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Abstract

We study stability of non-steady plane water evaporation fronts, arising in verti-
cal flows with phase transition in horizontally extended domains of a porous medium.
Isothermal motions in the non-wettable horizontal porous medium when a water
layer is located over a vapor one is considered and homogeneous capillary forces on
the phase transition front are taken into consideration. It is shown that motion of
the mobile phase transition fronts depend on their initial position relative to bifur-
cation curves of the stationary fronts. The four domains in the parameter space are
picked out where behavior of linear perturbations of the mobile fronts are different:
in the first domain all perturbations decrease, in the second one only long-wave
perturbations grow, in the third domain only short-wave perturbations grow and
in the fourth one all perturbations grow. Dynamics of localized finite amplitude
perturbations of the moving phase transition front are also studied numerically. It
is established that their evolution is mainly influenced by the initial position of the
perturbed front relative to the mentioned stability/instability domains.
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1 Introduction

We consider the model describing, for example, filtration processes in natural massifs,

having contact with mines, tunnels and other constructions. The functioning of such

engineering systems is accompanied by heat and mass exchange between the construction

and surrounding rock [1]. Artificial ventilation makes it possible to keep the micro-climate,
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necessary for exploitation. Ventilation is accompanied by evaporation from a ceiling of

the construction while the ground water moves downwards under the action of gravity or

pressure in the water horizon. The water can enter the underground construction either in

liquid or vapor states. If the surrounding rock has relatively low permeability it is natural

to assume that the underground water moving towards the ceiling of the construction

evaporates somewhere in a porous space and diffuses into the underground construction

as a vapor. In this case a region saturated with a blend of vapor and air arises between

the free space and water saturated region.

It is well known that for immiscible fluids the configuration with the heavier fluid

overlying the lighter one is always subjected to the Rayleigh-Taylor instability even in

a porous medium having an arbitrary small permeability [2]. The interface separating

immiscible fluids has to deform in a way to prevent both fluids from blending, rather than

the phase transition front, which deformations keep the temperature and pressure values

for it on the Clapeyron curve of phase equilibrium. This difference in physical properties of

the interface and the phase transition front explains the possibility of existence of a stable

configuration with phase transitions even in the case when the heavier fluid overlies the

lighter one in the porous medium. For the first time the stability of such a configuration

was considered in [2] (see also [3, 4, 5]) where an example of a geothermal system is treated

and existence of two domains saturated by motionless water and vapor is supposed.

As it was mentioned, in the case under consideration, the domain is formed saturated

with a blend of vapor and air and located under the water saturated domain. The arising

stationary evaporation front separating these two domains can be either stable or non-

stable [6, 7]. In [6] by the method of normal forms stability of the vertical flow was

studied with the stationary phase transition front. This stability analysis concerns the

behavior of infinitely small harmonic perturbations of the front. It was shown that there

exist two types of instability. The first one is newly found and implies first destabilization

of the mode with zero wave number (long-wave instability), and the second implies first

destabilization of the mode with infinite wave number (short-wave instability). Analysis

when the basic regime with the stationary plane phase transition front is subjected to

finite localized perturbations requires the use of sophisticated numerical methods and

along with the study of the basic physical effects allows to determine the bounds of

application of fundamental physical results of [6] for the case of localized finite amplitude

perturbations [8]. In [6, 7] it is also shown that a narrow band of weakly unstable modes

in some neighborhood of the instability threshold of the existing pair of phase transition

fronts are described by the nonlinear diffusion KPP equation [9]. All studies were done

for the case of a non-wettable rock.

In this paper we consider stability properties of moving phase transition fronts and

the dynamics of their linear and nonlinear perturbations in the described system. The

paper is organized as follows. In Sec. 2 we give the formulation of the problem. The
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forms of the solutions describing the vertical flow with stationary and moving front are

given in Sec. 3. Section 4 is devoted to linear stability analysis of the stationary and

moving fronts of phase transition. In Sec. 5 we consider dynamics of nonlinear localized

disturbances of the moving fronts. In Sec. 6 we present our conclusion and discussion.

2 Formulation

Nomenclature

Latin symbols

a [m2 s−1] thermal diffusivity

q [J kg−1] specific heat of phase transition

w [m s−1] velocity

n [m] vector of normal

g [m s−2] acceleration of gravity

h [m] location parameter of the interface

k [m2] permeability

L [m] thickness of the low permeable stratum

m [1] porosity

P [Pa] pressure

D [m2 s−1] diffusion coefficient

t [s] time

T [K] temperature

V [m s−1] velocity of the phase transition interface

R [J kg−1 K−1] Clapeyron constant

z [m] vertical coordinate

Z(t) [m] location of the moving phase transition front

x [m] horizontal coordinate
Greek symbols

ν [1] humidity

η [m] perturbation of the interface

κ [m−1] wave number

κ [1] dimensionless exponent for nonhomogeneous perturbations

λ [W m−1 K] thermal conductivity

µ [Pa s] viscosity

ρ [kg m−3] density

σ [s−1] spectral parameter
Subscripts
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?

?

z

g

water bearing horizon

space of the underground construction

water saturated low permeability layer

low permeability layer, saturated with air-vapor mixture

P0

νa

↓
z = h + η(x, t)

z = 0

z = h

z = L

Figure 1: Schematic of the system considered; see the text for explanations.

1 right ahead of the interface in the water saturated domain

2 right behind the interface in the vapour domain

n normal

D diffusion

v vapour

w water

a air

c capillary

0 boundary value at z = 0

∗ at the phase transition front
Superscript

0 boundary value at z = L
′ perturbation

Let the high permeability water horizon with the water pressure P0, bounded from

below by the plane z = 0, be located over the ceiling z = L (the z-axis is directed

downwards). The rock in a layer 0 < z < L has a low permeability and at the surface

z = L it is streamlined by the air of humidity νa which is smaller than the humidity of

saturation, i. e. the partial pressure in the air is smaller than the pressure of saturation of

the vapor in the air at a given value of temperature T . In this case the low permeability

porous media 0 < z < L contains the water layer 0 < z < h and the layer h < z < L,

saturated by a blend of the air and the water vapor (Fig. 1). The horizontal coordinate

varying from −∞ to ∞ is denoted by x.

We assume that there exists the front where the evaporation occurs located between

the water saturated domain and the domain containing the homogeneous blend of the

air and the vapor. Then, in the domain filled in by the liquid phase the inflow of the

water from the high permeability horizon takes place towards the front of evaporation.

The vapor arising at the front diffuses through the air-vapor domain in the direction
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of free surface z = L (the ceiling of the underground construction) streamlined by the

air. The vapor diffusion occurs in the case when the partial pressure of the vapor in

the neighborhood of the evaporation front is greater than the partial pressure at the free

surface z = L.

Assuming the water to be incompressible we get the continuity equation and Darcy’s

law constituting the governing equations in the water saturated domain

div ww = 0, mww = − k

µw

grad (P − ρwgz). (2.1)

The governing equations in the domain saturated by the air-vapor blend represent the

equation of the vapor diffusion and the Clapeyron equations for gases:

∂ρv

∂t
= div

(
D grad ρv

)
, Pv = ρvRvT, Pa = ρaRaT. (2.2)

Here w is the velocity, m is the porosity, k is the permeability, µ is the viscosity,

P is the pressure, g is the gravity, ρ is the density, T is the temperature and D is the

diffusion coefficient. Typical values are (see e. g. [10]) D = 2.4 × 10−5 m2s−1, Pa = 105

Pa, Ra = 287 J kg−1K−1, Rv = 461 J kg−1K−1. The subscripts v, w and a correspond to

the vapor, the water and the air, respectively.

Instead of the equation for the vapor density it is convenient to use the equation

for the humidity function ν = ρv/(ρa + ρv). This equation follows from (2.2)1 under

the condition of smallness of the partial pressure of the vapor in comparison with the

atmospheric pressure [10]:

∂ν

∂t
= D ∆ν. (2.3)

The temperature fields T in both domains of the low-permeability medium are governed

by the equations (see e. g. [4])

∂Tw,v

∂t
= a∆Tw,v, (2.4)

where a is the thermal diffusivity of the surrounding rock.

Considering the stability of the front we notice that the process of the water evapora-

tion is slow and as a consequence the influence of the heat absorbtion during evaporation

is negligible. We treat the isothermal problem when the temperature of surrounding rocks

T is equal to that one of the ventilated air. This makes it possible to eliminate from the

analysis the temperature field and to reduce the problem to the purely hydrodynamic

one.

The above conclusions are supported by the following estimates. On the phase tran-

sition front the following conditions are fulfilled:

• the conservation of mass

ρw

(
(ww)n −Vn

)
= ρv

(
(wv)n −Vn

)
, (2.5)
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where (ww)n is the normal velocity of the water flow through the front,

ρv(wv)n = −ρa(D grad ν)n, (2.6)

is the normal component of diffusive flux of the vapor, and Vn the normal component of

the speed of the phase transition front;

• the condition of the balance of heat

λ
(
grad Tv − grad Tw

) · n = mqρw

(
(ww)n −Vn

)
, (2.7)

where λ is the coefficient of the thermal conductivity of the porous media, and q is the

latent heat.

The typical values of physical quantities in (2.5), (2.7) at T = 293 K are (see, e. g.

[10])

ρa = 1.2 kg ·m−3, 0.008 kg ·m−3 ≤ ρv ≤ 0.017 kg ·m−3, q = 2.04× 106 J · kg−1,

λ = 1 W ·K−1 ·m−2, m = 0.25.

As it follows from equations (2.3) and (2.4) the characteristic length scales, Lν and

LT , over which the humidity and temperature fields vary are [11]

Lν ∼
√

D t, LT ∼
√

a t, (2.8)

where the thermal diffusivity a ∼ 10−6 m2 s−1.

The ratio ρv/ρw is very small, hence from (2.5) and (2.7) it easily follows the Stefan

condition at the phase transition front

λ
(
grad Tw − grad Tv

) · n = mqρw(wD)n, (2.9)

where wD is given by

wD = − ρa

ρw

(D grad ν). (2.10)

From (2.9) and (2.10) the following estimate can be obtained

λ
|δT |
LT

∼ m ρw q D
ρa

ρw

|δν|
Lν

, (2.11)

where δ T is the characteristic variation of the temperature, and δν is the characteristic

variation of the humidity. From (2.11) and using (2.8) we have

|δT | ∼ m ρa q

λ

√
aD |δν|. (2.12)

Substituting in (2.12) typical values of the parameters we get

|δT | < 0.25 · 1.2 · 2 · 106
√

10−6 · 2.4 · 10−5 1.7 · 10−2 K < 5 · 10−2 K.
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Thus, the estimate gives insignificant variation in temperature |δT | < 0.05 K due to the

evaporation process.

The system of equations (2.1) in the water domain is reduced to the Laplace equation

∆ P = 0. (2.13)

To determine the boundary conditions at the front we assume that the full pressure

in the domain of the air-vapor blend coincides with the pressure in a free space of the

underground construction and equals to the atmospheric one. It means that there is no

gas filtration in the air-vapor domain. On the phase transition front z = h + η(x, t)

the difference between the pressure in the water domain and that one in the gas domain

depends on the physical properties of the surrounding rock and it equals to the capillary

pressure. The boundary condition at the front for a pressure jump reads

Pw = Pv + Pc ≡ Pa + Pc. (2.14)

Here the capillary pressure Pc is negative, when the rock is wettable and it is positive for

the non-wettable rock. The boundary condition for the humidity at the front follows from

the definition of the humidity function and Clapeyron’s equations for the air and vapor:

ν = ν∗ =
Ra

Rv

Pv∗
Pa

. (2.15)

The dependence of the partial pressure on the temperature can be presented as follows

[12]

Pv = F (T ) or ν∗ =
Ra

Rv

F (T )

Pa

,

F (T ) = 105 exp

[
−7226.6

(
1

T
− 1

373.16

)
+ 8.2 ln

373.16

T
− 0.0057(373.16− T )

]
.

From the assumption that the processes under consideration are isothermal it follows

that the humidity on the front being a function of the temperature is a constant in the

framework of our model. The water mass conservation law (2.5) with the use of (2.6)

and Darcy’s law in (2.1) at the front takes the form
(

1− ρv

ρw

)
Vn = − k

mµw

[ grad (P − ρwgz)]n + D
ρa

ρw

( grad ν)n . (2.16)

The boundary condition at the upper boundary z = 0 and at the lower boundary,

coinciding with the ceiling are written as

z = 0 : P = P0; z = L : ν = νa. (2.17)

The processes under consideration are characterized by the physical parameters which

determine the dimensionless quantities

α =
Pc + Pa − P0

ρwgL
, β =

D

k

ρa

ρw

(ν∗ − νa)
mµw

ρwgL
, (2.18)
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playing the considerable role in further observations. We note, that the parameter α in

(2.18) is the measure of deviation of the pressure P0 in the aquifer from the hydrostatic

one for the given value of the capillary pressure, and the parameter β characterizes the

ratio between the rate of the diffusion transfer of the vapor and the rate of the water flux,

caused by the hydrostatic pressure.

For example, for the following values of the physical dimension parameters:

P0 = 2 · 105 Pa, Pc = 1.06 · 105 Pa, L = 20 m

the dimensionless α = 0.03. Correspondingly, if

m = 0.15, ρv = 0.015 kg ·m−3, k = 0.6 · 10−17 m2

the dimensionless β = 0.1.

3 Base flow

3.1 Stationary front of phase transition

For given values of the parameters the plane stationary phase transition front locates

at some equilibrium position z = h. This location is determined as the solution of the

stationary problem (2.3), (2.13):

d2P (z)

dz2
= 0,

d2ν(z)

dz2
= 0.

The conservation of momentum on the front z = h takes the form (see (2.16))

k

mµw

[(
dP

dz

)

1

− ρwg

]
= D

ρa

ρw

(
dν

dz

)

2

. (3.1)

From (2.14), (2.15), (2.17) and (3.1) the expressions for the distribution of pressure

and humidity in the layers 0 < z < h and h < z < L follow:

Pst = P0 +
Pa + Pc − P0

h
z, νst =

νa − ν∗
L− h

z +
Lν∗ − hνa

L− h
, (3.2)

and also the equation for the location of the evaporation front:

α

H
− 1 +

β

1−H
= 0, H =

h

L
. (3.3)

The quadratic equation (3.3) has the roots

Hs,u = −1

2
(β − α− 1)± 1

2

√
(β − α− 1)2 − 4α, Hs ≥ Hu. (3.4)
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It can be easily seen that for the neutral (Pc = 0) or the wettable (Pc < 0) porous

media, when α < 0, one root of (3.4) is positive, and the other is negative. The physical

sense has only positive root, corresponding to the sign “+” at the radical in (3.4).

For the non-wettable media for Pc > 0 the smallest root can become positive, when

the pressure P0 at the aquifer decreases in a way that α becomes positive. For the further

decrease of P0 the parameter α attains the critical value

β =
(
1−√α

)2
.

At this value the coincidence of the roots of (3.4) takes place, and the stationary solution

(3.2) ceases to exist, when α exceeds this critical value [6].

The solution (3.2) describes the stationary process of evaporation on the phase tran-

sition front when the heavier fluid (water) is located above the lighter one (air-vapor

blend). In the case when there exists the unique location for the stationary front of phase

transition it is stable and it is evident that this solution describes the penetration of the

moisture in the underground construction as a result of the vapor diffusion through the

rock. If two locations of equilibrium positions of the phase transition front are possible,

i. e. the both roots of (3.3) are positive, one of them is always dynamically unstable (see

subsection 4.1).

3.2 Moving front of phase transition

If the phase transition front is plane at the moment t and any point of it has the coordinate

z = Z(t), then the distribution of pressure in the layer 0 < z < Z(t) depends on time and

vertical coordinate z, and it follows from (2.13) that

Pst(z) = P0 +
(Pa + Pc − P0)z

Z(t)
. (3.5)

With the use of (3.5) the problem (2.3), (2.15), (2.16) and (2.17) can be written as

(neglecting the small ratio ρv/ρw)

D
∂2

∂z2
ν (z, t ) =

∂

∂t
ν (z, t ), ν (L, t ) = νa, ν

(
Z (t ), t

)
= ν∗,

Z (0 )=Z0,
dZ (t )

dt
=− k (Pa + Pc − P0 )

mµwZ (t )
+

Dρa

(
∂
∂z

ν(z, t)
)|z=Z(t)

ρw

+
kρwg

mµw

. (3.6)

Introduce dimensionless variables

τ =
tmµw

Lkρwg
, ζ =

z

L
, Z(τ) =

Z (t )

L
, ν (ζ, τ ) =

ν (z, t )− νa

ν∗ − νa

.

In these variables (3.6) is written as

β G
∂2

∂ζ2
ν (ζ, τ ) =

∂

∂τ
ν (ζ, τ ), ν

(
Z (τ ), τ

)
= 1, ν (1, τ ) = 0,

Z(0 ) = Z0,
d

dτ
Z (τ ) = − α

Z (τ )
+ β

∂

∂ζ
ν (ζ, τ ) + 1, (3.7)
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where

G =
ρw

(ν∗ − νa )ρa

.

The solution of (3.7) depends on the three dimensionless parameters α, β and G.

The stationary analogue of (3.7) is given by

∂2

∂ζ2
ν (ζ, τ ) = 0, ν

(
Zs (τ ), τ

)
= 1, ν (1, τ ) = 0. (3.8)

The corresponding solution of (3.8) has the form

νs (ζ, τ) = 1− ζ − Zs (τ)

1− Zs (τ)
(3.9)

The characteristic time of asymptotic approach of the solution of (3.7) to (3.9) equals to

τas ∼ 1/(β G).

The characteristic time of diffusion is determined by the absolute value of the diffu-

sion rate (2.10)

tD ∼ L− h

|wD| ,

or

tD ∼ (L− h)ρw

Dρa
|∂ν|
|∂z|

. (3.10)

In dimensionless form (3.10) reads

τD < |β ∂

∂ζ
ν (ζ, τ )|

−1

.

Provided ∂
∂ζ

ν (ζ, τ ) ∼ 1, we have

τas

τD

∼ 1

G
¿ 1. (3.11)

It can be seen from (3.11) that evaporation is a slow process in comparison with

convergence to stationary distribution (3.9).

These conclusions are confirmed by the results of numeric calculation. The difference

between values of Z(τ), computed using stationary and non-stationary diffusion equations

did not exceed 0.1%.

For the stationary distribution (3.9) it is possible to get the analytic solution of (3.7).

Substitute (3.9) in (3.7)5 to obtain the equation of the phase transition front motion:

d

dτ
Zs (τ ) = − α

Zs (τ )
− β

1− Zs (τ )
+ 1
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Figure 2: Dependence of the location of the phase transition front on time; α = 0.03

β = 0.6. 1 - Z0 = 0.9; 2 - Z0 = 0.09; 3 - Z0 = 0.085; 4 - Z0 = 0.9, α = 0.1. The

difference between the numerically computed solution and the solution as given by (3.12)

is not visible in the picture.

This equation has the analytic solution τ(Zs). Denote

c = (α− β + 1)/2, d = ((α− β + 1)/2)2 − α.

Then the implicit form of the solution is

τ=
c2 − c + d√−d

arctan (
Zs−c√−d

)+ (c−1/2) ln ((Zs−c)2−d )+Zs−

−c2 − c + d√−d
arctan (

Z0−c√−d
)− (c− 1/2 ) ln ( (Z0−c )2 − d )−Z0

if d < 0,

τ=
c2 − c + d√

d
arctanh (

Zs−c√
d

)+ (c−1/2) ln ((Zs−c)2 − d )+Zs−

−c2 − c + d√
d

arctanh (
Z0−c√

d
)− (c− 1/2 ) ln ( (Z0−c )2 − d )−Z0,

if d > 0. (3.12)

If d < 0 the stationary solution for the standing plane phase transition front does not

exist (see (3.4)).

In Fig. 2 we show all possible types of the behavior of Z (τ ). Lines 1-3 are plotted

for the values α = 0.03 and β = 0.6. In this case for Z = 0.342 there exists the stable

front, and for Z = 0.0876 – unstable. Line 1 is plotted for the initial value Z0 = 0.9.

At the initial moment the front is located under the equilibrium position and it tends

asymptotically to it. Line 2 corresponds to Z0 = 0.09. At the initial moment front is lo-

cated above the stable equilibrium position, but under unstable equilibrium position and

asymptotically tends to the stable equilibrium position from above. Line 3 corresponds to
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Z0 = 0.085. At the initial moment the front is located above the unstable equilibrium po-

sition. It moves upwards and for finite time attains the position z = 0. Line 4 corresponds

to Z0 = 0.9 and α = 0.1. The positions of equilibrium of the phase transition front are

absent for α = 0.1 and β = 0.6. As in the latter case the front begins to move upwards

becoming slower, then it accelerates and for finite time attains the upper boundary of the

layer z = 0. The results of numeric computation differs by the computation according to

(3.12) in a way not visible in the figure.

4 Stability

4.1 Stationary phase transition fronts

Destabilization of the basic regime is possible only in the case of the non-wettable porous

media (α > 0). Consequently, we consider only this case. The equations (2.3) and (2.13)

are linear, therefore, we linearize only the boundary conditions about the solution (3.2).

Let P ′, ν ′, η be the perturbations of the basic pressure, humidity and variation of the

location of phase transition front, correspondingly. The linearized form of the conservation

law (2.16) has the form

∂η

∂t
= − k

mµw

(
∂P ′

∂z

)

1

+ D
ρa

ρw

(
∂ν ′

∂z

)

2

. (4.1)

The condition of the jump of pressure (2.14) and that one of the constancy of humidity

(2.15) on the front are given by

P ′ +
dPst

dz
η = 0, ν ′ +

dνst

dz
η = 0, z(t, x) = h. (4.2)

We look for the solution of (4.1), (4.2) in the form {P ′, ν ′, η} = {P̂ (z), ν̂(z), η̂} exp(σt+

iκx). The expressions for the amplitudes are given by

P̂ (z) = P̂−
shκz

shκh
,

ν̂(z) = ν̂+
sh e(L− z)

sh e(L− h)
,

where e2 = σ/D + κ2.

Put K = κL, Σ = σL2/D. We consider the mechanism of destabilization satisfying

the principle of exchange of stabilities, i. e. when Σ equals zero on the threshold of

stability. In [6] it is shown that the equation of the marginal set Σ = 0 has the form

f(K) ≡ coth K(1−H)

coth KH
=

α

β

1−H

H
≡ ∆. (4.3)
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6
H

α

O

H = H
u

H = H
s

(1 −
√

β)2

1 −
√

β

1 − β

Figure 3: Bifurcation diagram H versus α at a fixed β in (2.18); H = Hs is the stable

branch, H = Hu the unstable branch, O is the turning point.

It was found [6] that if the values of the left hand side of the equation (4.3) for some

K are less than the value of the right hand side then the base solution is unstable, i. e.

Σ > 0 for these K.

It can be found that there exist two scenarios of transition to instability. The first one

was invented for the first time in [6] and it corresponds to the first destabilization of the

mode with K = 0 (long-wave instability). It was established [6], that in a neighborhood

of the threshold of instability for the transition through K = 0 there exist exactly two

vertical flows, corresponding to the different locations of phase transition fronts. One of

these fronts is stable and the other is unstable. At the threshold of instability of the stable

front the coincidence of both fronts takes place. The bifurcation diagram was shown in

Fig. 3. The diagram is typical for the classical turning point bifurcation where one branch

is stable and the other is unstable. The solution, corresponding to the stable branch

(branch H = Hs), is impossible to continue through the turning point O where it looses

its stability.

The other destabilization corresponds to the first destabilization of the mode with

K = ∞ (short-wave instability). The short-wave instability, apparently, has an artificial

character and may be excluded from the treatment of the model. One of the conjectures

why it takes place is the fact that for extremely short waves the interface between the

water and the vapor is impossible to consider as the sharp interface between this two

phases. Like the stratified fluids with a shift of speeds, when always presents the short-

wave Kelvin-Helmholtz instability, the contact interface has to be treated as the zone of

the blend of two fluids [13]. The domains of stability St, long-wave instability Lo, short-

wave instability S and both long-short wave instability U in the (r = α/β, H)-plane are

shown in Fig. 4.
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4.2 Moving front of phase transition

According to the results of the subsection 3.2 we consider the problem in the ”quasi-

stationary” approximation:

(
∂2

∂ζ2
P (χ, ζ, τ )+

∂2

∂χ2
P (χ, ζ, τ )

)
=0, P (χ, h (χ, τ ), τ )=1, P (χ, 0, τ )=0,

β G

(
∂2

∂ζ2
ν (χ, ζ, τ )+

∂2

∂χ2
ν (χ, ζ, τ )

)
=0, ν (χ, h (χ, τ ), τ )=1, ν (χ, 1, τ ) = 0,

∂

∂τ
h (χ, τ )=− α

∂

∂ζ
P (χ, ζ, τ )|ζ=h(χ,τ )+β

∂

∂ζ
ν (χ, ζ, τ )|ζ=h(χ,τ )+1, h (χ, 0 )=h0,

(4.4)

where

χ = x/L, h = h/L, P (χ, ζ, τ) =
P − P0

Pa + Pc − P0

. (4.5)

Let

P (χ, ζ, τ )=P st(ζ, τ )+P ′(χ, ζ, τ ), ν (χ, ζ, τ )=νs(ζ, τ )+ν ′(χ, ζ, τ ),

h (χ, τ ) = Zs(τ) + η(χ, τ ), (4.6)

where P st, νs, Za(τ) are given by (3.5), (4.5), (3.9) and (3.12), respectively. We look for

the solutions of the linearized equations (4.4) in the form
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P ′(χ, ζ, τ) =
P+P̂ (ζ)η̂(τ)eiκχ

Zs(τ) sinh(κZs(τ))
, ν ′(χ, ζ, τ) =

ν+ν̂(ζ)η̂(τ)eiκχ

(1− Zs(τ)) sinh(κ(1− Zs(τ)))
,

η(ζ, τ) = η+η̂(τ)eiκχ, (4.7)

where

P̂ (ζ) = sinh(κζ), ν̂(ζ) = sinh(κ(1− ζ)),

and P+, ν+, η+ are constants.

Substituting (4.6), (4.7) into (4.4) we get the system of linear equations on P+, ν+, η+

P+ + η+ = 0, ν+ − η+ = 0,

η+
d

dτ
η̂(τ) = −P+α κ η̂(τ) coth(κZs(τ))

Zs(τ)
− ν+β κ η̂(τ) coth(κ(1− Zs(τ))

1− Zs(τ)
,

which has nontrivial solutions when

d

dτ

(
ln (η̂(τ)

)
= − βκ

tanh(κZs(τ))Zs(τ)

(
tanh

(
κZs(τ)

)
Zs(τ)

tanh
(
κ

(
1− Zs(τ)

)) (
1− Zs(τ)

) − α

β

)
. (4.8)

The multiplier (βκ/(Za tanh
(
κZa))

)
in the right-hand side is non-negative, therefore the

sign in the right hand side is determined by the expression in brackets. When α ≤ 0 (wet-

table rock), the expression in the brackets is always positive and any small perturbation

decreases with time.

For the first summand in the brackets in (4.8) the inequality is valid

Z
2

(1− Z)2
≤ tanh (κZ )Z

tanh (κ (1− Z ) ) (1− Z )
≤ Z

(1− Z)
, if Z ≤ 1

2
,

Z

(1− Z)
≤ tanh (κZ )Z

tanh (κ (1− Z ) ) (1− Z )
≤ Z

2

(1− Z)2
, if Z ≥ 1

2
. (4.9)

It follows from (4.9) that the inequality

(
tanh

(
κZ

)
Z

tanh
(
κ

(
1− Z

)) (
1− Z

) − α

β

)
≥ 0 (4.10)

holds for any κ if

Z
2

(1− Z)2
≥ r and Z ≤ 1

2
, or

Z

(1− Z)
≥ r and Z ≥ 1

2
,

and it doesn’t hold for some κ if

Z

(1− Z)
< r and Z ≤ 1

2
or

Z
2

(1− Z)2
< r and Z ≥ 1

2
,
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Figure 5: The same as in Fig. 4. The domains St, U , Lo, S are the domains of corre-

sponding behavior of amplitudes of perturbations (see the text). Possible initial position

of the front is shown by the Latin letters, tendency of their evolution are shown by arrows.

(we recall, that r = (α/β)).

The mutual position of the curves

r =
Z

2

(1− Z)2
, r =

Z

(1− Z)

is shown in Fig. 5 (the same as curves 1 and 2 in Fig. 4).

In the domain Lo the inequality (4.10) holds for short waves and it doesn’t hold for

long waves. In the domain S , vise versa, this inequality holds for long waves and doesn’t

hold for short waves. In the domain St the inequality holds for waves of any length,

and in the domain U it doesn’t hold at all. Hence, if the front is located in the domain

St , an amplitude of any perturbation decreases. If the front is located in the domain

U an amplitude of any perturbation grows. In the domain S an amplitude of a short

wave perturbation grows, and the amplitude of long-wave perturbation decreases, and

vice versa in the domain Lo.

Depending on the initial position and values of r, the front of phase transition either

tends to the stable stationary phase transition front (positions b− f in Fig. 5), or at the

finite time reaches the upper boundary of the low-permeability layer (initial position a

and l in Fig. 5). In this setting, the point in Fig. 5, corresponding to the position of the

front moves along the vertical line and can travel from one domain to another. During the

time of motion the character of variation of the amplitude of perturbation can change.

The motion of the phase transition front is described by (3.12). Dependence of the

amplitude of perturbation on the front coordinate can be got from (4.8):
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Figure 6: Dependence of the front position Zs (line 1) and the amplitude of perturbation

A/A0 (lines 2, 3, 4; A0 is the initial and A is the actual amplitudes) on time; α = 0.5, β =

0.1, Z0 = 0.9: 1 is the position of the front Zs(τ); 2 is the perturbation with κ = 0.01; 3

is the perturbation with κ = 1; 4 is the perturbation with κ = 10.

η̂(Zs) = exp

[∫ Zs

Z0

(
α κ coth(κZ)

Z
− β κ coth(κ(1− Z))

1− Z

)(
− α

Z
− β

1− Z
+ 1

)−1

dZ

]
.

Dependence of H(r) on three different values of β are shown in Fig. 4 and Fig. 5. This

lines illustrate all possible cases of the positions of bifurcation curves H(r) about the

domains St , S , Lo and U . The first case: the lower branch of the bifurcation curve can

lie entirely in the domain of stability St while the upper branch lies in the domain of long-

wave instability Lo (line 3). The second case: the lower branch of the bifurcation curve

lies in the domain of stability St while the upper branch lies in the domain of long-wave

instability Lo and in the domain of full instability U (line 4). The third case: the lower

branch lies in the domain of stability St and in the domain of short-wave instability S

while the upper branch lies entirely in the domain of instability U (line 5).

Only solutions, corresponding to the lower branch of the bifurcation curve are stable

with respect to long-wave perturbations. In Fig. 5 the lines a− l show possible motions of

the front of phase transitions through the domains with different types of instability. The

position of the front tends to a point on the lower branch of bifurcation curve, if the initial

position locates lower than the upper branch of the bifurcation curve, as it is shown by

the lines b− f in Fig 5. If the initial position of the phase transition front locates above

the upper equilibrium position or to the right of the turning point, then the front moves

to the upper boundary of the low permeability layer as it is shown by the lines a and l in

Fig. 5.

We consider the example when the front pases through the different domains of in-

stability in the sequence St → S → U . Let α = 0.5, β = 0.1, Z0 = 0.9. In this case
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Figure 7: Dependence of the front position Zs (line 1) and the amplitude of perturbation

A/A0 (lines 2, 3, 4) on time; α = 0.35, β = 0.1, Z0 = 0.5, 1 is the position of the front

Zs(τ); 2 is the perturbation with κ = 0.01; 3 is the perturbation with κ = 1; 4 is the

perturbation with κ = 10.

r = 5. The bifurcation diagram for β = 0.1 is given by the line 5 in Fig. 5, and the initial

position of the phase transition front is denoted by the point a. It is seen from Fig. 5

that the turning point lies to the left of the vertical line r = 5 and, hence, there are no

stationary regimes. As a consequence, the front will move to the upper boundary z = 0

of the low-permeability layer as the line a shows. Dependence of the position of the front

Zs on time is shown in Fig. 6 by the line 1. In this figure we also show amplitudes of

perturbations for various wave-lengths.

When the front is still in the domain St the amplitude of any perturbation decreases.

Then the front occurs in the domain S , where one has short-wave instability, therefore

first an amplitude of the shortest wave begins to grow (line 4 in Fig. 6). After the entrance

in the domain U all wave-lengths are subjected to instability (lines 2, 3, 4, Fig. 6).

Consider the case when the point, corresponding to the initial position of the front

locates between the lower and upper branches of the bifurcation curve. In this case the

phase transition front moves towards the equilibrium point lying in the stable lower branch

of the bifurcation curve. If the initial point lies close to the upper branch, then the front

can be initially located either in the domain U , as for the bifurcation shown by the line

5 (lines d , e in Fig. 5), or in the domain Lo. For the scenarios e and d the front passes

through the domain U , where all perturbations grow (lines 2, 3, 4 in Figs. 7, 8). Then it

gets to the domain S , where long waves damp (lines 2, 3 in Figs. 7, 8), and the amplitude

of short waves continues to grow (line 4 in Figs. 7, 8 ). If the corresponding point on the

bifurcation curve lies lower than the domain S , then the front will get to the domain St ,

where all perturbations damp (lines 2, 3, 4 in Fig. 7). Fig. 8 describes the case, when the
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Figure 8: Dependence of the front position Zs (line 1) and amplitude of perturbation

A/A0 (lines 2,3,4) on time; α = 0.44, β = 0.1, Z0 = 0.59, 1 is the position of the front

Zs(τ); 2 is the perturbation with κ = 0.01; 3 is the perturbation with κ = 1; 4 is the

perturbation with κ = 10.

limiting point on the bifurcation curve lies in the domain S.

5 Evolution of finite localized perturbations of the

moving front.

For description of our numerical method we refer to [8]. This method was

tested, in particular, by comparison with analytic asymptotic solution, obeying

the diffusion KPP equation describing the process when the fronts are located

close to each other.

Numeric modeling makes it possible to discover some characteristics of evolution of

localized finite perturbations of the moving phase transition front, which dynamics cannot

be described by the linear analysis made for infinitesimal harmonic perturbations. Anal-

ysis of evolution of infinitesimal harmonic perturbations performed in sec. 4, shows that

numeric modeling will meet considerable difficulties in the domains U and S . In these

domains short wave instability takes place and the rate of increase of perturbations may

be arbitrary large. During the motion of the front the amplitude may grow by several

orders (see, e. g. line 4 in Fig. 6). In the domains Lo and St , however, the problem (4.4)

can be solved by numerical modeling for sure.

The first calculation is performed when the equilibrium position is absent and initially

the front has a location in the domain St (α = 0.1, β = 0.6, Z0 = 0.4). The motion

takes place according to the scenario St → Lo → U to the upper boundary. From Fig. 9
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Figure 9: Evolution of the phase transition front when the stationary front doesn’t exist;

α = 0.1, β = 0.6, Z0 = 0.4, the curves enumerated in correspondence with growing time.

it is seen, that perturbation evolve according to the scenario of evolution of infinitesimal

harmonic perturbations. In the domain St the amplitude of any perturbation decreases

(lines 1, 2, 3, 4), then the amplitude begins to grow (lines 5, 6) in the domain Lo, this

process accelerates until the maximum of the perturbation reaches the line z = 0.

Consider also the case when the front begins to move from the lower boundary of the

low-permeability layer and in the process of its motion it finds itself in the domain S

of short-wave instability before it reaches the equilibrium at z = 0.77 (line b in Fig. 5;

α = 0.44, β = 0.1, Z0 = 0.95). The coordinate of the equilibrium position corresponds

to the point on that lower branch curve’s part which lies in the domain S. Evolution

of the plane front of phase transition is shown in Fig. 10. The amplitude of the initial

perturbation (line 1) decreases while approaching to the equilibrium point z = 0.77 (lines

2,3,4,5). However, short wave disturbances appear and play the dominant role in the front

surface evolution after deceleration of the front (line 6).

If the front locates in the domain of long-wave instability Lo, then it dynamics can

be modeled numerically, and uncontrolled disturbances are absent. For example, for

α = 0.03, β = 0.6, the unstable branch of the bifurcation curve entirely lies in the domain

Lo (Fig. 5, line 3). For α = 0.03 the unstable equilibrium position locates at z = 0.0876,

and the stable equilibrium position locates at z = 0.342. These equilibrium positions are

given in Fig. 11 by lines 7 and 8, correspondingly.

We choose the initial front location Z0 = 0.125 between lines 7 and 8 in Fig. 11. This

front location corresponds to the scenario Lo → St . The form of the initial perturbation

is shown in Fig. 11 by line 1. In this case the character of its evolution qualitatively
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Figure 10: Evolution of the phase transition front for α = 0.44, β = 0.1, Z0 = 0.95 (line

b in Fig. 5). The curves enumerated in correspondence with growing time.

corresponds to results for infinitesimal harmonic perturbations. The dependence of the

front coordinate on time is shown in Fig. 12. The front moves in the direction of the stable

equilibrium, at first the amplitude of perturbations grows (Fig. 12, lines 2 and 3 ) because

the initial “effective” wave-length exceeds the threshold value for long-wave instability,

and then decreases as the front tends asymptotically to the stable equilibrium (Fig. 12,

lines 2 and 3).

Let us increase then the initial amplitude of the perturbation in such a way that

some part of the perturbed front lies above the unstable equilibrium as shown in Fig. 13,

line 1. In this case the perturbation directed upstairs begins to grow and the plane

part of the front moves downstairs as in the previous case. However, the amplitude of

the perturbation grows faster than the plane part of the front moves downstairs. As a

result some part of the perturbation of the front (line 4 in Fig. 13) reaches the domain of

instability U shown by line 9 in Fig. 13. Note, that the front, as in the previous example,

moves according to the scenario Lo → St , but some part of it, containing the maximum

of the perturbation directed above, moves in the opposite side and gets from the domain

Lo to the domain U .

6 Conclusion and Discussion

We considered here dynamics and stability properties of the moving fronts of phase tran-

sition which may arise in vertical flows with phase transition in horizontally extended

domains of the porous medium where the water layer is located above the vapor one.

The processes are considered to be isothermal, the possibility of this for the problem in

question is justified in the sec. 2 of the present paper. We find out that dynamics behavior
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Figure 11: Evolution of the phase transition front for α = 0.03, β = 0.6, Z0 = 0.125. The

curves enumerated in correspondence with growing time; lines 7 and 8 correspond to the

unstable and stable equilibria, respectively.

of the phase transition fronts are in some sense governed by bifurcation diagrams of the

stationary fronts, namely, if the stable branch of the bifurcation curve exists for given

parameters it serves as an attractor for moving fronts. If it doesn’t exist (when we are to

the right of the turning point) then the moving front tends to move upstairs and reaches

the upper boundary of the layer at finite time.

The stability properties of small perturbations of the plane moving front of phase

transition are also connected with the parameter domains of stability/instability St, Lo, S,

U of stationary plane fronts, namely, the perturbations are subjected to either stability, or

instability if the moving front locates in the respective domain. Note, that the boundaries

of the domains St , Lo, S and U in the (r, Z) plain are determined only by the quantity

r = α/β; i. e., either decrease or increase of the perturbations depends not on α and β

themselves, but on their ratio. Each of these dimensionless parameters is proportional

to g−1, therefore the parameter r does not depend on gravity. Thus, the character of

evolution of perturbations of the surface of phase transition fronts (but not the direction

of the motion of the front as a whole) depends only on the processes of diffusion and

filtration under action of the pressure gradient, but not on gravity.

We also study numerically the dynamics of finite localized perturbations. It is seen

from Fig. 9 that such perturbations evolve according to the scenario of evolution of in-

finitesimal harmonic perturbations. The different speed of variation of amplitude of dis-

turbances propagating up and down and also the increase of ”effective” length of the

disturbance would be referred to nonlinear effects.

In Fig. 10 growth of short-wave perturbations has an uncontrolled character. When

the size of the mesh is modified the wave length of these perturbations and the rate of
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Figure 12: Dependence of the coordinate of the phase transition interface Za (line 1) and

amplitude of perturbations (lines 2,3) on time; α = 0.03, β = 0.9, Z0 = 0.125. Line 2

corresponds to the perturbation directed upstairs, and line 3 - downstairs.

growth of their amplitude will be different. This instability of numerical solution is the

result of violation of the causality condition for very short perturbations. However, the

process of damping of the long-wave perturbation can be correctly computed only until

the amplitude of short-wave perturbations is much smaller than that one of long-wave

perturbations. If the lower branch of the bifurcation curve entirely lies in the domain

St , (lines 3 and 4 in Fig. 5) or at least the attracting equilibrium lies in the domain St

(for line 5 in Fig. 5 it is a part of the lower branch, lying to the left from point D), then

short-wave perturbations are not developing as the front moves; in this case they do not

prevent the computation.

Fig. 12 shows that the nonlinearity becomes apparent in the different growth of per-

turbations propagating upstairs and downstairs: the perturbation directed to the stable

equilibrium position grows slower but decreases faster. In this example all points of the

perturbed front lie strictly between the equilibria, but in Fig. 13 it is not so. From this

figure it is seen that scenarios of evolution obtained from linear analysis for small pertur-

bations are reliable only when the entire front lies in the domains St and Lo.

Short-wave instability develops stronger the shorter the perturbation. Therefore, there

exist the very short waves in the domain U (higher than line 9 in Fig. 13), such that the

horizontal size of a section of the front above line 9 is much longer than these pertur-

bations. So it can be treated as the base flow in the U , and the perturbations of this

section can grow infinitely fast. Development of uncontrolled short-wave perturbations

particularly visible on lines 5 and 6. In other words, if we want the numerical modeling

in the case when the front doesn’t lie entirely in the domains St or Lo to give the reliable

picture of development of perturbations the governing equations have to be changed.
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Figure 13: Evolution of the phase transition front for α = 0.03, β = 0.9, Z0 = 0.125.

The curves enumerated in correspondence with growing time, line 7 corresponds to the

unstable equilibrium position, and line 9 to the boundary of the domain of instability U .

In the paper we find that the configuration in question is always stable for

wettable media, and it can be unstable for the non-wettable one. Usually, the

water is the wetting phase in the majority of air-water-natural rock systems.

Yet, if the permeability rock contains coal particles, (for example, it can occur

in mines) then such a media is non-wetting one for the water. Moreover, for

artificial underground constructions one uses the hydrophobic cement, which

is the non-wettable medium because of special additives.
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