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Abstract

We study global dynamics of phase transition evaporation interfaces in the form
of traveling fronts in horizontally extended domains of porous layers where a wa-
ter located over a vapor. These interfaces appear, for example, as asymptotics
of shapes of localized perturbations of the unstable plane water evaporation sur-
face caused by long-wave instability of vertical flows in the non-wettable porous
domains. Properties of traveling fronts are analyzed analytically and numeri-
cally. The asymptotic behavior of perturbations are described analytically using
propagation features of traveling fronts obeying a model diffusion equation de-
rived recently for a weakly nonlinear narrow waveband near the threshold of
instability. In context of this problem the fronts are unstable though nonlinear
interplay makes possible formation of stable wave configurations. The paper is
devoted to comparison of the known results of front dynamics for the model
diffusion equation, when two phase transition interfaces are close, and their dy-
namics in general situation when both interfaces are sufficiently far from each
other.

Keywords: Porous medium, Evaporation, Interface, Turning point
bifurcation, Front stability, Fingering, KPP equation

1. Introduction

We treat a particular class of flows in a porous medium that are subjected
to a transition to instability via a zero critical wave number. These are flows
in extended horizontal domains of porous media with a phase transition occur-
ring on some interface within the flow region. As an example, we may consider
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a model describing filtration processes in natural massifs, having contact with
mines, tunnels and other constructions. The functioning of such engineering sys-
tems is accompanied by heat and mass exchange between the construction and
surrounding rock [1]. Artificial ventilation makes it possible to keep the micro-
climate, necessary for exploitation. Ventilation is accompanied by evaporation
from a ceiling of the construction while the ground water moves downwards
under the action of gravity or pressure in the water horizon. The water can
enter the underground construction either in liquid or vapor states. If the sur-
rounding rock has relatively low permeability it is natural to assume that the
underground water moving towards the ceiling of the construction evaporates
somewhere in a porous space and diffuses into the underground construction as
a vapor. In this case a region saturated with a blend of vapor and air arises
between the free space and the water saturated region.

For the transition with the most unstable mode of infinite length (zero wave
number) as the perturbations grow monotonically, the evolution of the narrow
band of weakly nonlinear modes near the instability threshold is described by a
diffusion Kolmogorov-Petrovskii-Piskounov-Fisher (KPP) equation with a non-
degenerate quadratic nonlinearity in the generic case (see [2]). This kind of
equation was first considered in [3] to describe an increase in the amount of
substance as applied to a biological problem. It has some interesting proper-
ties, which have been discussed in numerous publications (see, e.g., [4],[5] and
references therein).

It has been shown that, if the porous medium is nonwettable, there can
be two or none stationary plane phase transition interfaces. At the zero wave
number, the stability margin is reached simultaneously with the vanishing of
the solution to the stationary problem [2]. As was mentioned the dynamics of
the system in question near the instability threshold is described by the KPP
equation. In this case both phase transition interfaces are located close to each
other.

The model studied below provides the possibility of detecting fundamental
physical effects of an evolution of perturbations of the vertical base flow between
the existing phase transition interface close to and far away from the instability
threshold. Conceptually, this work continues the study performed in [6]. More
specifically, in [6] we treat the evolution of localized finite perturbations of the
basic flow. In this case, numerical methods are required and, along with the
study of physical effects, we can determine the limits of applicability of the
fundamental results obtained in [2] for the case of finite amplitude localized
perturbations, i.e. for problems of practical importance.

Perturbation of the phase transition interfaces of the base flow separating
a fluid and vapor, plays a particular role because they are solutions of the
base system of equations and, hence, any perturbation of them has to tend
asymptotically to these surfaces. Dynamics of surfaces initially separating the
fluid and vapor was investigated in [7]. It was shown that they tend either to
stable base interface, or the highest boundary of the reservoir, depending on
their initial location.

The present paper deals with a description of dynamics of fronts in the full
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Figure 1: Schematic of the system considered; see text for definitions

model, which may appear, for example, due to long-time evolution of a local-
ized perturbation of the upper unstable front. In this case, the perturbation
remaining localized has increasing support. Its lateral boundaries after some
time propagate as traveling fronts. In case when the stable and unstable in-
terfaces are close and the KPP equation describes such a configuration these
traveling fronts are corresponding solutions of this equation. We discuss stabil-
ity of these solutions and also possibility of existence of similar solutions when
the phase transition interfaces are not close (the system is far from the threshold
of instability).

The paper is organized as follows. In Sec. 2 we give the formulation of
the problem, in Sec. 3 we recall the dynamics of initial horizontal interfaces and
also the basic KPP equation describing the dynamics of the system near the
threshold of instability. In Sec. 4 we make a comparative analysis of the known
propagation properties of front solutions of the model KPP equation describing
the dynamics of the system near the threshold of instability and their properties
in general case, when the phase transition interfaces are not close. We show
that KPP fronts well describe the situation in general case. Sec. 5 is devoted to
discussion of stability properties in the case of close phase transition interfaces
when the fronts have the oscillatory structure (which is possible in our model).
In Sec. 6 we give our conclusions.

2. Dynamics of the system

Let the high permeability water horizon with the water pressure P0, bounded
from above by the plane z = 0, be located over the ceiling z = L (the z-axis is
directed downwards). The rock in a layer 0 < z < L has a low permeability and
at the surface z = L it is streamlined by air of humidity νa which is smaller than
the humidity of saturation, i. e. the partial pressure in the air is smaller than the
pressure of saturation of the vapor in the air at a given value of temperature
T . In this case the low permeability porous media 0 < z < L contains the
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water layer 0 < z < h and the layer h < z < L, saturated by a mixture of the
air and water vapor (Fig. 1) and is adjacent to the space of the underground
construction z > L (see Fig. 1). The x-axis is directed horizontally.

Assuming the fluids to be incompressible we get the continuity equation and
Darcy’s law as the governing equations in the water saturated domain

divvw = 0, vw = − k

µwm
grad (P − ρwgz). (1)

The governing equations in the domain saturated by the air-vapor mixture
represents the equation of vapor diffusion and the Clapeyron equation for gases:

∂ρv
∂t

= div Dgrad ρv Pv = ρvRvT, Pa = ρaRaT. (2)

Here vw is the water velocity, m is porosity, k is the permeability, µ is the
viscosity, P is the pressure, g is the gravity, ρ is the density, T the temperature,
D is the diffusion coefficient. Typical values are (see e. g. [8]) D = 2.4 × 10−5

m2s−1, Pa = 105 Pa, Ra = 287 J kg−1K−1, Rv = 461 J kg−1K−1.
The subscripts v, w and a correspond to the vapor, water and air, respec-

tively. Instead of the equation for the vapor density it is convenient to use the
analogous equation for the humidity function ν = ρv/(ρa + ρv). This equation
follows from (2) under the condition of smallness of the partial pressure of the
vapor in comparison with the atmospheric pressure [8]:

∂ν

∂t
= D ∆ν. (3)

The system of equations (1) is reduced to the Laplace equation

∆ P = 0. (4)

The boundary condition at the front for a pressure jump reads

Pw = Pv + Pc ≡ Pa + Pc. (5)

Here the capillary pressure Pc is negative, when the rock is wettable and it is
positive for the non-wettable rock. The boundary condition for the humidity at
the front follows from the definition of the humidity function and Clapeyron’s
equations for the air and vapor:

ν = ν∗ =
Ra

Rv

Pv∗
Pa

, z = h. (6)

From the assumption that the processes under consideration are isothermal
it follows that the humidity on the front being a function of the temperature is
a constant in the framework of our model. The water mass conservation law
at the front takes the form [2]

(
1− ρv

ρw

)
Vn = − k

mµw
[ grad (P − ρwgz)]n +D

ρa
ρw

( grad ν)n , z = h. (7)
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The boundary condition at the upper boundary z = 0 and at the lower
boundary, coinciding with the ceiling are written as

z = 0 : P = P0; z = L : ν = νa. (8)

The processes under consideration are characterized by the physical parameters
which determine the dimensionless quantities

α =
Pc + Pa − P0

ρwgL
, β =

D

k

ρa
ρw

(ν∗ − νa)
mµw

ρwgL
, (9)

playing the considerable role in further observations. We note, that the parame-
ter α in (9) is the measure of deviation of the pressure P0 in the aquifer from the
hydrostatic one for the given value of the capillary pressure, and the parameter
β characterizes the ratio between the rate of the diffusion transfer of the vapor
and the rate of the water flux, caused by the hydrostatic pressure.

From (2)-(8) the expressions for the distribution of pressure and humidity
in the layers 0 < z < h and h < z < L follow:

Pst = P0 +
Pa + Pc − P0

h
z, νst =

νa − ν∗
L− h

z +
Lν∗ − hνa
L− h

, (10)

and also the equation for the location of the evaporation front:

α

H
− 1 +

β

1−H
= 0, H =

h

L
. (11)

The quadratic equation (11) has the roots

Hs,u = −1

2
(β − α− 1)± 1

2

√
(β − α− 1)2 − 4α, Hs ≥ Hu. (12)

It can be easily seen that for the neutral (Pc = 0) or the wettable (Pc < 0)
porous media, when α < 0, one root of (12) is positive, and the other is negative.
The physical sense has only positive root, corresponding to the sign “+” at the
radical in (12).

Solution (10) describes the stationary process of evaporation on the phase
transition front when the heavier fluid (water) is located above the lighter one
(air-vapor blend). In the case when there exists the unique location for the
stationary front of phase transition it is stable and it is evident that this solution
describes the penetration of the moisture in the underground construction as a
result of the vapor diffusion through the rock. This is in the case of surrounding
wettable rock. If the surrounding rock is nonwettable, from results of [2] it
follows, that

1. In a certain domain of parameters there exist two positive roots (12):
for Pc > 0 the smallest root can become positive, when the pressure P0 at the
aquifer decreases in a way that α becomes positive. For the further decrease of
P0 the parameter α attains the critical value

β =
(
1−
√
α
)2
.
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Figure 2: Bifurcation diagram H versus α at a fixed β in (9); H = Hs is the stable branch,
H = Hu the unstable branch, O is the turning point

At this value the coincidence of the roots of (12) takes place, and the stationary
solution (10) ceases to exist, when α exceeds this critical value (see Fig. 2).

2. If two locations of equilibrium positions of the phase transition front are
possible, i. e. the both roots of (11) are positive, the lowest one of them is always
dynamically unstable with respect to longwave perturbations and the larger one
is stable with respect to these perturbations. The condition of loss of dynamical
stability of the larger stable front coincides with the loss of existence of both
fronts (turning point O in Fig. 2).

If the Cauchy data correspond to horizontal plane surfaces, separating the
water and air from results of [7] we have
1. When the initial surface is located above the unstable phase transition in-
terface z = Hu (recall that the z-axis is directed downwards) it then moves
towards the upper boundary of the low-permeability layer and reaches it at the
finite time.
2. When the initial horizontal plane surface is located either between two inter-
faces or under the lowest stable one it tends to this stable interface.

The dynamics of these interfaces is described in details in [7]. Though,
there is one more possibility, when an initial interface coincides with the lowest
unstable phase transition front. In this case it doesn’t move elsewhere, but the
dynamics of its localized perturbation has its own features to be described in
the forthcoming sections.

3. Case of close phase transition fronts.

To describe secondary structures, bifurcating from the base state (10) in a
small neighborhood of the instability threshold for the mentioned type of insta-
bility we repeat here briefly the derivation of the KPP equation. Taking into
account the long-wave nature of instability determine the small dimensionless
parameters ǫ and ε:

ǫ = L2/l2, ε = ηa/L,
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where l and ηa are characteristic values of wave length and amplitude. Deter-
mine the dimensionless variables (keeping the old notations)

x→ lx, t→ L2

D
t, η → ηaη, z → Lz.

It is shown in [2] that if we put ǫ = ε we get the equation

c0∂τη = c1η + c2∂xxη + c3η
2, τ = εt (13)

Here

c0 =

(
1− ρa

ρw

νa − ν∗
3

)
> 0, c1 = ε−1

(
k

Dµwm

Pa + Pc − P0

H2
+

ρa
ρw

νa − ν∗
(1 −H)2

)
,

c2=−
1

3

(
k

Dµwm
(Pa + Pc − P0)+

ρa
ρw

(νa − ν∗)

)
> 0, c3=−

(
k

Dµwm

Pa + Pc − P0

H3
+
ρa
ρw

ν∗ − νa
(1 −H)3

)
< 0.

Because of the condition of the marginal stability [2], the coefficient c1 is of
order 1 in a neighborhood of the marginal stability.

By the use of the appropriate scaling equation (13) may be reduced to the
standard KPP form (the old notations are kept)

∂τη = η − η2 + ∂2
xxη, (14)

where η = 0 is the upper unstable phase transition front and η = 1 is the stable
front.

4. Comparison of properties of traveling wave solutions of the KPP

equation and of the full problem

4.1. Traveling fronts of the KPP equation

Evolution of a localized perturbation of the unstable phase transition inter-
face η = 0 directed downwards can be subdivided into two following stages. The
scheme of its development is given in Fig.3
Stage 1. A. Tendency to the stable front η = 1 until a top of the perturbation
doesn’t get to some vicinity of it.
Stage 2. B. Propagation of the perturbation (especially its lateral boundaries).

The first stage was described in details for the general case in [6] and we do
not repeat it here.

Left sl and right sr lateral boundaries of any localized perturbation in a
process of its evolution beginning with the moment τ = τ∗ of the origin of a
second stage (B in Fig. 3) correspond to connections between two stationary
points η = 0 and η = 1 of Eq. (14. It was obtained in [3]) that
1. Arbitrary Cauchy data η0 = η(x, 0) of 0 ≤ η0 ≤ 1 determines a unique
solution of (14) satisfying the same condition.
2. Initial data

{
η1 = 1, x < a,
η1 = 0, x > b ≥ a
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Figure 3: Schematic development of the unstable interface perturbations (I) in a vicinity of
the instability threshold. A is a perturbation during a first stage, B is the perturbation at
the beginning of the second stage of its development; II is the stable interface, sl and sr are
lateral sides of the perturbation, arrows show the direction of propagation

translate to the left when τ grows. The shape of the curve η = η(x, τ) tends to
the shape of the traveling front structure η = ηW0

(x−W0τ) propagating to the
right with the speed W0 = 2 and satisfying to the equation

−W0η
′
W0

= η′′W0
+ ηW0

− η2W0
.

if this front solution is stable. Here prime denotes differentiation with respect
to the variable ξ = x−W0τ

Moreover, the equation

−Wη′W = η′′W + ηW − η2W . (15)

where now ξ = x−Wτ has front solutions with a structure for anyW ≥W0 = 2.
In other words the front ηW0

having the speed W0 is the limiting one having
the minimal speed. Therefore, the following Proposition takes place.

Proposition 4.1 [4]. For anyW ≥W0 equation (15) has front solutions, monotonously

tending to the asymptotes η = 0 and η = 1. Moreover, for c = ± 5
√
6

6 the front
solution can be found in the explicit analytic form [9, 10].

In [5] (see, also [11]) the second stage of evolution of a localized perturbation
of the unstable front was illustrated (see Fig. 7 in [5]). It can be seen, that
for increasing time the lateral bounds sl and sr (Fig. 3 of the present paper)
transforms into the fronts traveling with the minimal speed to the left (with the
speed −W0) and to the right, correspondingly.

4.2. Traveling fronts of the full problem

We examine the evolution of similar perturbations for the case of the full
problem (3)-(8) when the stable and unstable interfaces are not close. The
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problem has to be attacked with the help of numerical calculations. The nu-
merical calculation includes the solution of the elliptic equation in the region
with a moving boundary and the solution of the equation of the interface motion.
When solving the elliptic equation, the key point is the accuracy of calculat-
ing the pressure gradient at the moving boundary because it determines the
normal velocity of the contact surface. The moving boundary complicates the
calculation because the computational domain changes with time. In addition,
the calculation of the position of the contact surface even at a known normal
speed is an algorithmically time-consuming task, especially in the case of rapidly
growing short-wave perturbations, that can change the topology of the compu-
tational domain. When developing the calculation algorithm, the focus is on
the accuracy of calculating the evolution of the interface.

The problem is solved numerically using the boundary element method. For
this solution, the boundary of the water-saturated region is represented by a
polygonal line consisting of sections-panels. Each panel is associated with the
source of the potential of the double layer the density of intensity of which
is determined by solving a system of linear equations for each panel. These
linear equations are obtained under the assumption that the potential created
by all panels in the middle of each of the panels is equal to the pressure at this
point. The numerical method is described in detail in [6], and it was used in
[7]. This method allows one to describe reliably and in detail the evolution of
the boundary water-saturated region under a considerable deformation.

The calculation results are given below in dimensionless variables (here the
coordinates x, z and the time t as in (13))

X = x/
√
ǫ, Z = z, T = t.

To compare the results obtained in the weakly nonlinear approximation with
the results of the numerical solution of the full system of equations, we consider
the case when the assumptions made in the derivation of the weakly nonlinear
approximation are fulfilled. If α = 0.05080158 and β = 0.6, then the stationary
solution for the plane phase transition front exists at Hu = 0.2234 Hs = 0.2273
[12]. Specify the front profile at the initial moment by the formula

η̃ = Hu + (Hs −Hu)(1 + exp(−(X −X0)/1.43)
−2.

The position of the front at X0 = −15 is shown in Fig. 4. Such a front profile in
coordinates x, τ (now and further we mean by this notation the corresponding
coordinates as in (14)) corresponds to the analytical solution of equation (14)
[9, 10] . This solution is a traveling wave with a speed equal to 5/

√
6. Note,

that

η̃ =

(
α

Hu
2 +

β

(1 −Hu)
2

)(
α

Hu
3 +

β

(1−Hu)
3

)−1

η,

In Fig. 5 the dependence of ∂η̃/∂T , obtained by numerical solution of the com-
plete system of equations (solid line) and by equation (14) (recalculated with
the help of (4.2), dashed line) is shown.
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Now we choose the values of α and β so that the condition (Hs −Hu)≪ 1
remains valid, but the condition (Hs−Hu)/Hu ≪ 1 was not fulfilled. According
to [12] at α = 0.05 and β = 0.6 there are two stationary positions of the
plane front, which correspond to dimensionless Z-coordinates Hu = 0.2053 and
Hs = 0.2450 and (Hs −Hu)/Hu ≈ 0.19. The main flow with the front position
Hs is stable with respect to infinitesimal perturbations, and the flow with the
front position Hu is unstable if the wavelength l > ll. The threshold value
ll ≈ 5.37 is determined from the dispersion relation given in [12]. We consider
the case when the main flow corresponds to the upper unstable equilibrium
position of the plane front Hu. Set the initial perturbation of the front as

η =






Hu if X < −lp
Hu +A(1−X/lp)

4(1 +X/lp)
4 if −lp ≤ X ≤ lp

Hu if X > lp.

Let at the initial moment the perturbation has a width of 2lp = 10 and an
amplitude A = 0.1. The perturbation width at the initial moment is greater
than ll, so the perturbation amplitude immediately begins to grow, and its
effective width increases, as shown in Fig. 6.

From Fig. 6 it can be seen that the top of the perturbation η̃max → Hs

at T → ∞ and the perturbation itself takes the form of two waves spreading
to the left and right, and at the time T = 2.16 · 106 the speed of these waves
Wfull ≈ 1.21 · 10−5.

If at the initial moment the form of the front is given by the expression

η̃ =

{
Hu + (Hs −Hu)(1 + exp(−(X −X0)/1.767)

−2 if X ≤ X0 + 3.4

Hu if X > X0 + 3.4,
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Figure 5: ∂η̃/∂T vs η̃/(Hs −Hu) for Hs −Hu ≪ 1 at T = 0. Line 1 is the numerical solution
of the full system, and line 2 is the weakly nonlinear approximation.

and has the form represented by line 1 on Fig. 7 at X0 = −20 , then at T →∞
the front tends to obtain a constant shape and its speed tends to a constant
value. At the time T = 3.45 ·106 (line 2 on Fig. 7) the front speed Wfull ≈ 1.27 ·
10−5. It is known [3], that under such initial conditions the wave propagation
speed determined from equation (14) is equal to 2. In X,Z, T variables, this
speed is calculated by the formula

WKPP =
2

3

ρa
ρw

νa − ν∗
β

√√√√(β − α)

(
α

Hu
2 +

β

(1−Hu)
2

)
.

For the case under consideration, WKP ≈ 1.29 · 10−5. This value is in good
agreement with the numerical result shown above.

Note that in this example the condition (Hs−Hu)≪ Hu is not satisfied, so
the KPP equation gives a good prediction for the normal front velocity only at
η̃ ≪ (Hs −Hu). In Fig. 8 the value of ∂η̃/∂T is shown. It is obtained in the
numerical calculation (line 1) and in the weakly nonlinear approximation. From
Fig. 8 it can be seen that good agreement is observed only at η̃/(Hs − Hu) <
0.3. However, this is sufficient for a weakly nonlinear approximation with good
accuracy to predict the velocity of the front, since the speed of the front is
determined by “tip dynamics”, i.e. the dependence of η̃ on X at small η̃.

Therefore, it is seen that the KPP equation predicts many interesting prop-
erties that a full system should have. In the next section we concern some
stability properties of front solutions of the KPP equation, among them the un-
known (to our knowledge) instability of non-positive fronts which may appear
in our model. These properties presumably reflect the corresponding behavior
of such fronts in the full model.
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Figure 6: The evolution of the front shape over the time period τ ∈ [0, 2.16 106].

5. Stability of traveling fronts

Instability of any traveling front solution of (15) may occur because of in-
stability of its right asymptote which is the phase transition interface η = 0. To
see this let us linearize (14) about any traveling wave front solution ηW (ξ) and
look for the solution δη(x, τ) of the linearized equation in the form

δη(x, τ) = w(ξ)eλτ .

For w(ξ) we get the equation

AWw = λw,

AWw = w′′ +Ww′ +
[
1− 2ηW (ξ)

]
w. (16)

From (16) for ξ → ±∞ one has w(ξ) ∼ y±(ξ),

0 = y′′+ +Wy′+ + (1− λ)y+,

0 = y′′− +Wy′− − (1 + λ)y−. (17)

Eq. (17) have solutions y± = eµ±ξ. The quantities µ± obey the algebraic
equations P+(µ) = 0 and P−(µ) = 0, respectively

P+(µ) = µ2 +Wµ+ 1− λ,

P−(µ) = µ2 +Wµ− 1− λ. (18)

For pure imaginary µ = iκ, κ ∈ R one has

S+ = {λ : λ = −κ2 + iWκ+ 1},
S− = {λ : λ = −κ2 + iWκ− 1}.
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Figure 7: The shapes of the front over the time period T ∈ [0, 3.45 · 106].

The set S+ ∪ S− corresponds to continuous spectrum of the operator AW

and it interferes in the right half complex λ-plane, which is denoted further by
Ω+, for any W ≥W0 (see Fig. 9). Therefore, we have the following result.

Proposition 4.2. For any W ≥W0 the continuous spectrum of AW interferes in
Ω+.

We note, that because of a translational invariance of (14) λ = 0 is always
the eigenvalue of AW with the eigenfunction η′W (ξ).

Denote by Ω+
1 ∈ Ω+ the sub-domain of Ω+ lying to the right of the curve I

in Fig. 9. Further we show that no eigenvalues of AW in Ω+
1 exist.

First we note that from (18) one has

µ+
1,2 = −W

2
±
√

W 2

4
− 1 + λ,

µ−
1,2 = −W

2
±
√

W 2

4
+ 1 + λ. (19)

Then, from (19) we have the following statements.

Proposition 4.3. In Σ+ = Ω+ \ Ω+
1

Reµ+
1 < Reµ+

2 < 0, Reµ−
1 < 0 < Reµ−

2 .

Proposition 4.4. In Ω+
1

Reµ±
1 < 0 < Reµ±

2 .

We note that in a neighborhood of the curve I in Fig. 4 one has

Reµ±
1 < Reµ±

2 ,
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Figure 8: ∂η̃/∂T vs η̃/(Hs − Hu) for moderate Hs − Hu at T = 3.45 · 106. Line 1 is the
numerical solution of the full system, and line 2 is the weakly nonlinear approximation.

therefore µ±
1,2 are analytic functions in this neighborhood.

Let us rewrite Eq. (16) as the dynamical system

dy

dξ
= Ay, y = {w(ξ, λ), w′(ξ, λ)}⊤,

A = A(ξ, λ) =

(
0 1

−(1− 2ηw(ξ)− λ) W

)
. (20)

Similarly, we have the conjugate system

dz

dξ
= −zA, (21)

where z is the two component vector line. The quantities µ±
i , i = 1, 2 are the

eigenvalues of the asymptotic matrices

A± = lim
ξ→±∞

A(ξ, λ).

Due to Proposition4.4 there exist the solution ζ+(ξ, λ) of (20) and η−(ξ, λ) of
(21) for λ ∈ Ω+

1 and analytic in λ such that [13]

lim
ξ→∞

e−µ+

1
ξζ+(ξ, λ) = r(λ),

lim
ξ→−∞

eµ
−

1
ξη−(ξ, λ) = l(λ), (22)

where (
A+ − µ+

1 (λ)I
)
r(λ) = 0, l(λ)

(
A− − µ−

1 (λ)I
)
= 0.
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Figure 9: Continuous spectrum of AW

Analyticity of ζ+(ξ, λ) and η−(ξ, λ) follows from analyticity of µ±
i for λ ∈ Ω+

1

(see (19) and arguments of [14]).
A solution of (16) which decays to zero

w+(ξ, λ) ∼ expµ+
1 ξ as ξ → +∞

for λ ∈ Ω+. A scattering coefficient D(λ), λ ∈ Ω+
1

w+(ξ, λ) ∼ D(λ) expµ−
1 ξ as ξ → −∞

is called Evans function.

Lemma 4.1 [15]. For λ ∈ Ω+
1 D(λ) =

(
ζ+ · η−)(λ) is independent on ξ and

analytic in Ω+
1 .

Lemma 4.2 [15, 16]. D(λ)→ 1 as |λ| → ∞.

Lemma 4.3 [15]. D(λ0) = 0, λ0 ∈ Ω+
1 if and only if there is a solution of (16)

which decays exponentially as ξ → ±∞, i. e. λ = λ0 is an eigenvalue of AW .

The problem of finding the unstable discrete spectrum λ ∈ Ω+
1 is analogous

to determining the zeroes of the Evans function D(λ) lying in Ω+
1 . The number

of zeroes of D(λ) can be computed with the help of the argument principle. The
number of zeroes of D(λ) in Ω+

1 is determined by the number of rotations of
the image of the left boundary ∂Ω+

1 of Ω+
1 under the mapping D(·). Therefore,

we need to construct the function D(λ) for λ ∈ ∂Ω+
1 , i. e., numerically solve the
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ordinary linear equations (20), (21) under the conditions (22) with λ running in
a considerably large segment of ∂Ω+

1 . It was shown numerically, that D(λ) 6= 0
for λ ∈ Ω+

1 . Therefore, we have the following

Theorem 4.1. The discrete spectrum of AW is empty in Ω+
1 for all W ≥W0.

For λ ∈ Σ+ both µ+
1 and µ+

2 have negative real parts, therefore we have the
different situation than for λ ∈ Ω+

1 . In this domain any λ corresponds to an
unstable mode destroying a perturbation of our front. Indeed, the asymptotic of
any solution of (20) at ξ → ∞ due to Proposition 4.3 has two decaying modes
and for ξ → −∞ it has one decaying mode. Therefore, for any λ ∈ Σ+ due
to results of [17] there exists the eigenfunction ζ−(ξ, λ) given by the boundary
condition

lim
ξ→−∞

eµ2ξζ−(ξ, λ) = r(λ).

Consequently, we have the following

Theorem 4.2. The solution ηW is linearly exponentially unstable with λ ∈ Σ+.

However, the traveling fronts are stable against perturbations decaying ap-
propriately at ξ →∞.

Definition 4.1. We define the functional space Bµ(R), µ > 0 as

Bµ(R) = {f ∈ C(R), ||f ||Bµ(R) <∞},

where
||f ||Bµ(R) = sup

ξ∈R

|f |eµξ.

It can be understood, that we must restrict the decay rate of perturbations
when ξ → ∞, i. e. when our front solution tends to its unstable asymptote
η = 0. The weighted space Bµ(R) is usually used to shift the essential spectrum
of the operator in question to the left complex λ half-plane (see, for example,
[18]). Since zero still remains the eigenvalue we can speak only about orbital
stability of our fronts, or stability in form. Moreover, there is a value of µ where
the orbital stability is the asymptotic one, and the following theorem holds.

Theorem 4.3 [19] (see, also [5] and references therein). Let

η(ξ, 0) = ηW (ξ) + δη(ξ)

with δη ∈ BW/2(R), ||δη||BW/2(R) is small enough. Then there exist a translation
θ ∈ R and constants K > 0 and ν > 0 such that

||η(·, t)− ηW (·+ θ)||BW/2(R) = sup
ξ∈R

|η(ξ, t) − ηW (ξ + θ)|eWξ/2 ≤ Ke−νt
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holds.

For stable asymptotes the most dangerous perturbations are evidently travel
with the front (the case of Theorem 4.3). All other do not have time to develop
and the front runs away from them. But when one of these asymptotes is unsta-
ble (as in our case) in order the front can run away from stationary perturbations
it is necessary that this instability be the convective one in the reference frame
firmly connected with a traveling front.

Theorem 4.4 The unstable equilibrium state η = 0 of (14) is convectively
unstable in a coordinate system attached the front solution for W ≥ 2.

Proof. Equation (14) in the coordinate system firmly attached to the trav-
eling front ηw, i. e. traveling to the left with the speed W takes the form

∂τη +W∂xη = η − η2 + ∂2
xxη. (23)

The dispersion relation for (23) reads

−iω = −ikW + 1− k2. (24)

From (24) one has that
dω(k0)

dk
= 0

for

k0 = −iW
2
.

Therefore

ω(k0) = i

(
1− W 2

4

)
,

and Imω(k0) ≤ 0 for W ≥ 2, i. e. for the range of speeds of existence of
monotonous traveling wave front solutions of (14). �

The result of Theorem 4.4 means that linear perturbations of the equilibrium
point η = 0 develop with a speed that is less than W0 = 2.

We now are not restricted to the case when our solution of the KPP equation
(14) can be neither greater than one nor smaller than zero. For biological
problems and combustion theory problems, only values of 0 ≤ η ≤ 1 are valid.
However, the deviation of the surface of the initially flat front of the phase
transition from the equilibrium position can occur not only downwards (in this
case η > 0), but upwards ( η < 0). At the same time, some parts of the front
may be below the level of stable equilibrium Hs, so the values η > 1 are also
admissible.

Consequently, we can consider the case J = {W, 0 < W < 2}, when the
point η = 0 is a focus. We also can construct heteroclinic structures corre-
sponding to fronts traveling with speeds from this range. They oscillate about
the state η = 0 and tend to it at infinity (examples are given in Fig. 10).
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Figure 10: The shape of the traveling wave. 1- WKPP = 2, 2-WKPP = 0.5, 3 - WKPP = 0.01.

According Theorem 4.4. the state η = 0 is now absolutely unstable, which
in its turn means that the fronts with speeds from the range J are destroyed by
corresponding perturbations [20]. There are two scenarios for the development
of instability. In the first case, the solution is transformed into a traveling wave,
the speed of which asymptotically approaches 2. Such a case is shown in Fig. 11.
The initial dependence of the perturbed solution η(x) for this calculation was
specified as follows

η =

{
ηtw(x) if ηtw(x) ≥ 0

0.99 ηtw(x) if ηtw(x) < 0,

where ηtw(x) is the profile of a traveling wave propagating at the speed ofWKPP .
In the second scenario of instability, a finger is formed, which rapidly increases
in amplitude, as shown in Fig. 12. The initial dependence of the perturbed
solution η(x) for this calculation was specified as follows

η =

{
ηtw(x) if ηtw(x) ≥ 0

1.01 ηtw(x) if ηtw(x) < 0.

The finger grows up towards the upper bound of the low permeable layer and
reaches this bound in finite time.
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Figure 11: The shapes of the front over the time period τ ∈ [0, 10]. WKPP = 0.5.

6. Conclusion and discussion

The present paper is devoted to validity of the model KPP equation in
description of phase transition evaporation interfaces in the form of traveling
fronts in horizontally extended domains of porous layers where the water is
located over the vapor. First, in Sec. 3 it was indicated that for the case of close
planar phase transition fronts the dynamics of the system is described by the
KPP equation (14). We have shown, that even in case when the plane interfaces
are not close and formally we can not use the KPP equation for description of
fronts, the maximum deviation of the dimensionless traveling front amplitude
from the corresponding (traveling with the same speed) KPP front is small
enough. Moreover, the asymptotics of the front at infinity is always described
by the KPP equation.

It is known that the KPP equation fronts with monotonous structure (i. e.
when the unstable state η = 0 is a saddle, W ≥ 2) are asymptotically stable
about rapidly decaying perturbations (see Theorem4.3). (We note in addition,
that the various aspects of stability of the KPP-Fischer equations fronts are
treated also in [21] and [22]). This, together with small difference of fronts of
the full problem from the corresponding fronts of the KPP equation even for
finite distance between two plane fronts prompts, that the front dynamics in
this case may be described by the KPP equation also for the full problem (3)-
(8). Interfaces in the form of front solutions with W = 2 arise in dynamics of
the system as asymptotics of shapes of localized perturbations of the unstable
plane water evaporation surface caused by long-wave instability of vertical flows
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Figure 12: The shapes of the front over the time period τ ∈ [0, 6.67]. WKPP = 0.5.

in the non-wettable porous domains.
The properties of the front solutions with monotonous structure of this equa-

tion is extensively studied in the literature, though as far as we understand, in
the existing still models of population dynamics in one dimensional environment
and diffusion-reaction models the consideration is restricted to the domain be-
tween two states η = 0 (which is unstable) and η = 1 (which is stable). We
mention here also the dissertation [23] where this equation is applied to the
description of the branching Brownian motion. In our problem we have not no
longer such a restriction and therefore, fronts with the oscillating structure also
have to be considered. These fronts correspond to heteroclinic interfaces travel-
ing with the speed W < 2. Due to results of Theorem4.4 and the corresponding
theory of [20] the front solutions for the case W < 2 (i. e. when the unstable
state η = 0 is a focus) are absolutely unstable. Depending on the perturbation
it evolves to growing non-stationary state or (which is surprising for us) to the
stable front of permanent form propagating with the speed W = 2, which serves
in this case as an attractor.
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