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1 Introduction

2 Basic equations and linearization

We model the tube as incompressible, isotropic, hyperelastic, cylindrical membrane. The
tube has a constant undeformed radius R and a constant undeformed thickness H. The
tube is assumed to be infinitely long, and end conditions are imposed at infinity. We use
cylindrical coordinates, and undeformed configuration is given by coordinates R,Θ, Z.

We assume that the axisymmetry remains throughout the entire deformation; the de-
formed configuration is expressed using cylindrical polar coordinates r, θ, z, where r =
r(Z, t), θ = θ(Z, t), z = z(Z, t), and t denotes time.

The principal directions of the deformation correspond to the lines of latitude, the
meridian and the normal to the deformed surface, and the principal stretches are given by

λ1 =
r

R
, λ2 = (r′2 + z′2)

1
2 , λ3 =

h

H
, (2.1)

where the indices 1, 2, 3 are used for the circumferential, axial and radial directions respec-
tively, a prime represents differentiation with respect to Z, and h denotes the deformed
thickness.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration for an incom-
pressible material are given by

σi = λiWi − p, i = 1, 2, 3 (no summation), (2.2)

where W = W (λ1, λ2, λ3) is the strain-energy function, Wi = ∂W/∂λi, and p is the pres-
sure associated with the constraint of incompressibility. Utilizing the incompressibility
constraint λ1λ2λ3 = 1 and the membrane assumption of no stress through the thickness
direction σ3 = 0, we find

σi = λiŴi, i = 1, 2 (2.3)
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where Ŵ (λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−12 ) and Ŵ1 = ∂Ŵ/∂λ1 etc ( Haughton and Ogden

1979).
As an example we give here frequently used three strain-energy functions, the Varga,

Ogden and Gent materials, given respectively by,

W = 2µ(λ1 + λ2 + λ3 − 3), (2.4)

W = µ

3∑
r=1

µr(λ
αr
1 + λαr

2 + λαr
3 − 3)/αr, (2.5)

W = −1

2
µJmln (1− λ21 + λ22 + λ23 − 3

Jm
), (2.6)

where µ is the shear modulus for infinitesimal deformations, Jm > 0 is a material constant
representing the maximum stretch of the material and α1 = 1.3, α2 = 5.0, α3 = −2.0,
µ1 = 1.491, µ2 = 0.003, µ3 = −0.023. The Ogden and Gent materials were proposed in
Ogden , 1972 and Gent, 1996 respectively, and are popularly used to model rubber.

The equations of motion can be derived from the exact field equations of general non-
linear shell theory, e. g. Budiansky, 1968, but Epstein and Johnson, 2001, gave a very
readable self-contained derivation. We quote their results and rewrite them in the form:[

Rσ2
z′

λ22

]′
− Prr′ = ρRz̈,

[
Rσ2

r′

λ22

]′
− σ1
λ1

+ Prz′ = ρRr̈, (2.7)

where ρ is the density of the material,

z = z∞Z + u(Z, t), r = r∞R + w(Z, t), u, w → 0, as Z →∞,

and P is the internal pressure divided by the original wall thickness.
As far as the fluid-solid interaction, we follow Demiray, 1996 in adopting a simple model,

whereby the conservation of mass and momentum are enforced under the assumption that
the the fluid is ideal having constant density and the velocity profile is constant throughout
the tube cross section. Denoting by vf the fluid speed and ρf the fluid density divided by
the original wall thickness, from the mass conservation law

0 =
d

dt

∫∫∫
V (t)

Hρf dx dy dz = Hρfπ
d

dt

z2(t)∫
z1(t)

r2 dz = Hρfπ

z2(t)∫
z1(t)

(∂r2
∂t

+
∂r2vf
∂z

)
dz,

we obtain the continuity equation for smooth motions (Epstein and Johnston, 2001)

∂r

∂t
+ vf

∂r

∂z
+
r

2

∂vf
∂z

= 0. (2.8)
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The Euler equation evidently reads

ρf

(
∂vf
∂t

+ vf
∂vf
∂z

)
+
∂P

∂z
= 0. (2.9)

The connection between the actual longitudinal coordinate z and the reference coordi-
nate Z is given through the motion of the wall of the tube, i. e.

z = z∞Z + u(Z, t).

For any dependant variable Ψ

Ψ′ =
∂Ψ

∂z
z′, Ψ̇ =

∂Ψ

∂z
ż +

∂Ψ

∂t
.

Therefore, in the Lagrangian coordinates Z and t the equations (2.8), (2.9) read, corre-
spondingly

ṙz′ − r′ż + vfr
′ +

1

2
rv′f = 0, ρf

[
v̇fz

′ − v′f ż + vfv
′
f

]
+ P ′ = 0. (2.10)

We may put radius R and shear modulus µ to unity by using the transformations

z → Rz, r → Rr, u→ Ru, w → Rw, vf → Rvf , P → Pµ/R,

σ1,2 → σ1,2µ, ρ, ρf = ρ̂µ/R2, ρ̂fµ/R
3.

Evaluating the second equation in (2.7) at infinity we find the relation for the pressure at
infinity

P∞ =
Ŵ1(r∞, z∞)

r∞z∞
. (2.11)

As discussed in Fu et al. (2009), two integrals of the equilibrium equations exist, given
by,

Ŵ − λ2Ŵ2 = C1 = Ŵ (∞) − z∞Ŵ (∞)
2 , (2.12)

Ŵ2z
′

λ2
− 1

2
P∞λ

2
1 = C2 = Ŵ

(∞)
1 − 1

2
P∞r

2
∞, (2.13)

where a superscript ∞ represents evaluation at λ2 = z∞, λ1 = r∞; (2.12) was first derived
by Pipkin, 1968.

For an infinite tube with open ends we remote axial stretch z∞ represents a prestrain of
the material which is prescribed by the load applied at the end of the tube and is therefore
treated as constant. For a tube with closed ends and no axial loading, we require that the
force balance in the Z direction is zero, and hence C2 = 0, giving the following relation
from (2.13) and (2.11),

r∞Ŵ1(r∞, z∞) = 2z∞Ŵ2(r∞, z∞), (2.14)

which may be used to determine z∞ for any given r∞. Therefore we take r∞ as the con-
trolling parameter of the deformation, with z∞ either determined by (2.14) or prescribed.

For Varga and Gent materials the condition (2.14) takes the form, respectively

1 + r2∞z∞ − 2r∞z
2
∞ = 0, 1 + r4∞z

2
∞ − 2r2∞z

4
∞ = 0

which may be solved explicitly for z∞ (see Fig. 1 in Pearce and Fu, 2010).
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3 Stability of weakly nonlinear solution

Following the analysis of Fu et al. 2008, when the fluid is at rest (e. g. vf = 0, P = P∞)
and there are no dependance on t, we may expand r′ for values r close to r∞ as

(r′)2 = (w′)2 = ω(r∞)w2 + γ(r∞)w3 +O(w4), (3.1)

where

ω(r∞) =
r∞(Ŵ

(∞)
1 − z∞Ŵ (∞)

12 )2 + z2∞Ŵ
(∞)
22 (Ŵ

(∞)
1 − r∞Ŵ (∞)

11 )

r∞z∞Ŵ
(∞)
2 Ŵ

(∞)
22

.

The expression for γ(r∞) is too long and so is not writen here. In Fu et al., 2008, it is
observed that the bifurcation condition is given by ω(r∞) = 0 at r∞ = rcr.

On differentiating (3.1) with respect to Z, expanding it around rcr and denoting ε =
r∞ − rcr, we obtain

w′′ = ω′(rcr)εw +
3

2
γ(r∞)w2 +O(w3)

or equivalently

d2V

dξ2
= V − V 2, (3.2)

where

w = −2εω′(rcr)

3γ(rcr)
V (ξ), ξ =

√
εω′(rcr)Z. (3.3)

Equation (3.2) has an exact solitary wave-type solution given by

V = V0 ≡
3

2
sech2

(ξ
2

)
, (3.4)

which will be refered to as the weakly nonlinear solution.
We further assume that our dependent variables depend on slow time variable τ , defined

by
τ = εt,

and spacial variable ξ given by (3.3). Looking for the perturbation solution of the form

r = rcr + ε+ ε{w1(ξ, τ) + εw2(ξ, τ) + . . . }, (3.5)

z = (z′cr + εz′p + . . . ) +
√
ε{u1(ξ, τ) + εu2(ξ, τ) + . . . }, (3.6)

vf = ε3/2vf1 + . . . , (3.7)

P = P∞ + ε2p1(ξ, t) + . . . , (3.8)
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where z′p is a constant. For P∞ given by (2.11) with r∞ = rcr + ε, z∞ = z′cr + εz′p + . . . we
have the Taylor expansion

P∞ =
Ŵ1(rcr, z

′
cr)

rcrz′cr
+ εP1 + . . . . (3.9)

On substituting (3.5)-(3.9) into equations of motion (2.7), (2.10) and equating the powers
of ε, we obtain

L

[
w1√

ω′(rcr)u1ξ

]
= 0, L =

[
−Ŵ1/z

′
cr + Ŵ12 Ŵ22

z′cr(Ŵ1 − rcrŴ11) rcr(Ŵ1 − z′crŴ12)

]
, (3.10)

where Ŵ1, Ŵ11, Ŵ12, Ŵ22 are all evaluated at r = rcr, and u1ξ denotes ∂u1/∂ξ. It is easy
to see that detL = 0, thus the matrix equation (3.10) has a non-trivial solution for w1 and
u1ξ.

Proceeding to the next order, we find

L

[
w2ξξ√

ω(rcr)u2ξξξ

]
= b, p1ξξ =

2ρ̂fz
2
cr

ω′(rcr)rcr
w1ττ , (3.11)

where after substitution of the second equality in (3.11) the vector b only contains w1 and
its derivatives. Forming the dot product of (3.11) with the null eigenvector of the adjoint
of L, we then obtain the evolution equation in the form

∂2V

∂ξ2
− c1n

∂2V

∂τ 2
= c2

∂4V

∂ξ4
+ c3

∂2V 2

∂ξ2
, (3.12)

where c1n, c2, c3 are known constants, and V is given by

w1 = −2ω′(rcr)

3γ(rcr)
V (ξ, τ).

If V is independent of τ , (3.12) must reduce to (3.2), therefore c2 = c3 = 1. The
constant c1n can be easily determined from the following linear analysis. Linearize (3.12)
and then look for the solution of the form

V = eiK(ξ−vτ) = exp

(
iK
√
εω′(rcr)

(
Z −

√
ε

ω′(rcr)
vt
))

, (3.13)

where

v2 =
1 +K2

c1n
.

From (3.13) it is seen that the actual wave number k̂ and phase speed ĉ are given by

k̂ = K
√
εω′(rcr), ĉ = v

√
ε

ω′(rcr)
.
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It follows then that

ĉ2 =
ε

c1nω′(rcr)
+

k̂2

c1nω
′2(rcr)

=
r∞ − rcr
c1nω′(rcr)

+
k̂2

c1nω
′2(rcr)

. (3.14)

From equation (2.8) of Fu and Il’ichev, 2009, where vf∞ is put to zero, with the help of
(3.14), we obtain

c1n = c1 +
2γ1ρ̂fr

2
crz

′3
cr

ω′2(rcr)
=

2ρ̂fr
2
crz

′5
cr

ω′2(rcr)
Ŵ22, (3.15)

where c1 is given by (5.14) in Pearce and Fu, 2010. The prestressed tube material is
strongly elliptic, i. e.

γ1 = z
′2
crŴ22 > 0,

therefore from (3.15) it is seen that c1n > c1. We then normalize the time τ in our case as
τ = c1nT , and in the pressure controlled case (P = P∞, vf ≡ 0), treated by Pearce and
Fu, 2010, as τ = c1T . In both cases we get the normalized equation for weakly nonlinear
waves

∂2V

∂ξ2
− ∂2V

∂T 2
=
∂4V

∂ξ4
+
∂2V 2

∂ξ2
. (3.16)

We than look for eigenfunction B(ξ) of linearized equation (3.16)

V = V0(ξ) +B(ξ)eσT ,

where V0(ξ) is given by (3.4). It can be verified that there exist unstable eigenvalue σ = σ0.
Coming back to old time τ we find that

σ0 = c1nσn = c1σo,

or

σn =
c1
c1n

σo, (3.17)

where σo is the unstable eigenvalue for pressure controlled case found in Pearce and Fu,
2010, and σn is the unstable eigenvalue in our case of the presence of fluid. From (3.17)
it is seen, that σn < σo, i. e. that the presence of the fluid stabilizes the weakly nonlinear
aneurythm (3.4).

4 Eigenvalue problem for fully nonlinear solution

We consider axisymmetric pertubations and write

r(Z) = r(Z) + δw(Z)eηt, z(Z, t) = z(Z) + δu(Z)eηt, P (Z, t) = P + δP (Z)eηt,

(4.1)
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where overlined quantities refer to standing solitary-wave solution of (2.7), (2.10) and
linearizing in terms δu and δw, we find[
W 2δu

′ + z′

λ22

(
λ2W 22 −W 2

)(
r′δw′ + z′δu′

)
+ δwz′W 12

λ2

]′
− P (rδw′ + δwr′)− rr′δP = ρ̂η2δu,

(4.2)

[
W 2δw

′ + r′

λ22

(
λ2W 22 −W 2

)(
r′δw′ + z′δu′

)
+ δwr′W 12

λ2

]′
−

−W 12

λ2
(r′δw′ + z′δu′)− δwW 11 + P (rδu′ + δwz′) + rz′δP = ρ̂η2δw, (4.3)

2ρ̂fη
2z′2δw − 2ρ̂fη

2z′r′δu− rδP ′′ +
(
r
z′′

z′
− 2r′

)
δP ′ = 0. (4.4)

It can be seen that (4.2)-(4.4) is a system of three coupled linear non-homogeneous
second order differential equations, and the dependence on η is entirely through η2. We
denote α = ρ̂η2. The system (4.2)-(4.4) can be written in the matrix form

y′ =My, (4.5)

where y = (δu, δu′, δw, δw′, δP, δP ′)T , M = {mij}, i, j = 1, ..., 6, the expressions for mij

were calculated, but is not written here for brevity. Similarly

x′ = −xM, (4.6)

for x a six-dimensional row vector is the adjoint system. Since each y(η, Z) and x(η, Z)
satisfies (4.5) and (4.6), respectively,

d

dZ
x(η, Z) · y(η, Z) = 0; (4.7)

thus x(η, Z) · y(η, Z) is independent of Z.
From the conditions governing the decay of the underlying state as Z → ±∞ we require

r(Z)→ r∞, z′(Z)→ z∞, and hence the matrix M∞ now takes the form

M∞ =



0 1 0 0 0 0
α

Ŵ
(∞)
22

0 0
Ŵ

(∞)
1 −z∞Ŵ

(∞)
12

z∞Ŵ
(∞)
22

0 0

0 0 0 1 0 0

0
−Ŵ (∞)

1 +z∞Ŵ
(∞)
12

Ŵ
(∞)
2

−z∞Ŵ
(∞)
1 +r∞z∞(α+Ŵ

(∞)
11 )

r∞Ŵ
(∞)
2

0 − r∞z2∞
Ŵ

(∞)
2

0

0 0 0 0 0 1

0 0 2bαz2∞
r∞

0 0 0


, (4.8)
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Figure 1: Dependence of ν on a for the tube with closed ends and the Gent material
(α = −a, a > 0); (a) r∞ = 1.54; (b) r∞ = 1.3; b = 5

where b = ρ̂f/ρ̂
1.

The equation (4.5) asymptotes to the constant coefficient problem with exponential
solutions exp(kZ), for values k related to the parameter α by the equation

det
(
M∞ − kI

)
= 0,

where I is the identity matrix, or

k6 − 1

r∞z∞Ŵ
(∞)
2 Ŵ

(∞)
22

[
z2∞Ŵ

(∞)
22 Ŵ

(∞)
1 + r∞

(
Ŵ

(∞)2
1 − 2z∞Ŵ

(∞)
12 Ŵ

(∞)
1 −

−z∞(αŴ
(∞)
2 + αz∞Ŵ

(∞)
22 − z∞Ŵ

(∞)2
12 + z∞Ŵ

(∞)
11 Ŵ

(∞)
22 )

)]
k4 +

+
1

r∞Ŵ
(∞)
2 Ŵ

(∞)
22

αz∞
(
r∞α− Ŵ (∞)

1 + r∞(Ŵ
(∞)
11 + 2bŴ

(∞)
22 z3∞)

)
k2 − 2

Ŵ
(∞)
2 Ŵ

(∞)
22

z4∞bα
2 = 0.

(4.9)

It can be easily seen that the six eigenvalues ofM∞ are given by ±k1, ±k2, ±k3. Moreover,
(i) (4.9) has pure imaginary roots if and only if η is pure imaginary (α is real and negative).
For if η is imaginary (α = −a, a > 0), then ν1,2 = φ1,2(a) (ν = k2) are negative, and ν3
is positive. Conversely, the two functions φ1,2 are strictly monotonic in a, φ1,2(0) = 0,
and |φ1,2(a)| → ∞ as |a| → ∞. Figure 1 illustrates the dependance of ν on a for the two
different values of r∞ for the Gent material;
(ii) when η 6= 0 is real, (4.9) has three roots in each of the positive and negative complex
half planes.

Thus, from (i) and (ii) it follows that for η not on the imaginary axis, (4.9) has three
roots in the right complex half-plane and three in the left complex half-plane. For η in the
right half-plane, denote the three roots in the left half-plane with increasing real part by
k1(η), k2(η), and k3(η).

It is necessary to know whenM∞ has multiple eigenvalues. Equation (4.9) has multiple
roots when the resultant of this equation and its derivative is zero. We have α = 0 always
corresponding to the quadruple eigenvalue k = 0.

1If we denote the density of the fluid by ρfl (ρfl = Hρf ), then b =
ρflR
ρH .
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The bulging aneurythm solutions, for example, exist inside some range r0 ≤ r∞ ≤ rcr
(see Pearce, Fu, 2010). For these solutions and Gent material in the right half plane lie
four η for which the equation (4.9) has multiple roots. For r0 < ra < r∞ < rcr we have
(except η = 0) η = η1 with the lowest real part is real, then a couple of complex conjugate
η = η2,3, and η = η4 with the greatest real part is real again. For η = η1 and η = η4 the
equality k2 = k3 holds. The root k1 with the lowest real part is real as well. For η = η2,3 the
equality k1 = k2 holds, and all eigenvalues are complex. If η is on the real axis, and η > η4
and 0 < η < η1, k1, k2, k3 are all real. When η1 < η < η4, k2,3 are complex conjugate and
k1 is real. For ra ≈ 1.48761, the real η4 equals to the real part of η2,3, and for r0 < r∞ < ra
we have η1 and η2 real, and η3,4 are complex conjugate. For η = η3,4 the equality k1 = k2
holds, and all eigenvalues k are complex. For the real η = η1 and η = η2, k2 = k3 and all
eigenvalues are real. In the case r∞ < ra for any real η > η2 and η < η1 the eigenvalues k1,
k2 and k3 are real. For η1 < η < η2, k1 is real and k2,3 are complex conjugate.

We construct solutions yi of (4.5) and x of (4.6) for i = 1, 2, 3 such that

lim
Z→∞

e−ki(η)Zyi(η, Z) = ri(η),

lim
Z→−∞

eki(η)Zxi(η, Z) = li(η), (4.10)

where ri are appropriately normalized (see Alexander and Sachs, 1995) column-right eigen-
vectors of M∞, and li row-left eigenvectors of this matrix. A solitary wave solution is
linearly unstable if there exist η0, Re η0 > 0 and solutions to (4.5), (4.6) and (4.10) with
η = η0, exponentially decaying at both infinities.

5 Exterior systems and Evans function

Consider the vector fields y∧(η, Z), indexed with the components

y∧i∧j∧k = yi1(y
j
2y
k
3 − y

j
3y
k
2)− yi2(y

j
1y
k
3 − y

j
3y
k
1) + yi3(y

j
1y
k
2 − y

j
2y
k
1), (5.1)

for i < j < k, i, j, k = 1, ..., 6. That is, y∧i∧j∧k is 3 × 3 determinant of the ith, jth and
kth rows of the matrix 

y11 y
1
2 y

1
3

y21 y
2
2 y

2
3

...
...

...
y61 y

6
2 y

6
3

 .

The same notation is used for the left solutions of the system (4.6).
We number the triples i ∧ j ∧ k by the following way:

1→ 1 ∧ 2 ∧ 3, 2→ 1 ∧ 2 ∧ 4, 3→ 1 ∧ 2 ∧ 5, 4→ 1 ∧ 2 ∧ 6, 5→ 1 ∧ 3 ∧ 4,

6→ 1 ∧ 3 ∧ 5, 7→ 1 ∧ 3 ∧ 6, 8→ 1 ∧ 4 ∧ 5, 9→ 1 ∧ 4 ∧ 6, 10→ 1 ∧ 5 ∧ 6,

11→ 2 ∧ 3 ∧ 4, 12→ 2 ∧ 3 ∧ 5, 13→ 2 ∧ 3 ∧ 6, 14→ 2 ∧ 4 ∧ 5, 15→ 2 ∧ 4 ∧ 6,

16→ 2 ∧ 5 ∧ 6, 17→ 3 ∧ 4 ∧ 5, 18→ 3 ∧ 4 ∧ 6, 19→ 3 ∧ 5 ∧ 6, 20→ 4 ∧ 5 ∧ 6.
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Note that as a straightforward matter of linear algebra,

det

x1 · y1 x1 · y2 x1y3

x2 · y1 x2 · y2 x2y3

x3 · y1 x3 · y2 x3y3

 = x∧ · y∧. (5.2)

The vector satisfies a linear system

y∧
′
=M∧y∧, (5.3)

and similarly

x∧
′
= −x∧M∧. (5.4)

These systems are called exterior systems. If

M∧ = {m∧i∧j∧k, i′∧j′∧k′},

i < j < k, i′ < j′ < k′, by differentiating (5.1),

if i 6= i′ 6= j′ 6= k′, j 6= i′ 6= j′ 6= k′, k 6= i′ 6= j′ 6= k′, then m∧i∧j∧k,i′∧j′∧k′ = 0;

if i = i′ (or j = i′, j = j′, k = i′, i = j′, k = j′, i = k′, j = k′, k = k′), and the other two
indices without prime are not equal to those with prime, then m∧i∧j∧k,i′∧j′∧k′ = 0;

if i = i′, j = j′, k 6= k′, then m∧i∧j∧k,i′∧j′∧k′ = mk,k′ ;

if i = i′, j = k′, (k 6= j′), then m∧i∧j∧k,i′∧j′∧k′ = −mk,j′ ;

if i = j′, j = k′, (k 6= i′), then m∧i∧j∧k,i′∧j′∧k′ = mk,i′ ;

if j = i′, k = j′, (i 6= k′), then m∧i∧j∧k,i′∧j′∧k′ = mi,k′ ;

if j = j′, k = k′, i 6= i′, then m∧i∧j∧k,i′∧j′∧k′ = mi,i′ ;

if j = i′, k = k′, (i 6= j′), then m∧i∧j∧k,i′∧j′∧k′ = −mi,j′ ;

if i = i′, k = j′, (j 6= k′), then m∧i∧j∧k,i′∧j′∧k′ = −mj,k′ ;

if i = i′, k = k′, j 6= j′, then m∧i∧j∧k,i′∧j′∧k′ = mj,j′ ;

if i = j′, k = k′, (j 6= i′), then m∧i∧j∧k,i′∧j′∧k′ = −mj,i′ ;

if i = i′, j = j′, k = k′, then m∧i∧j∧k,i′∧j′∧k′ = mii +mjj +mkk.

It can be easily seen from (5.1), that the matrix M∧
∞ has eigenvalues

ki(η) + kj(η) + kl(η), 1 ≤ i < j < l ≤ 6.

For η in the right complex half-plane, the matrix M∞ has three eigenvalues in the
left half-plane. Thus the asymptotic matrix M∧

∞ has simple left-most eigenvalue k∧(η) =
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k1(η) +k2(η) +k3(η) for η in the right half-plane. There are solutions y∧, x∧ of (5.3), (5.4)
such that

lim
Z→∞

e−k
∧(η)Zy∧(η, Z) = r∧(η), (5.5)

lim
Z→−∞

ek
∧(η)Zx∧(η, Z) = l∧(η), (5.6)

where r∧(η) and l∧(η) are the eigenvectors associated to k∧(η). Moreover, because the
eigenvalue is simple, the constructions of Alexander and Sachs, 1995 are valid and analytic
in the entire half-plane.

We define Evans function by

D(η) = x(η)∧ · y(η)∧ (5.7)

The so-defined Evans function is analytic in the entire complex right half-plane of η and
it is real for real η. The vectors y(η) and x(η) are the solutions of (5.3), (5.4) and (5.5),
(5.6) . By the exterior analogue of (4.7), the Evans function is independent of Z. Note
that by (5.2), for small |η|

D(η) = det

x1 · y1 x1 · y2 x1y3

x2 · y1 x2 · y2 x2y3

x3 · y1 x3 · y2 x3y3

 ,

and

l∧ · r∧ = det

 l1 · r1 l1 · r2 l1r3
l2 · r1 l2 · r2 l2r3
l3 · r1 l3 · r2 l3r3

 .
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