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Abstract

We give a description of weakly or fully nonlinear localized standing waves that

may exist in a fluid-filled hyperelastic membrane tube. Previous studies have shown

that such localized standing waves are unstable under pressure control in the absence

of a mean-flow, whether the fluid inertia is taken into account or not. Stability of

such localized aneurysm-type solutions is desired when aneurysm formation in human

arteries is modelled as a bifurcation phenomenon. It is shown that in the near-critical

regime axisymmetric perturbations are governed by the Korteweg-de Vries equation,

and so the associated (weakly nonlinear) aneurysm solutions are stable with respect

to axisymmetric perturbations. Stability of the fully nonlinear aneurysm solutions

are studied numerically using the Evans function method. No axisymmetric unstable

modes are found, indicating that the fully nonlinear aneurysm solutions are likely to

be stable as well.

1 Introduction

This study is part of our effort to develop a mathematical theory for the initiation of fusiform

aneurysms in human arteries. An aneurysm is a pathological, localized dilation of a blood

vessel caused by a disease or weakening of the vessel’s wall. Its research has attracted the

attention of researchers from a variety of background due to the high mortality rate associated

with aneurysm rupture, and the high impact on the quality of life even if a patient survives

an aneurysm rupture [1, 2]. However, there does not seem to exist a quantitative theory

concerning aneurysm initiation although such a theory would be hugely desirable in drug

development. Our theory is intended to fill this gap, and it is built on the postulate that

∗Dedicated to the memory of Professor Klaus Kirchgässner
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initiation of an aneurysm is a bifurcation phenomenon. This theory will ultimately contain

the following ingredients: (a) Assuming that the artery is perfect in the sense that it is

circular cylindrical, homogeneous, and is infinitely long, a localized bulge can form when the

internal pressure reaches a certain critical value; (b) When imperfections such as localized

wall-weakening are introduced, the bifurcation pressure will fall to within the physiologically

possible range, i.e. in the order of 120 mmHg; (c) The localized bulging configuration is a

stable configuration. Thus, we assume that aneurysm initiation is entirely mechanical, but

we further postulate that once a localized bulge has formed, blood will become trapped, or

even clotted, in the sacs of the aneurysm, and it is the latter that will trigger biological

responses, such as remodelling, giving rise to the subsequent evolution of the aneurysm

shape. The major difference between our theory and the prevalent point of view [3] is that

in the latter there is no bifurcation that precedes the remodelling process. Parts (a) and

(b) have been accomplished in our earlier papers [4, 5, 6]. In order to establish (c), we have

recently examined the effect of fluid inertia on the stability properties of localized bulging

solutions [7], following on from an earlier work [8] where fluid inertia was neglected. It was

found that although fluid inertia would reduce the growth rate of the single unstable mode

significantly, it alone cannot stabilize the unstable mode completely. Our next candidate for

stabilizing the aneurysm solution is a mean flow, which is the subject of the present paper.

Our research has initially been motivated by the geometrical similarity between a fusiform

aneurysm and a localized bulge that would form when a rubber membrane tube was inflated

by an internal pressure. The latter problem has been much studied experimentally [9, 10],

numerically [11], as well as theoretically [12, 13] by researchers in the finite elasticity and

engineering communities because it serves as a paradigm for a variety of problems involving

multi-phase deformations. For a long time, however, it was not appreciated that localized

bulging was in fact a bifurcation phenomenon. This is probably due to the fact that in the

two communities, researchers were preoccupied with bifurcations into periodic patterns, and

there was a lack of cross-fertilization between these communities and the centre-manifold

reduction community championed by Professor Kirchgässner [14]. It was only recently [4]

that the bifurcation nature of localized bulging was clarified. In particular, it was shown

in [4] that localized bulging does not always occur at the limiting pressure associated with

uniform inflation.

Our present study is also closely related to studies on solitary waves in fluid-filled hyper-

elastic membrane tubes. On the one hand, a static localized bulge can be viewed as a

solitary wave that has zero propagation speed, the zero speed being induced by the prestress

in the membrane tube. On the other hand, solitary waves may play an important role

in interrogating the health state of arteries (e.g. presence of an aneurysm) through signal

processing [15]. Solitary waves in a fluid-filled membrane tube were initially studied using

a multiple-scale approach [16, 17], but Epstein and Johnston [18] demonstrated that this

approach is not necessary because the reduced governing equations admit two integrals. We
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refer to Fu and Ilichev [19] for a review of the relevant literature.

The rest of this paper is divided into six sections as follows. After presenting the governing

equations and some constitutive assumptions in the next section, we derive in Section 3 some

preparatory results concerning linear travelling waves. In particular, we show that as the

internal pressure or mean flow speed is increased, formation of a localized bulge always

precedes the so-called normal-mode instability that is signified by exponential growth of

a linear travelling wave mode. We then characterize in Section 4 both weakly and fully

nonlinear static aneurysm solutions in the presence of a mean flow. In Sections 5 and 6

we discuss stability of the weakly and fully nonlinear aneurysm solutions, respectively. The

paper is concluded in Section 7 with further discussions.

2 Problem formulation and constitutive assumptions

We consider axi-symmetric motions of an incompressible, isotropic, hyperelastic, cylindri-

cal membrane tube that has a constant undeformed radius R and a constant undeformed

thickness H. The tube is assumed to be infinitely long, and end conditions are imposed at

infinity. In terms of cylindrical polar coordinates r, θ, z the current configuration is described

by

r = r(Z, t), θ = Θ, z = z(Z, t), (2.1)

where t denotes time, and Θ, Z are cylindrical coordinates in the undeformed configuration.

The principal directions of the deformation correspond to the lines of latitude, the merid-

ian and the normal to the deformed surface, and the principal stretches are given by

λ1 =
r

R
, λ2 = (r′2 + z′2)

1
2 , λ3 =

h

H
, (2.2)

where the indices 1, 2, 3 signify the circumferential, meridional and normal directions, re-

spectively, a prime represents partial differentiation with respect to Z, and h denotes the

deformed thickness.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration for an incompress-

ible material are given by

σi = λiŴi − p, i = 1, 2, 3 (no summation), (2.3)

where Ŵ = Ŵ (λ1, λ2, λ3) is the strain-energy function, Ŵi = ∂Ŵ/∂λi, and p is the pressure

associated with the constraint of incompressibility. Utilizing the incompressibility constraint

λ1λ2λ3 = 1 and the membrane assumption of no stress through the thickness direction σ3 = 0,

we find

σi = λiWi, i = 1, 2 (2.4)

where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc [20].
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For illustrative calculations, we shall use the Gent material model given by

Ŵ = −1

2
µJmln (1−

λ2
1 + λ2

2 + λ2
3 − 3

Jm
), (2.5)

where µ is the ground state shear modulus and Jm > 0 is a material constant characterizing

the maximum stretch of the material. This model was originally proposed by Gent [21] to

model rubber and rubber-like materials; its relevance to arterial walls having been discussed

in Horgan and Saccomandi [22]. More sophisticated material models for arterial walls are

available; see, for instance, Ogden and Holzaphel [23], but we believe that our qualitative

stability results should be independent of the material model used.

The equations of motion of the wall are given by [18][
Rσ2

z′

λ2
2

]′
− Prr′ = ρRz̈,

[
Rσ2

r′

λ2
2

]′
− σ1

λ1

+ Prz′ = ρRr̈, (2.6)

where a superimposed dot denotes differentiation with respect to t, ρ is the density of the

material, and P is the pressure exerted by the fluid on the wall divided by H.

To describe the axisymmetric fluid motion inside the tube we use Eulerian cylindrical

polar coordinates y, θ and z, where y denotes the radial coordinate. Let {uy, 0, uz}T denote

the fluid velocity. We also introduce

D = {(y, z)|0 < y < r(z, t);−∞ < z < ∞}

as the domain inside the deformed tube, and

∂D = {(y, z)|y = r(z, t);−∞ < z < ∞}

as the boundary of this domain, or the tube wall. We consider the fluid to be inviscid and

incompressible. Then the equations of motion of the fluid consist of the continuity equation

∂uyy

∂y
+ y

∂uz

∂z
= 0, (y, z) ∈ D, (2.7)

and Euler’s equations

∂uy

∂t
+ uy

∂uy

∂y
+ uz

∂uy

∂z
= − 1

ρf

∂(HP̂ )

∂y
,

∂uz

∂t
+ uy

∂uz

∂y
+ uz

∂uz

∂z
= − 1

ρf

∂(HP̂ )

∂z
, (y, z) ∈ D (2.8)

where ρf is the fluid density and HP̂ is the fluid pressure.

We also need the kinematic condition that each particle of fluid does not pass through

the boundary ∂D:

∂r

∂t
+ uz

∂r

∂z
= uy, (y, z) ∈ ∂D. (2.9)
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To simplify the boundary-value problem (2.6)–(2.9) we adopt the long wave approxima-

tion for the equations (2.7)-(2.9), and assume that

uz(y, z, t) = vf (z, t) + εv1(y, z, t), P̂ (y, z, t) = P (z, t) + εP1(y, z, t), (2.10)

where ε = R/L ≪ 1, L is a characteristic wave-length, and the P can be identified with the

P in (2.6).

Integrating (2.7) from 0 to r and substituting (2.10) we obtain to zeroth order in ε

uy

(
r(z, t), z, t

)
+

r

2

∂vf
∂z

= 0. (2.11)

Substituting uy

(
r(z, t), z, t

)
from (2.9) into (2.11) we get to zeroth order in ε

∂r

∂t
+ vf

∂r

∂z
+

r

2

∂vf
∂z

= 0. (2.12)

The second equation in (2.8) to zeroth order in ε gives

∂vf
∂t

+ vf
∂vf
∂z

= − 1

ρf

∂HP

∂z
. (2.13)

The equations (2.12) and (2.13) were introduced in [24] as a simple model whereby the

conservation of mass and momentum is enforced under the assumption that the fluid is

ideal having constant density and the velocity profile is constant throughout the tube cross

section.

The connection between the Eulerian longitudinal coordinate z and the Lagrangian co-

ordinate Z is given by (2.1). For any dependant variable Ψ

Ψ′ =
∂Ψ

∂z
z′, Ψ̇ =

∂Ψ

∂z
ż +

∂Ψ

∂t
.

Therefore, in terms of the Lagrangian coordinate Z the equations (2.12), (2.13) read, corre-

spondingly,

ṙz′ − r′ż + vfr
′ +

1

2
rv′f = 0, ρf

[
v̇fz

′ − v′f ż + vfv
′
f

]
+ P ′ = 0. (2.14)

The quations (2.6) and (2.14) constitute the governing equations that determine the dynam-

ics of the fluid inside the tube and the tube wall.

Before proceeding further, we shall non-dimensionalize the above governing equations

using the following scales: R for Z, z and r, µ for the Cauchy stresses, µ/R for P ,
√

µ/ρ for

vf and R
√
ρ/µ for the time. Using the same notation for the scaled variables, we have[

σ2
z′

λ2
2

]′
− Prr′ = z̈,

[
σ2

r′

λ2
2

]′
− σ1

λ1

+ Prz′ = r̈, (2.15)

ṙz′ − r′ż + vfr
′ +

1

2
rv′f = 0, bf

[
v̇fz

′ − v′f ż + vfv
′
f

]
+ P ′ = 0, (2.16)
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where bf , defined by

bf =
ρfR

ρH
, (2.17)

is a non-dimensional constant characterizing the fluid inertia. We note that λ1 is now

identical to r.

The governing equations (2.15) and (2.16) admit the unform solution

r = r∞, z′ = λ2 = λ2∞, vf = vf∞, P = P∞ ≡ W1(r∞, λ2∞)

r∞λ2∞
, (2.18)

where r∞, λ2∞ and vf∞ are constants. Corresponding to this uniform solution, the axial

force F is given by
F

πµRH
= 2W2(r∞, λ2∞)− r∞W1(r∞, λ2∞)

λ2∞
. (2.19)

For the case of closed ends and fixed F (assuming in this case that there is no mean flow),

(2.19) defines λ2∞ as a function of r∞. It can easily be shown that

dP

dv
=

2 (3β0 + β1 + 4γ1 − 4α1) [γ1(β1 − β0)− (α1 − β0)
2]

λ2
2∞ (−2α1 + β0 + β1) 2

, (2.20)

where v = r2∞λ2∞ denotes the fractional volume change, and the various constants on the

right hand side are defined by

α0 = λ2∞W
(∞)
2 , β0 = r∞W

(∞)
1 , α1 = r∞λ2∞W

(∞)
12 , β1 = r2∞W

(∞)
11 , γ1 = λ2

2∞W
(∞)
22 .

On the other hand, if we fix the pressure P , (2.18)4 then defines r∞ as a function of λ2∞,

and it can then be shown that

∂

∂λ2∞

(
F

πµRH

)
=

2

λ2
2∞(β1 − β0)

[
γ1(β1 − β0)− (α1 − β0)

2
]
. (2.21)

We observe that the same factor γ1(β1 − β0)− (α1 − β0)
2 appears in both (2.20) and (2.21),

and that this factor also appears in the conditions

α0 > 0, γ1 > 0, β1γ1 − α2
1 > 0, (β1 − β0)γ1 − (α1 − β0)

2 > 0, (2.22)

which are necessary and sufficient for stability of the uniformly inflated state (2.18) under

pressure control with free ends and vf∞ = 0 [25]. It is also known that this expression equal

to zero is the condition for a localized bulge to bifurcate from the uniform state (2.18) in the

absence of a mean flow [4, 8]. Throughout this paper we assume that (2.22) are satisfied.

We also observe that (2.22)4 together with (2.22)2 implies that (β1 − β0) > 0.

Equation (2.20) shows that for the case of closed ends and fixed F , the first pressure turn-

ing point corresponds to the onset of localized bulging, as has been observed experimentally

[9, 10]. However, human arteries have the important property that pressure fluctuations can

be accommodated by very little extra axial stretch. Thus, it is appropriate to assume in the
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associated analysis that the axial stretch λ2∞ is fixed. In this case a variable axial force F

needs to be applied as P varies, and onset of localized bulging does not correspond to the

first turning point in the pressure versus volume curve [4]. In fact, localized bulging always

takes place before the turning point is reached if the latter turning point exists, and can

take place even if the latter turning point does not exist at all. In other words, contrary to

popular belief, the existence of the so-called limit point instability is not a necessary condi-

tion for localized bulging to occur. Instead, from (2.21) we see that the necessary condition

is that the axial force versus axial stretch at a fixed pressure has a turning point. This fact

does not seem to have been noted previously. With application to aneurysm formation in

mind, we shall from now on assume that λ2∞ is prescribed, and view r∞ and vf∞ as the

control parameters that can be varied.

3 Linear travelling waves

Later in our analysis we shall need to refer to the dispersion relation for small-amplitude trav-

eling waves superimposed on the uniform state (2.18). Assuming that the small-amplitude

perturbations are proportional to

exp

(
i
λ2∞

r∞
k(Z − ct

λ2∞
)

)
,

then the scaled wavenumber k and wave speed c satisfy the dispersion relation [19](
k2m+ 2

)
c4 − 4vf∞c3 −

(
mα0k

2 +mγ1k
2 − 2v2f∞ −mβ0 +mβ1 + 2γ1

)
c2

+4vf∞γ1c− 2v2f∞γ1 +mγ1(k
2α0 + β1 − β0)−m(α1 − β0)

2 = 0, (3.1)

where m = 1/(bfr
2
∞λ2∞). Figure 1 shows the four solutions of this quartic equation for a

typical case in which all the solutions are real.

In the double limit ρf → 0 and vf∞ → 0, the above dispersion relation can be solved

exactly to give

c2 =
1

2
(B ±

√
B2 − 4k−2C) =

1

2

(
B ±

√
[k−2(β0 − β1)− α0 + γ1]2 + 4k−2(α1 − β0)2

)
,

where

B = k−2(β1 − β0) + α0 + γ1, C = γ1(β1 − β0)− (α1 − β0)
2 + α0γ1k

2.

Thus, the stability conditions (2.22) guarantee that all the four wave speeds are real for all

k, and in the long wavelength limit k → 0, the four roots have the asymptotic behaviour

c2 =
β1 − β0

k2
+O(1), or

1

2(β1 − β0)
[(β1 − β0)γ1 − (α1 − β0)

2] +O(k2). (3.2)

It is seen that the bifurcation condition for localized bulging corresponds to two of the four

wave speeds vanishing at the same time in the long wave length limit.
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Figure 1: The four branches of the dispersion relation determined by (3.1) when λ2∞ = 1.2,

λ1∞ = rcr = 1.634, bf = 3.47 and vf∞ = 0.1. Left: the two inner branches; right: the

two outer branches. The speed corresponding each of the dotted curves is minus the actual

speed, and so when vf∞ = 0 the two curves in each figure would coincide with each other.

In the limit k → ∞, the curves on the left and right figures tend to c =
√
α0 and c =

√
γ1,

respectively, which are independent of vf∞ and m.

We now examine the behaviour of the four branches of the dispersion curve (3.1) when ρf

and vf∞ are both non-zero. We first consider their behaviour at k = 0 where the dispersion

relation (3.1) reduces to

2c4 − 4vf∞c3 −
(
−2v2f∞ −mβ0 +mβ1 + 2γ1

)
c2

+4vf∞γ1c− 2v2f∞γ1 +mγ1(β1 − β0)−m(α1 − β0)
2 = 0. (3.3)

When vf∞ = 0, the above equation becomes a bi-quadratic and the roots can be written as

4c2 = 2γ1 +m(β1 − β0)±
√

[2γ1 −m(β1 − β0)]2 + 8m(α1 − β0)2, (3.4)

and so the four roots are all real. Figure 2 shows the fate of these four roots as vf∞ is

increased from 0. It is seen that for the case considered, the two inner branches coalesce at

vf∞ = 0.6066, beyond which they do not exit (and the corresponding roots become complex),

while the other two branches exist for all values of vf∞. Since the two coalescing branches

are on opposite sides of the vf∞-axis when vf∞ = 0, one of these two branches must cross

the vf∞-axis first before it coalesces with the other branch. The crossing takes places when

0 becomes a root of (3.3), that is when

γ1(β1 − β0)− (α1 − β0)
2 − 2v2f∞γ1/m = 0. (3.5)

It will be shown later that this equation is in fact the bifurcation condition for the initiation

of a localized bulge in the presence of a mean flow. Thus, root coalescing at k = 0, and

hence any wave speed becoming complex, always takes place after the bifurcation condition

(3.5) is satisfied.
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Figure 2: Variation of the four roots of (3.3) with respect to vf∞ when λ2∞ = 1.2, λ1∞ =

1.634, bf = 3.47. Left: the two inner branches; right: the two outer branches (here the speed

corresponding to the dotted line is minus the actual speed). The two inner branches exist

only for vf∞ < 0.6066.
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Figure 3: A typical dispersion curve when a pair of complex roots exist for small enough k,

when λ2∞ = 1.2, λ1∞ = 1.634, bf = 3.47 and vf∞ = 0.9.

The critical value of vf∞ at which two roots coalesce is determined by

p3 + q2 = 0, (3.6)

where

p = −m2β2
1 + 2mβ0

(
mβ1 − 2v2f∞ + 14γ1

)
+ 4mv2f∞β1 − 48mα1β0

+24mα2
1 − 28mβ1γ1 − (m− 24)mβ2

0 − 4v4f∞ + 8v2f∞γ1 − 4γ2
1 ,

q = −9
(
mβ0 −mβ1 − v2f∞ − 2γ1

) (
m2β2

1 − 2mβ0

(
mβ1 + 2v2f∞ − 2γ1

)
+ 4mv2f∞β1

−16mα1β0 + 8mα2
1 − 4mβ1γ1 +m(m+ 8)β2

0 + 8v2f∞γ1 + 4γ2
1

)
−8

(
−mβ0 +mβ1 + v2f∞ + 2γ1

)
3 − 27v2f∞ (mβ0 −mβ1 + 2γ1)

2.

Equation (3.6) is obtained by setting to zero the discriminant of the resolvent cubic of the

quartic equation (3.3) when the coefficient of c3 has been eliminated by substitution. The
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left hand side of (3.6) must necessarily be negative when vf∞ = 0 (which follows from the

fact that (3.3) has four real roots), and the critical value of vf∞ is the first zero of p3 + q2 as

vf∞ is increased from zero.

We next consider the behaviour of the dispersion curve when k ̸= 0. We note from (3.1)

that in the limit k → ∞ the four wave speeds tend to ±√
α0, ±

√
γ1, which are all real

under the assumptions (2.22) and are independent of the flow properties vf∞ and m. As

vf∞ is increased from zero, the behaviour of the four branches in the large k regime is little

changed, but in the small k regime the the two middle branches may coalesce; see Figure 3.

If coalescing takes place at k = kt, then two of the wave speeds are complex for k < kt. The

coalescing point k = kt has the property dc/dk → ∞, or equivalently by differentiating (3.1)

with respect to k implicitly and then setting the coefficient of dc/dk to zero,

4c3
(
k2m+ 2

)
− 12c2vf∞ + 2c

(
−mk2α0 − k2mγ1

+mβ0 −mβ1 + 2v2f∞ − 2γ1
)
+ 4vf∞γ1 = 0. (3.7)

The resultant of (3.1) and (3.7) equal to zero then defines kt as a function of vf∞. The

minimum of vf∞ is clearly attained when kt = 0, in which case the above-defined resultant

equal to zero is equivalent to (3.6). In view of these results and the earlier results for k = 0,

we may conclude that if we denote by rcr the first zero of (3.5) for each fixed vf∞, then for

r∞ < rcr, root coalescing cannot occur and the four roots of (3.1) are all real for all values

of k.

If on the other hand we fix r∞ and increase vf∞ beyond the first root of (3.6), small-

amplitude travelling waves will grow exponentially (assuming that localized bulging is sup-

pressed), which corresponds to a more serious instability than the localized bulging under

consideration. However, our analysis above shows that this more serious instability is always

preceded by localized bulging.

4 Weakly and fully nonlinear bulging solutions

Although our focus is on standing wave solutions, we start by looking for a general localized

traveling wave solution for which the dependence on Z and t is through Z − ct, where c now

denotes the wave speed of the fully nonlinear wave. Localization means that as Z−ct → ±∞,

the fluid-filled tube is in a uniform state given by (2.18). From now on, we use Z to mean

Z − ct.

It can easily be shown [18] that the fluid equations (2.16) in this case can be integrated

to yield

P = P∞ + vf0

(
1− λ4

1∞
r4

)
, vf0 ≡

1

2
bf (vf∞ − cλ2∞)2. (4.1)

It is also known that the two equations in (2.15) together with (4.1) have two integrals,

that can be obtained by integrating (2.15)1 and z′ times (2.15)1 added to r′ times (2.15)2,
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respectively. They are given by

W − λ2W2 +
1

2
c2λ2

2 = C1, (4.2)

W2z
′

λ2

− 1

2
P ∗r2 − c2z′ = C2, (4.3)

where a prime again denotes differentiation with respect to Z (which is now actually Z−ct),

P ∗ = P∞ + vf0

(
1 +

λ4
1∞
r4

)
,

and the constants C1 and C2 can be determined by evaluating the corresponding left hands

at the uniform state (2.18).

The two equations (4.2) and (4.3) can be written as a system of first-order ordinary

differential equations [4, 5]:

λ′
1 = λ2 sinϕ,

λ′
2 =

W1 − λ2W12

W22

sinϕ− H ′W2

HW22

, (4.4)

ϕ′ =
W1

W2

cosϕ− Pλ1λ2

HW2

,

where ϕ is the angle between the meridian and the z-axis (so that sinϕ = r′/λ2, cosϕ =

z′/λ2). Without loss of generality, we may assume that the center of the symmetric localized

travelling wave is located at Z = 0 so that ϕ(0) = 0. Then if λ1(0) and λ2(0) are also known,

the solitary wave solution can be determined by integrating the above system as an initial

value problem. Shortly we shall demonstrate how these two values can be determined by

solving two algebraic or transcendental equations.

We first note that the two integrals (4.2) and (4.3) are of the forms f(λ1, λ2) = 0 and

z′ = g(λ1, λ2), respectively. These two equations always admit the trivial solution (2.18).

To characterize non-trivial solutions, we write λ1 = r = r∞ + w(Z) and proceed to derive

a governing equation for w(Z). To this end, we note that in principle we may solve the

first integral to express λ2 in terms of w. Although in general this expression cannot be

obtained explicitly, a Taylor expansion of this expression valid for small w can be obtained

in a straightforward manner with the aid of a symbolic manipulation package such as Math-

ematica. The second integral can then be used to find the Taylor expansion of z′ in terms

of w as well. On substituting these expressions into (2.2), we then obtain

(w′)
2
= ω(c, r∞, vf∞)w2 + γ(c, r∞, vf∞)w3 +O(w4), (4.5)

where

ω(c, r∞, vf∞) =
λ2
2∞

λ2
1∞

· [4vf0λ
2
1∞λ2∞ + β0 − β1] (λ

2
2∞c2 − γ1)− (α1 − β0)

2

(λ2
2∞c2 − α0) (λ2

2∞c2 − γ1)
, (4.6)

11
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Figure 4: Dependence of the solutions of (3.5) on Jm (left) and vf0 (right).

and the expression for γ(c, r∞, vf∞) is given by [19, eqn (3.7)].

On differentiating (4.5), we obtain

w′′ = ω(c, r∞, vf∞)w +
3

2
γ(c, r∞, vf∞)w2 +O(w3). (4.7)

It can then be seen that a bifurcation takes place when the coefficient ω(c, r∞, vf∞) vanishes.

For bifurcation into a standing wave solution, we take c = 0, specify vf∞ and λ2
2∞, and use

r∞ as the control parameter. The critical value of r∞, rcr say, is then determined by the

bifurcation condition ω(0, rcr, vf∞) = 0, which can be reduced to (3.5).

On expanding the coefficients in (4.7) with c = 0 around r∞ = rcr, we obtain

V
′′ − V + V 2 + e(ϵ, V ) = 0, (4.8)

where

w =
2ϵ ω′

cr

3γcr
V (ξ), ξ =

√
−ϵω′(rcr)Z, ϵ ≡ rcr − r∞,

ω′
cr =

∂ω

∂r∞

∣∣∣∣
r∞=rcr

, γcr = γ(c, r∞, vf∞), (4.9)

and e(ϵ, V ) = O(ϵ).

When the O(ϵ) term is neglected, equation (4.8) has an exact solitary wave-type solution

given by

V = V0 ≡
3

2
sech2 ξ

2
. (4.10)

Equation (4.8) is a special case of reversible differential equations for which general persis-

tence results have previously been established by Iooss and Kirchgässner [26].

The system (2.15), (2.16) is reduced to (4.8) via centre manifold reduction.

In fact, near the quiescent (initial with r∞ = rcr) state the system (2.15), (2.16)

for steady solutions may be written in the form

w′ = Aw + F(ϵ,w), (4.11)

12



where w = (r, r′, z′, P, vf )
⊤, A = A(rcr) is the constant 5 × 5 matrix, F(0,0) =

∂wF(0,0) = 0. The invariance of (2.15), (2.16) to transformations

Z → −Z, r → r, r′ → −r′, z′ → z′, vf → vf , P → P

implies the reversibility of (4.11), i. e. existence of the diagonal (not unit) matrix

R : R5 → R5, R2 = 1 and RA = −AR. It can be shown that the unique eigenvalue

of A is the double zero eigenvalue, and A has associated with it one eigenvector

ϕ0 and one generalized eigenvector ϕ1. Moreover, Rϕ0 = ϕ0. Thus, the system

(4.11) for ϵ small, due to the centre manifold theorem (see, for example [27]),

can be reduced to Eq. (4.8). Moreover, we may deduce that for a small enough ϵ0 and

ϵ ∈ (0, ϵ0], equation (4.8), or equivalently the system (4.4), has a family of solitary wave-type

solutions V that are parametrized by ε. Moreover, these solutions have the property that

|V − V0| ≤ Cϵ exp(−|ξ|),

where C is a positive constant and the leading order solution V0 is given by (4.10). Of course

this persistence result can be verified easily numerically, as was done in [19] for the case

when r∞ is held fixed and c is viewed as a bifurcation parameter.

Just as in the case when there is no mean flow, localized bulging takes place when the

speed of one of the linear travelling waves vanishes in the long wavelength limit. In Figure

4, we have shown how the solutions of the bifurcation condition (3.5) depend on Jm and

the quantity vf0 = bfv
2
f∞/2. The figure on the left corresponds to Jm = 30, 20, 15, 12 with

vf0 = 0, while the figure on the right corresponds to vf0 = 0, 0.01, 0.02, 0.03 with Jm = 30.

We see that with vf0 fixed, increasing Jm decreases rcr, whereas with Jm fixed, increasing

fluid inertia or the mean flow speed also reduces rcr. However, for typical blood flows, vf0 is

around 0.0006 and so its effect on reducing rcr is negligible.

To determine the localized bulging solutions when r∞ is not necessarily close to rcr, we

evaluate the two integrals (4.2) and (4.3) at Z = 0 to obtain

W (0) − z0W
(0)
2 = W (∞) − λ2∞W

(∞)
2 , (4.12)

W
(0)
2 − 1

2
r20

{
P∞ +

1

2
bfv

2
f∞(1 +

λ4
1∞
r40

)

}
= W

(∞)
2 − 1

2
λ2
1∞

{
P∞ + bfv

2
f∞

}
, (4.13)

where r0 = r(0), z0 = z′(0) = λ2(0). These two equations for the two unknowns r0 and z0 can

be solved for each specified r∞ and vf∞. The trivial solution r0 = r∞ and z0 = λ2∞ is always

a solution, but there also exist non-trivial solutions. A typical non-trivial solution is shown

in Figure 5 as the curve marked with points B and C, which has the following interpretation.

Uniform inflation follows the vertical axis until the bifurcation point B is reached when a

localized bulge will initiate. The post-critical localized bulging states correspond to the thin

solid line, and we see that growth of the localized bulge is accompanied by a reduction in

r∞, the radius of the tube at infinity. The amplitude r0 − r∞ of the bulge grows as inflation
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Figure 5: A typical bifurcation diagram

continues until the turning point C is reached, after which the bulge no longer grows and

instead it begins to propagate in the axial direction. The turning point C is determined

by the property that ∂r0/∂r∞ → ∞. With the use of (4.12) and (4.13), we find that this

condition gives

W
(0)
1 − r0z0P0 = 0, (4.14)

where P0 is given by (4.1)1 with r replaced by r0. This property together with (2.15)2 implies

that r′′(0 = 0. Thus, the solution corresponding to the turning point C is also a fixed point

of the dynamical system (4.4).

At each point along the thin solid line between B and C, the associated localized solution

can be obtained by integrating (4.4) subject to the initial conditions λ1(0) = r0, λ2(0) =

z0, ϕ(0) = 0. As C is approached, the solitary wave type solution becomes two kink wave

type solutions stitched together at Z = 0.

In Figure 5, we have also shown a typical curve (the lower curve) showing the effects of

imperfections such as localized wall thinning. In the presence of imperfections, the variation

of r∞ again r(0)− r∞ would follow the lower curve which has a turning point. It was shown

in [5] that the reduction rcr − r∗cr is proportional to the square root of the imperfection

amplitude.

5 Stability of the weakly nonlinear bulging solutions

An inspection of the dispersion relation (3.1) shows that in a small neighbourhood of r∞ =

rcr, the order of the wave speed of the slowest wave mode is determined by c2 ∼ ω ∼ (r∞−rcr)

if vf∞ = 0, and by c ∼ ω ∼ (r∞−rcr) if vf∞ ̸= 0. The former case has recently been examined

by Ilichev and Fu [7]. For the latter case, the appropriate spatial and time variables are ξ

and τ , where ξ is defined by (4.9)3 and τ is defined by τ = ε3/2t. We look for a perturbation

solution of the form

r = r∞ + ϵ{w1(ξ, τ) + ϵ w2(ξ, τ) + . . . }, r∞ = rcr − ϵ, (5.1)
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z = λ2∞Z +
√
ϵ{u1(ξ, τ) + ϵ u2(ξ, τ) + . . . }, (5.2)

vf = vf∞ + ϵvf1 + . . . , (5.3)

P = P∞ + ϵp1(ξ, τ) + ϵ2p2(ξ, τ) + . . . , (5.4)

where the relative orders of the perturbations have been deduced by considering dominant

balance in the governing equations (2.15) and (2.16). For P∞ given by (2.18)4 with r∞ =

rcr − ϵ, we have the Taylor expansion

P∞ =
W1(rcr, λ2∞)

rcrλ2∞
+ ϵP1 + · · · . (5.5)

On substituting (5.1)–(5.5) into (2.15) and (2.16), and equating the coefficients of like powers

of ε, we obtain a hierarchy of equations. To leading and second orders, we obtain Ly(1) = 0

and Ly(2) = b, respectively, where y(k) = (u′′
k, w

′
k, p

′
k, v

′
fk)

T , L is a 4 × 4 matrix that only

depends on the uniform state (2.18), and the vector b involves the leading order solution

y(1). It is then straightforward to show that detL = 0 recovers the bifurcation condition

ω(0, rcr, vf∞) = 0, and that solvability of the second order problem yields an evolution

equation of the form
∂w1

∂τ
− c0

∂w1

∂ξ
+ c1w1

∂w1

∂ξ
+ c2

∂3w1

∂ξ3
= 0, (5.6)

where c0, c1 and c2 are constants. Since (5.6) reduces to (4.8) when time independence is

assumed, it must take the form

∂w1

∂τ
− c0

∂w1

∂ξ
+ 2c0w1

∂w1

∂ξ
+ c0

∂3w1

∂ξ3
= 0, (5.7)

where the remaining constant c0 can be found by looking for a travelling wave solution of

the linearized form of (5.7) and then comparing the resulting dispersion relation with (3.1).

However, for our purpose this explicit expression is not needed. It suffices to observe that

for r∞ < rcr, the constant c0 must necessarily be positive.

Equation (5.6) is recognized as a Korteweg-de Vries equation whose solution properties

are well-understood. Under the variable transformation t = c0τ, x = ξ + c0τ, w = 2w1, this

equation reduces to the standard form

∂w

∂t
+ w

∂w1

∂ξ
+

∂3w

∂ξ3
= 0. (5.8)

The static solution (4.10) of (5.7) corresponds to the following traveling wave solution of

(5.8):

V = 3sech2(
1

2
(ξ − τ)).

It is known [28, 29] that this travelling wave solution of (5.8) is orbitally stable. We thus

conclude that the static solution (4.10) of (5.7) is orbitally stable.
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6 Stability of the fully nonlinear bulging solutions

As remarked earlier, the fully nonlinear bulging solutions can be obtained by integrating the

system of equations (4.4) whenever the amplitude diagram in Figure 5 becomes available.

We denote such fully nonlinear bulging solutions by r = r̄(Z), z = z̄(Z), P = P̄ (Z). To

study their stability, we consider axisymmetric perturbations, and write

r(Z, t) = r̄(Z) + Ψ(Z)eηt, z(Z, t) = z̄(Z) + Φ(Z)eηt,

P (Z, t) = P̄ +Π(Z)eηt, vf (Z, t) = vf∞ + V (Z)eηt,

where the mode functions Ψ(Z),Φ(Z),Π(Z), V (Z) and the growth rate η are to be deter-

mined. On substituting these expressions into (2.15) and (2.16) and linearizing, we obtain[
1

λ̄2

W̄2Φ
′ +

z̄′

λ̄3
2

(
λ̄2W̄22 − W̄2

)(
r̄′Ψ′ + z̄′Φ′)+ z̄′

λ̄2

W̄12Ψ

]′
−P̄ (r̄Ψ′ +Ψr̄′)− r̄r̄′Π = ρ̂η2Φ, (6.1)[

1

λ̄2

W̄2Ψ
′ +

r̄′

λ̄3
2

(
λ̄2W̄22 − W̄2

)(
r̄′Ψ′ + z̄′Φ′)+ r̄′

λ̄2

W̄12Ψ

]′
− 1

λ̄2

W̄12(r̄
′Ψ′ + z̄′Φ′)−ΨW̄11 + P̄ (r̄Φ′ +Ψz̄′) + r̄z̄′Π = ρ̂η2Ψ, (6.2)

η(z̄′Ψ− r̄′Φ) + v̄fΨ
′ + V r̄′ +

1

2
r̄V ′ +

1

2
Ψv̄′f = 0, (6.3)

bfη(z̄
′V − v̄′fΦ) + bf (v̄fV

′ + v̄′fV ) + Π′ = 0. (6.4)

These equations can be written in the form

y′ = My, (6.5)

where y = (Φ,Φ′,Ψ,Ψ′,Π, V )T and M is a 6×6 matrix whose components are (numerically)

known functions of Z and η. This system of equations are to be solved subject to the decay

conditions y → 0 as Z → ±∞.

Denoting by M∞ the limit of M as Z → ±∞, and substituting a trial solution of the

form y = ek̂Za into y′ = M∞y, we obtain the eigenvalue problem

(M∞ − k̂I)a = 0, (6.6)

where I is the 6 × 6 identity matrix. Thus, non-trivial solutions correspond to det (M∞ −
k̂I) = 0, which is simply the dispersion relation (3.1) under the substitutions

k̂ = ik
λ2∞

r∞
, η = −ik

c

r∞
. (6.7)

Recalling the properties of the dispersion relation (3.1) established in Section 3, we may

immediately deduce that k̂ can be imaginary only if η is imaginary. This implies that if η is
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confined to vary in the right half complex plane, k̂ can never be imaginary. Since k appears

in (3.1) through k2, for each fixed η, −k̂ is a root whenever k̂ is. Denote by k̂1, k̂2, k̂3 the

three eigenvalues of (6.6) with negative real parts, and by a1, a2, a3 the associated eigen-

vectors. Denote by a−
1 , a

−
2 , a

−
3 the eigenvectors associated with the other three eigenvalues

−k̂1, −k̂2, −k̂3. There then exist solutions yi(Z) and y−
i (Z) of (6.5) such that

lim
Z→∞

e−kiZyi(Z) = ai, lim
Z→−∞

ekiZy−
i (Z) = a−

i , i = 1, 2, 3.

Solutions of (6.5) that decay exponentially as Z → ∞ and Z → −∞, respectively, must be

of the form

c1y1(Z) + c2y2(Z) + c3y3(Z) and c4y
−
1 (Z) + c5y

−
2 (Z) + c6y

−
3 (Z),

respectively, for some constants c1, c2, ..., c6. The two solutions will match at any point,

Z = d say, to yield a localized eigen function, only if η is such that

det [y1(d),y2(d),y3(d),y
−
1 (d),y

−
2 (d),y

−
3 (d)] = 0. (6.8)

This is the most primitive way with which the eigenvalues of (6.5) can be determined, but loss

of independence of solutions occurs because of the exponential behaviour of the solutions.

Alternatively, we may consider the exterior system [30, 31]

y∧′
= M∧y∧, (6.9)

and its adjoint system

x∧′
= −(M∧)Tx∧, (6.10)

where the components of the vector function y∧ consists of all the 3× 3 minors of the 6× 3

matrix (y1,y2,y3), and the components of the 6×6 matrix M∧ in terms of those of M have

previously been derived by Il’ichev and Fu [7].

It is known that if k1, k2, ..., k6 are the eigenvalues of M∞ then the matrix M∧
∞ has

eigenvalues

ki(η) + kj(η) + kl(η), 1 ≤ i < j < l ≤ 6.

Thus, the asymptotic matrix M∧
∞ has simple left-most eigenvalue k∧(η) = k1(η) + k2(η) +

k3(η) for η in the right half-plane. We denote by r∧(η) the right eigenvector ofM∧
∞ associated

with the eigenvalue k∧(η), and by l∧(η) the left eigenvector of −M∧
∞ associated with the

eigenvalue −k∧(η). It is easily seen that l∧(η) is then the right eigenvector of −(M∧)T in

(6.10) associated with the eigenvalue −k∧(η). Solving (6.9) and (6.10) subject to the initial

conditions

y∧(Q) = r∧(η), x∧(−Q) = l∧(η),

respectively, where Q is a sufficiently large positive number, we obtain two solutions y∧(η, Z)

and x∧(η, Z). It follows from (6.9) and (6.10) that the dot product of these two solutions is

independent of η.
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The Evans function is defined by

D(η) = x∧(η, Z) · y∧(η, Z), (6.11)

and it can be shown that the matching condition (6.8) is equivalent to D(η) = 0. Thus,

eigenvalues associated with localized eigen modes are determined by D(η) = 0.

By adapting the Mathematica code used in [7], we find that the single unstable mode

reported in [7] disappears as soon as vf∞ becomes non-zero and no other unstable modes are

found. Although our calculations do not prove stability conclusively, it is very likely that

the fully nonlinear bulging solutions are stable with respect to axi-symmetric perturbations

in the presence of a mean flow.

7 Conclusion

Our present study provides the last building block for a mathematical theory concerning the

initial formation of aneurysms in human arteries. Under this theory, the initial formation of

aneurysms is a bifurcation phenomenon, just as localized bulging in inflated tubular balloons.

Since we assume that it is the formation of a localized bulge that triggers the subsequent

remodelling process, the stability of such a localized bulge is essential to the relevance of our

theory. It is shown that although a mean flow has negligible effect on the critical pressure,

it does change the stability properties of localized bulges qualitatively. In the absence of

a mean flow, evolution of near-critical modes obeys the Boussinesq equation which has a

single unstable mode, but when a mean flow is present, the evolution equation becomes the

Korteweg-de Vries equation whose travelling wave solutions are always stable. The Evans

function method that we used to check stability is very effective to establish instability, but

cannot establish stability conclusively. We leave the proof of stability of the fully nonlinear

localized bulging solutions to a future study.
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