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‡-models

The action of a ‡-model describing maps X from a 2D worldsheet C to a
target space M with metric h is given by

S =

1

2

⁄

C

d2z h
ij

(X) ˆ
µ

Xi ˆ
µ

Xj (1)

Its critical points X(z, z̄) are called harmonic maps.

We will be interested in the case when the target space M is homogeneous:
M = G/H, G compact and semi-simple. We will use the following
standard decomposition of the Lie algebra g of G:

g = h ü m, (2)

where m ‹ h with respect to the Killing metric on g.
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Symmetric target spaces

For a reductive homogeneous space one has the following relations:

[h, h] µ h ∆ h is a subalgebra

[h,m] µ m ∆ m is a representation of h

A homogeneous space G/H is called symmetric if

[m,m] µ h (3)

Equivalently, there exists a Z2-grading on g, i.e. a Lie algebra homomor-
phism ‡ of g, such that ‡(h) = h and ‡(m) = ≠m.
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Equations of motion. 1

The action of a ‡-model with homogeneous target space G/H is globally
invariant under the Lie group G. Therefore, there exists a conserved
Noether current Kµ œ g:

ˆ
µ

Kµ

= 0 (4)

Since the group G acts transitively on its quotient space G/H, the equa-
tions of motion are in fact equivalent to the conservation of the current.
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Equations of motion. 2

It was observed by Pohlmeyer (’76) that in the case when the target space
is symmetric, the current K is, moreover, flat (with proper normalization):

dK ≠ K · K = 0 (5)

To get an idea, why this can be the case, recall that the Maurer-Cartan
equation has the solution

K = ≠g≠1dg, g œ G (6)

What is the relation between g and a point in the configuration space
[g̃] œ G/H? The answer is given by Cartan’s embedding G/H Òæ G:

g =

‚‡(g̃)g̃≠1 (7)

‚‡ is a Lie group homomorphism induced by the Lie algebra involution ‡.
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Equations of motion. 3

Another observation of Pohlmeyer was that the two conditions

d ú K = 0 (Conservation) (8)
dK ≠ K · K = 0 (Flatness)

may be rewritten as an equation of flatness of a connection

A
u

=

1 + u

2

K
z

dz +

1 + u≠1

2

K
z̄

dz̄, (9)

where we have decomposed the current K = K
z

dz + K
z̄

dz̄. We have

dA
u

≠ A
u

· A
u

= 0 (10)

This leads to an associated linear system (Lax pair)

(d ≠ A
u

)� = 0 (11)
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Integrability

The existence of a linear system described above is often a su�cient
condition for the classical integrability of the model.

The linear system was used by Zakharov & Mikhaylov (’79) to solve
the equations of motion for the principal chiral model (target space G),
with worldsheet CP1. A more rigorous approach was developed by
Uhlenbeck (’89). Solutions of the e.o.m. for ‡-models with symmetric
target spaces may be obtained by restricting the solutions of the principal
chiral model.

These constructions could not be directly generalized to the case of
homogeneous, but not symmetric target spaces (no Cartan involution).
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Target spaces

We will consider a di�erent class of models, with target spaces M of the
following type:

• M = G/H is a homogeneous space; for simplicity we take G

compact and semi-simple

g = h ü m, [h, h] µ h, [h,m] µ m

• M has an integrable G-invariant complex structure I

m = m+ + m≠, [h,m±] µ m±, [m±,m±] µ m±

• The Killing metric h is Hermitian (i.e. of type (1, 1)) w.r.t. I

h(m±,m±) = 0
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Target spaces. 2

Complex homogeneous spaces were classified by Wang (’54) a long time
ago. They are toric bundles over flag manifolds.

Consider for simplicity the case of G = SU(N). Then the relevant
manifolds are of the form

M =

SU(N)

S(U(n1) ◊ . . . ◊ U(n
m

))

,
mÿ

i=1
n

i

Æ N ,

If
mq

i=1
n

i

= N , this is the manifold of partial flags in CN . Otherwise it is

a U(1)

2s-bundle over a flag manifold, where 2s = N ≠
mq

i=1
n

i

.
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The action

Given a homogeneous space of the type just described, one can introduce
the action of the model:

S =

⁄

C

d2z ÎˆXÎ2
+

⁄

C

XúÊ =

=

⁄

C

d2z
1
h

ij

ˆ
µ

Xiˆ
µ

Xj

+ ‘
µ‹

Ê
ij

ˆ
µ

Xiˆ
‹

Xj

2
,

where Ê = h ¶ I is the Kähler form. Note, however, that, in general, the
metric h is not Kähler, hence the form Ê is not closed: dÊ ”= 0. Therefore
the second term in the action contributes to the e.o.m.!
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The action

Let K be the Noether current constructed using the above action. As we
already discussed, the e.o.m. are equivalent to its conservation:

d ú K = 0

The key observation is that, for the models considered, it is also flat:

dK ≠ K · K = 0

These two equations mean, in essence, that the described models are sub-
models of the principal chiral model (PCM). In particular, the solutions
of these models are a subset of solutions of the PCM. The Lax pair
representation can be constructed in parallel with the Pohlmeyer procedure.
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Relation to the case of symmetric spaces

Symmetric spaces of the group SU(N) are the Grassmannians

G
n|N :=

SU(N)

S(U(n) ◊ U(N ≠ n))

In this case the canonical one-parametric family of flat connections has
the form

ÂA
⁄

=

1 ≠ ⁄

2

ÊK
z

dz +

1 ≠ ⁄≠1

2

ÊK
z̄

dz̄,

where ÊK is the canonical Noether current, i.e. the one constructed using
the standard action

S =

1

2

⁄

C

d2z h
ij

(X) ˆ
µ

Xi ˆ
µ

Xj (12)
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Relation to the case of symmetric spaces. 2

The models, which we described above, feature an additional term in their
action:

s

C
XúÊ , the integral of the Kähler form. Therefore the Noether

current K defined using this action will be di�erent from ÊK, the di�erence
being a ’topological’ current:

K =

ÊK + údM

Nevertheless both K and ÊK are flat. The one-parametric family of
connections that we constructed earlier has the form

A
u

=

1 + u

2

K
z

dz +

1 + u≠1

2

K
z̄

dz̄,

A natural question arises: How are ÂA
⁄

and A
u

related?
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Relation to the case of symmetric spaces. 3

The answer is: ÂA
⁄

and A
u

are related by a gauge transformation �:

ÂA
⁄

= �A
u

�

≠1 ≠ �d�

≠1

� can be written out explicitly (g is the ’dynamical’ group element):

� = g�g≠1, where � = diag(⁄≠1/2, . . . , ⁄≠1/2
¸ ˚˙ ˝

n

, ⁄1/2, . . . , ⁄1/2
¸ ˚˙ ˝

N≠n

)

Rather important is the nontrivial relation between the spectral parameters:

⁄ = u1/2

This relation may be confirmed by analyzing the limiting behavior of the
holonomies of the connection as u æ 0 (such analysis can be borrowed
from Hitchin (’90)).
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Outlook

• Zero-curvature representations were known for ‡-models with sym-
metric target spaces

• We have considered modified ‡-models with complex homogeneous
target spaces, for which there exist Lax pairs

• A concrete example of such model has been put forward, when the
target space is the flag manifold U(3)

U(1)3 . When the worldsheet is a
sphere CP1, all solutions of the e.o.m. have been constructed

• Crucial test of integrability: construct solutions, when the worldsheet
is a torus S1 ◊ S1 (as in Hitchin (’90) for M = SU(2))

• What is the true role of Lie algebra gradings, such as Z2, Z4?

Dmitri Bykov

|
Max-Planck-Institut für Gravitationsphysik (Potsdam) &

Steklov Mathematical Institute (Moscow)

15/16



What is the space of integrable ‡-models?

Symmetric
spaces

Complex
homogeneous

spaces

Hermitian	symmetric	spaces

?
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An example: the flag manifold

We will consider the simplest homogeneous, but non-symmetric target
space – the flag manifold

F3 =

U(3)

U(1)

3 (13)

It is the space of ordered triples of lines through the origin in C3, and can
be parametrized by three orthonormal vectors

u
i

, i = 1, 2, 3

ū
i

¶ u
j

= ”
ij

, modulo phase rotations: u
k

≥ ei–ku
k

.

Dmitri Bykov

|
Max-Planck-Institut für Gravitationsphysik (Potsdam) &

Steklov Mathematical Institute (Moscow)

17/16



Complex structures on the flag manifold

To formulate the model, we need to pick a particular complex structure
on F3. The (co)tangent space to F3 is spanned at each point by the
one-forms

J
ij

:= u
i

¶ dū
j

, i ”= j (14)

One can pick any three non-mutually conjugate one-forms and define the
action of the complex structure operator I on them:

I ¶ J12 = ±iJ12, I ¶ J23 = ±iJ23, I ¶ J31 = ±iJ31 (15)

Altogether there are 2

3
= 8 possible choices, so that there are 8 invariant

almost complex structures. However, only 6 of them are integrable.
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The action simplified

Pick the integrable complex structure I , in which J12, J13, J23 are holo-
morphic one-forms. Then the action can be written as (DB ’14)

S =

⁄
d2z

1
|(J12)

z̄

|2 + |(J13)

z̄

|2 + |(J23)

z̄

|2
2

(16)

The e.o.m. are:

D
z

(J12)

z̄

= 0, D
z

(J31)

z̄

= 0, D
z

(J23)

z̄

= 0 (17)

From the action (16) it is clear that the holomorphic curves defined by
(J12)

z̄

= (J13)

z̄

= (J23)

z̄

= 0 minimize the action, hence are solutions
of the e.o.m. From (17) it follows that (J12)

z̄

= (J31)

z̄

= (J23)

z̄

= 0

is a solution as well. This defines a curve, holomorphic in a di�erent,
non-integrable almost complex structure I.
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Holomorphic curves. 1

We have seen that the curves, holomorphic in at least two di�erent almost
complex structures, satisfy the e.o.m. As we discussed, there are 8 almost
complex structures on the flag manifold. Are there any other holomorphic
curves that still solve the e.o.m.?
The answer is YES. The relevant complex structures are:

1

2

3

2 2

J12 J23
J13

J12 J32
J31

J21 J23
J31

1

2

3

J12 J23
J31

1

2

3

J13 J32
J21

1 3 1 3

Q1 Q2 Q3

QI Q-I
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Holomorphic curves. 2

We have already discussed why the Q
I

-holomorphic curves and Q1-
holomorphic curves satisfy the e.o.m.

To see why the Q2- and Q3-holomorphic curves satisfy the e.o.m., one
should note that the di�erences between the respective Kähler forms are
closed forms, i.e. for example Ê1 ≠ Ê2 = �

top

with d�

top

= 0. Therefore
the two actions S1 and S2 di�er by a topological term:

S1 ≠ S2 =

⁄

C

�

top

(18)
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Holomorphic curves. 3

This leads to an interesting bound on the instanton numbers of the
holomorphic curves. To see this, note that the flag manifold may be
embedded as

i : F3 Òæ CP2 ◊ CP2 ◊ CP2 (19)

The second cohomology H2
(F3,R) = R2 can be described via the pull-

backs of the Fubini-Study forms of the CP2’s, and the corresponding
instanton numbers are n

i

=

s

C
iú

(�

(i)
F S

), i = 1, 2, 3.

These are subject to the condition

n1 + n2 + n3 = 0. (20)
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Holomorphic curves. 4

The bounds on the topological numbers n
i

for the holomorphic curves,
which follow from the non-negativity of the actions S

i

, are:

n1

n3

n2

I1

I2
I3

n1 n2 n3+ + =0
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Solutions for C = CP1

The main point of introducing the action (16) is that, as it turns out, the
corresponding Noether current is flat, in full analogy with what happens
for ‡-models with symmetric target-spaces.

The full consequences of this fact still remain to be investigated, but for
the moment we can provide a complete description of the solutions of the
e.o.m. for the case when the worldsheet C = CP1. To describe these
solutions, one should recall that there exist three fibrations

fi
i

: F3 æ (CP2
)

i

, i = 1, 2, 3, (21)

each with fiber CP1.
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Solutions for C = CP1. 2

All solutions to the e.o.m. are parametrized by the following data:

• One of the projections fi
i

: F3 æ (CP2
)

i

, i = 1, 2, 3

• A harmonic map v
har

: CP1 æ (CP2
)

i

to the base of the projection

• A holomorphic map w
hol

: CP1 æ CP1 to the fiber of the projection,
.

For every triple (i, v
har

, w
hol

) there exists a solution of the e.o.m., and all
solutions are obtained in this way. (DB ’15)

The crucial point is that the harmonic maps to the base manifold CP2

are known explicitly (Din, Zakrzewski ’80) (and the holomorphic maps
CP1 æ CP1 are just rational functions).
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