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Abstract

Instability of a water layer located over an air-vapor layer in a horizon-
tally infinite two dimensional domains of a porous medium is considered.
A new mechanism of transition to instability of vertical flows developed in
such a system is treated when the most unstable normal mode is affiliated
with the zero wave number. Secondary structures bifurcating from the
vertical base flow in a neighborhood of the threshold of instability obey
the Kolmogorov-Petrovsky-Piscounov (KPP) diffusion-type equation. For
the transition in question the KPP equation represents the analogue of
the Ginzburg-Landau equation for the transition when the most unstable
mode has a nonzero wave number. It is shown that in some neighborhood
of the critical parameters there exist two different plane phase transi-
tion interfaces coinciding at the threshold of instability and ceasing to
exist when the threshold is overcome. One of these interfaces is unstable,
whereas the other is stable. It is shown nevertheless, that even the stable
interface is destroyed by some perturbations of the unstable one due to
nonlinear interplay of disturbances.

Front (interface) of evaporation, Rayleigh-Taylor instability, modulation equa-
tion
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1 Introduction

The model under consideration in this paper describes, for example, the convec-
tive and filtration processes in mines, tunnels and other constructions, having
contact with natural massifs. The functioning of such engineering systems is ac-
companied by heat and mass exchange between the construction and surround-
ing rock [1]. Artificial ventilation makes it possible to keep the micro-climate,
necessary for exploitation. Ventilation is accompanied by evaporation from a
ceiling of the construction while the ground water moves downwards under the
action of gravity or pressure in the water horizon. Water can enter the under-
ground construction either in liquid or vapor states. If the surrounding rock has
relatively low permeability it is natural to assume that the underground water
moving towards the ceiling of the construction evaporates in a porous space and
diffuses into the underground construction as a vapor. In this case a region of
the rock exists which is saturated with a mixture of vapor and air and located
under the water saturated domain. The interface of evaporation, separating
these two domains can be either stable or unstable. Considering the stability
of the interface we notice that the process of water evaporation is slow and as
a consequence the influence of the heat absorbtion during evaporation is negli-
gible. To be specific we consider the isothermal problem when the temperature
of the surrounding rocks T is equal to that of the ventilated air. This makes
it possible to eliminate from consideration the temperature field and to reduce
the problem to the purely hydrodynamic one.

It is well known that for immiscible fluids the configuration with heavier
fluid overlying the lighter one is always subjected to the Rayleigh-Taylor in-
stability even in a porous medium having an arbitrary small permeability [6].
The interface separating immiscible fluids has to deform in a way to prevent the
both fluids from mixing while the phase transition interface deforms in a way
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to keep its temperature and pressure values on the Clapeyron curve of phase
equilibrium. This difference in physical properties of the interfaces in question
explains the possibility of existence of a stable phase transition interface even in
a case when the heavier fluid overlies the lighter one in the porous medium. For
the first time the stability of such a configuration was considered in [6] where
an example of a geothermal system is treated where existence of two domains
saturated by motionless water and vapor is supposed.

In the present paper the criterion of stability of a system in the frame of the
physical problem under consideration is obtained, and also the possible types
of the transition to instability were enumerated. It was discovered that one
of these types is a transition when the most unstable mode is affiliated with
a zero wave number. Such a transition has a number of specific features, in
particular, evolution of a narrow band of weakly unstable modes is described
by the nonlinear KPP equation of a diffusion type [4].

This equation was derived for description of evolution of weakly nonlinear
and weakly unstable narrow band of modes for the transition type in question
in general case under the validity of the principle of exchange of stabilities [3].
As far as we know the KPP equation was not treated before as an amplitude
modulation equation in hydrodynamic stability.

In this paper the KPP equation is derived in a case of the loss of stability of
the plane phase transition interface for the problem in question. A number of
the properties of the transition being described by this equation are discussed.

The paper organized as follows. In sec. 2 we formulate the problem. In
sec. 3 we get the solutions, describing the base flow with phase transition to
be subjected to the stability analysis. In sec. 4 we present the linear stability
analysis of the base flows. In sec. 5 we derive the modulation KPP equation in
a neighborhood of the threshold of long-wave instability. Section 6 is devoted
to discussion of features of the weakly nonlinear stage of development of phase
transition interface perturbations. In sec. 7 we make the conclusion and discus-
sion. Appendix is devoted to the derivation of the KPP equation in the general
case of long-wave instability satisfying the principle of exchange of stabilities.

2 Formulation

Let the high permeability water horizon with the water pressure P0 bounded
from below by the plane z = 0, be located over the ceiling z = L (the z-axis is
directed downwards). The rock in a layer 0 < z < L has a low permeability and
at the surface z = L it is in contact with air of humidity νa which is smaller then
the humidity of saturation, i. e. the partial pressure in the air is smaller than
the pressure of saturation of the vapor in the air at a given value of temperature
T . In this case the low permeability porous media 0 < z < L contains the water
layer 0 < z < h and the layer h < z < L, saturated by a mixture of the air and
water vapor (Fig. 1) and adjacent to the space of the underground construction
z > L.

We assume that there exists the plane interface where the evaporation occurs
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Figure 1: Schematic of the system considered; see text for definitions.

between the water saturated domain and the domain, containing homogeneous
mixture of the air and vapor. Then in the domain filled in by the liquid phase
the inflow of the water from the high permeability horizon takes place towards
the interface of evaporation. The vapor arising at the interface diffuses through
the air-vapor domain in direction of free surface z = L (the ceiling of the un-
derground construction) being in contact with air. The vapor diffusion occurs
in the case when the partial pressure of the vapor in the neighborhood of the
interface of evaporation is greater than the partial pressure at the free surface
z = L.

Assuming the fluids to be incompressible we get the continuity equation and
Darcy’s law as the governing equations in the water saturated domain

div vw = 0, vw = − k

µw
grad (P − ρwgz). (2.1)

The governing equations in the domain saturated by the air-vapor mixture
represents the equation of vapor diffusion and the Clapeyron equation for gases:

∂ρv

∂t
= div Dgrad ρv Pv = ρvRvT, Pa = ρaRaT. (2.2)

Here v is the filtration velocity, m is porosity, k the permeability, µ the
viscosity, P the pressure, g the gravity, ρ the density, T the temperature, D the
diffusion coefficient. Typical values are (see e. g. [5]) D = 2.4 × 10−5 m2s−1,
Pa = 105 Pa, Ra = 287 J kg−1K−1, Rv = 461 J kg−1K−1.

The subscripts v, w, a correspond to the vapor, water and air, respectively.
Instead of the equation for the vapor density it is convenient to use the analogous
equation for the humidity function ν = ρv/(ρa +ρv). This equation follows from
(2.2) under the condition of smallness of the partial pressure of the vapor in
comparison with the atmospheric pressure [7]:

∂ν

∂t
= D ∆ν. (2.3)
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The system of equations (2.1) in the water domain is reduced to the Laplace
equation

∆ P = 0. (2.4)

For determination of conditions at the interface we assume that the full
pressure in the domain of the air-vapor mixture coincides with the pressure in a
free space of the underground construction and equals to the atmospheric one.
It means that there is no gas filtration in the air-vapor domain. On the phase
transition interface z = h + η(x, t) the difference between the pressure in the
water domain and that one in the gas domain depends on the physical properties
of rocks and it equals to the capillary pressure. The boundary condition at the
interface for a pressure jump reads

P− = P+ + Pc ≡ Pa + Pc, (2.5)

where signs ”–” and ”+” stand for the water and air-vapor domain, respectively.
Here the capillary pressure Pc is negative, when the rock is wettable and positive
for the non-wettable rock. The boundary condition for the humidity at the
interface follows from the definition of the humidity function and Clapeyron’s
equations for the air and vapor:

ν = ν∗ =
Ra

Rv

Pv∗
Pa

. (2.6)

The dependance of the partial pressure on the temperature can be presented
in the form [9]

Pv = F (T ) or ν∗ =
Ra

Rv

F (T )
Pa

,

F (z) = 105 exp
[
−7226.6

(
1
z
− 1

373.16

)
+ 8.2 ln

373.16
z

− 0.0057(373.16− z)
]

.

From the assumption that the processes under consideration are isothermal
it follows that the humidity on the interface being a function of the temperature
is a constant in the framework of our model. The water mass conservation law
at the interface has the form

(
1− ρv

ρw

)
Vn = − k

mµw
[ grad (P − ρwgz)]n− + D

ρa

ρw
( grad ν)n+ , (2.7)

where the subscript n denotes normal components, and Vn is a normal velocity
of the interface.

The boundary condition at the upper boundary z = 0 and at the lower
boundary, coinciding with the ceiling are written as

z = 0 : P = P0; z = L : ν = νa. (2.8)
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3 Base flow

If the parameters of the water layer and of the circulated air are constant, then
the surface of evaporation occupies some equilibrium position z = h, depending
on parameters, initial and boundary values. This position has to be determined
from the solving the stationary problem. The solution corresponding to the
stationary vertical base flow is determined from the equations

d2P (z)
dz2

= 0,
d2ν(z)

dz2
= 0.

The mass conservation law at the interface z = h in the stationary case has
the form

k

mµw

[(
dP

dz

)

−
− ρwg

]
= D

ρa

ρw

(
dν

dz

)

+

. (3.1)

The solutions in the water domain 0 < z < h and vapor domain h < z < L
have the form, respectively

Pst = P0 +
Pa + Pc − P0

h
z, νst =

νa − ν∗
L− h

z +
Lν∗ − hνa

L− h
. (3.2)

Substituting the solutions (3.2) into the conditions at the interface (3.1) one
gets the quadratic equation for the determination of h. This equation in the
dimensionless form reads

(
1 +

Pc

Pa
− P0

Pa

)
1
H
− ρwgL

Pa
=

D

ω

ρa

ρw

νa − ν∗
1−H

, ω =
kPa

mµw
, H =

h

L
. (3.3)

The solution of (3.3) is given by

Hl,s = −1
2

(β − α− 1)± 1
2

√
(β − α− 1)2 − 4α, Hl ≥ Hs,

α =
Pc + Pa − P0

ρwgL
, β =

D

ω

ρa

ρw
(ν∗ − νa)

Pa

ρwgL
. (3.4)

The parameter α measures the deviation of the aquifer pressure P0 from hydro-
static, while the parameter β measures the importance of the downflow driven
by evaporation relative to a purely pressure driven downflow.

Next let us consider some general features of the roots of the quadratic
equation (3.3). From the solution (3.4) it follows that for the neutral Pc = 0 or
wettable (Pc < 0) porous medium when P0 − Pa − Pc > 0, one root is positive
and the other one is negative. The physical meaning has only the positive root,
corresponding to the sign plus at the radical in (3.4). For the non-wettable
medium when Pc > 0, the transition of the second root through zero to the
positive real axis is possible. Such a transition corresponds, for example, to the
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pressure P0 fall in the water horizon, when the difference P0−Pa−Pc decreases.
For P0 − Pa − Pc = 0 the second root equals zero. For the further decreasing
of P0, when P0 − Pa − Pc < 0 the both roots of the quadratic equation become
positive and when some critical value P0 is achieved the confluence of the roots
takes place and the stationary solution ceases to exist for P0 below the critical
value. For the critical value of P0, as it follows from (3.4), the quadratic equation
has a double root

H =
√

α. (3.5)

Let us write the quadratic equation (3.3) in the form

−β = α
1−H

H
− (1−H).

Using (3.5), we present the right hand side of this equality as

(1−H)2

H2

[
α

H

1−H
− H2

1−H

]
≡

≡ − (1−H)2

H2
α

(
− H

1−H
+

1
1−H

)
≡ − (1−H)2

H2
α.

The resulting condition of the coincidence of roots now reads

β =
(
1−√α

)2
. (3.6)

The solution considered, describing the stationary process of water evapo-
ration at the interface corresponds to the configuration when the heavier fluid
(water) overlies the lighter one (air-vapor mixture). In the case of the exis-
tence of the unique solution for the location of the phase transition interface
it is evident, that the solution in question gives the inflow of moisture into the
underground construction as a result of the diffusion of the vapor through the
rock. If there exist two solutions, i. e. two locations of the interface satisfy the
equation (3.3), then the analysis of the both solutions is required and one of
them can (and it does!) occur unstable. The region D of parameter space (α, β)
where the both solutions for H exist and remain positive is given by

D =
{
(α, β) ∈ R2 |, 0 < α < 1 ∩√α +

√
β < 1

}
,

and they merge at the boundary

∂D =
{
(α, β) |, 0 < α < 1 ∩√α +

√
β = 1

}
.

4 Linear stability

Destabilization of the base regime is possible only in the case of non-wettable
porous medium (α > 0), consequently we consider this case only. The equations
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(2.3) and (2.4) are linear therefore the linearization about the solution (3.2) of
boundary conditions only has to be done. Let P ′, ν′, η be the perturbations of
the base regime pressure, humidity and the interface position respectively. The
linearization of water conservation law reads

∂η

∂t
= − k

mµw

(
∂P ′

∂z

)

−
+ D

ρa

ρw

(
∂ν′

∂z

)

+

. (4.1)

The conditions for pressure jump (2.5) and the condition of the constancy
of the humidity (2.6) at the interface give

P ′ +
dPst

dz
η = 0, ν′ +

dνst

dz
η = 0, z(t, y) = h. (4.2)

We look for the solutions of (4.1), (4.2) in the form {P ′, ν′, η} = {P̂ (z), ν̂(z), η̂} exp(σt+
iκy). The expressions for the amplitudes read

P̂ (z) = P̂−
sinhκz

sinhκh
, (4.3)

ν̂(z) = ν̂+
sinh a(L− z)
sinh a(L− z)

, (4.4)

where a2 = σ/D + κ2.
It follows from (4.3), (4.4) that

(
dP̂ (z)

dz

)

z=h

= κP̂−coth κh,

(
dν̂(z)

dz

)

z=h

= −aν̂+coth a(L− h). (4.5)

Substituting (4.5) into (4.1), (4.2) we get that the nontrivial solution η̂, P̂−, ν̂+

exists if the following dispersion relation holds

γ Σ− α
Kcoth KH

H
+ β

√
Σ + K2

coth (1−H)
√

Σ + K2

1−H
= 0, (4.6)

where K = κL, Σ = σL2/D, γ = D
ω

Pa

ρwgL .
We consider the mechanism of the loss of stability satisfying the principle

of exchange of stabilities when Σ equals zero at the margin of stability. The
equation of the marginal set is got by putting Σ = 0 in (4.6). We have

f(K) ≡ cothK(1−H)
cothKH

=
α

β

1−H

H
≡ ∆. (4.7)

It follows from (4.6) that for K →∞, Σ → Σ0K, where

Σ0 =
α

γ

1
H
− β

γ

1
1−H

.
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From (4.7) and the fact that the inequality Σ0 > 0 evidently implies insta-
bility of the base regime in question, it follows that there are two scenarios of
transition to instability in the case of the non-wettable porous media.

It is easy to establish that if the values of the left hand side of the equation
(4.7) for some K is less than the value of the right hand side then the base
solution is unstable i. e. Σ > 0 for these K. Assume that

cothK(1−H)
cothKH

< ∆, (4.8)

and the solution is stable, i. e. Σ < 0 for any K. If Σ < 0 the inequality follows
√

Σ + K2coth
√

Σ + K2(1−H)
Kcoth KH

<
cothK(1−H)

cothKH
. (4.9)

Simultaneously, from the dispersion relation (4.6) it follows that if Σ < 0,
the inequality holds

−∆ KcothKH +
√

Σ + K2coth
√

Σ + K2(1−H) > 0,

or
√

Σ + K2coth
√

Σ + K2(1−H)
KcothKH

> ∆

that contradicts the inequalities (4.8) and (4.9). Therefore, if (4.8) is valid,
Σ > 0 must hold.

For the sake of clarity we use the geometrical interpretation of the equation
(4.7). The left hand side of the equation represents a function that depends on
K and tends to 1 for K →∞. This function has either minimum for H < 1/2
or maximum for H > 1/2 at K = 0. The right hand side of the equation (4.7)
does not depend on K and represents the line parallel to the K-axis.

The first scenario of the transition is realized for H > 1/2. Fig. 2a illustrates
the stability of the base stationary solution. Decrease of the aquifer pressure P0

implies the increase of ∆ and the line ζ = ∆ becomes asymptotic to the graph
of the function ζ = f(K) = coth K(1−H)coth−1KH in the (K, ζ)-plane, when
Σ = 0. The further decrease of P0 implies that ∆ becomes greater than unity
and the line ζ = ∆ intersects the graph of f(K) in two points symmetric about
zero. The increment Σ > 0 in two semi-infinite intervals symmetric about zero
(Fig. 2b). The corresponding transition to instability is in the (K, Σ)-plane is
presented in Fig. 2c.

For H < 1/2 one has the different scenario of the emergence of instability.
Fig. 3a illustrates the stable case when the marginal set (4.7) is empty i. e. there
is no intersection between the curve ζ = f(K) and the line ζ = ∆. When the
pressure P0 decreases the straight line ζ = ∆ moves upward while the minimum
of the curve ζ = f(K) moves downward. The marginal stability is reached at the
moment when they have the point of contact at K = 0. The second root of the
equation (3.3) is unstable (Fig. 3b), but when P0 decreases the opposite motion
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Figure 2: Case H > 1/2. Comparative locations of the line ζ = ∆ and the
graph ζ = f(K) for the stable (a) and for the unstable (b) fronts. Sketches of
dispersion curves Σ = Σ(K) (c): for stable (I), marginal (II) and unstable (III)
front.
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Sketches of dispersion curves Σ = Σ(K) (c): for stable H = Hl (I), marginal
(II) and unstable H = Hs (III) fronts. The vertical arrows denote the tendency
to the marginal state on the way to instability.
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takes place, i. e. the line moves downward while the curve moves upward. As a
result the second root reaches the threshold of instability simultaneously with
the first one and at they coincide at the margin of stability. The moment of
the marginal stability (when the line ζ = ∆ touches the graph of the function
ζ = f(K) in the (K, ζ)-plane at K = 0) in the (K, Σ)- plane is illustrated in
Fig. 3c. Expanding the left hand side of (4.7) in the zero neighborhood and
neglecting the higher order terms one gets the criterion of the transition at
K = 0:

H2

(1−H)2
=

α

β
. (4.10)

The equation (4.10) coincides with the condition (3.6) of the merger of the
roots for the base solution and the double root correspond to the marginal
set in the parameter space. When the quantity ∆ further increases the real
solutions of the quadratic equation (3.3) cease to exist. This means that there
are no stationary base regimes with phase transition interface in the parameter
domain in question.

Therefore the stability criterion (4.7) gives two possible routes to instability.
The first one occurs at infinite wave number, corresponds to the condition ∆ = 1,
and is possible for front positions H > 1/2; the second one occurs for zero wave
number, corresponds to the criterion f(0) = ∆, and is possible for front positions
H < 1/2. The conditions of stability ∆ < 1, f(0) > ∆ (see Figs. 2a,b and 3a,b)
imply that the root Hs corresponding to a higher front position (recall that
the z-axis is directed downwards) is unstable for (α, β) ∈ D. The root Hl,
which corresponds to a lower interface position is linearly stable in the region
D0 = D1 ∪ D2, where

D1 = {α, β) ∈ D | 0 < α < 1/4}, D2 = {(α, β) ∈ D | 1/4 < α < 1/2∩0 < β < 1/2−α}.
It is linearly unstable in the region D3 = D\D0 (Fig 4). The components of the
boundary Γ0 = Γ1 ∪ Γ2 where Hl becomes unstable is given by

Γ1 = {(α, β) | 1/4 < α < 1/2, α+β = 1/2}, Γ2 = {(α, β) | 0 < α < 1/4,
√

α+
√

β = 1}.
The root Hl becomes unstable through the K = ∞ transition on Γ1, while it
becomes unstable through K = 0 transition on the boundary Γ2.

5 Derivation of the KPP equation

In this section we confine our discussion to the case of the long-wave instability
in a neighborhood of the boundary at which K = 0 transition occurs, i e. for
(α, β) ∈ D2 close to the boundary Γ2 . The equation is derived describing the
secondary structures, bifurcating from the base state (3.2) in a small neighbor-
hood of the instability threshold for the mentioned type of instability. Taking
into account the long-wave nature of instability determine the small dimension-
less parameters χ and ε:

χ = L2/λ2, ε = ηa/L,
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Figure 4: The region D of existence of the roots Hs, Hl for α > 0. The root
Hl is stable in the domain D0 coloured with grey, it becomes unstable on the
boundary Γ0 = Γ1∪Γ2: on Γ1 through K = ∞ transition, on Γ2 through K = 0
transition.

where λ and ηa are characteristic values of wave length and amplitude. Deter-
mine the dimensionless variables (keeping the former notations)

x → λx, t → L2

D
t, η → ηaη, z → Lz.

The equations (2.3), (2.4) are now rewritten in the following dimensionless
form (∂x = ∂/∂x, ∂2

xx = ∂2/∂x2, etc.).
(
χ∂2

xx + ∂2
zz

)
P = 0, ∂tν =

(
ε∂2

xx + ∂2
zz

)
ν. (5.1)

Further put
P = Pst + P ′, ν = νs

st + ν′,

where P ′, ν′ are the pressure and humidity perturbations in the domains of low
permeability rock saturated by water and air-vapor mixture, respectively.

Make the expansion of the pressure and humidity with respect to the vertical
coordinate z in the both domains at the position z = H:

P = Pa + Pc + P ′ +
(

Pa + Pc − P0

H
+ ∂zP

′
)

(z −H) +
1
2
∂2

zzP
′(z −H)2 +

1
6
∂3

zzzP
′(z −H)3...,

ν = ν∗ + ν′ +
(

νa − ν∗
1−H

+ ∂zν
′
)

(z −H) +
1
2
∂2

zzν
′(z −H)2 +

1
6
∂3

zzzν
′(z −H)3...

(5.2)

Next substitute the expressions (5.2) for the pressure into the boundary
conditions (2.8) at z = 0, and the expressions for the humidity into the boundary
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conditions at the boundary z = 1. We have

∂zP
′ =

P ′

H
+

1
2
∂2

zzP
′H − 1

6
∂3

zzzP
′H2 + ...,

∂zν
′ = − ν′

1−H
− 1

2
∂2

zzν
′(1−H)− 1

6
∂3

zzzν
′(1−H)2... (5.3)

Next express the z-derivatives in terms of the x-derivatives from the equa-
tions (5.1):

∂2
zzP

′ = −χ∂2
xxP ′, ∂3

zzzP
′ = −χ∂xx

(
∂zP

′), ...,
∂2

zzν
′ =

(
∂t − χ∂2

xx

)
ν′, ∂3

zzzν
′ =

(
∂t − χ∂2

xx

)
∂zν

′, ... (5.4)

Substituting (5.4) into (5.3) and resolving the resulting equation with respect
to χ, we get

∂zP
′ =

P ′

H
− χH

3
∂2

xxP ′..., ∂zν
′ = − ν′

1−H
− 1−H

3
(
∂t − χ∂2

xx

)
ν′... (5.5)

From the boundary conditions (2.5), (2.6) using (5.5) one gets the asymptotic
expressions for pressure and humidity on the perturbed interface

P ′ = −Pa + Pc − P0

H
εη +

Pa + Pc − P0

H2
ε2η2...,

ν′ = −νa − ν∗
1−H

εη − ν1 − ν∗
(1−H)2

ε2η2... (5.6)

Substituting (5.5), (5.6) into the dimensionless conservation law (2.7) and putting
χ = ε we get finally the equation (3.3) at ε0, zero at ε, and the equation

c0∂τη = c1η + c2∂xxη + c3η
2, τ = εt (5.7)

at ε2. Here

c0 =
(

1− ρa

ρw

νa − ν∗
3

)
> 0, c1 = ε−1

(
k

Dµwm

Pa + Pc − P0

H2
+

ρa

ρw

νa − ν∗
(1−H)2

)
,

c2=−1
3

(
k

Dµwm
(Pa + Pc − P0)+

ρa

ρw
(νa − ν∗)

)
> 0, c3=−

(
k

Dµwm

Pa + Pc − P0

H3
+

ρa

ρw

ν∗ − νa

(1−H)3

)
< 0.

The coefficient c1 is of order 1 in a neighborhood of the marginal stability: the
condition ε = 0 corresponds to the condition of marginal stability of the most
unstable mode for the transition under consideration, coinciding with (4.10).

6 Evolution of disturbances

The equation (5.7) by use of the appropriate scaling may be reduced to the KPP
form (the former notations are kept for the scaled variables)

∂τη = nη − η2 + ∂2
xxη (6.1)
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Figure 5: Phase portrait of the equation (6.1) when ∂τη = 0; subcritical case
(a) (n = −1); supercritical case (b) (n = 1).

where n = sign (c1).
In Fig. 5 the phase portraits of the stationary equation

d2η

dx2
= −nη + η2, (6.2)

are presented. This equation describes the stationary regimes (non necessarily
horizontally homogeneous) in some neighborhood of the instability threshold for
n = ∓1, respectively.

It can be seen from Fig. 5 that in a neighborhood of the threshold of instabil-
ity there are two equilibrium points of the dynamical system which is equivalent
to the equation (6.2). These points correspond to the base regimes, representing
the horizontally homogeneous flows. In the subcritical domain (n = −1) the
solution η = 0 is a stable one while the solution η = −1 is unstable. In the
supercritical domain the solution η = 0 is unstable while the solution η = 1 is
stable. Hence, the transition is accompanied by the shift of equilibrium states,
describing the base regimes, to the constant value equal to the unity for the di-
mensionless equation (6.1). It is clear then, that for our problem the case n = 1
is reduced to the considering the unstable front H = Hs as the base solution
to be subjected to the stability analysis, i. e. perturbing it in the domain of
parameters subcritical for the stable front Hl.

There is a homoclinic orbit in Fig. 5a representing a solitary wave solution of
the KPP equation (6.1) for n = −1 ( the analysis for the case n = 1 is reduced
to this one by performing the shift η → η + 1):

η = η0(x) = −3
2
sech2 x

2
. (6.3)

This localized solution of the KPP equation is linearly unstable. In fact, lin-
earization of (6.1) about the solitary-wave solution (6.3) gives the nonhomoge-
neous equation for perturbations δη = δη(x, t):

δητ + δη − ∂xxδη + 2η0(x)δη = 0. (6.4)

Substituting δη = w(x)e−ωτ in (6.4) we get the classical Sturm-Liouville spectral

14
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A
′

B
′

Figure 6: Schematic development of perturbations of the unstable interface (I)
in a neighborhood of the threshold of instability. A is the initial perturbation,
concentrated between the stable (II) and unstable interface, B the evolution of
A after some time; A′ is the initial perturbation satisfying the condition (6.5),
B′ its evolution after some time.

problem

Lw = ωw, L = − d2

dx2
+ 2η0 + 1.

It is well known that the lowest eigenvalue ωs of the operator L is negative,
therefore there exists the unstable eigenfunction ws(x) affiliated with ωs and
the solitary wave (6.3) is unstable.

It is easy to establish for the equation (6.1) that the linear exponential
growth of the positive perturbation of the unstable base state is suppressed by
the nonlinearity. As a result the perturbed dynamically unstable equilibrium
state evolves to the stable equilibrium state [4]. If the unstable state is subjected
to the non-positive perturbations satisfying

∫ ∞

−∞
η dx < 0, (6.5)

they grow unboundedly with time. This follows from the application of Gron-
wall’s lemma to the inequality

∂

∂τ

∫ ∞

−∞
η dx <

∫ ∞

−∞
η dx

which in its turn follows from one time integration of the equation (6.1) for
n = 1.

As the smaller root of (3.3) Hs is unstable and the larger one Hl is stable, one
has the configuration of the location of interfaces pictured in Fig. 6. The positive
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perturbation of the unstable upper interface (we recall that the z-axis is directed
downwards as in Fig. 1) evolves to the stable lower interface. The perturbation
satisfying (6.5) grows to the domain overlying the unstable interface (Fig. 6).
The behavior of these perturbations underlines either the stabilization of the
system on the lower interface position or the tendency of penetration of the
air-vapor into the domain occupied by water when the parameters vary near
critical values below the threshold of instability of the front H = Hl.

7 Conclusion and Discussion

The subject of discussion of the present paper is a new type of transition to
instability which is characterized by the first destabilization of the mode affil-
iated with the zero wave number. The transition in question is illustrated by
the simple though physically realistic example of the flow in the porous medium
with phase transition interface of evaporation where the heavier phase (water)
overlies the lighter one (air-water vapor mixture). Our approach throughout
was to seek the simplest rather than the most comprehensive description of the
phenomena. Rigorously derived models for these processes can become very
complex; in the spirit of our approach we make some assumptions which lead
to a tractable model and which should capture the essential physics of the pro-
cesses.

The type of the transition to instability under consideration was first discov-
ered in the more complicated models of geothermal systems where flows with
phase transition are permitted in the base state [2, 8]. Yet the complete analyt-
ical investigation of this model is not easy, and we formulate the simple physical
model admitting the complete analysis in a closed analytical form.

We identify that the vanishing of the base regime to be subjected to a sta-
bility analysis coincides with its marginal stability. This implies the “catas-
trophic” reconstruction of system as a whole, base flow under consideration can
move nowhere in the neighborhood of itself and therefore it has to change sig-
nificantly, rapidly developing into some non-stationary regime. Consequently,
the transition in question occurs under the action of the mechanism, different
from the exponential growth of normal modes and corresponds to catastrophic
scenario of the development of instability when the base regimes vanish.

We find out that in a neighborhood of the threshold of stability for the
transition through K = 0 there exist exactly two base flows, corresponding
to different locations of the evaporation front. One of these regimes is stable
while the other one is unstable. At the marginal stability the coincidence of
the both fronts takes place. The bifurcation diagram is given in Fig. 7. In this
case the unfolding takes place which is typical for the subcritical bifurcations,
consequently we find that one solution branch is stable, and the other one is
subcritically unstable. Nevertheless, for the case under analysis it is impossible
to continue the solution losing its stability (branch H = Hl) through the turning
point O.

We derive the nonlinear equation describing evolution of a narrow band of
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Figure 7: Bifurcation diagram H versus α at a fixed β in (3.4); H = Hl is the
stable branch, H = Hs the unstable branch, O the turning point.

weakly unstable perturbations of a base state in a neighborhood of the stability
threshold for the K = 0 transition. This equation represents the celebrated
Kolmogorov-Petrovsky-Piscounov equation with simple expressions for its co-
efficients. The analysis of this equation allows one to predict the tendency of
nonlinear development of perturbations. We find that the perturbations of the
unstable evaporation front not necessarily evolve to the stable front and as a
consequence the stable front can be destroyed by perturbations, having negative
average, even below the threshold of stability.

Acknowledgement. We are particularly grateful to the second reviewer. His
suggestions significantly improved the presentation of our results in the revised
version of the paper.

8 Appendix

In the Appendix we consider the homogeneous flow of the viscous fluid in the
case of one spatial dimension, when the independent variables are x and t (a
generalization of the analysis to the case of higher dimensions can be performed
straightforwardly). Let the corresponding linearized hydrodynamic problem
admit the normal mode solutions Ae(iκx+σt) with real wavenumbers κ and the
dispersion relation D(κ, σ,R) = 0, where R is a parameter of the problem and
its variation leads to the loss of stability of the base flow in question. We assume
that the problem is invariant under the reflectional symmetry x → −x, and also
that the principle of the exchange of stabilities is valid, i. e. Im σ = 0 at the
origin of instability and σ = 0 corresponds to the marginal mode.

It follows from the spatial reversibility that the expression Ae(−iκx+σt) is
a solution of the linearized problem as well, i. e. D(κ, σ,R) = D(−κ, σ,R)
for any σ. We assume further, that the most unstable mode at a margin of
instability is the mode affiliated with κ(Rc) = 0, where Rc is the critical value
of the parameter. Then in the generic case the algebraic approximation of the
dispersion relation for |R−Rc| ¿ 1, describing a narrow band of weakly unstable
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Figure 8: Critical curve σ = 0 in the (κ,R)-plane.

modes has the form

σ = a− bκ2 + O(κ4), κ → 0, (A1)

where a = r(R − Rc) (r > 0), 0 < b → bc for R → Rc. The marginal curve for
the case in question is pictured schematically in Fig. 8. The width of a band of
the unstable modes is of order O

(
ε1/2

)
, where ε = |R−Rc| (Fig. 9).

For small enough ε the problem admits the approximate solutions in a form
εA(X, T ), where A is a real function, X and T are the slow coordinate and
time, respectively. In the case of non-degenerate quadratic nonlinearity one has
X =

√
εx, T = εt. The amplitude of the most unstable mode in correspondence

with (A1) obeys the equation

∂A

∂T
=

a

ε
A + bc

∂2A

∂X2
+ dA2, (A2)

where d 6= 0 is a coefficient at the nonlinearity. The equation (A2) describes
the evolution of a narrow band of weakly unstable long waves in a some neigh-
borhood of a threshold of instability. By use of scaling transformations this
equation is reduced to the form

∂u

∂τ
= nu− u2 +

∂2u

∂ξ2
, n = ∓1. (A3)

In the supercritical case (n = 1) the equation (A3) represents the well known
KPP equation [4]. In the subcritical case (n = −1) the equation is reduced to
the supercritical equation (A3) by the transformation u → u− 1.

In the subcritical domain (n = −1) the solution u = 0 is a stable one,
while the solution u = −1 is unstable. In the supercritical domain the solution
u = 0 is unstable, while the solution u = 1 is stable. Therefore the transition
to instability is accompanied by the general shift of the equilibria solutions,
describing the homogeneous flows. In this setting the exponential growth of
the positive perturbation of the unstable equilibrium solution is suppressed by
nonlinearity and as a result the perturbed dynamically unstable equilibrium
solution tends to the stable equilibrium solution. If the unstable equilibrium
solution is subjected to perturbations with negative average (6.5), then the
perturbations grow unboundedly (see Fig. 6).
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Figure 9: The form of the graph of σ(κ,R) at a fixed R, 0 < ε = R−Rc ¿ 1.
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