2) There exists a sequence of functions {u1,...,uqs} such that the operators
L= 82. — U1 and Ui = 8261 - %(ulai + Biul) — %(uz(‘?z + 81;'11,1) - 81;+1,
1 <i< g, commute.

(3) There exists a sequence of functions {u1,...,uqs} and a set of constants
B, -, pog Such that the generating function u(€) = 3 9_; u;€* satisfies
(4.1).
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In order to find the relation between the constants py and the coefficients a;
we need the following result.

LEMMA 4.2. The operator U =U1LIV +ULIZ 4+ .- 4 Uy
(1) commutes with the operator L;
(2) is an operator of order 2g + 2 with the leading coefficient 1;
(3) contains the differentiation with respect to z only.

Proof. The first statement of the lemma is obvious. The leading term of U is
a composition of the leading terms of the operators i; and £971, so it is equal to
02972, This proves the second statement. Since U; = &;L — 81 — (1/2)u;0, +
(1/4)u}, the sum U;L — U;+1 does not contain the differentiation with respect to
t;11. By recurrence, we get the third statement of the lemma. O

THEOREM 4.3. Under the hypotheses of Theorem 4.2 the operator A can be
decomposed as A =UrLI™1 + U LI2 4 - .. + Uy, where A= Ag+ f;oz a;A;. The
coefficients py, and a; satisfy the following relation:

k—2
(44) K = 8a.g_k_1 +4 Z Ag—i—10g—k+4i
i=1
fork=1,...,9—-1.

Proof. The first statement of the theorem follows from Lemma 4.2 and unique-
ness of the operators Ay (see Theorem 1.1).

The function uy, is a differential polynomial

— ’ (2k)
uk_ek(ulv Upy -y Uy a/-l'la'nuufk—l)'

Let €1 be a constant term of ©,. Then
ULLI™ U LI™2 4 o+ Uy = 02— (1/2) Y 8297271 430,00

= 0271 — (1/2) ) e,0297%1 13" 5,0%,

where ¥; and 9; are differential polynomials in u; without constant terms. On the

other hand, A = 929+ — (1/2) 3" apd2k+! + 3°9,0:. Thus, ar = —(1/2)eg—k-1,

and so it remains to find €. The result now follows from (4.1). O
The following corollary is one of the main results of the paper.

COROLLARY 4.1. There is a canonical way to associate a solution uy of the
stationary g-KdV equation with a hyperelliptic curve

(4.5) I={(&y) € C?|y*=4u()}

The coefficients p1, ..., ig—1 are expressed in terms of the constants a; as in equa-
tion (4.4), and pg, ..., pog are found from (4.3) in terms of the values of ugk)(to),
k=0,1,..., at some point tg € C9.

REMARK 4.1. In the case where the solution u, is periodic as a function of x, the
hyperelliptic curve constructed above coincides with the spectral curve introduced
in [12]. Our construction uses only the local properties of the function w;, while in
[12] only periodic or rapidly decreasing functions are discussed.

REMARK 4.2. The number of singular points on I is an important characteristic

of the solution ;. This number can be expressed in terms of ugk) (tg) using the
resultant.
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5. Fiber bundles associated with the stationary g-KdV equations

The equations described by (1.9) are ordinary differential equations of order
2g + 1, and so their solution u; is uniquely determined in a neighbourhood of a

given point zo by the values ¢ = u(lk) (z0), kK =0,...,2g. Since the coefficients
of the KdV equations are constants, we can take zo = 0. The stationary g-KdV
equations depend on the numbers ay, . . ., ag—2, and so the space of all such equations

is isomorphic to C9~1.

The space M, of all hyperelliptic curves I' = {(£,y) € C? | y* = 4u(£)} can be
parametrized by the numbers p1, ..., uog, so it is isomorphic to C29.

Denote by R, the space of solutions u of all stationary g-KdV equations such
that u is regular at the point 3. As was explained above, we can identify the space
R, with C39 using coordinates (cg, ci, . . 1C2g, 0, - -, Gg—2).

There exists a canonical map ma : Ry — My, which sends a solution u to the
hyperelliptic curve I" described by (4.5).

Denote by i, the space of gth symmetric powers of hyperelliptic genus g curves.
We consider the universal bundle (g, Mgy, 7y), where the natural projection 7y :
g — My is given by 7y, (z € SymIT) =T.

THEOREM 5.1. There is a canonical fiber-preserving birational equivalence Ry
— U,.
g

Proof. Let I" be a hyperelliptic curve associated with the solution u; of the
stationary g-KdV equation (see Corollary 4.1). Let &i,...,&; be the roots of the
equation 2 — u(0,£) = 0. Denote y; = u'(0,&;). Equation (4.1) implies that
y? =1/ (0,&)% = 4u(€), so the point (&;,y;) belongs to I'. Thus we have a map v :
R, — 1, given by the formula v(u) = (T, [(€1,41), - - - (&, )]), Where (€, 9s) € T.
Apparently, v is fiber preserving.

On the other hand, if a curve I' and a point [(&1,y1), ..., (&g, Yg)] € Sym9T
are given, then in the case of distinct points (§1,...,&,), it is possible to construct
the point (co, ..., caq,00,...,a9—2) as follows. The constants a; are a solution of
(4.4) where the parameters p; are known. The values u;(0) are the symmetric
functions of &1, ..., &g, namely u;(0) = 2(—=1)9 " og_it1(&1,. ., &) og(&, .-, &g)-
Then the values u}(0) can be found as the coefficients of the generating function
u'(0, &), from the equations u’(0,&;) = y;. All higher derivatives ¢, = ugk)(O) can
be found by recursion using equation (4.3). Thus the inverse rational map v~! is
constructed. O

In the case of the universal bundle of Jacobians over the moduli space of genus g
hyperelliptic curves this theorem gives the famous results of Dubrovin and Novikov;
see [12].

6. Algebraic relations between the operators L,i,...,U,

The Burchnall-Chaundy lemma ([7]) says that two commuting differential op-
erators of one variable are always connected by an algebraic relation. In [16] the
case of commuting differential operators of n variables was considered. In the same
paper the author (I. M. Krichever) introduced a class of n-algebraic families of
operators, i.e., families 'of commuting operators characterized by finite-dimensional
algebraic manifolds. The family {L£,l,...,U,} gives an example of n-algebraic
operators from [16].
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LEMMA 6.1. The operators L,U, . ..,Uy satisfy the following algebraic relation:
AU LI UL LI 4 A Uy 1 LAUG)? = (AL2TT 4y L2974 o L2972 4 i),

Using the notation U(2) = U291 + Upz972 + -+ + U, and fi(2) = 422971 +
p122971 + -+ + pog, one can write down this relation as 4U(£)? = (L).
Proof. Denote

1 1,
S‘L - ﬁuzaz - Zui.
Then
(6.1) Ui =0;L—S; — Dip1-
We have

(£, 8] = uil —uipq,
which implies the equation
S Uy =Y (8L —Si— 0i41)(BL — S; — 041)
itj=k it+j=k
= Z 8i8j£2 —20;0j41L + 0541041
i+j=k
— (0iS; + Si0;) L + (0i415; + Si0j41) + SiS;.
A direct calculation gives that
SiS; = (1/4)usu; 02 + (1/8)(usu; — ujui)ds — (1/8)uiuf + (1/16)ujuj,
00Si + Si8p = ;02 — (1/4)uj.

Therefore,
Z Uy L2911 = 9229 — Z (w2 — (1)) L2~
1<i,j<g 1524
+ > (1/4uu;07 — (1/2)usuf] + (1/16)ujuf) L2974
1<4,5<g
= £29+1 + u1£2g _ Z ’U,il:zg—i_*.l
1<i<g
- Z u;u; — (1/4) u//)ﬁzg i—1
1<i<g
+ > ((1/4)usu L2977
1<4,j<g
+ > ((/4uwgur — (1/8)usuf + (1/16)ujuy) L2977,
1<4,j<g

We see that the coefficient of £297% in this formula is exactly the coefficient of
€ in the expression (1/16)(u’'(§)* + 2u”(€)(2 — u(€)) + 4(w1 + €71)(2 — u())* =
(1/4) (). O

COROLLARY 6.1. Let U(ty,ta,...,tq) be a common eigenfunction of the op-
erators L,Uy,...,Uy, with the eigenvalues E,a1,...,0q4. Let § = E7L, a(f) =
39, i€t Then

(6.2) 4a(€)? = p(é).
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7. A common eigenfunction of the family {U/;}

In this section we construct a common eigenfunction of the family of commuting
differential operators {U;}.

LEMMA 7.1.
8 (Di2=u))_ 8 (Di-u))
Bti 2 — u(§) 8tj 2 — u(§) '
Proof. 1t follows from the definition of the operators d(n) and D; that the

expression -2 M equals the coefficient of (‘n? in the expansion of the
at; \ 2-u(@)

function 9(¢) 2(57717)2 3%2; with respect to n and ¢. This function is equal to

mﬂ?’f u'(€) (see (3.10)). Since the generalized translation ’TE" is commuta-
tive, this function is symmetric with respect to the variables ¢ and n. Consequently
the coefficients of ¢*n/ and (7' are equal. O

COROLLARY 7.1. There exists a function F(§) = F(ti,...,tq,€) such that
O;F = D—l(—zj(%f—)l 1 <4 < g. The function F(£) is uniquely determined up to

an additive constant in a neighborhood of any point (£, &) = (¢9,..., g,ﬁo) such
that 2 — u(t—g; f(]) 75 0.

Consider also the function ® = ®(t1,...,t5; E =&, ay,...,a4) given by

(7.1) = /2 —u(§) exp (2a(£)F(&)) exp( 2ZD Vi),
i=1
where a(§) = 1 @;&*. The function @ is uniquely determined up to a multiplica-
tive constant in a nelghborhood of any point (%o, €9, @) such that 2 — u(%g; &) # 0.
Let us find the derivatives of the function ® with respect to x = ¢; and tg,
k> 2:

408 (@)

2 =50 ) ™
y_ [~ +(€) (dale) ~ () | (da(e) - w(E)?
oy < 26— u(e)) o)
| _ 16a(6)? ~ 2u()(2 — u(e) - w(e)?
- 12 - u©) ’
1) o0 (LEDEMEDZINO _opage) e

LEMMA 7.2. The function ® is an eigenfunction of the operator L with the
eigenvalue E # 0 if and only if € = E7! and {¢,40(€)} € T, where T' is a curve
defined by equation (4.5).

Proof. Equation (4.1) implies that

2 _
c-mpo = (2O (- p)e

The function in parentheses vanishes identically if and only if 4a(£)? — p(¢) =
(671 — E)(2 — u(€)). Differentiating the last formula with respect to x, we obtain
that (7! — E)u’(€) = 0. Hence 7! = E and 4a(€)? = p(§). O
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THEOREM 7.1. Suppose that 4a(€)? = u(€). Then

(1) The function ® is a common eigenfunction of the family L, Uy,... Uy,
with eigenvalues E =71, ay,. .., ag.

(2) The space of common eigenfunctions of the operators L, U, ..., U, with
eigenvalues E =71, ay, ..., og 1s one-dimensional.

Proof. Express the operators U, as
(7.5) Uy = 9587 — (1 +€71) + €10 — (1/2)urdy + (1/4)uj, — Bp1-
Let ¥ be a common eigenfunction of £, U}, with the eigenvalues indicated. Then
(7.6) (5_18k — (1/2)114;8;,, + (1/4)u;€ — 8k+1) U = o, V.
This allows us to express all partial derivatives 8,V in terms of ¥ and ¥’, namely
1

BT = Di(2 — u(E)) V' + 5 Dy(w'(£))¥ — 2Dk(a(@))¥, 1<k <g—1.

For k = g — 1 one gets from (7.6) that
£ 03-1Y — (1/2)ug1 ¥’ + (1/4)uy_, ¥ = 0y P.

Therefore,
£ (Dy(2- WO + 3D,((©)7 ~ 2D,(a(e))
| — (1/2)ug ¥ + (1/4) ¥ — ag¥ = 0.

Using Lemma 3.4 and (3.2) we obtain
(2-u(@)¥ = ((1/2)u'(§) + «(6)) ¥

Thus,
v —(1/2)u' () + a(f)
v 2 —u(f) ’
and
%~ Di2 - uie) MO LA 15y, w(6)) - 2Du(a(e)
_ AODK2 ‘;‘(_52(;)(1/2)8’““(5) —2D(al6)), k=2,....0
We see that 8%\1/_ = &T@, k=1,...,g9. Therefore, U = A®, where A is a constant. O

Consider now the special case E = 0.

THEOREM 7.2. The space of common eigenfunctions of the operators L,U, ...,

Uy with eigenvalues 0,0, . .., aq, where 404?7 = [lag, 15 one-dimensional.
Proof. Let ®° be a common eigenfunction of operators £, Ui, . . . , U, with eigen-
values 0, a1, ..., a4. Since LPO = 0, equation (6.1) implies that

Up®® = (—(1/2)ug0; + (1/4)u}, — Opy1)P° = 0y ®°.
Therefore,
(71.7) 0% = —((1/2)ur-10: — (1/4)uf_y + _1)®°, k=2,...,g,

and

!
—4
(7.8) 0,80 = Lo Yo g0
2ug
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Note that (7.8) and (4.1) imply
2uyug — (uy)? + 1602 B — 2ujug — (up)?® + dpng 50 — o
du? 0 du?

It follows from (7.7) and (7.8) that

o0,

9290 =

up—1(4dag — u'g) —ug(dap_1 — uj_;)

0_ 0
O®° = T, v,
Since the logarithmic derivatives are uniquely defined, the space of eigenfunc-
tions with eigenvalues £ = 0,a1,...,ay = (1/4),/fi24 is one-dimensional. O
Note that the function ® can be expressed as
(7.9) & =expF,
where
~ 1
(7.10) F= <2a(§)F - QZ D;(a(&))t; + 3 log(2 — u(£))) .
‘We have
= _ Di(2 —u(§))(4a(§) — u'(€)) — Di(4a(§) — u'(§))(2 — u(§))
7.11 O, F = .
(71 22~ u(e))
Using the notation 8(n) = >_9_, n°8;, we can rewrite these formulas as
o F = &1 (2 — u(n))(4a(§) —u'()) — (4a(n) — u'(n))(2 — u(§))
£-n 4(2 —u(9))
_ T(da() - w(€))
2(2 - u(9))

LEMMA 7.3. The function x(§) = OF = 4‘21—((251—;‘(15,—%) satisfies the Riccati equa-
tion x'(€) + x(€)? = uy + €71, Moreover,
1 = £n
——— () F = - )
5 a0 (m) -7 (x(€) — x(m)
Denote by V the hypersurface in C9*! = {(,a1,...,a,)} defined by equa-
tion (6.2). Recall that T' = {£,y € C? | y? = 4u(€)}. In coordinates E,q; the
hypersurface V is given by the equation

4 (B9 4+ B9 4ot ay)? = 4B 4 B2

and the curve T' is given by the equation n? = 4(4E%9%! + p1 E2971 + -+ + pyy),
where n = y&79.

Define the projection 7 : V' — I' by the formula 7(&, a1,...,ay) = (£, 2a(£)).
In what follows we will regard the curve I" as a subvariety of V using the canonical
embedding ¢ : T' — V defined as i(§,7) = (£,0,0,...,7n). Let V* = x~1(T"*), where
I ={(&y) el; £#0}.

Recall that C* = {£ € C | £ # 0}. The function ® in equation (7.1) is defined
on the space C9 x C* x CY parametrized by coordinates t1,...,t5, &, 01,...,04.
Consider this space as a graded space using the following grading: degty = 1 —
2k, degé = —2, degoy, = 2k + 1. Take also deg p; = 2i + 2. Then the equation
4a(€) = u(€) defining the variety V* is homogeneous.
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LEMMA 7.4. Let ® be a common eigenfunction of the operators L,Us,...,Ug
with eigenvalues E = €71, a1,...,0q4. Let v2,...,7, € C be arbitrary constants.
Then the function ® = & exp(yata + - + Yotq) is also a common eigenfunction of
these operators with eigenvalues given by E = €71, @1 = a; — v, Qg = ag — ¥3 +
Y2y ooy 0 = g — Vg1 + %5y .., 0g = g + &g

Proof. Take v1 = 0. It is obvious that % = —a{‘iT@ +v%, k=1,...,9, and
L3 = E®. From (7.5) one obtains that

~ 1 1 ~
L{k<1> = (f_lak - 5'114;81 -+ Zu; - 8k+1)@
= exp(vat2 + - + Ygig) (L{k@ + (&7, — ’yk+1)(1>) .
Therefore,
%~—a
E) ks

where
(7.12) ar = ap + (£—1’7k — ’Yk-i-l)- d

Note that Y9 _; @& = >°7_, a;&t.
Assume that degyy = 2k — 1.

COROLLARY 7.2. Eguation (7.12) defines a free action of the graded addi-

tive group C9~1 with coordinates s, . .. Vg on the variety V*. The quotient space
V*/C97t is T*. The vector bundle V* — T'* is trivial.

Proof. Define the map s : I'*xC9~! — V* by the formula s(£, ¥, v2, . - -, Yg—2) =
(& t, =72, & 1v2 — ¥3y. .., €7 1,). This is the required trivialization. |
Consider the case u; = 0. In this case the operators Uy and £ are

(7.13) L=0% U, =0 —Oky1.

LEMMA 7.5. Let ay,...,cq and £ satisfy the equation (3 9_, aifi)z = ¢t
Then the function

(7.14) o=exp| D aitpgFF!
1<k<i<g
is a common eigenfunction of operators (7.13) with eigenvalues E = 7, a4, ..., ag.

Proof. The logarithmic derivatives of the function ®¢ are given by

9o _ S i—k+1
5 —;azé :

It is clear that 85@0 = 6—1@0 and U Py = (6_1814: — Ok+1)Po = Dy O
The function @ can be obtained from the formula (7.1) by rescaling. This fact
will be proved in Subsection 10.2.
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8. Basic generating function for the solution
of the stationary ¢g-KdV equation

Denote u(€,7) = 4671+ 4n~t + 230 pnib'n® + 100g paig1 (€ + )€, We
have p(§,€) = 2u(€) and p(§,n) = w(n,§), so u(§,n) is a polarization of u(§) (see
Definition 3.1).

Consider the function
Q(&,n) =u'(§)u'(n) + (2 —u(€)u"(n) +u"(€)(2 - u(n))
+2(2-u()2-u®) (€ +n" +2u).

The function Q(&,n) is a polarization of the function on the right-hand side of (4.1).
Therefore Q(&,€) = u(§,€). Equations (3.1) and (4.1) imply that

ou&m| _ 9Q(&n)
66 E=n 66 &=n .
Denote also
IS (a?u(g,n)‘ 6262(6,77)’ )
PO =% Taean |~ aeon |._ )
8 o0& on £=n 9¢an &=n

LEMMA 8.1. The function

(8.1) P(&,n) =

is a polarization of P(§).

£2 n?

We—n? (2u(&,m) — Q&)

Proof. Tt is obvious that P(£,n) is symmetric. Direct calculations show that

_E(,2uEm) 0% <8u’(£)>2 00 (€) Bu(e)
8 o¢2 oe2 o€ T

£=n

P(¢)

2
+4§-2-6‘5%(2 —u(§)) + 47 +w) <alel3(;)> ) - %%133; Plém). O

COROLLARY 8.1. P(£,m) is a polynomial of degree g in the variables £ and 7.
Define functions p;; as coefficients in the expansion
9 9
(82) P&m) =) > pi&n’.
=1 j=1
LEMMA 8.2. P1i = Pi1 = U;.

Proof. The assertion follows from the formula Y~7_, p1;&* = E(—f’ﬁlln_.o = u(§).
_ O
This result motivates the following definition.

DEFINITION 8.1. The function P(£,n) is called the basic generating function
for the solution u; of the stationary KdV equation.

The coefficient of 2 in (8.1) is equal to

g
(83) 2> puf’=-3(2—-u()(u +267Y) —u(€) + mé+ 1267
=1
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Therefore,
(8.4) uy = 3ugur + 6uip1 — 2pa; + 161,

where §;; is the Kronecker symbol.
It will be shown later (see Subsection 10.1) that if u; = 2,4, is a solution
of the stationary KdV equation from [3], then u; = 2pg,g—it1, Ui = 20g99,9—i+1
P2i = 20g-1,9-i+1. In this case equation (8.4) becomes the basic relation for gp-
functions (see (4.1) in [3]). All the results of [3] for the p-functions, derived from
the basic relation, are thus true for an arbitrary solution of the stationary KdV.
LEmmA 8.3. 9(¢)P(&,m) = 0(§)P(C,n)-
Proof. We have
En*¢®
(Q)P(&,n) =
P = s e - om0

(0@ (W' () 2 = u(©) - W) - ulm))
— (1) (W (§) 2 = u(©) - W(Q)(2 - u(e)))
+ () (W(©)(2 - ulm) - w'(n) @ - u(€)))

+ e w02 - u(©) (2 - )
- (e - u(©)z - ()
+ e (O - a2 - u(e)
= B (©).0(6), (2~ u(©) + Ba(u(),2 - u(®), (2~ u(E)™)
Thus, 8(C)P(€,n) is symmetric as a function of variables &, 7, . O

COROLLARY 8.2. There ezists a function ¢ = ¢(t1,...,tq) such that P(§,n) =
9(£)0(n)¢-
COROLLARY 8.3. P'(&,m) = d(n)u(&).

Proof. Indeed,

& 0

N 2<§ - (@O = ulm) - 2 - w(@)u'(m) = amue). O

Note that it follows from Theorem 3.2 that ;P (§,n) = Tg’azu(g).

9. A construction of the w-function

Consider the equation

(9.1) 202 logw = —uy,

with the initial conditions

(9.2) w(0) =1, Ow(0)=0, k=1,...,g;

here u; = uy(t1,...,1ty) is a solution of the stationary g-KdV equation with respect

tor =t;.
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THEOREM 9.1. There ezists a differentiable solution w of (9.1), (9.2) such that
the functions

(9.3) ur = =200 logw, k=1,...,g,
satisfy the hypotheses of Theorem 4.2.

DEFINITION 9.1. The solutions of (9.1) described in Theorem 9.1 are called
special.

THEOREM 9.2. Let p;;(t) be as in (8.1) and (8.2). Then there is a unique
special solution of (9.1) such that

(94) 26,‘8]' logw = —Dij
foralli,j.

Proof. The existence of a required solution of (9.4) follows from Corollary 8.2.
The function w is defined by (9.4) up to a factor exp(Ag + Ait1 + -+ + Agty). All
the constants A\; are uniquely determinated by the initial conditions (9.2). O

This result completed the solution of Problem 1.

DEFINITION 9.2. The special solution (9.1) described in Theorem 9.2 is called
the w-function of the solution u of the stationary g-KdV equation.

The relations between the higher logarithmic derivatives of the w-function are
obtained using the the technique of generating function. For example

> &P ¢F0,0;0) logw = B(Q)P(¢,m)-

ijk

This function was calculated in Lemma 8.3.

The solution u is a point of the space Rq (see Section 5). Consequently, we can
treat the w-function as a function w: C9 x Ry — C.

The rest of this section is devoted to an explicit construction of the w-function,
starting with the given solution u of the KdV equation.

Denote t = (z,12,...,ty) and put

1 T T
== u(t) dx
19

Then equation (9.1) implies that w(t) = exp(a(t) ©(t)) where a”(t) = 0.
Therefore, a(t) = a1(t)z + ag(t), where t = (ta,...,t,). The initial condition (9.2)
now gives ag(0) = 0, a1(0) =0, and Orap(0) =0, k = 2,...,g. It follows from (9.3)
that

g

(9.5) 20,01 (1) = —uy + 28;;/ u(t)dt, k=2,...,9.
0

The set of equations (9.5) with the initial condition a;(0) = 0 has a unique
solution a; (). Tt follows from (9.4) that 29;0;a0(f) = 28;0;¢(t) — 28;0; a1 (H)x —
pi;(t). These equations with the initial condition ag(0) = 0, Orao(0) = 0, k =
1,...,g, have a unique solution aq(%).
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10. Applications

10.1. Kleinian o-function. Consider hyperelliptic Kleinian functions o(t),
Gi(t) = O;log o(t), and p;;(t) = —20;0; log o(t). The function 2gpyy(t) is a solution
of the stationary KdV equation (see [3]).

COROLLARY 10.1. Let z € C9 be a point where o(z) # 0. Then the function

w(t) = ot exp (0(2). 1)

is the w-function of the solution 2pg4(t + z).

Proof. The functions u; = 2p4,g—i+1 and p;; = 2p0g—s41,9—j+1 satisfy equations
(8.1), (9.4) (see [2]). The corollary now follows from the uniqueness of the w-
function. |

Let 6, be the polynomials from [1]. The second logarithmic derivatives of 6,
give solutions of the higher KdV equations. As was proved in [4], the polynomial
fg is, up to a linear change of variables, a rational limit G, of the o-function of

genus g. Denote a(t) = 0;log Ty(t).
COROLLARY 10.2. Let z € C9 be a point where G4(z) # 0. Then the function

w(t) = 5 exp (2021

is the w-function of the solution u = —2(log 6,)".

10.2. The homogeneity condition. The results obtained in this subsection
follow from the uniqueness theorems for the w-functions.

LEMMA 10.1. Suppose that u(z,tz,...,tg) is a solution of the stationary g-
KdV equation with respect to x. Take k € C*. Then the function u(z,ts,...,ty) =

&*u(kz, K3ta, ..., K297 t,) is also a solution of the stationary g-KdV equation. Un-

der the transformation u — U the constants p; and a; change to [i; = p;k*+2,

@ = kK29 2q,.

Proof. Let {uy = u, ug,...,uy} be a sequence of functions from Theorem 4.2.
Then the functions

(10.1) U(z,t2,...,tg) = f’inUi(/ﬂU, K3ta,.. ., Iizy_ltg)

satisfy the hypotheses of Lemmas 2.3 and 2.4. Therefore by Theorem 4.2 the func-

tion U is a solution of the stationary KdV equation. The values 1i; are determined

by (4.1); the values @; are found from (4.4). O
Thus we have an action of the group C* on the space Ry. It is obvious that

under this action the initial values ¢; = u()(0) are transformed as ¢; = k% +1¢;.
Denote by @ the w-function of the solution .

LEMMA 10.2. The w-functions w and W of the solutions u and U are related as
follows:
Bty ... tg) = w(kz, &3ta, ..., 6297 ,).

Proof. The functions u;, U; are related by equation (10.1). It follows from (8.1),
(9.4) that

—28i8j@(t1, ey tg) = ﬁij = I€2i+2j_2pij = —261-6jw(m:, Hgtg, ceey Iizg_ltg).



THE w-FUNCTION OF THE KDV HIERARCHY 63

Since the w-function is unique, this completes the proof. g
Consider now the w-function as a function on the space C? x R,.

THEOREM 10.1. The w-function satisfies the following homogeneity condition:

w(ty,...,tg,Q0,...,09-2,Co,.--,Cag)
= w(kty,..., /<a29_1tg, k™ ay,. .., /i_4ag_2, & teg,. .., 5”29_102g).

Proof. The theorem follows directly from Lemmas 10.1 and 10.2. (]

Consider the function G(§) = >_7_,; U;&;. It follows from (10.1) that
(10.2) u(z,te,...,tg; &) = u(ke, K3to, ..., fng_ltg; Kk728).

THEOREM 10.2. Let ‘b(tl,...,tg;ﬁ_l,al,...,ozg) be a common eigenfunction
of the operators L, Ui, . ..,U, with the eigenvalues E = £, a1, ..., a4 (see Section
7). Then the function

B(t R _l,al,...,a I
oz Tt e
= ®(t1K, ..., tgrITHETIRTE  ank T, gk T

is regular as a function of k in the vicinity of the origin, and

® = exp Z a; 7 |+ O(k).
1<i<j<g
Proof. Denote t = (t1k, .. ., tgr?971). Using (7.9), (7.11), one gets

8;®

= nzi"l(@if)(f; E T2 a3, agk T2

A

gl—z’
T 42— wm @R — -

) 2 (40,8 — uj(B)E M)

i

~ 3w DR Y (dayE — (BRI
J<i j2i

+ D wBF R Y (dage — uy(HE KT
i>i j<i

Note that £ — (0,...,0) and u;() — ;(0) as & — 0. Therefore we obtain

8%

)

Z ;807 + O(k). O

520

This allows us to obtain a deformation of the function ®. We see that ® tends
to the function @ of (7.14) as k — 0.

Consider the space L = C9 x C* x CY with coordinates (t1,...,tg;§, a1,...,04).
Consider also an action of the group C* on the space L given by the formula

2g—-1

K(t1, .. tg: € a1,.. ., 09) = (t1K, o3, ... Jtgk ;5&2,a15“3,...,agn_Qg_l).
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This defines a projection p : L — M where M = L/C*. Take a small € > 0 and
denote

Le = {(t1,...,tg;&,00,...,09) € L:|§| > €},
OLe = {(t1,...,tg;&, a1, ..,a9) €L : |§| =€}
Glue the boundary 0L, to the space M using the projection p to obtain the space
Ze =L, Up M.
Let €3 < €. Then there is a map L, — L., defined by the formula

(t,...,tg;€, 00,0 aq) = K(t1, ..., tg; €, 00, ..., ay),

where k = e~/ 2(;‘;/ 2 This map sends the boundary 0L, to the boundary dL.,, so
it can be lifted to a map Z. = L, UM — Z., = L., U M. Denote Z = lim._o Z¢
and recall that C* x V* C L.

Consider the embedding C9 x V* — Z. This embedding covers the embedding
I'* — I'. Approaching the limit point in " corresponds to & — 0 in the space
M C Z. So we get the following result:

THEOREM 10.3. On the space Z there is a function ® such that EI;IL = ® and
D|pr = D

If ¢ — 0, then for the restriction ®|. = ®(¢1,...,t5,671,0,0,...,04) one has
® ~ exp (lem Qg &9t tj). Take a local parameter k = a,&9. It now follows
from the equation (a,€7)* = p(€) = 467" + O(€) that ® ~ exp(3-7_, k¥~ 't;).

So, the restriction ®|. has the same analytic properties as the Baker—Akhiezer

function ([16]) of the solution u. By the uniqueness of the Baker—Akhiezer function
we conclude that ®|. coincides with the Baker-Akhiezer function.

11. Examples

In this section we demonstrate the key constructions of the paper in the cases
g=1and g=2.

11.1. g =1. We start with a solution u of the classical stationary KdV equa-
tion u”" — 6uu’ = 0. Suppose that z = 0 is a regular point of the function u. Then
the solution u with given values ¢y = u(0), ¢; = v/(0), c2 = v”(0) is unique in a
neighbourhood of the point z = 0.

The key equation (4.1) becomes

A4E7H + € + p2€”) = (u)€7 + 2u"E(2 — u€) + 4671 +u)(2 — ub);

hence py = u” — 3u?, po = (1/4)((v')? — 2u"u + 4u®). It is easy to see that
i = 0 and ph = 0. Therefore p1, po are constants and so p; = co — 36(2), Lo =
(1/4)(0% — 2¢9¢9 + 468)

The equation of the hyperelliptic curve is

40471 + € + pot?) = %

The w-function is w = exp(—¢(z)), where ¢(z) = § [ [ u(z)dz.
The birational equivalence v : R; — U; is given by the formula v(u;) =
(Fa (é, y))7 where € = 2/607 y= 2Cl/CO-
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Let ® be a common eigenfunction of the operators £ and U; = A; with the
eigenvalues £ = £~! and «, respectively. Then the logarithmic derivative of the

function @ is
@ daf—-u(x)

® 202 -u(z)f)’

where 4o = 24/46~1 4 1€ + €2, Therefore 9, log® ~ £71/2 as &€ — 0. Let
z € C be such that u(z) = 2§~ ! and v/(2) = 4a. Then

_ 1d/(2) —u/(2)
2 u(z) —u(x)

11.2. g = 2. It follows from the equation [£, Ay + agdg] = 0 that u® —
10uu® — 200"/ + 30 u?u’ 4+ 16apu’ = 0. Equation (4.4) implies that p; = 8ag. We
have u(¢) = ué + u2£2. The equation (4.1) gives

A4ETY 4 € + po€® + pat® + pat?)
= £(—12u” — 16ug + 4u”) + €2(4u® — Suug + (uv')? — 2uu” + 4uf)

+ 3 (8uPug + 4ud + 2u'uh — 2ugu” — 2unl) + 4 (dund + (uh)? — 2ugul).

Fl(z;67Ya) = F'(z; 2)

Therefore, us = %(u” —3u? —8ag). Now we can describe p2, pug and p4 as constants
in the following ordinary differential equation for w:

1
H2 =7 (4u(4) —10uy” — 5(u’)? + 10u® + 16aou) ,

1
Uz = E(2u’u’” —2uu™® — 2(u")? — 15u* + 8ulu” — 16u2ag + 12uu’ + 64ag),

1
EZ((u’”)2 + 16(u")?u — 2u"u™® + 12(v') %" + 6u?u® + 32u° — 30u"u®
— 12u""u'u — 160aouu’ + 132a0u® 4+ 16agu® — 96a¢(u’)? + 256a2w).

Finally, the birational equivalence v : Ry — Uy is given by the formula v(u;) =
v(coy---yca,a0) = (T, [(é1,91), (€2,92)]). Here for the construction of ' the coef-
ficients 1, o, us, ha are used, obtained from the formula above by substitution
ci for u®. The pairs (&, i) are the following ones: &1,&; are the roots of the
equation 2 — cpé — }1(02 — 3c2 — 8ap)¢? = 0 and y;,y2 are defined by the formula
Y = c1&i + 1 (c3 — 6erco).
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