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Abstract

We re-examine the problem of solitary wave propagation in a fluid-filled elastic

membrane tube using a much simplified procedure. It is shown that there always exist

two families of solitary waves with speeds close to those given by the linear dispersion

relation, whether the fluid is initially stationary or not, and that it is not asymptotically

consistent to neglect the axial displacement even in a long-wave approximation. It is

also shown that the solitary wave solution obtained by neglecting higher-order terms

persist for the full system of equations in the sense that the full system has solutions

of the solitary-wave type and each exact solution is uniformly approximated by the

corresponding leading-order solution.

1 Introduction

Nonlinear wave propagation in arteries is a subject that has been much studied over the

past three decades. As a very good approximation, the arterial blood flow can be modeled

as an incompressible viscous or inviscid fluid flowing in a distensible elastic membrane tube.

The linearized governing equations admit dispersive-wave solutions. Thus, when small but

finite amplitude traveling waves are considered in the long wavelength limit, we expect to

see the famous KdV equation, or a modified KdV equation if viscous effects are taken into

account, to emerge as the evolution equation for the wave amplitude. There now exists a

good number of papers devoted to the derivation of the KdV or the modified KdV equation

for arterial blood flows; see, for instance, Johnson (1970), Hashizume (1985), Cowley (1987,

1988), Yomosa (1987), Demiray (1996), Eraby et al. (1992), Demiray (1997), Demiray and

Dost (1998), Antar and Demiray (1999) and the references therein. Various approximations

have been adopted, some are ad hoc and some can be justified as being asymptotically self-

consistent. In particular, we note that Hashizume (1985) and Yomosa (1987) approximated

both the governing equation and the constitutive relation for the membrane, Demiray (1996)
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assumed that the axial displacement in the membrane can be neglected, whereas Demiray

(1997) assumed that the axial displacement was so small that the governing equations can

be linearized in terms of it. Most of these studies assume that the fluid is inviscid, and can

be approximated by a one-dimensional model where the radial velocity and dependence on

the radial variable can be neglected.

The present study is motivated by the results of Epstein and Johnston (2001, hereafter

referred to as EJ) and those of Fu et al (2008, hereafter referred to as FPL), the latter

authors examined the problem of localized bulging/necking in an inflated membrane tube

with a view to model aneurysm formation. Whereas previous studies invariably used a

multiple-scale perturbation procedure to derive the evolution equation, EJ noted that the

problem has a variational formulation and, as a result, found two integrals (conservation

laws) for the governing equations. They showed that solitary waves of finite amplitude can

be determined exactly by a simple numerical procedure. Surprisingly, they did not specialize

their analysis to the case when the speed in each case is close to the corresponding linear

wave speed, thus failing to make a correct connection with the results obtained from a

weakly nonlinear analysis. In fact, they concluded incorrectly, or at least give the reader

the impression, that a solitary wave cannot propagate in a fluid-filled elastic membrane tube

if the fluid is stationary prior to wave propagation. One of the aims of the present study

is to show that when EJ’s formulation is specialized to the case when the speed is close

to a linear wave speed, it does yield a KdV equation, hence guaranteeing the existence of

a solitary wave. To this end, we use the formulation of FPL which can be viewed as an

improved variation of EJ’s original formulation. By deriving the KdV equation explicitly,

first for the case when axial displacement is fully taken into account and then for the case

when it is neglected, we shall show that it is asymptotically inconsistent to neglect the axial

displacement, even in the long-wave approximation. This has previously been pointed out

by EJ, but their comparison was not made for the long-wave case and the reader was still

left to wonder whether the axial displacement might be neglected in the long-wave limit.

Our above-mentioned result serves to resolve this uncertainty.

The rest of this paper is organized into five sections as follows. In the next section,

we quote the governing equations and the associated integrals, and rewrite them in a more

simplified form. The linear dispersion relation is noted down for later reference. We then

apply, in Section 3, the procedure of FPL to derive a single amplitude equation of the form
(

dw

dZ̄

)2

= ω(c, λ)w2 + γ(c, λ)w3 + O(w4) (1.1)

for the radial displacement w, where Z̄ = Z − ct, Z is the axial coordinate, c is the wave

speed, λ is a measure of the pre-stress, and ω(c, λ) and γ(c, λ) have a explicit expression for

a general strain-energy function. For each fixed λ, ω(c, λ) = 0 gives the dispersion relation;

whereas when c = 0 and the fluid is stationary, ω(0, λ) = 0 gives the bifurcation condition for

the onset of localized bulging/necking, which connects with the analysis of FPL. In a small
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neighborhood of a linear speed, c1 say, the full amplitude equation can then be approximated

by
(

dw

dZ̄

)2

= (c − c1)
∂

∂c
ω(c1, λ)w2 + γ(c1, λ)w3, (1.2)

the derivative of which is then the KdV equation specialized to a traveling wave.

In Section 4, we compare (1.1) with its counterpart when the axial displacement is ne-

glected. In the final section, we establish the persistence by proving that the solitary wave

solution given by (1.2) is indeed a uniformly valid approximation of the full solution governed

by (1.1).

2 Governing equations and the dispersion relation

We consider propagation of nonlinear traveling waves in an infinite fluid-filled membrane

tube of averaged radius R and thickness H in its unstressed configuration, assuming that

the tube is made of an incompressible hyperelastic material and always maintains its axi-

symmetry. We assume that prior to wave propagation, the tube is already subjected to

a finite deformation with principal stretches λ1∞ and λ2∞ in the axial and circumferential

directions, respectively, and the fluid has constant speed v̂f∞ and exerts a constant pressure

Hp∞ on the tube wall (where H is inserted to simplify the notation later). We use Z

to measure distance in the axial direction in the unstressed configuration, and w(Z, t) and

u(Z, t) to denote the incremental displacement in the axial and radial directions, respectively.

Thus, the position vector of a material particle in the tube in the current configuration has

the form

r = r(Z)er + z(Z)ez, with r = λ2∞R + w, z = λ1∞Z + u, (2.1)

where er and ez are unit vectors in the radial and axial directions, respectively.

Since the deformation is axially symmetric, the principal directions of stretch coincide

with the meridians (1-direction), the lines of latitude (2-direction), and the normal to the

deformed surface. Thus, the principal stretches are given by

λ1 =
√

z′2 + r′2, λ2 =
r

R
, λ3 = 1/(λ1λ2), (2.2)

where a prime denotes differentiation with respect to Z. The principal Cauchy stresses

σ1, σ2, σ3 in the deformed configuration for an incompressible material are given by

σi = λiŴi − p̂, i = 1, 2, 3 (no summation), (2.3)

where Ŵ = Ŵ (λ1, λ2, λ3) is the strain-energy function, Ŵi = ∂Ŵ/∂λi, and p̂ is the pressure

associated with the constraint of incompressibility; see, for instance, Ogden (1997). Utilizing

the incompressibility constraint λ1λ2λ3 = 1 and the membrane assumption σ3 = 0 we find

σi = λiWi, i = 1, 2 (no summation), (2.4)
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where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc. Without loss of generality, we

from now on take R = 1.

The governing equations for u and w can be obtained from exact field equations of general

nonlinear shell theory, see, for instance, Budiansky (1968), but EJ gave a very readable self-

contained derivation. We quote their results and rewrite them in the form

[

σ1
z′

λ2
1

]

′

− pλ2r
′ = ρü, (2.5)

[

σ1
r′

λ2
1

]

′

−
σ2

r
+ pλ2z

′ = ρẅ, (2.6)

where p is the fluid pressure divided by the wall thickness H and a superimposed dot denote

differentiation with respect time t. With the fluid assumed to be inviscid and the fluid flow

to be one-dimensional, EJ showed that for traveling waves with speed ĉ the fluid equations

can be integrated exactly, leading to the following simple expression for the scaled pressure:

p = p∞ + vf(1 − λ4
2∞/λ4

2), vf =
ρf

2H
(λ1∞ĉ − v̂f∞)2, (2.7)

where ρf is the density of the fluid. In view of the fact that the cross-section area is A = πλ2
2,

this relation is simply a quadratic pressure-area law.

Linearizing the governing equations (2.5) and (2.6) in the neighborhood of

λ1 = λ1∞, λ2 = λ2∞, u = w = 0,

and then looking for a traveling wave solution with wave number k̂ and speed ĉ, we obtain

the linear dispersion relation

(

k2m2 + 2m
)

c4 − 4mvf∞c3 −
(

mα0k
2 + mγ1k

2 − 2mv2
f∞ − mβ0 + mβ1 + 2γ1

)

c2

+4vf∞γ1c − (α1 − β0)
2 − 2v2

f∞γ1 + k2α0γ1 − β0γ1 + β1γ1 = 0, (2.8)

where

c =
λ1∞

c0
ĉ, c0 =

√

µh

ρfr0
, m =

ρh

ρfr0
, vf∞ =

v̂f∞

c0
, k =

λ2∞

λ1∞
k̂, (2.9)

µα0 = λ1∞W
(∞)
1 , µα1 = λ1∞λ2∞W

(∞)
12 , µβ0 = λ2∞W

(∞)
2 ,

µβ1 = λ2
2∞W

(∞)
22 , µγ1 = λ2

1∞W
(∞)
11 , µα2 =

1

2
λ1∞λ2

2∞W
(∞)
122 , (2.10)

µβ2 =
1

2
λ3

2∞W
(∞)
222 , µγ2 =

1

2
λ2

1∞λ2∞W
(∞)
112 , µγ3 =

1

2
λ3

1∞W
(∞)
111 .

In the above expressions, r0(= λ2∞R = λ2∞) and h are respectively the radius and thickness

of the tube prior to wave propagation, µ is a typical material modulus, and the superscripts

(∞) on the W’s signify evaluation at λ1 = λ1∞, λ2 = λ2∞. In defining the constants in (2.9)

and (2.10) we have followed the scheme of Demiray and Dost (1998).
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When the fluid is stationary prior to wave propagation, corresponding to vf∞ = 0, the

dispersion relation (2.8) reduces to

(

k2m2 + 2m
)

c4 −
(

mα0k
2 + mγ1k

2 − mβ0 + mβ1 + 2γ1

)

c2

−(α1 − β0)
2 + k2α0γ1 − β0γ1 + β1γ1 = 0. (2.11)

For k ≪ 1, we look for a series solution of the form

c = g(1 − σk2) + O(k4), (2.12)

where g and σ are constants. On substituting (2.12) into (2.11) and equating the coefficients

of k0 and k2 to zero, we find that g satisfies

2mg4 + (mβ0 − mβ1 − 2γ1) g2 + (β1 − β0)γ1 − (α1 − β0)
2 = 0, (2.13)

and σ is given by

σ =
m2g4 − (mα0 + mγ1)g

2 + α0γ1

2g2 (4mg2 + mβ0 − mβ1 − 2γ1)
. (2.14)

Demiray and Dost (1998) derived a dispersion relation by treating the fluid flow as being

two-dimensional and assuming that the flow is stationary prior to wave propagation. As

expected, our leading order result (2.13) agrees with their result, but their expression for σ

takes the slightly different form

σ =
(m2 + m/4)g4 − (mα0 + γ1/4 + mγ1)g

2 + α0γ1

2g2 (4mg2 + mβ0 − mβ1 − 2γ1)
. (2.15)

The extra terms in (2.15) are from dependence of fluid flow on the radial variable and can

be seen to be negligible in the limit m ≫ 1.

3 Solitary-wave solutions

For a traveling-wave solution in which the dependence on Z and t is through Z − ct, EJ

showed that (2.5) and (2.6) have two integrals (conservation laws). After some manipulation,

we find that their original integrals can be rewritten in the simpler form

W (λ1, λ2) − λ1W1 +
1

2
ρc2λ2

1 = C1, (3.1)

(W1/λ1 − ρc2)z′ −
1

2
λ2

2

{

p∞ + vf(1 + λ4
2∞/λ4

2)
}

= C2, (3.2)

where the two constants C1 and C2 each take the value of the corresponding left hand side

evaluated at ±∞. Here and hereafter, dependent variables are all functions of Z − ct, a

prime now denotes differentiation with respect to Z−ct, and we shall use Z to denote Z−ct

to avoid introducing extra notation.
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The above conservation laws with c = 0 are well-known in the finite elasticity community:

the conservation law (3.2) can be obtained by straightforward integration of (2.5); the other

conservation law (3.1) was first noted by Pipkin (1968).

We observe that the two equations (3.1) and (3.2) may be rewritten as

f(λ1, λ2) = 0, z′ = g(λ1, λ2), (3.3)

where

f = W (λ1, λ2) − λ1W1 +
1

2
ρc2λ2

1 − C1,

g = (W1/λ1 − ρc2)−1

{

1

2
λ2

2

{

p∞ + vf(1 + λ4
2∞/λ4

2)
}

+ C2

}

.

Equations (3.3) are of the same form as those studied by FPL. We may thus follow these

authors’ methodology and derive the amplitude equations as follows. Firstly, we write

λ2 = λ2∞ + w, (3.4)

and assume |w| to be small. Equation (3.3)1 then defines λ1 as a function of w implicitly.

This function can be expanded as

λ1 = 1 + d1w +
1

2
d2w

2 + O(w3), (3.5)

where the coefficients d1, d2 etc can be obtained by substituting (3.4) and (3.5) into the left

hand side of (3.3)1, expanding in terms of w, and then equating the coefficients of w0, w, w2,

etc to zero. This can easily be carried out using a symbolic manipulation package such as

Mathematica. Next, we substitute (3.4) and (3.5) into (3.3)2 and expand in terms of w to

obtain

z′ = 1 + g1w +
1

2
g2w

2 + O(w3), (3.6)

where g1 and g2, are constants with known expressions. Finally, on substituting (3.4)–(3.6)

into (2.2)1 and again expanding in terms of w, we arrive at the amplitude equation

(w′)
2

= ω(c, λ)w2 + γ(c, λ)w3 + O(w4), (3.7)

where

ω(c, λ) =
(−(α1 − β0)

2 + β0 (mc2 − γ1) + (2 (c − vf∞) 2 − β1) (mc2 − γ1))λ2
1∞

(mc2 − α0) (mc2 − γ1) λ2
2∞

,

3 (mc2 − α0)
2 (γ1 − mc2) 3λ3

2∞

λ2
1∞

· γ(c, λ) = 6m4v2
f∞c8 + 2m4β2c

8 + 3m3β2
0c

6

+6m3ṽf∞β0c
6 − 6m3α2β0c

6 − 18m3ṽf∞γ1c
6 − 6m3β2γ1c

6 + 18m2ṽf∞γ2
1c

4 + 6m2β2γ
2
1c

4

−3m2β2
0γ1c

4 − 6m2ṽf∞β0γ1c
4 + 12m2α2β0γ1c

4 − 3m2β0β1γ1c
4 + 6m2β2

0γ2c
4 − 6mṽf∞γ3

1c
2

−2mβ2γ
3
1c

2−3mβ2
0γ

2
1c

2−6mṽ2
f∞β0γ

2
1c

2−6mα2β0γ
2
1c

2+6mβ0β1γ
2
1c

2−3mβ3
0γ1c

2−6mβ2
0γ1γ2c

2
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−2mβ3
0γ3c

2 + mα3
1

(

3mc2 − 3γ1 + 2γ3

)

c2 + 3β2
0γ

3
1 + 6ṽf∞β0γ

3
1 − 3β0β1γ

3
1 + 3β3

0γ
2
1

−3α1

(

−2mα2

(

γ1 − mc2
)

2c2 + m (4ṽf∞ − β1)
(

γ1 − mc2
)

2c2

+2mβ0

(

mc2 − γ1

) (

mc2 − γ1 + 2γ2

)

c2 − β2
0

(

m2c4 + mγ1c
2 + 2mγ3c

2 − 2γ2
1

))

+α2
1

(

6m
(

mc2 − γ1

)

γ2c
2 + 3β0

(

γ1mc2 − 2m
(

mc2 + γ3

)

c2 + γ2
1

))

+α0

((

−3mc2 + 3γ1 − 2γ3

)

α3
1 +

(

6
(

γ1 − mc2
)

γ2 + β0

(

9mc2 − 9γ1 + 6γ3

))

α2
1

+3
((

−3mc2 + 3γ1 − 2γ3

)

β2
0 + 2

(

mc2 − γ1

) (

mc2 − γ1 + 2γ2

)

β0 − 2α2

(

γ1 − mc2
)

2

+ (4ṽf∞ − β1)
(

γ1 − mc2
)

2
)

α1 − 2 (3ṽf∞ + β2)
(

mc2 − γ1

)

3

−3β0 (4ṽf∞ − 2α2 − β1)
(

γ1 − mc2
)

2 − 6β2
0

(

mc2 − γ1

) (

mc2 − γ1 + γ2

)

+ β3
0

(

3mc2 − 3γ1 + 2γ3

))

.

In the last expression, ṽf∞ = (vf∞ − c)2.

In the limit c → 0, vf → 0, (3.7) reduces to the amplitude equation given by FPL. For

each fixed choice of λ1∞ and λ2∞, the traveling wave problem can be viewed as a bifurcation

problem with the speed c acting as the bifurcation parameter. The bifurcation condition is

given by

ω(c, λ1∞, λ2∞) = 0, (3.8)

which, as expected, is equivalent to the dispersion relation (2.11) for k = 0.

Denote by c1 a solution of (3.8), write ǫ = |c − c1|, and assume ǫ to be small. Equation

(3.7) may be replaced by

(w′)
2

= ωc(c1, λ1∞, λ2∞)(c − c1)w
2 + γ(c1, λ1∞, λ2∞)w3 + O(ǫ2w2, w4), (3.9)

where ωc denotes ∂ω/∂c. Requiring the first three terms in (3.9) to have the same order, we

deduce that w must necessarily be of order ǫ and its variation takes place on a lengthscale

of order ǫ−1/2. Thus, in terms of the new variables ξ and a0 defined by

w = −
2ǫ|ωc|

3γ
a0(ξ), ξ =

√

ǫ |ωc|Z,

equation (3.9) takes the form

(a′

0)
2 = sgn[(c − c1)ωc] a

2
0 −

2

3
a3

0 + O(ǫ), (3.10)

where we have suppressed the dependence of ωc and γ on c1, λ1∞ and λ2∞. It can easily

be shown that provided (c − c1)ωc > 0, this equation, with the O(ǫ) terms neglected, has a

solitary-wave solution given by a0 = b0, where

b0 =
3

2
[cosh

1

2
ξ]−2. (3.11)

We observe that when γ < 0 the solitary wave is a wave of elevation, whereas when γ > 0

the solitary wave is a wave of depression. The sign of ωc determines whether the solitary

wave is supersonic (i.e. c > c1) or subsonic (i.e. c < c1).
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We would have liked to compare the differentiated form of our equation (3.9) with Demi-

ray and Dost’s (1998) equation (46), but it seems that their series expansion (19) is not

self-consistent: γ1(∂w/∂z)2 + (γ1/2)(∂u/∂z)2 should be added to the first expression and

α1(∂w/∂z)2 + (α1/2)(∂u/∂z)2 should be added to the second expression in their equation

(19). We thus decide not to make any comparisons.

4 The role of axial displacement

A very simple model that has been adopted in some previous studies is one in which u and

w
′2 are viewed to be negligible in a small-amplitude and long-wave approximation; see, for

instance, Demiray (1996) and Epstein and Johnston (1999). In this case, we have

λ1 ≡ λ1∞, λ2 = λ2∞ + w. (4.1)

The first term in (2.6) is approximated by

[

σ1
r′

λ2
1

]

′

=
1

λ2
1∞

[σ1w
′]′ =

1

λ2
1∞

(

σ1w
′′ +

∂σ1

∂w
w

′2

)

≈
σ1

λ2
1∞

w′′.

Equation (2.6) is then approximated by

(

σ1

λ2
1∞

− ρĉ2

)

w′′ −
σ2

λ2
+ pλ2λ1∞ = 0. (4.2)

Linearizing this equation in terms of w and taking v̂∞ = 0, we obtain

(α0 − mc2)w′′ + λ2
1∞λ−2

2∞(2c2 + β0 − β1)w = 0, (4.3)

where the various constants are given by (2.9) and (2.10). Thus, taking w to be proportional

to eik̂(Z−ĉt), we obtain the dispersion relation

k2(mc2 − α0) + 2c2 + β0 − β1 = 0, (4.4)

where k is given by (2.9)5. The only way to justify this dispersion relation is to take the

limit m ≫ 1, k ≪ 1 with mk2 = O(1) in (2.11). In this limit, (2.11) can be replaced by

(

k2m2 + 2m
)

c4 −
(

mα0k
2 + mγ1k

2 − mβ0 + mβ1 + 2γ1

)

c2 = 0

or equivalently by

k2(mc2 − α0) + 2c2 + γ1k
2 − β0 + β1 = 0, (4.5)

which agrees with (4.4) if the term γ1k
2, which is small, is dropped from the last equation

(then the term k2α0 should also be dropped from both equations for consistencey). However,

when mk2 = O(1), the correction term σk2 in (2.12) becomes O(1) and the expansion (2.12)
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breaks down. Thus, we conclude that it is not asymptotically consistent to ignore the axial

displacement.

The nonlinear equation in this approximation is given by

w′′ =
λ2

1∞ (2c2 + β0 − β1)

λ2
2∞ (mc2 − α0)

w

−
λ2

1∞ (m (3c2 + β2) c2 + α1 (−2c2 − β0 + β1) − α0 (3c2 + β2))

λ3
2∞ (mc2 − α0) 2

w2 + O(w3). (4.6)

Denoting the linear wave speed
√

(β1 − β0)/2 by ĉ0, expanding the right hand side of (4.6)

in a small neighborhood of c = ĉ0, and then neglecting terms of order (c − ĉ0)
2w or w3, we

obtain

w′′ = −
4
√

2(β1 − β0)λ
2
1∞

λ2
2∞ (2α0 + m (β0 − β1))

(c − ĉ0) w −
λ2

2∞ (3β0 − 3β1 − 2β2)

λ3
2∞ (2α0 + m (β0 − β1))

w2. (4.7)

This reproduces Demiray’s (1996) equation (34) which was derived using a multiple-scale

expansion.

5 Persistence of the solitary wave solutions

From now on we assume that (c− c1)ωc > 0. On differentiating (3.10) with respect to ξ, we

obtain

M(a0) ≡ a′′

0 − a0 + a2
0 + p(ε, a0) = 0, (5.1)

where p(ε, a0) = O(ε). Equation (5.1) is obviously reversible, that is, it is invariant under

the action of the group

a′′

0 → a′′

0, a′

0 → −a′

0, a0 → a0.

This reversibility means that we may restrict ourselves to the case when a0 is an even

function. We have the following result:

Lemma (Iooss & Kirchgässner 1992): For a small enough ε0 and ε ∈ (0, ε0] there exists a

family of solitary wave solutions a satisfying equation (5.1). Moreover,

|a − b| ≤ Cε exp(−λ|ξ|),

where C, λ are constants, and C > 0, 0 < λ < 1.

Proof. We first define the Banach functional spaces

Ce
λj =

{

f0 ∈ Cj(R) : sup
ξ

| exp(λ|ξ|)f
(m)
0 < ∞, j = 0, 1, 2; m ≤ j; f0(ξ) = f0(−ξ)

}

.

It is evident that b0 ∈ Ce
1,2.
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Let M : Ce
λ,2 → Ce

λ,0, where λ < 1. From the implicit function theorem the existence

and uniqueness of a0 ∈ Ce
λ,2, ε ∈ (0, ε0] and satisfying the equation (5.1) will follow, if the

operator

L =
∂M

∂a0
(ε, b0)

∣

∣

ε=0
: Ce

λ,2 → Ce
λ,0

has a bounded inverse. The proof of the first part of the assertion of the lemma is, therefore,

reduced to the demonstration of this fact.

It can be easily seen that

L =
d2

dξ2
− 1 + 2b0,

and the inverse exists if and only if the equation

Lf = g (5.2)

has a unique solution for any g ∈ Ce
λ,0. The solvability of (5.2) follows from the following.

The homogeneous equation Lv = 0 has no solutions in Ce
λ,2. In fact, the solution v1 = ∂ξb0

is an odd one, and the linearly independent solution v2 = c1v1 + c2v1

∫

w−2
1 (ξ)dξ is an even

function (if the constants c1 and c2 are chosen so that v2(0) = 1 and v′

2(0) = 0), but the

increasing one. It follows, that the solution of (5.2) is unique if exists.

The required solution of the equation (5.2) is given by the formula

v = v2

∞
∫

y

v1g dy + v1

y
∫

0

v2g dy. (5.3)

Moreover, it follows from (5.3) that ||v||Ce
λ,2

≤ C||g||Ce
λ,0

, where C > 0 is a constant.

The first part of the assertion of the lemma is, therefore, proved. We next write the

solution of the equation (5.1) in the form a0 = b0 + b̂0. The function b̂0 obeys the equation

Lb̂0 = D
(

ε, b̂0, b̂
′

0, ξ
)

,

where D(·) = O(ε, b̂2
0, b̂

′2
0 ). Consequently

||b̂0||Ce
λ,2

≤ ||L−1|| · ||D
(

ε, b̂0, b̂
′

0, ξ
)

||Ce
λ,0

,

from where the assertion of the lemma concerning the norm follows immediately.

We have proved that the family of solitary wave solutions a0 exists and is unique for small

enough amplitudes. Returning to the unscaled variables, we conclude that the fluid-filled

membrane tube supports a unique family of solitary wave solutions bifurcating from the

trivial solution at each linear wave speed.
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