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Generalities about sigma-models

Sigma-models are theories of maps X : 62 — . from a worldsheet %> to a target
space .# . The action depends on a metric h;; and a 2-form B;; on .# and has the
form

S = % / d*2 /7 i (X) Y 0, X" 0, X7 + %/ d*2Bij(X) € 0, X' 0, X7 (1)
3 €
We assume that .# is a homogeneous space:

M =G/H, G - compact semi-simple Lie group. For the Lie algebra g of the group
G we use the standard decomposition:

g=hom, )
where m L h w.r.t. the Killing metric on g. The following relations hold:

[b,b] C b, [b,m] Cm
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Flag manifolds.

We will be interested in the case when .# is a flag manifold (of the group SU(N)):

m

_ SU(N) N
Prsceinn = GGy - x Uy, 22 ™ =N ®)

i=1
Sigma-models with such target spaces naturally arise, for example, as effective

continuum theories of spin chains with SU(N)-symmetry
[DB ’11-12, Affleck et.al. '17, Tanizaki & Sulejmanpasic '18, Seiberg et.al. "18]

There also exist sigma-models with flag manifold target spaces that are conjecturally
integrable

[Young 06, Beisert & Liicker '12, DB 14T, Delduc, Magro, Vicedo, Lacroix '137]
This talk is dedicated to the analysis of such models
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Complex structures.

Flag manifolds are complex manifolds, moreover they carry several complex structures.
A complex structure # on .# is defined by an ordering of the factors in the
denominator WM [Borel & Hirzebruch ’58]. Once a complex structure
is chosen, .# may be interpreted as the manifold of linear subspaces embedded into

each other:

k
0EVIC...CVp=C", dimeVi=) mni. (4)
i=1
One has a more detailed decomposition of the Lie algebra:
gc =bhc®me=hcBmy Bm_, Jomy =timy. (5)

Homogeneity and integrability of the complex structure are equivalent to the

conditions on the Lie algebra:

(h,ms] Cmy, [mi,my] Cmy. (6)

Dmitri Bykov | Flag manifold sigma-models 4/28



The complex structure and the Lie algebra.

( m+\

| |

The decomposition of the Lie algebra.
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Definition of the models.

Quite generally, the metric and B-field are constructed as follows. We decompose

m4 into irreps of the subalgebra h: my = Bi<icj<m(my)i; and pick out the
corresponding components of the Maurer-Cartan 1-form J := —g~'dg = > Ji;.
ig=1

Then,

ds? = hydX'dX? = Y aytr(JiJi),  ay >0 (7)

1<i<j<m
B = z bij tI‘(Ji]‘ AN J]l) (8)
1<i<j<m

As a simplest example, we may set b;; = a;;, in which case B is called the fundamental
Hermitian form of the metric h w.r.t. one of the complex structures ¢ on .#. One
may write B=ho Z.

Moreover, we will set a;; = 1, then the metric is the normal metric on .%#:
(ds? = Tr(Jwdwm))-
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Integrability.

The conjecture of integrability of the models so defined is based on the following
evidence:

e The zero-curvature representation

—1
- 1—;uszz+1+TuKz—d2, uec

Ay

Involutivity of the integrals of motion

U(3) )

Explicit solutions of the e.o.m. in certain cases ( Ty

Analogy with the case of symmetric spaces (review: [Zarembo '17])

Explicit form of the quantum anomaly in the non-local charge Q2, which is
similar to the Grassmannian case
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Relation to the case of symmetric spaces

Complex symmetric spaces fall in our class, with characteristic property [my, m4] = 0.
In fact, this implies [m4, m_] C h. Symmetric spaces of the group SU(N) are the

Grassmannians
SU(N)

S(U(n) x UN —n))

In this case the canonical one-parametric family of flat connections is

Gn\N =

~ 1=\ ~ 1=)"1 <~
Ay = 1-A K.dz + 1= Kzdz,
2 2
where K is the canonical Noether current, i.e. the one constructed using the standard
action 1
S=3 / d’zhi;(X)0,X"9,X7 (9)
&€
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Relation to the case of symmetric spaces. 2

The models, which we described above, feature an additional term in their action:
J B, the integral of the Kéhler form. Therefore the Noether current K defined
€

using this action will be different from K , the difference being a topological’ current:
K=K+ *dp
(In fact, p is the moment map G(k, N) — suy).

Nevertheless both K and K are flat. The one-parametric family of connections that
we constructed earlier has the form

1+u 1+u

1
A, = K.dz + —5— K=dz,

A natural question arises: How are A, and A, related?
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Relation to the case of symmetric spaces. 3

The answer is: Ay and A, are related by a gauge transformation 2:
Ay = Q4,07 —Qdo!
Q can be written out explicitly (g is the ’dynamical’ group element):

Q=gAG" ', where A=diag(A\""? .. ATVZ Y2 A2

n N—n
Rather important is the nontrivial relation between the spectral parameters:
A = /2

This relation may be confirmed by analyzing the limiting behavior of the holonomies
of the connection as u — 0 (such analysis can be borrowed from Hitchin (’90)).
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The gauged linear sigma-model (GLSM).

The above B-field is closed in the following case: dB =0 < m =2 ie. Fisa
Grassmannian (a symmetric space). For the case of Kéhler target spaces the GLSM
representation is tantamount to the theory of Kéhler quotients. For example, for
the Grassmannian one has

U(N)

Gk N) = T < UV =R

— Hom(C*, ) /U (k) (10)
This means that one can write down the Lagrangian
L =Te(DVID, V) +Tr(AVTV — 7 1y)) (11)

Such representations date back to the work of
[Cremmer, Scherk 78, D’Adda, Liischer, di Vecchia 78]

If one equips the flag manifold with a Kdhler metric, the GLSM representation will
follow from the theory of quiver representations
[Donagi & Sharpe ’08, Ginzburg ’12]
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The gauged linear sigma-model (GLSM).

In the case m > 2 the flag manifold F is not a symmetric space and the B-field is
no longer topological (and the normal metric is not Kahler). Therefore a question
arises, how to construct a GLSM representation in this situation.

First recall, that our model depends on the complex structure _#. In order to be able
construct a %—expansion, one should consider flags of the form 0 € V4 C ... C V,,, =
C¥, where the dimension of the ambient space N — oo, whereas M := dim Vy,_; is
fixed. For now we take this as a constraint on the allowed complex structure.

Given this setup, we choose a matrix V € Hom(C",C"). Its columns parametrize
M vectors that define the flag. They are orthonormal:

This is an analog of the moment map constraint.
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The gauged linear sigma-model (GLSM).

Now we introduce an analogue of gauge field [DB ’17]

(A11)2 0 o - 0
(A21). (A22)2 o .- 0
JZ{Z = . . . ) JMZ— = (‘%)T
: . - . 0
(Am—l l)z (Am—12)z (Am—lm—l)z
(13)
and the covariant derivative
2,V :=0.V —iV .4,. (14)
The Lagrangian has the form:
L =Tr((2,V)" 2,V) + Tt(A VTV —r 1)) (15)

We have a theory very similar to the Grassmannian G(M, N) sigma-model, but with
a ‘reduced’ gauge field.
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The gauged linear sigma-model (GLSM).

Finally, we would like to prove that the representation applies to any complex
structure # on the flag manifold. This relies on the fact that for certain complex
structures _#1, #» the corresponding models are classically equivalent:

S[ 1] — S| 72] = / O12, dC12 =0. (16)

To this end we recall that the complex structures on .# are in a one-to-one

correspondence with an ordering of the mutually orthogonal spaces C"*,...C"™,
U(N)
U(n1)x--U(nm)

composing a flag manifold
Proposition. The actions S[_#1] and S[_#-] differ by a topological term, as in (16),
if and only if the corresponding sequences of spaces {C"*,...C"™ } differ by a cyclic
permutation.

Therefore we can always cyclically permute the subspaces to make sure CV M ig
the largest subspace in the ordering.
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The non-local conserved charge.

We consider the Wilson loop Pe™ Jr #u of the flat connection 7, and expand it
around the point © = 1 to second order. We obtain the following charges:

o, :/*K (17)

r
1
Q,; = / K- 3 / dtds [(xK)¢, (xK)] (18)
r t<s
Here I' C X is an arbitrary closed (or stretching to infinity) contour on the worldsheet.
The first one is the conserved charge related to SU(N) symmetry, and the second one

is the celebrated non-local conserved charge [Liischer *78]. These charges generate the
Yangian algebra, which underlies the integrable structure of the theory [Bernard '91].

“Conserved” here = depends only on the class of the contour [I'] € Hi(Zpunct, Z)
(recall that d «+ K = 0).
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The local conserved charge.

Example. Consider the Lagrangian £ = 0,¢ 0:¢ with the symmetry ¢ — ¢+ a. One
has the charge Q = [ *K = [ i (0:¢ dz — dz¢ dz). Consider the correlation function
r r

(Qo0) = —5 [ s = s (19)

— o0
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The non-local conserved charge.

[ dtds[(*K)t, (*K)s] is independent of T', we

1
2
t<s

S(p) = [(/ *K) ,*xK]. (20)

0

To prove that Q2 = f K —
r

introduce the one-form

Then Qs = f(K— %S) Since dS = 2K N K, we get
r

0u(I's) — Qa(I'y) :/ (dK = K AK) =0 (21)
oD =1 —-T11. 7
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The regularized charge.

In the quantum theory the one-form S is not well-defined. Consider a regularized

version (e fixed)
pte

Se(p) = | / WK | K (). (22)

The one-form S. has an ambiguity under € — ¢*™%¢. Indeed,

S =5 =1 f #K) K. (23)

X

A

3!
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The regularized non-local conserved charge.

‘We may use the Ward identity

(f +) <K =2 K0 (24)

to show that the following operator is ambiguity-free [DB ’18]
0.(I) -—/ ia+ 2 log (6)| Kudz+ |—ia+ ——log (¢)| K.dz—~5.), (25)
I 2r 8| T o BN REE TR )
r

This is similar, but not identical to the original definition of Liischer.
e There exists a limit lim Q.
e—0

e The limit depends on the curve I" through an anomaly 2-form Q4, namely

o (!L“% Qe)z / Qa, (26)

Dsp
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The simplest Lagrangian.

In the case of the CIPY ~'-model the existence of similar anomalies for local charges
was predicted in [Polyakov '77| and [Goldschmidt, Witten ’80]|, and the anomaly in
the non-local charge was explicitly computed in [Abdalla, Abdalla, Gomes ’81-'84].

To compute Q24 one needs to introduce the Feynman rules of the %—expansion. To
U(N)
T XU()XU(N=2)"

Then the Lagrangian has the form of two interacting CIP™ ~! models [DB 18]

this end for the moment we will restrict to the target space .# =

& =DM u)? + DL +
+i(cz00 U — ¢, Dzl o v + o0 Bz0 — cz0:0 0 u) 4 ¢ e (Jul® + |v]°) +

+id1 (JJul® = N) + X2 (JJv]|> = N) +ittiov+iTTou.
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The Feynman rules.

AAANANAAN u
AAAAAAAL ] Dyu ()

The propagators and vertices of two CPPY~! models.
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The Feynman rules.

The new vertices and propagators.
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The OPE.

The Noether current has the following form:
K=2(V(2.V)dz — (2.V)V'dz). (27)

Note that this current is different from the standard one even in the case of symmetric
target spaces (Grassmannians).

To prove that there exists a limit lin% Q., one needs the OPE
e—

[(xK)2(p +¢), *K):(p)] = % K. (p) + finite terms (28)

(The only commutator singular enough to produce a potential divergence in Q..)

The anomaly 2-form 24 is computed from the OPE

(K (p+€), *xK(p)] ~ [K:(p+€), Kz(p)] + [K:(p), Kz(p + €)], e—0. (29)
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The OPE.

The OPE [K.(p + €), Kz(p)] is given by the following diagrams (¢ = V)

%3
H
]
1

f\ra\/\@ﬂ

:01(21) D0(22)  idzpl(2

250(22 az‘PT 77’90-’42 22 z‘pT Zl 250(22
(a) (b) (C) (d)
1
Order TN
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The OPE.

IR

0:01(21) 0:0(22)  iAspT(2) O:0(2) O:07(21) —ipAL(2)

(a’) (v (c’)

s’

:¢1(21) 0:0(2)) iAspt(2) —ipAL(2)
(d) (¢")

Order %, part 1.
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The OPE.

]
SRS

32<pT(Zl) B;QD(ZZ) 8290]\(21) az@(zz) aztpt(zl) az‘p(zz) 8;(,0)((2:1) 6z<,0(22)

(a/l) (bl() (CI/) (dl/)

Order +, part 2.

1
N
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The anomaly 2-form.

The final result for the anomaly 2-form is as follows [DB 18|

_ L

Q
AT ur

VEV',  where F=do —od N . (30)

Here V € Hom(C™,C"). Recall that the auxiliary ‘gauge field’ .« has restricted
form, as compared to the gauge field of the would-be Grassmannian G(M, N):

(A11)2 0 o .- 0
(A21)- (A22)- 0o - 0
JZ{Z = . . . ) ’% = (’%)T
: - - . 0
(Am—l l)z (Am—l 2)2 e e (Am—l m—l)z
(31)
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Conclusion and outlook.

e Integrable sigma-models beyond symmetric target spaces [DB '147]
“Geometry N Integrable models”

Relation to n-deformed models
[Fateev ’96, Klimcik ’09, Delduc, Magro, Vicedo '13*, DB ’16]

GLSM formulation beyond Kahler target spaces [DB "17]

The anomaly has a form, similar to the case of symmetric spaces
[Abdalla, Abdalla, Gomes '81-'84]

Possibly exact to all orders [Abdalla, Abdalla, Gomes ’83]

Potentially possible to cancel it by introducing fermions

Pohlmeyer reduction
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