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Abstract. We show that G-minimal Fano varieties are quantum minimal. This explains how two
differential operators of type D3, not corresponding to any minimal Fano threefolds, indeed come
from geometry Fano threefolds.

1. Introduction

In [6] for the purpose of classification of minimal Fano threefolds (i.e. with Picard group Z, see
def. 2.1) by virtue of mirror symmetry V.Golyshev introduced the notion of D3 differential equa-
tion — a 6-parameter class of differential equations, generalizing the construction of regularized
quantum differential equations of a Fano threefold from 6 two-point Gromov–Witten invariants.
The classification of primary Fano threefolds was recovered by imposing some further Picard–Fuchs
and modularity conditions on the equation.

Apart from 17 quantum differential equations of minimal smooth Fano threefolds V.Golyshev 1

found two more differential equations of modular origin, satisfying these conditions, and from the
point of view of differential equations hardly distinguishable from the QDEs of minimal Fanos .

Original Golyshev’s construction realized these two differential equations as Picard–Fuchs equa-
tions of some modular pencils of Kummer surfaces. In this paper we give a representation of this

pencils by Laurent polynomials f
(i)
28 and f

(i)
30 (i = 1, 2, 3, three representations for each pencil).

The polynomials corresponds to some nodal toric Fano 3-folds X
(i)
28 and X

(i)
30 (i = 1, 2, 3) of degrees

28 and 30. These toric threefolds admits smoothings that are smooth Fano threefolds Y28 and Y30

(the same for all i). Let Q be 3-dimensional quadric, and W be a hyperplane section of bidegree
(1, 1) of P2 × P2; then Y28 is the blowup of a twisted quartic on Q, Y30 is the blowup of a curve of

bidegree (2, 2) on W . By Batyrev’s approach [1] these Laurent polynomials f
(i)
d constructed from

nodal toric threefolds X
(i)
d are conjectured to be Landau–Ginzburg models mirror symmetric to the

smoothings Yd. Fano threefolds Y28 and Y30 are not minimal (their Picard groups are Z2 and Z3)
and one expects their quantum differential equations to be of degree 4 and 5, but these varieties
occur to be quantum minimal (see def. 2.3) — minimal differential equation vanishing I-series of
these varieties has the degree 3. We seek for the systematic reason why this phenomena happened,

and found the following one: these varieties Y28 and Y30 (and X
(i)
28 , X

(i)
30 ) are G-minimal (see def.

2.2) i.e. admit a group action, and are minimal with respect to that action. Theorem 2.4 states
that such kind of minimality with respect to the group action implies the quantum minimality
as well. The same argument clarifies the correspondence between D. Zagier’s list of 6 differential
equations of type D2 and del Pezzo surfaces of degree d 6 6.

The work is partially supported by grants INTAS 05-100000-8118 and NSh. 1987.2008.1.
1also these equations were found by D. van Straten, G.Almkvist and W.Zudilin
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2. Group actions

Definition 2.1. We call n-dimensional Fano variety X minimal if it has the same even Hodge
numbers as n-dimensional projective space Pn:

H2k(X,Z) = Z

or equivalently dimHeven(X,C) = dimX + 1.

Definition 2.2. A pair of a Fano variety X equipped with finite group action G : X is G-minimal
if dimHeven(X,C)G = dimX + 1, i.e. even part of G-invariant cohomologies of X is generated by
canonical class.

Definition 2.3. The Fano variety X is called quantum minimal if the dimension of the subring
in quantum cohomology generated by the canonical class is equal to dimX + 1.

Since modulo q this subring contains dimX + 1 linearly independent elements 1, KX , KX ∪
KX , . . . , K

dim X
X , it is enough to ask for the dimension of the anticanonical subring to be less or

equal than dimX + 1.

Theorem 2.4. Let X be a Fano variety admitting some action of group G such that X is G-
minimal. Then X is quantum minimal.

This theorem holds because quantum multiplication respects the group action:

Lemma 2.5. Let X be a Fano variety with the action of the finite cyclic group G, χ1, χ2 — a pair
of characters of G, and γi ∈ H

q
(X,C)χi , i = 1, 2 — a pair of G-eigenvector cohomology classes

with characters χ1, χ2: gγi = χi(g)γi for g ∈ G, i = 1, 2. Then γ1 ? γ2 ∈ H
q
(X,C)(χ1χ2)[[q]].

Proof of the lemma. Since Gromov–Witten are well defined and are indeed invariant with respect
to the isomorphims one has

(2.6) 〈g∗γ1, ..., g
∗γn〉β = 〈γ1, . . . , γn〉g∗β

for any classes β ∈ H2(X) and γi ∈ H
q
(X).

The canonical class KX is G-invariant, so the action of G preserves anticanonical degrees of the
curves in X: (−KX · β) = (−KX · g∗β).

This implies the G-invariance of the correlators: 〈gγ1, ..., gγn〉d = 〈γ1, . . . , γn〉d for any n, d and
g ∈ G.

Choose a basis of H
q
(X,C) consisting of G-eigenvectors. Let (·, ·) = 〈·, ·〉0 be the Poincare

pairing. Since for a pair of eigenvectors α1, α2 with characters χ1, χ2 the pairing (α1, α2) is nonzero
only if χ1χ2 = 1, we need to show (γ1?γ2, γ3) is zero for any eigenvector γ3 with any χ3 different from
(χ1χ2)

−1. By definition (γ1?γ2, γ3) =
∑

d>0 q
d 〈γ1, γ2, γ3〉d, so the vanishing (γ1?γ2, γ3) is equivalent

to the vanishing of all corellators Cd = 〈γ1, γ2, γ3〉d. But Cd = 〈γ1, γ2, γ3〉d = 〈gγ1, gγ2, gγ3〉 =
〈χ1(g)γ1, χ2(g)γ2, χ3(g)γ3〉 = (χ1χ2χ3)(g) 〈γ1, γ2, γ3〉d = (χ1χ2χ3)(g)Cd, so if (χ1χ2χ3)(g) 6= 1 for
some g, then Cd = 0. �

Proof of the theorem. By lemma 2.5 the subring R of quantum cohomology generated by −KX is
contained inside H

q
(X,C)[q]. By the proposition of the theorem the dimension of H

q
(X,C)(q)

over C(q) is dimX + 1. This implies dimension of R⊗ C(q) over C(q) is 6 dimX + 1. �

Remark 2.7. There are two frameworks for quantum cohomology — symplectic and algebraic. One
may notice neither of these definitions were used in the proof. Geometrical part is hidden behind

2



the equality 2.6 and the fact that correlators are invariant with respect to algebraic or symplectic
isomorphisms.

Moreover, one can even apply the theorem in the case of non-geometric action of the Galois group
(or mixed geometric and Galois action) on variety X and it’s cohomologies (e.g. Het(X,Ql)) if
X is defined over Q (or over some number field). This is true since everything is defined over
the base field of X: Mg,n(X, β), evaluation map ev : Mg,n(X, β) → Xn, ψ-classes and the virtual
fundamental class.

Example 2.8. Let X be a del Pezzo surface different from blowup of a plane in 1 or 2 points. It
is a classical result that such a surface admits some G-minimal action for some moduli (e.g. the
paper [2] contains the description of all the possible minimal rational G-surfaces). Hence del Pezzo
surfaces except of S7 and S8 are quantum minimal, and give rise to 8 equations of type D2.

3. Realization of D3 as Picard–Fuchs of pencils with low ramification

By the virtue of mirror symmetry quantum differential equation of n-dimensional Fano varietyX
coincides with Picard–Fuchs equation of some pencil w over A1 of (n−1)-dimensional Calabi–Yau
varieties (the Landau–Ginzburg model mirror symmetric to X).

Assume for a moment that X is minimal, it’s derived category of coherent sheaves Db(X)
admits a full exceptional collection Ei, and all singular points of w are ordinary. Critical points
of w correspond to the (Lagrangian) vanishing cycles Li, and by homological mirror symmetry
these cycles correspond to the elements of the exceptional collection. Number of Li is the number
of singular points, and it should be equal to the number of Ei i.e. rkK0(X) = dimX + 1. This
implies number of singular fibers of w is 6 dimX + 1.

When X is a smooth toric variety, an easy corollary from Givental’s computation [5] shows that
the mirror symmetric to X Landau–Ginzburg model is given by the Laurent polynomial w with
Newton polytope coinciding with the fan polytope of X, with some constant term w0 (Givental’s
constant, it vanishes when index of X is > 2) and all other coefficients equal to 1:

w(∆, w0) = w0 +
∑

v∈V ertices(∆)

xv

Batyrev states that if smooth Fano Y has a small degeneration π : X → C to toric X (i.e. π is a
flat projective morphism to a curve, X and Y are isomorphic to some fibers of π, X admits only
Gorenstein terminal singularities, and the restriction map Pic(X ) → Pic(Xt) is an isomorphism
for all t ∈ C), then for some constant w0 the Laurent polynomial w(∆(X), w0) is a (weak) Landau–
Ginzburg model mirror symmetric to Y . Let IY (t) be the I-series of Y and put Φw(t) equal to

1
(2πi)dim X

∫
dx

1−tf
i.e. a constant (with respect to x) term of 1

1−tf
.

Let t be a coordinate on Gm and D = t d
dt

.

Example 3.1 (example of degree 28). Consider the differential operator

(3.2) L28 = D3 − tD(D + 1)(2D + 1)− t2(D + 1)(59(D + 1)2 + 5)−
− 68t3(2D + 3)(D + 2)(D + 1)− 80t4(D + 3)(D + 2)(D + 1)

The solution of this equation in coordinate q is given by

η(q)η(q2)η(q7)η(q14).

In coordinate t after the shift of first term to zero it is

I28(t) = 1 + 8t2 + 24t3 + 240t4 + 1440t5 + 11960t6 + 89040t7 + . . .
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Consider Laurent polynomials

f
(1)
28 = x+ y + z +

1

x
+

1

y
+

1

z
+
y

z
+
z

y
+ xy + xz + xyz(3.3)

f
(2)
28 = x+ y + z +

1

x
+

1

y
+

1

z
+ xyz +

1

xyz
+ xz +

1

yz
(3.4)

f
(3)
28 = x+ y + z +

1

x
+

1

y
+

1

z
+ xy +

1

xy
+ xz +

1

yz
(3.5)

Then Φ
f
(1)
28

(t) = Φ
f
(2)
28

(t) = Φ
f
(3)
28

(t) and up to Givental’s constant are equal to IY28(t).

Example 3.6 (example of degree 30). Consider the differential operator

(3.7) L30 = D3 − tD(D + 1)(2D + 1)− t2(D + 1)(43(D + 1)2 + 5)−
− 78t3(2D + 3)(D + 2)(D + 1)− 216t4(D + 3)(D + 2)(D + 1)

The solution of this equation in coordinate q is given by

η(q)η(q3)η(q5)η(q15)

. In coordinate t after the shift of first term to zero it is

1 + 6t2 + 24t3 + 162t4 + 1080t5 + 7620t6 + 55440t7 + . . .

Consider Laurent polynomials

f
(1)
30 = x+ y + z +

1

x
+

1

y
+

1

z
+
x

y
+
y

z
+
z

x
(3.8)

f
(2)
30 = x+ y + z +

1

x
+

1

y
+

1

z
+ xy + xz +

1

yz
+ xyz(3.9)

f
(3)
30 = x+ y +

1

x
+

1

y
+

1

z
+
x

y
+
y

x
+ xy + xz + xyz(3.10)

Then Φ
f
(1)
30

(t) = Φ
f
(2)
30

(t) = Φ
f
(3)
30

(t) and up to Givental’s constant are equal to IY30(t).

Acknowledges. Author thanks V.Golyshev for the suggested problem with two threefolds and
for the invitation and hospitality in IHES. The article was partially done and prepared during
two author’s visits in 2008 to Johannes Gutenberg Universitaet by SFB/TR 45 program, author
thanks personally Duco van Straten for the invitations and the support.

References

[1] V.V. Batyrev, Toric Degenerations of Fano Varieties and Constructing Mirror Manifolds, Collino, Alberto
(ed.) et al., The Fano conference. Papers of the conference, Torino, Italy, September 29–October 5, 2002.
Torino: Universita di Torino, Dipartimento di Matematica. 109–122 (2004), arXiv:alg-geom/9712034.

[2] I. V. Dolgachev, V.A. Iskovskikh, Finite subgroups of the plane Cremona group, arXiv:0610595.
[3] S. Galkin, Small toric degenerations of smooth Fano 3-folds, Sbornik:Mathematics, to appear.

http://www.mi.ras.ru/∼galkin/work/3a.pdf
[4] S. Galkin, Toric del Pezzo surfaces and pencils of elliptic curves with low ramification.

http://www.mi.ras.ru/∼galkin/papers/2d.pdf (in Russian).
[5] A.B. Givental, A mirror theorem for toric complete intersections, Kashiwara, Masaki (ed.) et al., Topological

field theory, primitive forms and related topics. Proceedings of the 38th Taniguchi symposium, Kyoto, Japan,
December 9–13, 1996 Boston, MA: Birkhauser. Prog. Math. 160, 141–175, arXiv:alg-geom/9701016.

4

http://arxiv.org/abs/alg-geom/9712034
http://arxiv.org/abs/math/0610595
http://www.mi.ras.ru/~galkin/work/3a.pdf
http://www.mi.ras.ru/~galkin/papers/2d.pdf
http://arxiv.org/abs/alg-geom/9701016


[6] V.Golyshev, Classification problems and mirror duality, LMS Lecture Note, ed. N. Young, 338 (2007),
arXiv:math.AG/0510287.

[7] S. Mori, S.Mukai, Classification of fano 3-folds with b2 > 2, Manuscr. Math., 36:147–162 (1981). Erratum 110:
407 (2003).

[8] V. Przijalkowski, On Landau–Ginzburg models for Fano varieties, Comm. Num. Th. Phys. 2007, 1 (4): 713–
728, arXiv:0707.3758.

5

http://arxiv.org/abs/math.AG/0510287
http://arxiv.org/abs/0707.3758

	1. Introduction
	2. Group actions
	3. Realization of D3 as Picard--Fuchs of pencils with low ramification
	References

