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Abstract

It is now well-known that when an infinitely long hyperelastic membrane tube free
from any imperfections is inflated, a transcritical-type bifurcation may take place that
corresponds to the sudden formation of a localized bulge. When the membrane tube
is subjected to localized wall-thinning, the bifurcation curve would “unfold” into the
turning-point type with the lower branch corresponding to uniform inflation in the
absence of imperfections, and the upper branch to the larger amplitude bifurcated
states. In this paper stability of bulged configurations corresponding to both branches
is investigated with the use of the spectral method. It is shown that under pressure
control and with respect to axi-symmetric perturbations, configurations corresponding
to the lower branch are stable but those corresponding to the upper branch are unstable.
To establish instability, we demonstrate the existence of an unstable eigenvalue (an
eigenvalue with a positive real part). This is achieved using a construction of the
Evans function that depends only on the spectral parameter. This function is analytic
in the right half of the complex plane and has there zeroes coinciding with an unstable
eigenvalue of the generalized spectral problem governing spectral stability/instability.
We show that due to the fact that the skew-symmetric operator J involved in the
Hamiltonian formulation of the basic equations is onto, the zeroes of the Evans function
can only be located on the real axis of the complex plane. We also establish a connection
between the spectral problem governing spectral (linear) stability and the one governing
nonlinear (Lyapunov) stability.

1 Introduction

Our present study is closely related to studies of solitary waves in hyperelastic membrane

tubes; for a review of the relevant literature we refer to [1]. On the one hand, a static
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localized bulge can be viewed as a solitary wave that has zero propagation speed, the zero

speed being induced by the internal pressure in the membrane tube. On the other hand,

solitary waves may play an important role in interrogating the health status of arteries (e .g.

presence of an aneurysm) through signal processing [2]. The present study is also part of our

recent research effort exploring the postulate that initiation of aneurysms is a bifurcation

phenomenon [5]. This postulate is motivated by two main results. Firstly, assuming that

the artery is axisymmetric and homogeneous in the sense that the initial value of its wall

thickness H is a constant, a localized bulge can form when the internal pressure reaches a

certain critical value [3]. Secondly, when imperfections such as localized wall weakening is

introduced, the bifurcation pressure may fall to within the physiologically possible range [4].

Identifying an aneurysm with a static localized bulge implies that this configuration must

be stable since otherwise it cannot be observed. It was found that in the homogeneous case

although internal fluid inertia would reduce the growth rate of the single unstable mode

significantly, it alone cannot stabilize the unstable mode completely [6]. The stabilization of

the exponential growth of the aneurysm solution takes place in the presence of a non-zero

mean flow, but in this case the standing bulging configuration may gain a non-zero speed,

and we can speak only about orbital stability or stability in form[8]. This occurs due to

translational symmetry of the problem as a whole.

When wall weakening is introduced, the problem in question is no longer invariant under

translations, and in this case we may speak about the usual stability of the standing con-

figuration. In this paper we investigate the stability of bulging configurations corresponding

to both branches of the bifurcation curve. In the absence of any imperfections, the lower

branch would correspond to uniform inflation whose stability has previously been studied

by Shield [15], Haughton & Ogden [17], and Chen [16], and the upper branch would corre-

spond to large amplitude bifurcated solutions whose instability has recently been established

by Fu and Xie [18]. Our stability analysis is made by construction of the Evans function,

depending only on the spectral parameter. The function is analytic in the right half of the

complex plane and has there zeroes coinciding with unstable eigenvalues. We demonstrate

that the zeroes of the Evans function can be located only on the real axis of the complex

plane. Therefore, we need to establish behavior of this function only on the real axis which

is technically possible, and based on this behavior make the conclusions not only about

spectral instability of the bulging configurations under consideration, but also about its sta-

bility. In other words, absence of zeroes of the Evans function on the real axis implies linear

stability of the aneurysm solution. Moreover, the correspondence of the spectrum of the

related spectral problem in linear stability analysis to that one in the Lyapunov (nonlinear)

stability analysis is established. The spectrum η of the linearized problem is related to the

spectrum −α of the Hessian of the energy via the relation α = ρη2, where ρ is the density

of an elastic material of the tube. Therefore, with the Hessian being a self-adjoint operator,

η can have only real and purely imaginary values, the last corresponding to the continuous
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spectrum. Linear instability is governed by the presence of a discrete spectrum.

The rest of the paper is divided into four sections as follows. After presenting the Hamil-

tonian form of the governing equations and some constitutive assumptions we discuss in

Section 3 the construction of fully nonlinear bulging (aneurysm) solutions. We present the

bifurcation diagram, reflecting the appearance of the standing bulging solutions, and also the

third order dynamic system to be solved numerically to obtain the fully nonlinear bulging so-

lutions. This is then followed by Section 4 where we discuss properties of the related spectral

problems in linear and nonlinear stability approach and their correspondence. We construct

the Evans function for both branches of the bifurcation diagram and examine its behavior

on the real axis of the right half of the complex plane. According to the existence or absence

of its zeroes conclusions about linear instability or stability of the aneurysm solutions in

question are made. The paper is concluded in Section 5 with further discussions.

2 Formulation

We consider the inflation of a cylindrical membrane tube that is assumed to be incompress-

ible, isotropic, and hyperelastic. In its undeformed configuration, the tube wall has thickness

H that is not necessarily a constant, but the average of its outer and inner radii, hereafter

referred to simply as the radius R, is a constant. The tube is assumed to be infinitely long,

and end conditions are imposed at infinity. We use cylindrical coordinates, and undeformed

and deformed configurations are described by coordinates (R, Θ, Z) and (r, θ, z), respectively.

We assume that the axisymmetry is maintained throughout the entire deformation, and so

the deformation has the general form r = r(Z, t), θ = Θ, z = z(Z, t). The principal directions

of the deformation correspond to the lines of latitude, the meridian and the normal to the

deformed surface, and the principal stretches are given by

λ1 =
r

R
, λ2 = (r′2 + z′2)

1
2 , λ3 =

h

H
, (2.1)

where a prime represents differentiation with respect to Z, and h denotes the deformed

thickness.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration for an incompress-

ible material are given by

σi = λiŴi − p, i = 1, 2, 3 (no summation), (2.2)

where Ŵ = Ŵ (λ1, λ2, λ3) is the strain-energy function, Ŵi = ∂Ŵ/∂λi, and p is the pressure

associated with the constraint of incompressibility. Utilizing the incompressibility constraint

λ1λ2λ3 = 1 and the membrane assumption of no stress through the thickness direction σ3 = 0,

we find

σi = λiWi, i = 1, 2 (2.3)
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where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc. [17].

In our numerical illustrations, we shall assume that the membrane material is described

by the Ogden strain-energy function

Ŵ =
3∑

r=1

µr(λ
αr
1 + λαr

2 + λαr
3 − 3)/αr, (2.4)

where

α1 = 1.3, α2 = 5.0, α3 = −2.0, µ1 = 1.491, µ2 = 0.003, µ3 = −0.023

are material constants given by Ogden [10], and the µ’s have been scaled by the ground state

shear modulus.

We consider the pressure controlled case when the inner pressure P is prescribed. The

total energy of the configuration is E = K + Π, where K is the kinetic energy given by

K =
1

2

L∫

−L

ρ(ṙ2 + ż2)2πRH dZ,

and Π is the potential energy which is the sum of the strain energy and the potential energy

of pressure:

Π =

L∫

−L

W (λ1, λ2)2πRH dZ − P

L∫

−L

πr2z′ dZ.

In the above expressions the superimposed dot denotes differentiation with respect to time

and L is the length of the tube in the undeformed configuration (which will eventually be

taken to be infinite). The Hamiltonian, therefore, has the form

E(q1, q2, v1, v2)=
1

2

∞∫

−∞

{
ρR(v2

1+v2
2)+2R

(
W (λ1, λ2)−W (∞)

)
H−P

[
q2
1

H

(
q2√
H

)′
−r2

∞z∞

]}
dZ,

(2.5)

where q1 =
√

Hr, q2 =
√

Hz, v1 =
√

Hṙ, v2 =
√

Hż, W (∞) is the value of the strain-energy

function W at infinity where λ1 = r∞, λ2 = z∞. Here the constants are chosen such that

the integral in (2.5) is convergent for (r − r∞, z′) exponentially decaying at infinity.

Employing R as the unit of length, we may put R in (2.5) to unity throughout this paper.

If we denote u = {q1, q2, v1, v2}>, the equations of motion in the pressure controlled case

may be written formally as a Hamiltonian dynamical system

du

dt
= J δE

δu
, with J =

1

ρ




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


 , (2.6)
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and δ/δu denotes variational derivative. It can easily be verified that equation (2.6) is

equivalent to the more familiar form [12]

ρr̈ =
1

H

(
HW2r

′

λ2

)′
+

P

H
rz′ −W1,

ρz̈ =
1

H

(
HW2z

′

λ2

)′
− P

H
rr′. (2.7)

Taking the limit Z →∞ in the first equation (2.7), we obtain

P =
H(∞)W

(∞)
1

r∞z∞
, (2.8)

where superscript (∞) denotes evaluation at Z = ∞. We shall focus on the situation of an

open-end membrane tube with fixed axial stretch z∞; this models the state of arteries. The

azimuthal stretch r∞ can then be used as the control parameter in our bifurcation analysis,

with the associated pressure calculated according to (2.8).

3 Weakly and fully nonlinear bulging solutions

The weakly nonlinear localized bulging solution has an amplitude of order ε, where ε is a

small enough dimensionless quantity. As in [4] we assume that the variable thickness H has

the form

H = H(∞)
(
1 + ε2h(ξ)

)
, ξ = εZ, h(±∞) → 0,

where H(∞) is the constant wall thickness at infinity and the function h(ξ) is to be prescribed.

It was shown in [4] that if r− r∞ = εy(ξ) for weakly nonlinear solutions (small ε), y must

satisfy the differential equation

d2y

dξ2
= ω′crr1y +

3

2
γcry

2 + ζh(ξ), (3.1)

where r1 is defined by r∞ = rcr + εr1, r∞ = rcr is the critical value at which a bulge will

initiate without any imperfections), ω′cr = dω(rcr)/drcr, γcr = γ(rcr), and explicit expressions

for ω(r∞), γ(r∞) and ζ in terms of the strain-energy function can be found in [3], [1] and

[4], respectively. In [4] several classes of h(ξ) are considered for which (3.1) has closed-form

solutions. In particular, if h(ξ) takes the form

h(ξ) =
3

2
d1y

2, (3.2)

where d1 is a constant, then (3.1) has an explicit localized solution given by

y = − ω′crr1

γcr + ζd1

sech2(
1

2

√
ω′crr1ξ). (3.3)
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Denoting h(0) by h0, we have

h0 =
3

2
d1y

2
1(0) =

3d1(ω
′
crr1)

2

2(γcr + ζd1)2
,

which can be solved to express d1, and hence h(ξ) and y1(ξ), in terms of h0. We then obtain

r0 − r∞ = εy1(0) = −ω′cr · (r∞ − rcr)

2γcr

[
1±

√
1− 8γcrh0ζε2

3ω′2cr(r∞ − rcr)2

]
. (3.4)

Plotted on the (r∞, r0−r∞)-plane, the above expression describes a parabola opening to the

left when γcrh0ζ > 0. The turning point (i.e. the nose of the parabola), beyond which no

localized solutions can exist, corresponds to

r∞ = rcr + 2

√
2

3
· ε
√

γcrζh0

ω′cr
. (3.5)

For the Ogden material model and in the open end case with z∞ = 1, we have

ζ = 2.0328, rcr = 1.6873, ω′cr = −3.2329, γcr = −1.3369.

Thus, the expression (3.5) is real only for the wall-thinning case (i.e. h0 < 0), and its

right hand side is less than rcr by an amount that is proportional to the square root of the

imperfection amplitude H∞ − H(0). This reflects the square root law for the imperfection

sensitivity of this type of elastic localizations [4].

Although the particular choice of the wall thinning profile (3.2) leads to an exact solution

that enables us to see explicitly how the bifurcation diagram unfolds from the perfect case,

this profile is actually dependent on r1 and hence on the value of r∞. In our subsequent

calculations, we shall consider the r∞-independent profile

H(Z) = H∞(1− 0.05 sech4Z). (3.6)

The associated bifurcation diagram is obtained as follows. First, the equilibrium solutions

can be obtained from (2.7) and may be written in the form (see, e.g., [4])

λ′1 = λ2 sin φ,

λ′2 =
W1 − λ2W12

W22

sin φ− H ′W2

W22

, (3.7)

φ′ =
W1

W2

− Pλ1λ2

HW2

,

where φ is the angle between the meridian and the Z-axis so that r′ = λ2 sin φ, z′ = λ2 cos φ.

We also note that (2.7)2 in the static case can be integrated once to give

HW2z
′

λ2

− 1

2
Pr2 = C1, (3.8)
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where the integration constant C1 can be determined by evaluating the left hand side at

∞. The (symmetric) localized bulging solutions can then be determined by integrating the

system (3.7) from Z = 0 towards ∞ subject to the initial conditions

λ1(0) = r0, λ2(0) = z′0, φ(0) = 0,

where r0 is to be guessed in our shooting procedure, and the constant z′0 is related to r0 by

f(r0, z
′
0) ≡ H(0)W2(r0, z

′
0)−H(∞)W (∞) − 1

2
P (r2

0 − r2
∞) = 0, (3.9)

obtained from the integral (3.8). The solvability of (3.9) for z′0 is guaranteed by the fact that

∂f/∂z′0 = H(0)W22(r0, z
′
0) > 0, whose satisfaction is verified numerically (this can also be

made as a constitutive assumption, see, e.g., [17]). Thus, for each specified r∞ and a guess

for r0, we solve (3.9) numerically to find the corresponding z′0. We iterate on r0 so that the

decay condition [4]

r′(L) +
√

ω(r∞)(r(L)− r∞) = 0 (3.10)

is satisfied for a sufficiently large positive number L. In Figure 1, we have shown the

dependence of r(0) − r∞ on r∞ corresponding to the wall thickness profile (3.6). It is seen

that it has a similar form to the one given by the analytical expression (3.5). We also

observe that the upper branch very quickly approaches its counterpart in the absence of

imperfections. This means that large amplitude bulged solutions do not feel the presence of

the initial wall-thinning, the main effect of the latter is to reduce the bifurcation value of

r∞.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
aa

0.5

1.0

1.5

2.0

2.5

3.0
bb

PSfrag replacements

r0 − r∞
r∞

Figure 1: Dependence of r(0) − r∞ on r∞ when the wall thickness is given by (3.6) (dark dots).
The corresponding result when the wall thickness is uniform is given by the dashed line. The main
effect of localized wall thinning is to reduce the bifurcation value of r∞ from 1.687 to 1.576 (a 6.6%
reduction); it has a negligible effect on large amplitude bulged solutions.
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4 Stability analysis

First we consider linear stability of the bulging solutions (q1(Z), q2(Z)) determined in the

previous section subject to axisymmetric perturbations. We thus write

q1(Z, t) = q1(Z) + Ψ(Z) eηt, q2(Z, t) = q2(Z) + Φ(Z) eηt (4.1)

where the mode functions Ψ(Z), Φ(Z) and the growth rate η are to be determined. On

substituting expressions (4.1) into Eq. (2.7), and linearizing, we find

LB = ρη2B, with B = {Ψ, Φ}T , (4.2)

where the differential operator L is not written out for brevity.

As the aneurysm solution is a stationary solution, we have

DE(φ) ≡ δ

δu
E(φ) = 0

where φ = {q1, q2, 0, 0}T denotes the aneurysm solution. The Hessian of E evaluated at the

aneurysm solution is

H = D2E(φ) =

(
−L 0

0 ρI

)
, (4.3)

where I is the 2 × 2 identity matrix. It is shown in [8] that the operator H constructed in

this way is self-adjoint. It then follows that L must necessarily be a self-adjoint operator

and it can have only real spectrum. Thus, the eigenvalues (discrete spectrum) ρη2 in (4.2)

can only lie only on the real axis, that is, η can only be real or pure imaginary.

In the imperfect case, when H is not a constant, the problem no longer has translational

invariance, and therefore zero in not an eigenvalue of L. If L has only strictly negative

spectrum, then it follows immediately that the vector {q1, q2, 0, 0} is a minimum of the

Hamiltonian and, hence the aneurysm solution is nonlinearly stable. Nevertheless, it evi-

dently follows from (4.2), that the continuous spectrum of L which is determined by the

system at ±∞, is the interval (−∞, 0). It is not separated from zero, and the nonlinear

stability/instability cannot be deduced in our case. Therefore, we treat the eigenvalue prob-

lem (4.2) related to linear stability, when the unstable eigenfunctions are determined by real

values of η (positive η2).

It can be seen that Eq.(4.2) is a system of two coupled linear non-autonomous second

order differential equations, and the dependence on η is entirely through η2. We denote

α = ρη2. Eq. (4.2) then can be written in the form

y′ = My, (4.4)

where y = (Ψ, Ψ′, Φ, Φ′)T and M is a 4× 4 matrix whose components are not written here

for brevity. Eq. (4.4) subject to the decay conditions y → 0 as Z → ±∞ is an eigenvalue
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problem for α. The aneurysm solution is said to be unstable if this eigenvalue problem has

a positive eigenvalue.

We denote by M∞ the limit of M as Z → ±∞. Since in the same limit the localized

bulging solution has the asymptotic behaviour r(Z) → r∞, z′(Z) → z∞, we find, using (2.8),

that the matrix M∞ takes the form




0 1 0 0
r∞z∞(α+W

(∞)
11 )−z∞

r∞W
(∞)
2

0 0
z∞W

(∞)
12 −W

(∞)
1

W
(∞)
2

0 0 1 0

0
W

(∞)
1 −z∞W

(∞)
12

z∞W
(∞)
22

α

W
(∞)
22

0




. (4.5)

Eq. (4.4) asymptotes to a constant coefficient problem with exponential solutions exp(kZ),

for values of k related to the parameter α by the equation

det (M∞ − kI) = 0,

where I is the 4× 4 identity matrix. On evaluating the determinant, we obtain

α0γ1k̂
4 + [(α1 − β0)

2 − (β1 − β0)γ1 − ĉ2(α0 + γ1)]k̂
2 + (ĉ2 + β1 − β0)ĉ

2 = 0, (4.6)

where

ĉ2 = αr2
∞ = ρη2r2

∞, k̂ =
r∞
z∞

k,

and the material constants α0, α1, β0, β1, γ1 are defined in [1].

It can easily be seen that the four eigenvalues of M∞ take the form ±k1, ±k2. It can

be proved by the arguments similar to [6] that k̂ can be pure imaginary if and only if ĉ is

pure imaginary (or equivalently, if ĉ2 is real and negative). Therefore, for our construction of

unstable eigenfunctions (ĉ2 is positive) the roots k̂1 and k̂2 cannot cross the imaginary axis of

the complex plane, and the four eigenvalues are symmetric with respect to both the real and

imaginary axes. Without loss of generality, we assume that it is the k1 and k2 that have a

negative real part. The system of equations (4.4) then has two independent solutions, y1, y2

say, that decay as Z → ∞ like ek1Z and ek2Z , respectively, and another two independent

solutions, y−1 , y−2 say, that decay as Z → −∞ like e−k1Z and e−k2Z , respectively.

The eigenvalue problem (4.4) can be solved in a number of ways. The most straight-

forward approach is the so-called determinant method, which determines α by solving the

equation

det (y1, y2,y
−
1 , y−2 ) = 0, (4.7)

where the left hand can be evaluated at any appropriate matching point on the real line. The

method suffers from the “stiffness” problem in the sense that one column can get dominated

by another column due to different exponential behaviour. A better method is the compound

matrix method. One version of this method is used in [7]. In this paper we employ another
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version of this method which is usually called the Evans function method in the nonlinear

waves community.

To solve the eigenvalue problem (4.4) using the Evans function method, we first define

the following adjoint of (4.4):

x′ = −MTx, (4.8)

For each y(α,Z) and x(α,Z) that satisfy (4.4), (4.8), respectively, it can easily be verified

that

∂

∂Z

(
x(α, Z) · y(α, Z)

)
= 0, (4.9)

where “ · ” denotes the usual scalar product between two vectors.

Denote by a1, a2 the right eigenvectors of M∞ associated with the eigenvalues k1 and

k2, and by b1, b2 the left eigenvectors of M∞ associated with the eigenvalues −k1 and −k2.

From the general theory of ordinary differential equations it follows (see [13]) that there exist

the solutions of (4.4), (4.8), such that

lim
Z→∞

e−kiZyi(α,Z) = ak(λ), lim
Z→−∞

ekiZxi(α, Z) = bk(λ), i = 1, 2. (4.10)

A general solution that decays exponentially as Z →∞ is given by

y = c1y1(α, Z) + c2y2(α, Z) = (y1,y2)

(
c1

c2

)
, (4.11)

where c1 and c2 are constants. It follows from (4.9) and the decay behaviour of y that

0 =

(
x1 · y
x2 · y

)
=

(
xT

1

xT
2

)
(y1,y2)

(
c1

c2

)
, (4.12)

and so for a non-trivial solution we must have

det

(
xT

1

xT
2

)
(y1,y2) = 0. (4.13)

This condition is equivalent to (4.7), and its direct numerical computation would suffer from

the same stiffness problem. In the following, this determinant is evaluated with the aid of

the associated exterior systems (or in terms of the compound matrices).

4.1 Exterior systems

Consider the vectors y∧(λ, ζ), x∧(λ, ζ) with components defined by

y∧β∧γ = y1βy2γ − y1γy2β, x∧β∧γ = x1βx2γ − x1γx2β, β < γ, (4.14)
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where β, γ = 1, 2, 3, 4, and ykβ, xkβ are the β-th components of the vectors yk and xk,

respectively. We use the following correspondence between α ∧ β and the numbers:

1 ∧ 2 → 1, 1 ∧ 3 → 2, 1 ∧ 4 → 3, 2 ∧ 3 → 4, 2 ∧ 4 → 5, 3 ∧ 4 → 6.

The vectors y∧(α,Z), x∧(ν, Z) satisfy the linear systems

y∧
′
= M∧(α, Z)y∧, x∧

′
= − [M∧(α, Z)]

T
x∧. (4.15)

We define the asymptotic matrix

M∧
∞(α) = lim

Z→±∞
M∧(α, Z).

It is well-known that the six eigenvalues of M∧
∞(α) are given by

kα(α) + kβ(α), 1 ≤ α < β ≤ 4.

4.2 Evans function

For η in the right complex half-plane, the matrix M∞(α) has two eigenvalues k1(α) and

k2(α) in the left half-plane (recall that α = ρη2). Thus the matrix M∧
∞(α) has simple

(hence analytic) left-most eigenvalue k∧(α) = k1(α)+ k2(α) for η in the right half-plane. By

exact analogy with (4.10), there are solutions of (4.15) such that

lim
Z→∞

e−k∧(α)Zy∧(α, Z) = a∧(α),

lim
Z→−∞

ek∧(α)Zx∧(α, Z) = b∧(α),

where a∧(α) is the left eigenvectors of M∧
∞(α) associated with the eigenvalue k∧(α), and

b∧(α) is the right eigenvectors of M∧
∞(α) associated with the eigenvalue −k∧(α).

We define the Evans function by

D(α) = x∧ · y∧. (4.16)

It is a standard result that x∧ ·y∧ defined above is equal to the determinant on the left hand

side of (4.13). Thus, the above construction is simply an alternative way to evaluate (4.13)

that avoids any stiffness behaviour. Since the eigenvalue k∧(η) is simple, the argument of

Alexander and Sachs [14] can be used to show that the Evans function, defined by (4.16), is

analytic in the entire complex right half-plane of η and it is real for real η.

For Re η > 0 the function D(α) is zero if and only if there is a solution of (4.4) (or

unstable eigenfunction) which decays exponentially at Z → ±∞ (see, for example, [14]).
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Figure 2: Dependence of the single eigenvalue of α = ρη2 on r∞. The solid line is the quadratic
spline interpolation of the finite set of numerical results represented by the dots.

4.3 Numerical results

For the different bulging solutions represented by the bifurcation diagram in Figure 1, no

unstable eigenvalues are found for any solution corresponding to the lower branch. For each

solution corresponding to the upper branch, we found a single unstable eigenvalue. The

dependence of α on r∞ is displayed in Figure 2. It is seen that the growth rate of the single

unstable mode tends to zero in two limits. The right one corresponds to the turning point in

Figure 1, whereas the left limit corresponds to the case when the bulging solution becomes

a “hat” solution. The hat solution has the property that at its centre r′′(0) is zero as well

as r′(0), and therefore, it can be viewed as two kink solutions joined together. The growth

rate of the unstable mode tending to zero in the latter limit is consistent with the fact that

the kink solution is usually observed to be stable in experiments.

5 Conclusion and discussion

In order to adopt the spectral stability analysis of the aneurysm solutions we linearize (2.6)

about φ. Defining

δu = u(x, t)− φ

we get
dδu

dt
= JDE

(
φ + δu

)
= JH δu + O(||δu||2).

Thus the linearized equation (2.6) is

dδu

dt
= JH δu.

The operator JH is a product of skew-adjoint and self adjoint operators and its continuous

spectrum fills the imaginary axis and the spectrum is symmetric with respect to both axes.
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The question is whether this operator has any spectrum off the imaginary axis. If so, we can

expect instability.

From (4.3) it follows that the spectral problem for linear stability

JHψ = ηψ, ψ = {ψ1, ψ2, ψ3, ψ4}T

is reduced to (4.2).

The nonlinear (Lyapunov) stability is reduced to the spectral problem (where the spectral

parameter is α)

Hψ = −αψ. (5.1)

The operator H is self-adjoint and, therefore, L in (4.3) is also self-adjoint, and α = ρη2.

Thus, the spectrum α of L is real, and, therefore, η can be either real or imaginary. While

the η-spectrum fills the entire imaginary axis, the continuous spectrum α in (5.1) is positive

and it is not separated from zero, but it starts from zero.

We deduce that spectral (linear) instability is stipulated by the existence of negative

eigenvalues η of the linearized problem or the same any eigenvalue of the operator L (which

is positive, because it is quadratic in η and η itself is the real number). In case of existence

of any eigenvalue of L we have the negative eigenvalue of H with the same absolute value.

Hence, the bulge under consideration is also non-linearly unstable (in the sense of Lyapunov’s

theory: the energy has not the local minimum). If there are no eigenvalues of L and the

bulge in question is spectrally stable, we have only positive continuous spectrum of H which

is not separated from zero. So, the sufficient condition for Lyapunov’s stability is violated

and we can say nothing about nonlinear stability of the bulge.

But in practice we have no infinitely long tubes, they are finite, though they can have

a long extension. In this case the positive continuous spectrum transforms into positive

discrete one and the operator H has only positive eigenvalues. At that, zero is not instant

eigenvalue of H because there is no translational invariance of the problem. The calculations

show (see [18]), that the zero is not limit point of the sequence of eigenvalues ofH. Therefore,

the spectrum is separated from zero, and linear stability of the bulge in question implies the

non-linear one.

We have established that the upper branch of the bifurcation curve (see Fig. 1) is linearly

(and also non-linearly) unstable, though the lowest branch is linearly stable. This prompts

the stability of the aneurysms on the lowest branch of the bifurcation curve and, therefore,

their existence in practice. The lowest branch corresponds to aneurysms which amplitude

grows with increase of r∞
(
internal pressure P , according to (2.8)

)
. In practice, the localiza-

tion of the imperfection (the thinning) of the wall of the tube may be more or less arbitrary,

and the turning point in the bifurcation diagram (Fig. 1) may correspond to considerable

amplitudes of the bulge in question.

The existence of the stable aneurism is supported even by the simple model for the inner

fluid (inviscid fluid, average and axisymmetric flow) which is used here. In practice, of course
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we must take into account the viscosity of the inner fluid, the transversal size of the tube,

etc. But it seems, that the local effects associated with formation of the stable aneurysm on

the membrane tube can be qualitatively described by our model
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