
SMALL TORIC DEGENERATIONS OF FANO 3-FOLDS

S. S.GALKIN

Abstract. We show which of the smooth Fano 3-folds admit degenerations to toric Fano 3-folds
with ordinary double points.

1. Introduction

We consider small toric degenerations of Fano 3-folds, that are degenerations of smooth Fano
3-folds to toric Fano 3-folds with ordinary double points (see definitions 2.1, 2.2). That kind of
degenerations has applications in mirror symmetry. Mirror symmetry for smooth toric varieties
(and complete intersections in such varieties) was constructed by Givental and Batyrev in [1], [2]
and [3].

If smooth Fano Y admits a small toric degeneration X, one can construct a candidate for mirror
of Y via toric construction, and hence compute some Gromov–Witten invariants of Y .

In that way, using small toric degenerations of Grassmannians (constructed in [4]) and varieties
of partial flags (constructed in [5]), the candidates for mirrors of these homogenuous varieties were
constructed in [6, 7].

Generalizing these examples Batyrev introduced the notion of small toric degeneration of a Fano
variety in [8]. The complete classification of smooth Fano 3-folds is well known due to works of
Iskovskikh, Shokurov, Mori and Mukai ([9],[10],[11],[12], see also [13],[14] and [15]).

So, Batyrev posed a natural question ([8, Question 3.9]): “Which 3-dimensional nontoric smooth
Fano varieties do admit small toric degenerations?”

Theorem 2.7 of this paper provides an answer. Section 6 contains an example application of
these degenerations.

2. The claim

Definition 2.1. Deformation is a flat proper morphism

π : X → ∆,

where ∆ is a unit disc {|t| < 1}, and X is an irreducible complex manifold. All the deformations
we consider are projective (π is a projective morphism over ∆). Denote fibers of π by Xt, and let
it∈∆ be the inclusion of a fiber Xt → X .

If all fibers Xt6=0 are nonsingular, then the deformation π is called a degeneration of Xt6=0 or a
smoothing of X0. If at least one such morphism π exists, we say that varieties Xt6=0 are smoothings
of X0, and X0 is a degeneration of Xt6=0.

For a coherent sheaf F on X over ∆ and t ∈ ∆ the symbol Ft stands for the restriction i∗tF
to the fiber over t. In particular there is a well-defined restriction morphism on Picard groups
i∗t : Pic(X ) → Pic(Xt).
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Definition 2.2 ([8]). Degeneration (or a smoothing) π is small, if X0 has at most Gorenstein
terminal singularities (see [16] or [17]), and for all t ∈ ∆ the restriction i∗t : Pic(X ) → Pic(Xt) is
an isomorphism.

All 3-dimensional terminal Gorenstein toric singularities are nodes i.e. ordinary double points
analytically isomorphic to (xy = zt) ⊂ A4 (see e.g. [18]).

Definition 2.3. The index of a (Gorenstein) Fano variety X is the highest r > 0, s.t. anticanonical
divisor class −KX is an r-multiple of some integer Cartier divisor class H:

−KX = rH.

Definition 2.4. Let H ∈ Pic(X) be a Cartier divisor an on n-dimensional variety X, and
D1, . . . , Dl be a base of lattice H2k(X, Z)/tors. Define dk(X, H) as a discriminant of the qua-
dratic form (D1, D2) = (Hn−2k ∪ D1 ∪ D2) on H2k(X, Z)/tors. For a Gorenstein threefold X
denote by d(X) = d1(X,−KX) the anticanonical discriminant of X.

If X is a smooth variety and H is an ample divisor, then hard Lefschetz theorem states that
dk(X, H) is nonzero.

Definition 2.5. Let X be a Fano threefold. Consider Picard number ρ = rk Pic(X) = dim H2(X),
half of third Betti number b = 1

2
dim H3(X), (anticanonical) degree deg = (−KX)3, Fano index r

(see def. 2.3) and (anticanonical) discriminant d (see def. 2.4). Numbers ρ, r, deg, b, d form a set
of principal invariants of smooth Fano 3-fold.

Definition 2.6. We use the following notations for the (families of) smooth varietiesq Pn — n–dimensional projective space;q Qn — n–dimensional quadric in Pn+1;q G(l, N) — Grassmanian of l–dimensional linear subspaces in in N–dimensional space.

families of smooth surfaces:q Fn, n > 0 — rational ruled surface (Hirzebruch surface) PP1(O ⊕O(n)); F0 ' P1 × P1, F1

is a blowup of P2 in a point;q Sd, d = 1, . . . , 8 — del Pezzo surfaces of degree d and index 1 (S8 = F1);

and families of smooth Fano threefolds:q Q = Q3 — a quadric in P4;q V4 — intersections of two quadrics in P5;q V5 — a section of G(2, 5) by linear subspace of codimension 3;q V22 — Fano threefolds of genus 12 with ρ = 1;q W — divisor of bidegree (1, 1) in P2 × P2 (i.e. PP2(TP2));q V7 — a blowup of P3 in a point (i.e. PP2(O ⊕O(1)));q Vρ.N (ρ = 2, 3, 4) — families of Fano threefolds with Picard number ρ and number N in
Mori–Mukai’s tables [10, Table 2, Table 3, Table 4].

We use the standart notations for toric varieties ([19], [20], [1]): a toric variety X corresponding
to a fan Σ in the space N = Zdim X , each ample divisor H on X corresponds to a polytope ∆H in
the dual space M = Hom(N, Z); we denote the variety X by the symbols XΣ or P(∆).

Theorem 2.7. These and only these families of nontoric smooth Fano 3-folds Y do admit small
degenerations to toric Fano threefolds (in notations 2.6):
1) 4 families with Pic(Y ) = Z: Q, V4, V5,V22;
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2) 16 families with Pic(Y ) = Z2: V2.n, where n = 12, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32;
3) 16 families with Pic(Y ) = Z3: V3.n, where n = 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24;
4) 8 families with Pic(Y ) = Z4: V4.n, where n = 1, 2, 3, 4, 5, 6, 7, 8.

All these degenerations are listed in section 5.

Remark 2.8. Aposteriori all these smooth 3-folds Y satisfy the following conditions

(1) Y is rational (see e.g. [15]),
(2) ρ(Y ) 6 4,
(3) deg(Y ) = (−KY )3 > 20,
(4) b(Y ) = h1,2(Y ) 6 3,
(5) b(Y ) = 3 only if Y is V2.12,
(6) b(Y ) = 2 only if Y is V4 or V2.19.

3. The proof

A sketch of the proof. Consider a toric Fano 3-fold X with ordinary double points.
(i) There is only a finite number of such X. All these threefolds X are explicitly classified.
(ii) X admits a smoothing — a Fano threefold Y ([27]).
(iii) Principal invariants of Y can be expressed via invariants of X.
(iv) Family of smooth Fano 3-folds Y is completely determined by it’s principal invariants.
(v) If some smooth Fano threefold Y admits a degeneration to a nodal toric Fano X, then the
pair (Y,X) comes from the steps (i)-(iv).

The following properties of Fano varieties are consequences of Kawamata–Viehweg theorem,
exponential sequence and Leray spectral sequence.

Proposition 3.1 (See e.g. [16], [15]). Let X be an almost Fano with canonical singularities. Then

(1) H i(X,O) = 0 for all i > 0,
(2) Pic(X) = H2(X, Z),
(3) Pic(X) is a finitely generated free Z-module.

If π : Y → X is a resolution of singularities, the listed properties hold also for Y , and R
q
π∗OY =

OX (i.e. canonical singularities are rational).

Local topology of smoothings is described by the following

Proposition 3.2 (see e.g. [21], [22] or [23]). Let π : X → ∆ be a smoothing.

(1) Restriction π : X\X0 → ∆\0 is a locally trivial fibration of smooth topological manifolds, in
particular all the smooth fibers are diffeomorphic (this is known as Ehresmann’s theorem).

(2) There is a continuous Clemens map c : X → X0 (outside c−1(Sing X0) the map c is
smooth). Clemens map c is a deformation retraction of X to the fibre X0 and respects the
radial retraction ∆ → 0. Restriction of c to the smooth fiber Xt is 1-to-1 correspondence
outside singular locus of X0.

These propositions are purely topological, and essentialy are the variations of the tubular neigh-
borhood theorem.
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Corollary 3.3. X and X0 has the same homotopy type (the homotopy equivalences are given by
the Clemens map c : X → X0 and the inclusion of the fiber i0 : X0 → X ). Hence

H2(X0, Z) = H2(X , Z)

H2(X0, Z) = H2(X , Z)

Corollary 3.4. For t 6= 0 all the images Im[{it}∗ H q(Xt, Z) → H q(X , Z)] coincide.

Proof. Let Ui be the covering of ∆\0 s.t. π is locally trivial fibration over elements of the covering
Ui. Consider a pair of points t, s ∈ Ui and a k-cycle γ ∈ Hk(Xt, Z). Let I ⊂ U be an interval
between t and s in U , and γU be a (k + 1)-cycle in XI , corresponding to the product of I and γ in
a fixed trivialization of π over I. Then the boundary of γU in X is equal to the difference between
{it}∗ γ and {is}∗ γ. �

Theorem 3.5 ([24]). Hodge numbers hp,q(Xt) are constant for all t ∈ ∆\0.
Proposition 3.6 (Semicontinuity theorem, see e.g. [25]). Let F be a coherent sheaf on X , flat
over O∆; put Ft = i∗tF . Then

(1) The Euler characteristic χ(Xt,Ft) does not depend on t ∈ ∆.
(2) Dimension of H i(Xt,Ft) is upper-semicontinuous as a function of t (i.e. ∀n ∈ Z sets{

t ∈ ∆ : hi(Xt,Ft) > n
}

are closed in Zariski topology).

Remark 3.7. We will use the following trick: if the cohomologies of some coherent sheaf H i(X0,F)
vanish, then assume disc that the ∆ is chosen small enough, s.t. vanishing holds for the cohomolo-
gies of all the fibers over ∆.

Theorem 3.8 ([26]). Let X0 be a variety with canonical singularities, and X — a deformation.
Then total space X is Q-Gorenstein (Gorenstein if X0 is) and admit only canonical singularities.

In this case one can use the naive adjunction formula on X (dualizing sheaf coincides with the
canonical one).

Assume that X0 is Gorenstein and admits at most canonical singularities, and either a Calabi–
Yau of dimension > 2 or almost Fano.

Proposition 3.9. For all i and t

hi(Xt,OXt) = hi(X0,OX0)

Proof. Consider hi(Xt,OXt)0<i<dim Xt as a function of t. It is upper-semicontinuous (see 3.6(ii)),
and equal to 0 for t = 0 (by the definition if X is CY, or by 3.1 if X is almost Fano). Hence this
function is 0 in some neighborhood of 0. This means it is identical to 0 over ∆ (th. 3.5). Since
h0(Xt,O) = 1 for all t, from prop. 3.6(i) if follows that hn(Xt) = hn(X0) for all t (it is equal to 0
in case of almost Fano and 1 for CY). �

By Grauerth’s theorem Riπ∗O = Riπ∗O(−KX ) = 0, dim X0 > i > 0, and π∗O(−KX ) is a locally
free sheaf over ∆ of rank h0(X0,O(−KX0)). From the degenerations of Leray spectral sequences
H i(∆, Rjπ∗O(−KX )) and H i(∆, Rjπ∗O)):

H i(X ,OX (−KX )) = H i(Xt,OXt(−Kt)) = 0, dim X0 > i > 0, t ∈ ∆(3.10)

H i(X ,OX ) = H i(Xt,OXt) = 0, dim X0 > i > 0, t ∈ ∆(3.11)

H0(Xt,OXt(−KXt)) = H0(X0,OX0(−KX0)), t ∈ ∆(3.12)

H0(X ,OX (−KX )) = H0(X0,OX0(−KX0))⊗H0(∆,O)(3.13)
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By exponential sequence and the vanishing 3.11 there are isomorphisms

Pic(X ) = H2(X , Z)(3.14)

Pic(Xt) = H2(Xt, Z)(3.15)

Next proposition is a combination of 3.14 and 3.3:

Proposition 3.16. i∗0 : Pic(X ) 7→ Pic(X0) is an isomorphism.

Proposition 3.17. i∗t : Pic(X ) 7→ Pic(Xt) is injective, i.e.

(3.18) Ker i∗t = 0.

Proof. Since for all γ ∈ H q(Xt) and Γ ∈ H
q
(X ) we have

〈i∗t (Γ), γ〉 = 〈Γ, {it}∗ γ〉 ,
so from nondegeneracy of the coupling on Xt for t 6= 0 and corollary 3.4 we conclude that the
spaces Ker i∗t : H2(X , Z)/tors → H2(Xt, Z)/tors coincide for all t 6= 0. Isomorphism 3.14 implies
the same holds for it : Pic(X ) → Pic(Xt) i.e. Ker it = Ker it′ for all t, t′ ∈ ∆\0.

Consider an element L ∈ Ker i∗t = ∩t′∈∆\0Ker i∗t′ . Then L is inversible sheaf with the property
LXt = OXt , t ∈ ∆\0. If t 6= 0 this trivial line bundle has 1-dimensional space of sections:

h0(Xt,LXt) = h0(Xt,OXt) = 1,

so by semicontinuity (prop. 3.6)

h0(X0,LX0) > 1.

In the same way

h0(X0,L−1
X0

) > 1.

This means LX0 ' OX0 . So 3.16 implies L ' OX . �

By 3.8 and adjunction formula for all t ∈ ∆

(3.19) −KXt = −(KX + Xt)|Xt = i∗t (−KX ).

Consider D ∈ Pic(X ). the fibers X0 = X and Xt are algebraically equivalent, so

(3.20) i∗0(D)dim X = Ddim X ·X0 = Ddim X ·Xt = i∗t (D)dim X

Corollary 3.21. Anticanonical degree (−Kt)
dim Xt does not depend on t ∈ ∆.

Let X be a relative Fano (i.e. −KX is ample over ∆).

Theorem 3.22 ([27]). Any Fano 3-fold X0 with ordinary double points admits a smoothing
π : X −→ ∆, with general fibers Xt6=0 being a smooth Fanos.

Friedman’s theorem 3.22 has a generalization to Gorenstein terminal singularities by Namikawa

Theorem 3.23 ([28]). Any Gorenstein terminal Fano 3-fold X0 admits a smoothing π : X −→ ∆,
with general fibers Xt6=0 being smooth Fanos.

Proposition 3.24. If X0 is (almost) Fano, then the smoothing is small if and only if two pairs of
invariants (ρ, d) coincide (d is defined in 2.4):

ρ(X0) = ρ(Xt)

d(X0) = d(Xt)
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Proof. Bijectivity of i∗0 and injectivity of i∗t holds in general context (prop. 3.17). Both groups
Pic(Xt) and Pic(X) are finitly generated lattices (prop. 3.1). Thus equality ρ(X0) = ρ(Xt) means
that the morphism i∗t (i

∗
0)
−1 is an isomorphism of lattice Pic(X0) with sublattice of finite index in

Pic(Xt). This index is equal to [Pic(Xt) : Pic(X0)] =
(

d(X0)
d(Xt)

) 1
2
. �

Theorem 3.25 ([29]). If X is a smoothing, and X0 is a Gorenstein Fano 3-fold with terminal
singularities, then i∗t is an isomorphism for all t.

Corollary 3.26. Any Gorenstein Fano 3-fold with terminal singularities admits a smoothing, with
general fiber being a smooth Fano 3-fold, and all such smoothings are small.

Proof. This is just a union of 3.23 and 3.25. �

Corollary 3.27. Gorenstein Fano 3-fold X with terminal singularities and it’s smoothing Y has
the same invariants ρ, deg, r, d.

Proof. Equality 3.21 states that deg(X) = deg(Y ). As a corollary of 3.25 we have ρ(X) = ρ(Y ).
Hence from 3.20 and 3.24 one derives d(X) = d(Y ). Finally, 3.25 with 3.19 implies r(X) = r(Y ).
�

Fano 3-fold Y has only 2 non-trivial Hodge numbers: h1,1(Y ) = h2,2(Y ) = ρ(Y ) and b(Y ) =
h1,2(Y ) = h2,1(Y ) = 1

2
rk H3(Y, Z); and some trivial: h0,0(Y ) = h3,3(Y ) = 1, all other Hodge

numbers are zeroes.

Proposition 3.28. Let X be a nodal threefold, X̃ → X — it’s small crepant resolution, and Y
— a smoothing of X (in literature transformation from Y to X̃ is called a conifold transition).
Denote number of nodes on X by p(X). Then

(3.29) b(Y ) = p(X) + b(X̃) + ρ(Y )− ρ(X̃),

Proof (Clemens’s argument), see also [40]. Compare topological Euler numbers (for noncompact
manifolds with a border use Euler number for cohomologies with compact support χ(M) =∑

i(−1)i dim H i
c(M, C)) of X̃ and Y 1.

By throwing away small neighborhoods of all singular points pi from X, we construct a manifold
with the border M . Punctured neighborhood of ordinary double point on X is isomorphic to
tangent bundle on real sphere TS3 without the 0-section: if

∑4
i=1 z2

i = 0, z = x + yi, then x and
y can be considered as a pair of nonzero orthogonal (w.r. to standart euclidean metric) vectors in
R4 of the same length r; vector x

r
is a point in (n − 1)-dimensional sphere of radius 1, and y is a

tangent vector in that point. This shows that a neighborhood of ordinary double point on X is
isomorphic to S2 × S3. After crepant resolution it is patched by S2 ×D4, and after smoothing —
by D3 × S3. Hence

χ(X̃) = χ(M) + p · χ(S2),

χ(Y ) = χ(M) + p · χ(S3).

This implies

χ(X̃) = χ(Y ) + 2p.

1Alternatively one can compare dimensions of versal deformation spaces for Y and X; see also mirror-symmetry
explanation ([30, 6]).
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But

χ(Y ) = 2 + 2ρ(Y )− 2b(Y ),

χ(X̃) = 2 + 2ρ(X̃)− 2b(X̃).

�

Proposition 3.30. If X is a nodal toric threefold corresponding to a polytope with v vertices, p
quadrangular faces (i.e. nodes) and f − p triangular faces (smooth fixed points), then H3(X̃) = 0,
ρ(X̃) = v − 3. So for smoothing Y of X, there is a relation

b(Y ) = p + ρ(X)− (v − 3).

Proof. Since X̃ is nonsingular, Pic(X̃) and Cl(X̃) coincides. But the resolution X̃ → X is small,
hence the proper transform is the bijection between Weyl divisors on X̃ and X, i.e. Cl(X̃) =
Cl(X). This implies ρ(X̃) = rk Pic(X̃) = rk Cl(X) = v − 3. Therefore proposition 3.28 in out
case is equivalent to the equality 3.29. �

Theorem 3.31 (see [10],[12]). Two smooth Fano 3-folds Y1, Y2 with coincident sets of principal
invariants ρ, r, deg, b, d lie in one deformation class. There are only 105 such classes 2. They are
explicitly listed in [10], and nonempty.

Let’s say that smooth Fano threefold Y is determined by it’s invariants (ρ, r, deg, b), if for any
smooth Fano threefold Y ′ equalities ρ(Y ′) = ρ(Y ), r(Y ′) = r(Y ), deg(Y ′) = deg(Y ), b(Y ′) = b(Y )
implies that Y and Y ′ lie in one deformation class. According to [12], only 19 of 105 families of
smooth Fano threefolds are not determined by invariants ρ, r, deg, b.

Lemma 3.32. For any nodal Fano threefold X there exists only one (up to deformations) smooth
Fano Y , such that Y is a smoothing of X.

Proof. X has a smoothing — a smooth Fano variety Y (see 3.22).
Principal invariants of Y (see 2.5) are explicitly computable from invariants of X (see 3.27, 3.30).
Deformation class of Y is uniquely determined by it’s principal invariants (3.31).
�

Corollary 3.33. Suppose Y is determined by (ρ, r, deg, b). Then nodal Fano 3-fold X is a degen-
eration of Y if and only if ρ(X) = ρ, r(X) = r, deg(X) = deg, b(X) = b. If Y is not determined
by (ρ, r, deg, b), then X is a degeneration of Y if and only if ρ(X) = ρ, r(X) = r, deg(X) =
deg, b(X) = b, d(X) = d.

The proof of lemma 3.32 works in higher generality — not only in case of toric varieties, but for
any nodal Fano threefolds (and also it’s easy to generalize it to the case of Fano threefolds with
Gorenstein terminal singularities). In the next part of the paper we restrict ourselves to the case
of toric varieties X 3.

There is an effective algorithm describing all the reflexive polytopes (i.e. Gorenstein toric Fanos)
in any fixed dimension (see [32]).

Number of such polytopes grows fast enough: there are 16 polygons, 4319 polytopes in 3-
dimensional space ([32]), and 473800776 4-dimensional polytopes.

2In first version of [10] one family V4.13 was missing, it was corrected in 2003.
3For simplicity of computations, and applications (see 6).
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We are interested in the particular case of nodal toric Fano 3-folds. We used PALP software
package ([31, 32]) to form a list of such varieties. There are 100 of them, 18 are smooth and aren’t
deformations of other smooth Fanos (theorem 3.31). For nonsmooth cases Picard number is not
greater than 4. All these varieties are listed in the table of section 5 4.

So let us compute invariants of the smoothing Y of toric nodal Fano X.
Let π : X̃ → X be some small crepant resolution of X, and p(X) be a number of nodes on X.

Proof of 2.7. Assume smooth Fano threefold Y is degenerated to X.
As shown in 3.27, varieties X and Y have the same Picard number, index, anticanonical degree

and invariant d. Denote the by

ρ(X) = ρ(Y ) = ρ,(3.34)

r(X) = r(Y ) = r,(3.35)

(−KX)3 = −(KY )3 = deg,(3.36)

d(X) = d(Y ) = d.(3.37)

Since X̃ is toric all it’s odd cohomologies vanish: H3(X̃, Q) = 0.
This implies (see 3.28, 3.29, 3.30):

(3.38) b(Y ) = p(X) + ρ(X)− ρ(X̃)

Put b = p(X) + ρ(X)− ρ(X̃).

What is left to do is to compute invariants ρ, r, deg, b, d of X (this is done in section 4), and pick
up a unique family of smooth varieties Y with invariants ρ(Y ) = ρ, r(Y ) = r, deg(Y ) = deg, b(Y ) =
b, d(Y ) = d, in the table of [11]. �

The remaining statements in this chapter serve to simplify the computaitons.
Picard number of nodal toric Fano threefold is either 1, 2, 3 or 4 (see [18] and table in 5).

Hence smooth nontoric Fanos ρ > 5 (i.e. nontoric variety of degree 28 with ρ = 5 and products
P1×Sd=11−ρ of the line P1 with del Pezzo surface Sd of degree d 6 5) has no small toric deformations.

In 55 of 82 cases of singular X the smoothing Y is determined by it’s invariants (ρ, b, r, deg)(Y ) =
(ρ, b, r, deg)(X). In these cases the routine computation of invariant d(X) may be omitted.

There are eight exceptional sets of invariants (ρ, r, deg, b) corresponding to 17 families of Fanos
listed in the following table:

Table 1:

ρ deg b, r smooth Y
2 30 0, 1 V2.22[−24], V2.24[−21]
2 46 0, 1 V2.30[−12], V2.31[−13]
3 36 0, 1 V3.17[28], V3.18[26]
3 38 0, 1 V3.19[24], V3.20[28], V3.21[22]
3 42 0, 1 V3.23[20], V3.24[22]
4 32 0, 1 V4.4[−40], V4.5[−39]

4There is an explicit description of nodal toric Fano 3-folds in [18], and more general classifications of all terminal
toric Fano 3-folds ([33]) and all Gorenstein toric Fano 3-folds ([32]).
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Table 1:

ρ deg b, r smooth Y
2 54 0, 2 V2.33, V2.34

3 48 0, 2 V3.27, V3.28

Remark 3.39. Smooth varieties V2.33, V2.34, V3.27, V3.28 are toric.

Remark 3.40. In table 1 the number in brackets after smooth Fano Y is it’s invariant d(Y ) (see
[12, Proposition 7.35]).

4. The computation

Theorem 4.1 (see e.g. [1]). Let X be nonsingular and proper (probably not projective) toric
variety. Cohomology ring H

q
(X, Q) is generated by classes of invariant divisors Dρi

. The relations
in this ring are generated by the so-called Stanley–Reisner relations — for all J ⊂ Σ(1), not
contained in any face ∆ one has ∏

j∈J⊂Σ(1)

Dρj
= 0,

and relations implied by the triviality of principal divisors, i.e. ∀m ∈ M∑
i

〈m, ρi〉Dρi
= 0.

This means that in the cohomology ring of a smooth toric variety all the relations are generated
by naive ones: intersection of k different divisors is empty if the corresponding 1-dimensional faces
are not contained in one k-dimensional face σ. If they are contained, then the corresponding
divisors intersect transversely in (d− k)-dimensional orbit corresponding to the face σ.

Lemma 4.2. Let XΣ be a smooth toric n-fold. Consider a homogenous system of linear equations

xj1...jn = 0, if {ρj1 , . . . , ρjn} is not a cone in Σ,∑
〈m, ρj〉xj1...ji−1jji+1...jn = 0.

This system has a unique solution up to rescaling. Choose a unique solution that satisfy xj1...jn = 1,
if {ρj1 . . . ρjn} is a cone in Σ. Then the numbers xj1...jn are equal to the intersection numbers of
divisors Dj1 · . . . ·Djn on XΣ.

Proposition 4.3. For Weyl divisor
∑

aρDρ the condition of local principality in ordinary double
point on toric threefold is the following — sum of coefficients at invariant irreducible divisors
corresponding to the vertices of the diagonal ρAρC of quadrangle ρAρBρCρD is equal to the sum at
the vertices of ρBρD:

aρA
+ aρC

= aρB
+ aρD

.

Lemma 4.4. Let X be a nodal toric Fano threefold. Then Pic(X) is determined from the exact
sequence

0 → Pic(X) → Pic(X̃)
φ→ ⊕ABCDZ,

where the sum is taken over all basic quadrangles ρAρBρCρD for X, φ = ⊕ABCDφABCD, and
φABCD(

∑
aρDρ) = (aρA

− aρB
+ aρC

− aρD
).
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Remark 4.5. By virtue of lemmas 4.2 and 4.4, one may effectively compute the intersection theory
on Pic(X) for Q-Gorenstein toric X, admitting a small resolution f : X̃ → X

(e.g. all nodal threefolds X satisfy this property). Self-intersection Dn of Cartier divisor D ∈
Pic(X) is equal to intersection of it’s pullback D̃ = f ∗D to X̃. Class group of Weyl divisors is
invariant modulo small resolutions, divisor D̃ is represented by the same Weyl divisor as D (by
the pullback).

Therefore to find the intersections on Pic(X) one need to solve two systems of linear equations:
one on intersection numbers Di1 · . . . ·Din described in 4.2, and another one — the equations 4.3
cutting Pic(X) as a subgroup of Pic(X̃)5.

Notation. Let M be a integer matrix of size 3 × v. Denote by ∆(M) the convex hull of
columns of M . Assume M is chosen in such a way that 0 is contained in the interior of ∆(M),
and none of M ’s columns lie in the convex hull of the others. By P(M) denote the toric Fano
variety corresponding to the polytope ∆(M). Let Di be invariant Weyl divisor corresponding to
ith vertice of ∆(M), and G1, . . . , Gρ be the generators of Pic(P(M)).

In order to compute d, we find first all the intersection numbers of the elements in the base of
Pic(P(M)), and then compute the discriminant. We use 4.5 for the computation of intersection

numbers of divisors in Pic(P(M)) — compute the ring H
q
(P̃(M)), intersections in Picard group

Pic(P̃(M)) of small crepant resolution6 φ : P̃(M) → P(M), and then intersections in P(M) is just

the restriction from P̃(M).
As an example we produce this computation for case with invariants (ρ = 2, deg = 30, b = 0) 7.

Case 4.6 (v = 9, f = 10).

M =

 1 0 0 0 0 −1 1 1 −1
0 1 0 0 −1 0 1 0 −1
0 0 1 −1 0 0 0 −1 1


G1 = D1 + D4 + D5 + D8, G2 = −D1 + D6 + D9.

int(aG1 + bG2, aG1 + bG2, aG1 + bG2) = (aG1 + bG2)
3 = a3 + 6ba2 − 2b3

−K = G1 + 2G2

d = −24

Case 4.7 (v = 10, f = 11).

M =

 1 0 0 0 0 −1 0 −1 −1 −1
0 1 0 0 −1 0 1 1 0 −1
0 0 1 −1 0 0 −1 0 1 1


G1 = D7 + D8 + D9, G2 = D2 + D3 + D5 −D6 + D10.

(aG1 + bG2)
3 = −2a3 + 6ba2 − 3b3

5The pari/gp script realizing this algorithm is available at http://www.mi.ras.ru/∼galkin/work/ Nodal-
Toric3foldPicard.gp.

6We choose arbitrary maximal crepant resolution as explained in 4.5, the answer does not depend on the projec-
tivity of the resolution.

7All the other cases are available at http://www.mi.ras.ru/∼galkin/work/NodalToric3foldPicard.pdf.
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−K = 3G1 + 2G2

d = −24

Case 4.8 (v = 9, f = 10).

M =

 1 0 0 −1 0 −1 1 0 1
0 1 −1 0 0 1 1 −1 0
0 0 0 0 1 0 −1 1 −1


G1 = −D1 + 2D3 + D4 −D7 + D8, G2 = D1 + D7 + D9.

(aG1 + bG2)
3 = 3ba2 + 6b2a

−K = G1 + G2

d = −21

5. The description of toric degenerations of smooth Fano 3-folds.

As mentioned in corollary 3.33, for the determination of all the possible types of toric degen-
erations of Fano threefolds Y , we need to compute the invariants ρ(X), r(X), deg(X), b(X) (and
sometimes d(X)) of all nodal toric Fano threefolds. For these computations we used the program
8 based on algorithm described in 4.2,4.4, 4.5. The results of these computations are exposed in
the table 2.

First 4 columns list Fano 3-folds Y and it’s invariants computed in [12].
In 5th column we list the value of invariant d(Y ) for cases when Y is not determined by

(ρ, r, deg, b).
In 6th column we list main combinatorial invariants of toric X (degeneration of Y ) — number

of vertices, nodes and torus-fixed points.
In 7th column we list the number of toric degenerations X of smooth Y with invariants listed

in 6th column.

Remark 5.1. There is a linear relation 3.30 between ρ, b, v, p:

v − p = 3 + ρ− b

Remark 5.2. Varieties V2.34, V3.25, V3.26, V3.28, V4.9 are smooth toric varieties that admit degenera-
tions to singular nodal toric varieties. The rest of smooth varieties listed in the table are nontoric.

Remark 5.3. Fano variety V4.13 (of degree 26) 9 does not admit small toric degenerations.

Table 2:

V22 1 22 0 (13,9,13) 1
V4 1 32 2 (8,6,6) 1
V5 1 40 0 (7,3,7) 1

8http://www.mi.ras.ru/ ∼galkin/work/NodalToric3foldPicard.gp.
9Missing in the original version of [10].
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Y ρ deg b [d] (v, p, f)(X) #(X)
Q 1 54 0 (5,1,5) 1

V2.12 2 20 3 (14,12,12) 1
V2.17 2 24 1 (12,8,12) 1
V2.19 2 26 2 (11,8,10) 1
V2.20 2 26 0 (11,6,12) 2
V2.21 2 28 0 (10,5,11) 2
V2.21 2 28 0 (11,6,12) 1
V2.23 2 30 1 (9,5,9) 1
V2.22 2 30 0 (10,5,11) 1
V2.22 2 30 0 [−24] (9,4,10) 1
V2.24 2 30 0 [−21] (9,4,10) 1
V2.25 2 32 1 (8,4,8) 1
V2.25 2 32 1 (9,5,9) 1
V2.26 2 34 0 (10,5,11) 1
V2.26 2 34 0 (8,3,9) 1
V2.26 2 34 0 (9,4,10) 1
V2.27 2 38 0 (7,2,8) 1
V2.27 2 38 0 (8,3,9) 2
V2.28 2 40 1 (7,3,7) 1
V2.29 2 40 0 (7,2,8) 1
V2.29 2 40 0 (8,3,9) 1
V2.30 2 46 0 [−12] (6,1,7) 1
V2.31 2 46 0 [−13] (6,1,7) 1
V2.31 2 46 0 [−13] (7,2,8) 1
V2.32 2 48 0 (6,1,7) 1
V2.34 2 54 0 (6,1,7) 1

V3.7 3 24 1 (12,7,13) 1
V3.10 3 26 0 (11,5,13) 1
V3.11 3 28 1 (10,5,11) 1
V3.12 3 28 0 (10,4,12) 1
V3.12 3 28 0 (11,5,13) 1
V3.13 3 30 0 (10,4,12) 2
V3.13 3 30 0 (9,3,11) 1
V3.14 3 32 1 (8,3,9) 1
V3.15 3 32 0 (10,4,12) 1
V3.15 3 32 0 (9,3,11) 3
V3.16 3 34 0 (8,2,10) 1
V3.16 3 34 0 (9,3,11) 1
V3.17 3 36 0 [28] (8,2,10) 2
V3.17 3 36 0 [28] (9,3,11) 1
V3.18 3 36 0 [26] (8,2,10) 1
V3.18 3 36 0 [26] (9,3,11) 1
V3.19 3 38 0 [24] (7,1,9) 1
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Y ρ deg b [d] (v, p, f)(X) #(X)
V3.19 3 38 0 [24] (8,2,10) 1
V3.20 3 38 0 [28] (7,1,9) 1
V3.20 3 38 0 [28] (8,2,10) 1
V3.20 3 38 0 [28] (9,3,11) 1
V3.21 3 38 0 [22] (8,2,10) 1
V3.22 3 40 0 (7,1,9) 1
V3.23 3 42 0 [20] (7,1,9) 1
V3.23 3 42 0 [20] (8,2,10) 1
V3.24 3 42 0 [22] (7,1,9) 1
V3.24 3 42 0 [22] (8,2,10) 1
V3.25 3 44 0 (7,1,9) 1
V3.26 3 46 0 (7,1,9) 1
V3.28 3 48 0 (7,1,9) 1

V4.1 4 24 1 (12,6,14) 1
V4.2 4 28 1 (10,4,12) 1
V4.3 4 30 0 (10,3,13) 1
V4.4 4 32 0 [−40] (9,2,12) 1
V4.5 4 32 0 [−39] (9,2,12) 1
V4.6 4 34 0 (10,3,13) 1
V4.6 4 34 0 (9,2,12) 1
V4.7 4 36 0 (8,1,11) 2
V4.7 4 36 0 (9,2,12) 1
V4.8 4 38 0 (8,1,11) 1
V4.9 4 40 0 (8,1,11) 1

Any smooth Fano threefold not listed in the table does not admit any small toric degenerations,
since none of nodal toric Fano threefolds has the proper invariants.

6. Corollaries

We used the classification of smooth Fano 3-folds to compare numerical invariants of X and Y .
But one may recover the required parts of this classification used in the proccess of the proof

(in case if it would not be known, that is to proof there exists a smooth Fano Y with invariants
ρ, deg, d, b = b(X), where X is some known nodal Fano variety (e.g. toric).

We may find some other invariants except of these ,,classical” ones.

Proposition 6.1. Let X be a Gorenstein toric Fano variety with isolated singularities. Then there
exists a smooth anticanonical section S ∈ | −KX |, and it is a Calabi–Yau variety.

Proof. It’s a simple corollary of Bertini theorem. �

Proposition 6.2. Smoothings Xt of Gorenstein Calabi–Yau X0 are Calabi–Yau varieties.

Proof. 3.9 implies hi(Xt,O) = 0 for 0 < i < dim Xt. Hence by 3.16 and 3.19 we have the
trivializations KX |X0

= KX0 = OX0 =⇒ KX = OX , so KXt = KX |Xt
= OX |Xt

= OXt . �

Corollary 6.3. Anticanonical sections Xt are the deformations of anticanonial sections of X0.
13



Proof. If Y0 is some anticanonical section corresponding to the element y0 ∈ H0(X0,−KX0), then Y
is anticanonical section of X corresponding to y0⊗1 ∈ H0(X0,−KX0)⊗H0(∆,O∆) = H0(X ,−KX )
(see 3.13), and establishing the required deformation. From the exact sequence

0 → OX ((−m− 1)KX ) → O(−mKX ) → OY(−mKX ) → 0,

vanishings 3.1 and 3.10,3.11,3.12,3.13 (with the similar for O(−mKX )) we deduce that Hilbert
polynomial Yt does not depend on t, so the family Yt is flat. �

Corollary 6.4. If there exists a smooth anticanonical section of X0, then general anticanonical
section of Xt for general t is smooth.

Corollary 6.5. If smooth Fano Y is a smoothing of Gorenstein toric Fano variety with isolated
singularities then there exists a smooth anticanonical section S ′ ∈ | −KY |.

Proof. This is a corollary of 6.1, 6.3 and 6.4. �
For a subvariety Z ⊂ X (and divisor H) denote by IX

H the fundamental term of I-series of X
(with respect to H), and by IX→Z — the fundamental term of I-series of Z restricted from X (see
[34], [35], [36]). Givental’s theorem [34] compute the I-series of smooth complete intersection Z of
sections of numerically effective line bundles O(Zi), when Z if an almost Fano inside smooth toric
X (the similar statement holds for any smooth complete intersection in singular toric variety as
well, see [37]). In particular the I-series of toric Fano X = P(∆) of index r(Y ) > 1 is equal to the
series of constant terms Φf of Laurent polynomial f(x) =

∑
m∈∆∩M xm − 1. Let [1]g denote the

coefficient at 1 = x0 in Laurent series f = g(x). Then Φf (t) = [1]etf(x).

Let X be a small toric degeneration of Y and φ : X̃ → X be some small crepant resolution.

Proposition 6.6. I-series for IY→S′ restricted from Pic(Y ) to S ′ is equal to I-series for X̃ re-
stricted from Im[Pic(X) → Pic(X̃)] to φ−1(S) ' S.

Proof. By 6.1 the general element S of anticanonical linear system | − KX | of Gorenstein Fano
X with isolated terminal singularities is a smooth Calabi–Yau. As we have shown in 6.3, smooth
anticanonical sections of X and it’s smoothing Y lie in the same deformation class. Picard group
Pic X is isomorphic to Pic Y by the assumption of smallness. Consider H ∈ Pic(X ). Then

IX̃→S
HS

= IY→S′
HS′

. �

Example 6.7. Consider Laurent polynomial

f1 = xyz + x + y + z + x−1 + y−1 + z−1,

it’s Newton polytope ∆ = ∆(f), and the corresponding toric variety X = P(∆∨). One can
construct X explicitly: let W be a blowup of a point on P1 × P1 × P1; then W is almost Fano,
but not Fano since the proper transforms of coordinate lines do not intersect −KW ; the blowdown
X of these lines is a Fano variety with 3 nodes — images of contracted curves, and W is it’s
small crepant resolution. 3 ordinary double points of X correspond to 3 quadrangular faces
(xyz, x, y, z−1), (xyz, x, z, y−1) and (xyz, y, z, x−1). Anticanonical degree of X is the same as
W ’s i.e. deg(X) = 23 · 6− 8 = 40. Let Y be a Fano smoothing of X.

Consider general Laurent polynomial with Newton polytope ∆:

fa =
∑

amxm = axyzxyz + axx + ayy + azz+

+ ax−1x−1 + ay−1y−1 + az−1z−1.
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It corresponds to the divisor
∑

bmDm ∈ Pic(W ) ⊗ C, such that am = e2πibm . This divisor is a
pullback of Cartier divisor on X, if it’s coefficients satisfy 3 conditions of local principality

bxyz + bx−1 = by + bz,

bxyz + by−1 = bx + by,

bxyz + bz−1 = bx + bz.

Principal divisors are

(bx + by + bz)xyz + bxx + byy + bzz − bxx
−1 − byy

−1 − bzz
−1.

X has index 2, and it’s Picard group is generated by −Dxyz + Dx−1 + Dy−1 + Dz−1 . Modulo
principal divisors Laurent polynomial corresponding to α-multiple of a generator of Pic(X) is
equal to ft = t(xyz + x + y + z + x−1 + y−1 + z−1), t = eπiα.

By the virtue of [34] IW
−KW ,1(t) = Φf+α(t̃), i.e. I-series of W is equal to Φf1 up to renormalization

10. Let’s compute Φf1 . The products of monomials
∏

ni
(xmi)ni gives a nonzero summand to the

series of constant terms if
∑

nimi = 0; in our case put nxyz = d, nx = a, ny = b, nz = c. Then
nx−1 = a + d, ny−1 = b + d, nz−1 = c + d. Hence

(6.8) Φf1 =
∑

a,b,c,d>0

(2a + 2b + 2c + 4d)!

a!b!c!d!(a + d)!(b + d)!(c + d)!
t2a+2b+2c+4d =

= 1 + 6t2 + 114t4 + 2940t6 + 87570t8 + . . .

By 6.5 general anticanonical section S ′ ∈ | − KY | is smooth. Applying the proposition 6.6, we
conclude that the restricted from Y regularized I-series IY→S′

−KY ,1 for smooth anticanonical section of
Y is equal to Φf .

Therefore we computed the I-series of smoothing Y of X not using the geometry of Y . It
is easy to check that Y is a Fano variety V5, because it is unique Fano 3-fold with invariants
(ρ, r, deg, b) = (1, 2, 40, 0). Since V5 is a section of Grassmanian G(2, 5) by three hyperplanes, it’s
I-series may be computed by applying the quantum Lefschetz formula ([35]) to the I-series of

G(2, 5) provided in [6, 38]: IG(2,5) =
∑

d>0
td

(d!)2

∑
d>j2>j1>j0=0

1
(d−j2)!

Q3
i=2((d−ji−1)!(ji−1−ji−2)!ji−1!)

.

Applying quantum Lefschetz to the I-series of Grassmanian IG(2,5) one indeed deduces is 6.8.

7. Generalizations

Unfortunately only half of nontoric Fano threefolds are smoothings of nodal toric. In particular
the only one Fano threefold of principal series admit a small toric degeneration (it’s the variety
V22). Note that for nodal toric varieties it is easy to prove projective normality and the smoothness
of general anticanonical section, and one can show these properties holds for the smoothing as well
(as in 6.3). All the smoothings Y we obtained are rational. The same method could be applied
to obtain more general class of smoothings, if we consider not only the tproc varieties, but also
complete intersections inside them (with Gorenstein terminal singularities) — these varieties also
admit a smoothing (3.23), and there are similar relations between invariants of the smoothing and
the degeneration, and it is not so hard to compute the cohomologies of such varieties ([39]), Hilbert
polynomial, and Gromov–Witten theory.

But birational class of complete intersection in toric variety is arbitrary. Many of nondegen-
erating to nodal toric threefolds are themselves the complete intersections in weighted projective

10As we will show below index of W and X is equal to 2, hence renormalization is trivial: α = 0, t̃ = t.
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spaces. Batyrev and Kreuzer found all nodal half-anticanonical hypersurfaces in toric fourfolds of
index 2: there are around 160 of them, and 100 are cones over the toric varieties studied in this
paper, the remaining 60 cases cover almost alll nondegenerating to toric Fano varieties.

Another direction for generalizations is toric varieties with arbitrary Gorenstein singularities.
For a pair of nonterminal Gorenstein toric Fano threefolds P(∆16), P(∆18) Przhyalkovskii con-
structed ([36]) a pair of Laurent polynomials f16, f18 with Newton polytopes coinciding with the
corresponding fan polytopes ∆16, ∆18, such that these polynomials are weak Landau–Ginzburg
models mirror symmetric to Fano varieties of principal series V16 and V18; so it is possible that
toric degenerations mothod works for a larger class of singularities (all Gorenstein?), altough we
don’t know if the pairs (P(∆16), V16) and (P(∆18), V18) are the degenerations.
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