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Szemerédi’s theorem and problems
on arithmetic progressions

I. D. Shkredov

Abstract. Szemerédi’s famous theorem on arithmetic progressions asserts
that every subset of integers of positive asymptotic density contains arith-
metic progressions of arbitrary length. His remarkable theorem has been
developed into a major new area of combinatorial number theory. This is
the topic of the present survey.
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§ 1. Introduction

Let k and d be positive integers. By an arithmetic progression of length k with
difference d one means a set of the form n, n+d, n+2d, . . . , n+(k−1)d, where n is
an integer. In 1927 B. L. van der Waerden proved his famous theorem on arithmetic
progressions (see [1]), praised by A.Ya. Khinchin [Khinchine, Khintchine, Hinchin]
as a pearl of number theory (see [2]).

Theorem 1 (van der Waerden). Let h and k be positive integers. For any partition
of the integers into h subsets C1, . . . , Ch, one of these subsets contains an arithmetic
progression of length k.
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Although van der Waerden’s theorem seems simple and natural, it has played
a significant role in the development of two directions in mathematics: additive
combinatorics and combinatorial ergodic theory. We shall say more about these
directions below in our survey, but for now we note only that the two areas are
very intimately connected and form a meeting point of disciplines like additive and
analytic number theory, graph theory, and the theory of dynamical systems. Van
der Waerden’s theorem itself is a fundamental result of Ramsey theory (see [3], [4]).
Indeed, if one treats the partition of the set of integers in Theorem 1 into h subsets
C1, . . . , Ch as a colouring of Z with h distinct colours, then van der Waerden’s
theorem asserts that the set of integers contains a monochromatic arithmetic pro-
gression, that is, a progression whose elements all have the same colour.

The present survey is devoted to a variety of results related in some way to van
der Waerden’s theorem and its generalizations.

Before discussing the generalizations, we reformulate Theorem 1.

Theorem 2. Let h and k be positive integers. There is a number N(h, k) such
that, for any positive integer N > N(h, k) and any partition of the set 1, . . . , N
into h subsets, at least one of these subsets contains an arithmetic progression of
length k.

In contrast to Theorem 1, all the sets in Theorem 2 are finite. For this reason,
Theorem 2 is referred to as a finite version of Theorem 1. One can easily show that
these results are equivalent (see below).

Apparently, the simplest question arising in connection with van der Waerden’s
theorem is: how rapidly does N(h, k) tend to infinity? Unfortunately, van der
Waerden’s original proof gives very weak estimates for N(h, k), even when h = 2.
We shall formulate the existing result more precisely.

We introduce a sequence of functions fi : N→ N (the Ackermann hierarchy). Let
f1(n) = n+ 1 and let fi+1(n) = (fi ◦ · · · ◦ fi︸ ︷︷ ︸

n

)(1) for any i > 2. Then, for example,

f2(n) = 2n, f3(n) = 2n, and f4(n) is the tower of n twos. By the Ackermann
function one means the function A(n) = fn(n), n ∈ N. It is clear that A(n)
tends to infinity more rapidly than any fixed function fi(n). Moreover, A(n) is not
primitive recursive (roughly speaking, A(n) cannot be expressed by using finitely
many compositions of ordinary functional operations; for details, see [5]). The
original proof of van der Waerden’s theorem implies the estimate N(2, k) 6 A(k)
for any k > 2.

In 1987 S. Shelah obtained the first primitive recursive estimate for N(2, k)
(see [6]). Let S(1) = 2 and let S(n) = f4(S(n − 1)) for any n > 2. Then the
inequality N(2, k) 6 S(Ck) holds for any k > 2, where C is an absolute constant.

Another generalization related to Theorem 1 was expressed in 1936 by P. Erdős
and P. Turán.

Let A be an arbitrary subset of integers. By the Banach upper density (or simply
upper density) of a set A we mean the quantity

D∗(A) = lim sup
N→∞

|A ∩ {1, 2, . . . , N}|
N

.
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Erdős and Turán conjectured that an arbitrary set of integers of positive upper
density contains an arithmetic progression of arbitrary length. It is clear that this
conjecture implies van der Waerden’s theorem. Indeed, the Banach upper density
has the subadditivity property

D∗
( m⋃
i=1

Ai

)
6

m∑
i=1

D∗(Ai),

where Ai ⊆ Z, i = 1, . . . ,m, are arbitrary sets. Hence, if Z is partitioned into h
subsets, then the upper density of one of these subsets is at least 1/h > 0. Let us
state the Erdős–Turán conjecture more precisely.

Conjecture 1 (Erdős, Turán). Let A ⊆ Z be an arbitrary set with D∗(A) > 0.
Then A contains an arithmetic progression of length k for any integer k > 3.

It follows from Conjecture 1 that every set of positive density contains infinitely
many arithmetic progressions of length k.

The Erdős–Turán conjecture has another (equivalent) formulation. For conve-
nience, we denote the set {1, 2, . . . , N} by [N ].

Conjecture 1′ (Erdős, Turán). Let k > 3 be an integer and let 0 < δ 6 1. Then
there is a positive integer N(k, δ) such that for any N > N(k, δ) an arbitrary set
A ⊆ [N ] with |A| > δN contains an arithmetic progression of length k.

For completeness we prove here the equivalence of Conjectures 1 and 1′. More
or less the same reasoning proves the equivalence of Theorems 1 and 2.

Obviously, Conjecture 1′ implies Conjecture 1. Let us prove the converse. Sup-
pose that Conjecture 1′ fails for some integer k > 3 and some δ ∈ (0, 1]. In other
words, for any positive integer N there is a set A ⊆ [N ] with |A| > δN such that A
contains no arithmetic progressions of length k. Let N1 = 1 and b1 = 0 and let

Ni := bi−1 +Ni−1, bi := bi−1 +Ni−1 +Ni + 1, (1)

for i > 2. We obtain an increasing sequence of positive integers 1 = N1 < N2 <
N3 < · · · and a sequence of sets A1, A2, A3, . . . such that Ai ⊆ [Ni], |Ai| > δNi
for any i, and none of the sets Ai contain arithmetic progressions of length k. Let
Ãi = Ai + bi. It is clear that the sets Ãi are disjoint and do not contain arithmetic
progressions of length k. Let A =

⊔
i Ãi. Using (1), we see that A also does not

contain arithmetic progressions of length k. We have bi 6 3Ni for any i > 1.
Further,

|A ∩ [bi +Ni]|
bi +Ni

>
|Ãi ∩ [bi, bi +Ni]|

4Ni
>
δNi
4Ni

=
δ

4
. (2)

It follows from (2) that the upper density of the set A is at least δ/4 > 0. This
contradicts Conjecture 1.

The Erdős–Turán conjecture turned out to be extremely difficult. The simplest
case k = 3 was proved by K. F. Roth only in 1953 (see [7]). It should be noted that
the case of progressions of length three is special, because in this situation one can
use the more or less familiar technique connected with the circle method.

We reformulate the Erdős–Turán conjecture once more.
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Let N be a positive integer. We set

ak(N)=
1
N

max{|A| : A ⊆ [N ], A contains no arithmetic progressions of length k}.

We make a remark concerning the function ak(N). Let k > 3 be an integer,
let N and M be arbitrary positive integers, and let A be a subset of [N + M ]
without arithmetic progressions of length k. Then the sets A1 = A∩{1, . . . , N} and
A2 = A∩{N+1, . . . , N+M} also do not contain arithmetic progressions of length k.
We obtain the obvious inequality ak(N+M)(N+M) 6 ak(N)N+ak(M)M , which
implies the existence of the limit limN→∞ ak(N). The Erdős–Turán conjecture
means that for any k > 3 we have

ak(N) → 0 as N →∞. (3)

Roth proved the following theorem, where log denotes the logarithm to base 2.

Theorem 3 (Roth). Let N > 3 be an integer. Then

a3(N) � 1
log logN

.

Thus, Roth obtained more than the Erdős–Turán conjecture needed for k = 3.
His theorem gives a quantitative estimate for the rate of vanishing of a3(N). We
present the proof of Theorem 3 in § 2.

Roth’s result was later improved by E. Szemerédi in [8] and D. R. Heath-Brown
in [9]. These authors independently obtained the following estimate for a3(N).

Theorem 4 (Szemerédi, Heath-Brown). Let N > 3 be an integer. Then

a3(N) � 1
(logN)c

,

where for the constant c one can take 1/20.

At present, the best result on an upper bound for a3(N) is due to J. Bourgain [10]
(see also his paper [11] on subsets of Rk containing no arithmetic progressions).

Theorem 5 (Bourgain). Let N > 3 be an integer. Then

a3(N) �

√
log logN

logN
. (4)

The theorems of Roth, Szemerédi, Heath-Brown, and Bourgain involve estimates
of a3(N) (see also the interesting paper [12], in which the Erdős–Turán conjecture
for k = 3 is proved by using methods of graph theory). As was noted above, the
conjecture in (3) is much more simple for k = 3 than in the case k > 4. If k > 4,
then the usual analytic methods are no longer effective. It was only in 1969 that
Szemerédi proved the Erdős–Turán conjecture in the case k = 4 (see [13]), and then
in 1975 he obtained a complete solution of this problem for any k > 4 (see [14]).
Let us formulate this beautiful result.



Szemerédi’s theorem 1105

Theorem 6 (Szemerédi). Let A be an arbitrary subset of the positive integers with
D∗(A) > 0. Then A contains an arithmetic progression of length k for any integer
k > 3.

In his proof Szemerédi uses complicated combinatorial arguments. The proof is
based on the so-called regularity lemma, which is at present the most important
tool for studying graphs. Szemerédi’s proof is discussed in more detail in § 4.

An alternative proof of Theorem 6 was proposed by Furstenberg in [15] (a simpler
proof is presented in [16]). His approach uses ergodic theory methods. Fursten-
berg showed that Szemerédi’s theorem is equivalent to an assertion on multiple
recurrence for almost all points in an arbitrary dynamical system.

Theorem 7 (Furstenberg). Let X be a set, let B be a σ-algebra of measurable sets
on X , and let µ be a finite measure on X with µ(X) > 0. Suppose that T is a map
of X into itself which preserves the measure µ and that E is an arbitrary measurable
subset of X with µ(E) > 0.1 Then there is an integer n > 0 such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.

We discuss Furstenberg’s theorem in § 5.
It should be noted that, using his method, Furstenberg and his students obtained

a series of deep generalizations of Szemerédi’s theorem (see, for instance, [17]–[21])
which have not yet been proved by combinatorial methods.

We cite here only one of the results in the paper [19].

Theorem 8 (Bergelson, Leibman). Let X be a set, let B be a σ-algebra of mea-
surable sets on X , and let µ be a finite measure on X with µ(X) > 0. Let k > 2,
let T1, . . . , Tk be invertible commuting self-maps of X that preserve the measure µ,
and let p1(n), . . . , pk(n) be polynomials having rational coefficients, taking integral
values at all integral points n, and satisfying pi(0) = 0, i = 1, . . . , k. Then

lim inf
N→∞

1
N

N−1∑
n=0

µ(T−p1(n)
1 E ∩ T−p2(n)

2 E ∩ · · · ∩ T−pk(n)
k E) > 0

for any measurable set E with µ(E) > 0.

Theorem 8 shows that the linear functions n, 2n, 3n, . . . , (k − 1)n in Theorem 7
can be replaced by arbitrary integral polynomials p1(n), p2(n), . . . , pk(n) satisfying
the condition pi(0) = 0, i = 1, . . . , k.

Unfortunately, Szemerédi’s methods give very weak upper bounds for ak(N).
The ergodic approach gives no bounds at all. It was only in 2001 that W.T. Gowers
[22] obtained the first effective result on the rate of vanishing of the quantity ak(N)
for k > 4. For a weaker estimate of a4(N), see [23].

Theorem 9 (Gowers). The inequality ak(N) � 1/(log logN)ck holds for all inte-
gers N > 3 and k > 4, where the constant is ck = 2−2k+9

.

1Russian Editors’ note: It is also assumed that k is a given integer with k > 3; see Theorem 25
below.
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Corollary 1. Let k and N be positive integers and let the set [N ] be coloured with at
most (log logN)ck colours. Then the set [N ] contains a monochromatic arithmetic
progression of length k.

Although the proofs of the theorems of Szemerédi, Furstenberg, and Gowers
use different methods, the theorems have much in common. In each of these
approaches the proof is an iterative procedure, and the crucial idea is in the
dichotomy between the structure and the randomness. More precisely, at each
step of the iterative procedure (of an algorithm proving the theorem) we test our
object X of interest (a set or a dynamical system) to find out whether it has
‘random’ properties. The structure of the iterative procedure has a specific fea-
ture: if X has random properties (for example, if the system X is a weakly mixing
dynamical system or if the set X has ‘small’ Fourier coefficients), then one can
rather easily establish the existence of arithmetic progressions in X. However,
if X has no random properties, then some part of X (a subset or a quotient sys-
tem) has some ‘structural properties’. Applying our considerations to this part
of X, we either prove the desired result by finding in X a subobject with random
properties, or single out a more and more ‘structurized’ subobject of X at every
step of the iterative procedure, so that it eventually becomes quite clear that the
subobject has configurations we are interested in.

Gowers’ result is a significant step toward the proof of another famous conjecture
of Erdős and Turán on arithmetic progressions.

Conjecture 2 (Erdős, Turán). Let A = {n1 < n2 < · · · } be an infinite sequence
of positive integers such that

∞∑
i=1

1
ni

= ∞.

Then A contains an arithmetic progression of arbitrary length.

It can readily be proved (and will be proved in § 5) that Conjecture 2 is equiva-
lent to the condition that the series

∑∞
l=1 ak(4

l) converges for any integer
k > 3. Hence, to prove Conjecture 2, it suffices to obtain the estimate
ak(N) � 1/(logN)1+ε for any k > 3 and for some ε > 0.

The proof of Theorem 9 contains many new and beautiful ideas. The methods
in Gowers’ paper were developed by several authors (see, for instance, [24]–[33]).
The most striking result obtained in these papers is undoubtedly the theorem of
B. Green and T. Tao on progressions in the primes.

Theorem 10 (Green, Tao). For any integer k > 3 the set of primes contains an
arithmetic progression of length k.

In fact, Green and Tao proved a stronger result.
Let A be an arbitrary subset of the set P of primes and let π(N) be the number

of primes not exceeding N . The upper density of A with respect to P is defined
to be lim supN→∞ |A ∩ [N ]|/π(N).

Theorem 11 (Green, Tao). Let A ⊆ P be an arbitrary set of positive upper density
with respect to P and let k > 3. Then A contains an arithmetic progression of
length k.
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Theorem 11 for k = 3 was proved by Green in [34]. He proved an even stronger
result. We write log[1] = logN and let log[l]N = log(log[l−1]N) for any l > 2.
Thus, log[l]N is the iterated logarithm (the result of taking the logarithm of the
number N successively l times).

Theorem 12 (Green). Let N be a sufficiently large positive integer and let A be
an arbitrary subset of P ∩ [N ] such that

|A| �
N

√
log[5]N

logN
√

log[4]N
.

Then A contains an arithmetic progression of length three.

We derive a simple consequence of Theorem 11 (see [24]). As is known (see, for
instance, [35]), the set A1 of primes whose residue modulo four is equal to one has
positive upper density with respect to P. Moreover, every element of A1 can be
represented as the sum of two squares (see, for example, [36], Ch. V, Question 9c).
Applying Theorem 11 to A1, we see that there is an arithmetic progression of
arbitrary length all of whose elements are sums of two squares.

In conclusion we note that Conjecture 2 implies both Theorem 10 and Theo-
rem 11.

Let us briefly describe the structure of the survey. In § 2 we consider the simplest
case k = 3 of Conjecture 1′ and prove Roth’s theorem, Theorem 13. In § 3 we
present results of F.A. Behrend, R.A. Rankin, and others on lower bounds for the
quantity ak(N). The next section, § 4, is devoted to Szemerédi’s theorem, simple
corollaries to it, and the regularity lemma. In § 5 we discuss the ideas at the basis
of the proof of Gowers’ result in the case k = 4 and also properties of the Gowers
norm that are used in the proof of the general Theorem 9. Since the proof of
Theorem 9 is very complicated, in our presentation we follow a simpler paper [23]
in which Gowers proved a weaker estimate for a4(N) than in Theorem 9. In § 6
we sketch Furstenberg’s proof of Szemerédi’s theorem and give a brief survey of
results obtained by methods of ergodic combinatorial number theory. In the next
section we consider the simplest two-dimensional generalization of Theorem 6, and
in § 8 the Green–Tao result (Theorem 10) on progressions in the primes. In § 9
we discuss further generalizations of Roth’s theorem and also of Schur’s theorem
(see [37]). The main results in this area of combinatorial number theory were
obtained by Roth [38], R. Rado [39]–[41], and also by P. Frankl, R. L. Graham,
and V. Rödl [42]. In § 10 we present two theorems of E. Croot on critical sets
without arithmetic progressions, several results on arithmetic progressions in sums,
and a theorem on rainbows. Finally, we discuss in conclusion several unsolved
problems related to Szemerédi’s theorem and arithmetic progressions.

We finish the Introduction with a proof of van der Waerden’s theorem (see [43]).
Let k > 1 and r > 0 be integers. We denote the arithmetic progression a,

a + r, . . . , a + (k − 1)r by the symbol [a, r, k]. Let c : [N ] → [m] be a colouring of
the segment 1, . . . , N of positive integers with m colours.
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Definition 1. By a fan with radius k, degree d, and initial point a we mean a
d-tuple ([a, r1, k], . . . , [a, rd, k]) of arithmetic progressions belonging to [N ]. Each
progression of the form [a+ ri, ri, k − 1], 1 6 i 6 d, is called a spoke of the fan.

A fan ([a, r1, k], . . . , [a, rd, k]) is said to be polychromatic if there are d+1 distinct
colours c0, c1, . . . , cd such that the initial point a has colour c0 and all the elements
of the ith spoke of the fan have colour ci, i = 1, . . . , d.

Proof of Theorem 2. The proof can be carried out by induction on the length k of
the arithmetic progression. If k = 1, then van der Waerden’s theorem obviously
holds, and we therefore assume that k > 2. Suppose that the theorem has been
proved for k−1. In other words, for any positive integer m there is a positive integer
N(m, k − 1) such that any colouring of [N(m, k − 1)] with m colours contains a
monochromatic arithmetic progression of length k − 1.

We use our induction hypothesis to prove the following assertion: for any d > 0
there is a positive integer Nf (m, k−1, d) such that every colouring of [N(m, k−1, d)]
contains either a monochromatic arithmetic progression of length k or a polychro-
matic fan of radius k and degree d; denote this assertion by Nf . We prove Nf
by induction on d. If d = 0, then the assertion Nf is obvious. We note that a
polychromatic fan of degree d can exist only if we have at least (d + 1) colours.
Hence, if our assertion is proved for d = m, then van der Waerden’s theorem will
follow.

Suppose that the validity of the assertion Nf has been proved for d − 1, d > 1.
Let N = Nf (m, k − 1, d) := 4kN1N2, where N1 = Nf (m, k − 1, d − 1) and N2 =
N(mdNd

1 , k − 1). We note that the existence of the numbers N1 and N2 follows
from our induction hypotheses. Let c be an arbitrary colouring of the set [N ] withm
colours. For any b in[N2] the set {bkN1 + 1, bkN1 + 2, . . . , bkN1 +N1} is an arith-
metic progression of length N1 belonging to the segment [N ] of the positive integers.
By the induction hypothesis, the set {bkN1 + 1, bkN1 + 2, . . . , bkN1 +N1} contains
either a monochromatic arithmetic progression of length k or a polychromatic fan
of radius k and degree d− 1. If we have a monochromatic progression of length k,
then we have proved van der Waerden’s theorem; therefore, we assume that for any
b ∈ [N2] there is a polychromatic fan of radius k and degree d− 1. In other words,
for any b ∈ [N2] there are some elements a(b), r1(b), . . . , rd−1(b) ∈ {1, . . . , N1} and
distinct colours c0(b), c1(b), . . . , cd−1(b) ∈ [m] such that c(bkN1 + a(b)) = c0(b)
and c(bkN1 + a(b) + jri(b)) = ci(b) for any j = 1, . . . , k − 1, i = 1, . . . , d− 1. The
map b → (a(b), r1(b), . . . , rd−1(b), c0(b), c1(b), . . . , cd−1(b)) determines a colouring
of [N2] with mdNd

1 colours. We can assume that these colours are indexed by the
numbers from 1 to mdNd

1 . By the definition of the number N2, there is a mono-
chromatic arithmetic progression [b, s, k − 1] (of length k − 1) belonging to [N2].
Suppose that this progression has the colour (a, r1, . . . , rd−1, c0, c1, . . . , cd−1).
Without loss of generality we can assume that s > 0, because otherwise we can
consider the arithmetic progression b, b− s, . . . , b− (k − 2)s instead of [b, s, k − 1].

Let b0 = (b−s)kN1+a. Since N = 4kN1N2, it follows that b ∈ [N ]. We consider
the fan of radius k and degree d with initial point b0:

([b0, skN1, k], [b0, skN1 + r1, k], . . . , [b0, skN1 + rd−1, k]). (5)
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Let us prove that the fan (5) is polychromatic. Consider the first spoke of the fan.
For j = 1, . . . , k − 1,

c(b0 + jskN1) = c((b+ (j − 1)s)kN1 + a) = c0(b+ (j − 1)s) = c0.

Hence, the first spoke of the fan is monochromatic. The other spokes of the fan are
also monochromatic. Indeed, for any j = 1, . . . , k − 1, t = 1, . . . , d− 1 we have

c(b0 + j(skN1 + rt)) = c((b+ (j − 1)s)kN1 + a+ jrt) = ct(b+ (j − 1)s) = ct.

If some spoke of the fan is coloured with the colour of the initial point b0, then we
have found a monochromatic arithmetic progression of length k. If the colour of b0
differs from the colour of every spoke of the fan, then we obtain a polychromatic
fan of radius k and degree d. In other words, we have proved the assertion Nf , and
hence van der Waerden’s theorem as well.

§ 2. Roth’s theorem

In the present section we prove Roth’s theorem, Theorem 3. Let us formulate
this beautiful theorem once more.

Theorem 13 (Roth). Let δ > 0 and let N be an integer with N � exp exp(δ−1).
Assume that A is an arbitrary subset of [N ] with |A| = δN . Then the set A contains
an arithmetic progression of length three.

Before sketching the proof of Theorem 13, we shall give several definitions.
Let f be a complex function on the set of integers, and let E be an arbitrary

subset of Z. We write f : E → C if the function f vanishes outside E.
Suppose that the function f takes finitely many non-zero values. The Fourier

transform of the function f is given by the formula

f̂(x) =
∑
n

f(n)e−2πinx, x ∈ S1. (6)

(The numbers f̂(x) are also called the Fourier coefficients of the function f .) We
write

∫
instead of

∫ 1

0
and

∑
n

instead of
∑
n∈Z

. The following formulae hold:

∫
|f̂(x)|2 dx =

∑
n

|f(n)|2, (7)∫
f̂(x)ĝ(x) dx =

∑
n

f(n)g(n). (8)

Definition 2. Let α ∈ (0, 1) and letN be a positive integer. A function f : [N ]→C
is said to be α-uniform if

‖f̂‖∞ 6 αN. (9)

Let A ⊆ [N ], |A| = δN . In this paper the characteristic function of A will be
denoted by χA, or simply by the same symbol A. The function f = χA − δχ[N ]

is called the balance function of A. A set A is said to be α-uniform if its balance
function is α-uniform. We note that

∑
n f(n) = 0.
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The simplest examples of α-uniform sets are the so-called random sets. We dwell
on these sets in a bit more detail. Let δ > 0 be an arbitrary number. Let Ω be the
space of sequences of length N formed by zeros and ones and let F be the σ-algebra
of all subsets of Ω. If a sequence ω ∈ Ω has k ones andN−k zeros, then we assign the
probability δk(1−δ)N−k to it. This defines a probability space denoted by (Ω,F ,P).
To any point ω = (ω1, . . . , ωN ) of the set Ω we assign the set A(ω) = {i : ωi = 1}.
The random sets are the sets of the form A(ω) for the ‘generic’ sequences ω. For
example, one can easily see that the expectation of the cardinality of the set A(ω)
is equal to δN . Proceeding from this fact, one says that the cardinality of the
random set in the above probability model is equal to δN . Similarly, one can find
the expectation of the number of arithmetic progressions in the random set. This
expectation turns out to be of the order of δ3N2. Using large-deviation estimates
for sequences of independent identically distributed random variables, one can also
show that all the non-zero Fourier coefficients of the random set do not exceed
N1/2+ε, where ε > 0 (for more details, see, for instance, [44]). Hence, the random
sets are examples of α-uniform sets for α > N−1/2+ε. One can say that, in a sense,
‘almost all’ subsets of [N ] of cardinality δN are α-uniform. Nevertheless, one can
easily give examples of sets in [N ] of cardinality δN which are not α-uniform. For
instance, one can take an arbitrary arithmetic progression in [N ] of length δN .

We discuss the main ideas used in the proof of Roth’s theorem. Suppose that a
set A ⊆ [N ], |A| = δN , contains no arithmetic progressions of length three. The
proof of Roth’s theorem is an algorithm. At the first step of this algorithm, two
situations are possible: either the set A is α-uniform for some α depending only
on δ (namely, the proof takes α = 2−5δ2), or it is not.

If A is α-uniform, then one can readily show that A contains very many arith-
metic progressions of length three. More precisely, the order of the number of
arithmetic progressions of length three in A is equal to that of δ3N2. We note that
the random sets contain exactly this number of arithmetic progressions. The set A
also contains the so-called trivial (or ‘degenerate’) progressions, that is, progres-
sions with zero difference. It is clear that the number of such progressions does
not exceed the cardinality of A. By assumption, the number N is not less than
exp exp(δ−1). This leads to the conclusion that if A is α-uniform, then the number
of arithmetic progressions in A is greater than |A| = δN . Hence, A contains at least
one non-trivial progression (in fact, there are many such progressions in A). We
arrive at a contradiction to the assumption that there are no arithmetic progressions
of length three in A.

Suppose now that the set A is not α-uniform. One can show that the α-uniform
condition for the set A is equivalent to the uniform distribution of A in long
arithmetic progressions. More precisely, the cardinality of the intersection of an
α-uniform set A of cardinality δN with any sufficiently long progression P is approx-
imately equal to δ|P |. The exact meaning of the words sufficiently long will become
clear from the proof of Roth’s theorem. Hence, if the set A is not α-uniform, then
there is a progression P such that |A∩P | = (δ+ θ)|P |, where |θ| > 0. More precise
arguments enable one to prove that P can be chosen so that θ is positive and can
be expressed explicitly in terms of the density δ.

Next we consider the new set A′ = A∩P and apply our algorithm to it. We note
that since A′ ⊆ A, the set A′ contains no arithmetic progressions of length three.
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Moreover, the density of A′ in P is not less than δ + θ, where θ > 0. Hence, at
every step of the algorithm the density of the sets obtained increases by a positive
quantity. On the other hand, the density is always not greater than one. This means
that our algorithm must terminate in finitely many steps. Consequently, at some
step of the algorithm we obtain an arithmetic progression P̃ and an α-uniform
set Ã belonging to A ∩ P̃ . As was said above, in this case the set Ã contains
an arithmetic progression of length three. Thus, A also contains this arithmetic
progression. We again arrive at a contradiction to the assumption that there are
no arithmetic progressions of length three in A.

We have thus sketched the proof of Roth’s theorem. Let us proceed to the proof
itself.

Proposition 1. Let δ > 0, let M be a positive integer, let P be an arithmetic
progression of length M , and let A be a subset of P , |A| = δM , without arith-
metic progressions of length three. Assume that

M > 225π2δ−4. (10)

Then there is a progression P ′ ⊆ P such that
1) |A ∩ P ′| > (δ + 2−9δ2)|P ′|,
2) |P ′| > 2−15δ2

√
M .

We show that Roth’s theorem follows from Proposition 1.
As remarked above, the proof of Roth’s theorem is an algorithm. Here is the

first step of the algorithm. Suppose that a set A ⊆ [N ] contains no arithmetic
progressions of length three. Let P0 = [N ], A0 = A, and δ0 = δ. We have
N > 225π2δ−4. Applying Proposition 1, we obtain a progression P1 ⊆ [N ] such
that |A0∩P1| > (δ0+2−9δ20)|P1| and |P1| > 2−15δ20

√
|P0|. Then we set A1 = A0∩P1.

Suppose that at the ith step of the algorithm, i > 1, we have constructed a
progression Pi and a set Ai ⊆ Pi without arithmetic progressions of length three
and such that

|Ai−1 ∩ Pi| > (δi−1 + 2−9δ2i−1)|Pi|, |Pi| > 2−15δ2i−1

√
|Pi−1| . (11)

We note that the density of the sets Ai in the progressions Pi increases by the
quantity 2−9δ2i−1 at every step of the algorithm. At the first step the density of A0

in P0 is equal to δ. If

Ni := |Pi| > 225π2δ−4 > 225π2δ−4
i , (12)

then the (i+ 1)st step of the algorithm can be carried out.
We estimate the maximal number of steps of the algorithm. Let ε(t) = 2−9t2.

Also, let k1 = dδ0/ε(δ0)e, k2 = dδk1/ε(δk1)e, . . . , ks = dδks−1/ε(δks−1)e, . . . . Using
the first inequality in (11), we obtain δk1 > 2δ, δk2 > 22δ, . . . , δks

> 2sδ, . . . . This
implies that in at most K steps, where

k1 + k2 + · · · < 200
(

1
δ

+
1
2δ

+
1

22δ
+ · · ·

)
=

400
δ

= K,

the density δK becomes greater than 1. The contradiction obtained does not yet
prove Roth’s theorem, because we did not verify the condition (12) at every step
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of our algorithm. We have N � exp exp(δ−1). Applying the second inequality
in (11), we obtain

NK > (2−15δ2K)KN1/2K

> (2−15δ2)KN1/2K

= 2−6000/δδ800/δN1/2K

> 225π2δ−4.

Since Ni > NK for any i 6 K, it follows that the inequality (12) holds at every
step of the algorithm. This completes the proof of Theorem 13.

Proof of Proposition 1. Let P = {b, b + d, . . . , b + (|P | − 1)d}. Without loss of
generality we can assume that b = d = 1. For otherwise we can consider the
progression P̃ = {n : n = (p − b)/d, p ∈ P} and the set Ã = {n : n = (a − b)/d,
a ∈ A}. Then Ã ⊆ P̃ , and Ã contains no arithmetic progressions of length three.

Thus, let P = {1, . . . ,M}.
Case 1. The set A is α-uniform. Suppose that A is an α-uniform subset of P , where
α = 2−5δ2. The number of arithmetic progressions in A is equal to

σ =
∫
Â2(x)Â(−2x) dx. (13)

We have

σ = δ3
∫
P̂ 2(x)P̂ (−2x) dx+ δ2

∫
P̂ 2(x)(Â− δP̂ )(−2x) dx

+ δ

∫
P̂ (x)(Â− δP̂ )(x)Â(−2x) dx+

∫
(Â− δP̂ )(x)Â(x)Â(−2x) dx

= σ∗ + σ1 + σ2 + σ3 . (14)

The modulus of each of the terms σ1, σ2, and σ3 does not exceed αδM2. For
example, let us estimate σ3. Since the set A is α-uniform, it follows from the
equality (7) and the Cauchy–Bunyakovskii inequality that

|σ3| 6 ‖Â− δP̂‖∞
∫
|Â(x)| |Â(−2x)| dx

6 αM

(∫
|Â(x)|2 dx

)1/2(∫
|Â(−2x)|2 dx

)1/2

= αδM2.

A similar estimate applies for σ1 and σ2. Hence,

σ = δ3
∫
P̂ 2(x)P̂ (−2x) dx+ 3αδM2θ1, (15)

where |θ1| 6 1. The quantity
∫
P̂ 2(x)P̂ (−2x) dx is the number of arithmetic pro-

gressions in [M ]. This number is equal to (M−2)+(M−4)+ · · ·+(M−bM/2c) >
M2/8. Since α = 2−5δ2, it follows that σ > δ3M2/8− 3δ3M2/32 = δ3M2/32. The
number of trivial arithmetic progressions in A is equal to δM . By assumption, we
have M > 225π2δ−4. Hence, δ3M2/32 > δM . The last inequality means that A
contains a non-trivial arithmetic progression of length three, a contradiction to the
assumption of Proposition 1.
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Case 2. The set A is not α-uniform. We assume now that A is not an α-uniform
subset of P with α = 2−5δ2. Let f be the balance function of the set A. Since A is
not α-uniform, there is an x0 ∈ S1 such that |f̂(x0)| > αM . Let M1 =

√
M . By the

Dirichlet theorem, there is a positive integer q 6 M1 such that ‖qx0‖ 6 1/M1, where
‖ · ‖ is the distance to the nearest integer. In other words, x0 = p/q + θ/(qM1),
where |θ| 6 1. Let Pj = {n ∈ [M ] | n ≡ j (mod q)}, j = 1, . . . , q. We have
|Pj | = b(M − j)/qc + 1 and Pj = {j + kq, k = 0, 1, . . . , b(M − j)/qc}. Let P̃j =
{0, 1, . . . , b(M − j)/qc}.

Let t = d(π25)/(αM1) ·M/qe > 1. We have t < M/q. One can easily show that
every progression P̃j can be partitioned into t progressions P̃ lj whose lengths can
differ by at most 1. We have

αM 6 |f̂(x0)| =
∣∣∣∣ ∑
n

f(n)e−2πinx0

∣∣∣∣
=

∣∣∣∣ q∑
j=1

t∑
l=1

∑
k∈ eP l

j

f(j + kq)e−2πi(j+kq)
(

p
q + θ

qM1

)∣∣∣∣
=

∣∣∣∣ q∑
j=1

e−2πij
(

p
q + θ

qM1

) t∑
l=1

∑
k∈ eP l

j

f(j + kq)e−2πi kθ
M1

∣∣∣∣
6

q∑
j=1

t∑
l=1

∣∣∣∣ ∑
k∈ eP l

j

f(j + kq)e−2πi kθ
M1

∣∣∣∣. (16)

Let P̃ lj = {c, c+ 1, . . . , c+ r − 1}, r = |P̃ lj |. Then

∑
k∈ eP l

j

f(j + kq)e−2πi kθ
M1 = e−2πi cθ

M1

( ∑
k∈ eP l

j

f(j + kq) + 2πθ′
r2

M1

)
. (17)

Since the lengths of the progressions P̃ lj can differ by at most 1, it follows that
r = |P̃ lj | 6 4M/(tq) for any l. Using the last inequality together with (16) and (17),
we see that

q∑
j=1

t∑
l=1

∣∣∣∣ ∑
k∈ eP l

j

f(j + kq)
∣∣∣∣ >

αM

2
. (18)

We have
q∑
j=1

t∑
l=1

∑
k∈ eP l

j

f(j + kq) = 0. (19)

The inequality (18) and the equality (19) imply the existence of a progression P̃ l0j0
such that ∑

k∈ eP l0
j0

f(j + kq) >
αM

4qt
. (20)
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Let P ′ = {n : n = j + kq, k ∈ P̃ l0j0 }. We have |P ′| = |P̃ l0j0 | > M/(4qt). Since
t = dπ25/(αM1) ·M/qe, it follows that |P ′| > 2−10αM1 = 2−15δ2

√
M , and thus the

condition 1) in Proposition 1 holds. Let us now prove that the condition 2) also
holds. Using the inequality (20), we obtain

2−9δ2|P ′| = α|P ′|
16

6
αM

4qt
6

∑
n∈P ′

f(n) = |A ∩ P ′| − δ|P ′|. (21)

This completes the proof of Proposition 1.

Recently, Green [25] somewhat sharpened Roth’s theorem. He proved that an
arbitrary sufficiently dense subset of [N ] contains an arithmetic progression of
length three whose difference can be represented in the form x2 + y2, where x
and y are some positive integers.

Theorem 14 (Green). Let N be a positive integer. Then there is an effective
constant c > 0 such that every set A ⊆ [N ] with |A| � N/(log logN)c contains
an arithmetic progression of length three whose difference can be represented in the
form x2 + y2.

§ 3. Lower bounds for ak(N)

In the previous section we proved Roth’s theorem on an upper bound for the
quantity a3(N). We shall now present several results on lower bounds for ak(N),
k > 3.

In 1946 Behrend [45] developed an approach in the papers [46] and [47] of
R. Salem and D. C. Spencer and obtained the following lower bound for a3(N)
(see also [48]).

Theorem 15 (Behrend). Let ε > 0 be arbitrary. Then there is a number Nε ∈ N
such that

a3(N) > exp
(
−(1 + ε)C

√
lnN

)
for any positive integer N > Nε, where C is a positive absolute constant.

Proof. Let Nε be a positive integer such that ln(4 lnN)/
√

lnN < ε for any
N > Nε, N ∈ N. Also, let m and n be positive integer parameters and let
Λ = {0, 1, . . . ,m − 1}n. We consider the n-dimensional sphere St = {x ∈ Λ :
x2

1 + · · · + x2
n = t}, where 0 6 t 6 n(m − 1)2. It is clear that every sphere St

contains no arithmetic progressions of length three, in the sense that the equality
x + y = 2z is possible for x, y, z ∈ St only if x = y = z.

We note that the total number of spheres does not exceed nm2. Since every point
of the set Λ belongs to some sphere, it follows from the Dirichlet principle that there
is a t0 ∈ N for which the cardinality of St0 is not less than mn/(nm2) = mn−2/n.

Thus, we have found a rather dense set St0 in Λ that contains no arithmetic
progressions of length three. Let us construct from St0 a new set A ⊆ N which
also does not contain arithmetic progressions. To this end, we consider the map
ϕ : Λ → Z given by the formula ϕ(x) =

∑n
i=1 xi(2m)i−1. Let A = ϕ(St0). Since

the equality ϕ(x)+ϕ(y) = 2ϕ(z) holds if and only if x+y = 2z, it follows that the
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set A contains no arithmetic progressions of length three. We note that the set A
is contained here in the segment {1, 2, . . . , (2m)n} of positive integers.

We now choose the parameters m and n. Namely, let n = d
√

2 logN e and let m
satisfy the conditions (2(m− 1))n 6 N < (2m)n. We have

|A| = |St0 | >
mn−2

n
> N

N−2/n

2nn
> N exp

(
−

(
2
√

2 ln 2 +
ln(4 lnN)√

lnN

)√
lnN

)
> N exp

(
−

(
2
√

2 ln 2 + ε
)√

lnN
)
. (22)

Since a3(N) > |A|/N , this proves Theorem 15.

Although the result obtained by Behrend in 1946 is simple, it remains the best
result so far.

Rankin [49] generalized Behrend’s theorem to the case of arbitrary k > 3.

Theorem 16 (Rankin). Let ε > 0 be arbitrary and let k > 3 be an integer. Then

ak(N) > exp(−(1 + ε)Ck(lnN)1/(k−1))

for all sufficiently large N , where Ck is a positive absolute constant depending only
on k.

Developing the main idea of Theorem 15, Rankin constructs in his paper a
sequence of spheres St. In this construction he uses the asymptotic formula in [50]
for the number of solutions of the equation x2

1 + · · · + x2
n = t, 0 6 xi 6 m − 1,

i = 1, . . . , n.
The first example of an infinite sequence of positive integers without arithmetic

progressions of length three was proposed by Erdős and Turán in [51] (see also [52]).
This sequence consists of numbers whose ternary expansion does not contain the
digit 2:

0, 1, 3, 4, 9, 10, 12, 13, 27, . . . . (23)

Unfortunately, this sequence has a very small density. The segment of integers
from 1 to N contains roughly N log 2/ log 3 elements of this sequence. Rankin [49]
proposed a way of constructing an infinite subset of positive integers whose density
is equal to that used in Theorem 16 (see also [52]). For simplicity, we confine
ourselves to the case k = 3.

Proposition 2. Let ε > 0 be arbitrary. Then there is an infinite set A∗ ⊆ N
without an arithmetic progression of length three and such that

|A∗ ∩ [M ]|
M

> exp
(
−(1 + ε)C

√
lnM

)
(24)

for all sufficiently large M , where C is the constant in Theorem 15.

Proof. Let Nε be the number in Behrend’s theorem, Theorem 15. We also assume
that s is a positive integer such that 3s−2 < N 6 3s−1. Consider the disjoint
half-open intervals [2 ·3t−1, 3t), t > s. By Behrend’s theorem, for any t > s there is
a set At belonging to [2 · 3t−1, 3t), containing no arithmetic progressions of length
three, and having cardinality

|At| > 3t−1 exp(−(1 + ε)C(ln 3t−1)1/2) . (25)
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Let A∗ =
⊔∞
t=sAt. Then A∗ is an infinite set. One can easily see that A∗ contains

no arithmetic progressions of length three. Let M ∈ N be sufficiently large, namely,
M > 3s. We set p = [lnM/ ln 3]. Then

|A∗ ∩ [M ]|
M

>
|Ap|
M

>
1
9

exp(−(1 + ε)C(lnM)1/2) > exp(−(1 + 2ε)C(lnM)1/2).

(26)
This completes the proof of Proposition 2.

§ 4. Szemerédi’s theorem

In this section we discuss some ideas used in the proof of Szemerédi’s theorem.
In the present author’s opinion, the core of the proof is what is called the regularity
lemma, which asserts (roughly speaking) that every graph with n vertices and cn2

edges (0 < c 6 1 is an absolute constant) can be partitioned into a small number
of subgraphs having ‘random’ properties. We cannot present here a proof of the
regularity lemma nor, all the more so, a proof of Theorem 6. Rather, we confine
ourselves to formulating the lemma and indicating how it is used to prove the esti-
mate a3(n) = o(1). Thus, we consider only the simplest case k = 3 of Szemerédi’s
theorem.

Let us proceed to the formulation of the regularity lemma.
Let G = (V,E) be a finite non-oriented graph without loops and multiple edges

and let A,B ⊆ V be two non-empty disjoint subsets of V . Let e(A,B) be the
number of edges (a, b) in G such that a ∈ A and b ∈ B. By the edge density of
the pair (A,B) we mean the ratio

d(A,B) :=
e(A,B)
|A| |B|

.

Definition 3. A pair (A,B) is said to be ε-uniform if

|d(A′, B′)− d(A,B)| < ε

for any A′ ⊆ A and B′ ⊆ B such that |A′| > ε|A| and |B′| > ε|B|.

Here is an example of ε-uniform pairs. Let A and B be two disjoint sets and let
0 < p 6 1. By a bipartite random graph we mean any graph Gp = (V,E), where
V = A t B and any edge (a, b), a ∈ A, b ∈ B, belongs to E with probability p.
Thus, the graph Gp contains no edges going from A to A or from B to B. It is clear
that for Gp we have d(A,B) = p almost surely and the pair (A,B) is ε-uniform
almost surely for any fixed ε > 0.

Definition 4. A partition of the set V of vertices of a graph G into sets C0, C1,
. . . , Ck is said to be ε-uniform if

1) |C0| < ε|V |,
2) |C1| = |C2| = · · · = |Ck|,
3) all but possibly ε

(
k
2

)
of the pairs of the form (Ci, Cj), 1 6 i < j 6 k, are

ε-uniform.
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Lemma 1 (Szemerédi’s regularity lemma).Let 0 < ε 6 1 and let l be a positive
integer. There are two positive integers n0(ε, l) and k0(ε, l) such that for any
graph G with at least n0(ε, l) vertices there is an ε-uniform partition of the ver-
tices of G into k classes, where l < k < k0(ε, l).

The classes Ci are referred to as groups or clusters. The regularity lemma asserts
that, roughly speaking, the set of vertices of every sufficiently large graph can be
partitioned into a not very large number of clusters Ci, i = 1, . . . , k, and an ‘excep-
tional’ set C0 in such a way that ‘almost all’ pairs (Ci, Cj) behave like bipartite
random graphs. The number l in the regularity lemma is needed for the cardinality
of the clusters |Ci|, i = 1, . . . , k, to be sufficiently small. This is sometimes neces-
sary in order to assert, for instance, that the number of edges between clusters is
significantly greater than the number of edges beginning and ending in the same
cluster Ci. It should be noted that Szemerédi’s estimates for the numbers n0(ε, l)
and k0(ε, l) are extremely weak (for this reason, see the paper [53]).

For the proof of the regularity lemma, see [14] and [54] (see also the nice sur-
vey [55]).

We make another remark. Suppose that ε > 0 and the number of edges in the
graph G = (V,E) is equal to ε′|V |2, where ε′ is a sufficiently small number depend-
ing on ε (for example, ε′ = ε3/100). In this case the assertion of the regularity
lemma becomes trivial, because every partition of the set V into k clusters such
that the conditions 1) and 2) hold must have the property 3) as well. Thus, the
regularity lemma can be applied only for sufficiently dense graphs, for example, for
graphs such that |E| > c|V |2, where c > 0 is an absolute constant. Nevertheless,
there are papers in which the regularity lemma is extended to the case of graphs
with few edges (see, for instance, [56]).

We show how to obtain the estimate a3(n) = o(1) (see [12]) by using the regu-
larity lemma. In the proof we follow the survey [57].

Theorem 17 (Ruzsa–Szemerédi). a3(n) = o(1) as n→∞.

Proof. Let 0 < δ 6 1 be a fixed number, suppose that a set A ⊆ [n] with |A| = δn
contains no arithmetic progressions of length three, and let X, Y , and Z be three
disjoint copies of the segment [1, 3n]. Consider the set S of all the triples (x, y, z) ∈
X × Y × Z such that

y − x = z − y =
z − x

2
∈ A. (27)

We construct a graph G = (V,E) from the set A. Let V = X tY tZ, |V | = 9n,
and let a pair of vertices in V be joined by an edge if and only if there is a
triple in S containing this pair. It is clear that |E| > 3|A|n. A triple (x, y, z) ∈
X × Y × Z in G is referred to as a triangle if all the vertices x, y, z are joined by
edges. If the triple (x, y, z) belongs to S, then the triangle is said to be simple.

It is easy to see that if the graph G contains a non-simple triangle, then the
set A contains an arithmetic progression of length three. Indeed, let (x, y, z) be a
non-simple triangle. Suppose, for example, that in this triangle we have y−x 6= z−y.
Let a := y − x and b := z − y. Then a ∈ A, b ∈ B, and (a+ b)/2 = (z − x)/2 ∈ A.
Hence, the set A contains an arithmetic progression of length three.

Thus, to prove the theorem, it suffices to show that G contains a non-simple
triangle. Let m = 9n = |V | and β = |E|/

(
m
2

)
. Since |E| > 3|A|n = 3δn2,
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it follows that β is a positive number independent of n. Let ε = β/15 and let
l = [ε−1] + 1. Applying the regularity lemma with the parameters ε and l to
the graph G, we obtain a partition of the set V into clusters C1, . . . , Ck and C0

satisfying the inequalities 1)–3). We have |C0| < ε|V |. Therefore, the number of
edges in G with an end at C0 is at most εm2. The properties 1) and 2) imply
the inequality m/(2k) 6 |Ci| 6 m/k, i = 1, . . . , k. Hence, the number of edges
beginning and ending in the same cluster is at most k

(
m/k

2

)
. Moreover, by the

property 3) there are at most ε
(
k
2

)
pairs (Ci, Cj), 1 6 i < j 6 k, that are not

ε-uniform. Thus, the number of edges which are not contained in the ε-uniform
pairs (Ci, Cj) with d(Ci, Cj) > β/6 is at most

εm2 + k

(
m/k

2

)
+ ε

(
k
2

) (
m

k

)2

+
β

6

(
k
2

) (
m

k

)2

<
β

3

(
m
2

)
. (28)

Deleting these edges, we obtain a graph G′ and three distinct clusters Cp, Cq,
and Cr contained in G′, and every pair of these clusters is ε-uniform with edge
density at least β/6.

We assert that the cluster Cr contains an element x that belongs to at least
(β/10)3|Cp| |Cq| triangles.

Since d(Cp, Cr), d(Cq, Cr) > β/6, there are at least (1− 2ε)|Cr| vertices x in Cr
that are joined to at least (β/6 − ε)|Ci| vertices of the cluster Ci, where i = p
or i = q. Let N i

x be the set of vertices in Ci joined to x, i = p, q. We have
β/6 − ε = β/10 > ε. It follows from the definition of the ε-uniform property that
there are at least (β/10)3|Cp| |Cq| edges joining the vertices in Np

x and Nq
x . It is

clear that corresponding to any such edge there is a triangle containing x.
Completing the proof of the theorem, we note that there are at most three simple

triangles having two common vertices. Hence, there are at most 3|Cp| = 3|Cq|
simple triangles containing x. Moreover, the inequality |Ci| > m/(2k), i = 1, . . . , k,
implies the estimate (

β

10

)3

|Cp| |Cq| > 3|Cp| (29)

for any sufficiently large m and a fixed k. Therefore, G contains a non-simple
triangle. Thus, the set A contains an arithmetic progression of length three, which
completes the proof of Theorem 17.

Recently, analogues of the regularity lemma were obtained in [58]–[60] for hyper-
graphs, and it was shown how these analogues imply the estimate ak(n) = o(1) for
any k > 3.

We formulate a sharpening of Szemerédi’s theorem due to P. Varnavides [61].

Theorem 18 (Varnavides). Let k > 3 be an integer and let δ > 0. Assume that
N is a sufficiently large integer and A ⊆ [N ] is a set such that

|A| > δN. (30)

Then
1
N2

∑
x,r∈[N ]

A(x)A(x+ r) · · ·A(x+ (k − 1)r) > c(k, δ) (31)

for some constant c(k, δ) > 0 depending only on k and δ.
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Remark 1. Let ρ ∈ (0, 1]. We denote by Nk(ρ) the minimal positive integer such
that an arbitrary set T ⊆ [m] with |T | > ρm contains an arithmetic progression
of length k for any positive integer m > Nk(ρ). As we shall see in the proof of
Theorem 18, for the constant c(k, δ) in (31) one can take δ2/(16Nk(δ/2)3).

Proof of Theorem 18. Let N > 2Nk(ρ/2). Let K = Nk(ρ/2) and denote by Pd,
d > 1, the family of arithmetic progressions of length K with difference d that are
contained in [N ]. It is clear that |Pd| 6 N for any d > 1. Let P =

⊔
d>1 Pd.

A progression p ∈ P is said to be good if |A ∩ p| > δ/2 · K. Let G be the set
of all good progressions. We assert that |G| > δ2N2/(32K). Consider the case in
which

d <
δN

8K
. (32)

We note that every element x ∈ [Kd,N −Kd] belongs to exactly K progressions
in Pd. Applying the inequality (32), we see that

σ =
∑
p∈Pd

|A ∩ p| =
∑
x∈[N ]

A(x)
∑
p∈Pd

p(x) >
∑

x∈[Kd,N−Kd]

A(x)
∑
p∈Pd

p(x)

= K|A ∩ [Kd,N −Kd]| > K(|A| − 2Kd)

= K(δN − 2Kd) > 3δKN/4. (33)

On the other hand,

3δKN/4 6 σ 6
∑

p∈(Pd∩G)

|A ∩ p|+
∑

p∈(Pd\G)

|A ∩ p|

6 |Pd ∩G|K + δKN/2. (34)

Therefore, for any 1 6 d < δN/(8K) we have the inequality |Pd ∩ G| > δN/4.
Hence, |G| > δ2N2/(32K).

By definition, for any progression in G one can find x, r ∈ [N ] such that A(x)×
A(x+ r) · · ·A(x+ (k− 1)r) > 0. Unfortunately, the numbers x, r ∈ [N ] can be the
same for distinct progressions in G. Let us estimate the number of progressions
p ∈ P containing a fixed progression x0, x0 + r0, . . . , x0 + (k− 1)r0. It is clear that
there are at most K − 2 progressions of this kind in Pr0 . Moreover, if a progression
p ∈ Pd, d 6= r0, contains the progression x0, x0 + r0, . . . , x0 + (k − 1)r0, then d
divides r0. Let d = r0/t, where t > 1. Since p ∈ Pd contains the progression
x0, x0 + r0, . . . , x0 + (k − 1)r0, it follows that Kd > 2r0 = 2td, and hence t <
K/2. Therefore, the number of progressions p ∈ P containing the progression
x0, x0 + r0, . . . , x0 + (k − 1)r0 is at most K − 2 + (K − 2)K/2 6 K2/2.

We have 2|G|/(K2N2) > δ2/(16K3). This implies that the constant c(k, δ)
in (31) can be taken to be δ2/(16K3) = δ2/(16Nk(δ/2)3), and Theorem 18 is
proved.

Croot [62] considered the problem of the number of arithmetic progressions
modulo N and somewhat sharpened Theorem 18.
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Theorem 19 (Croot). Let k > 3 be an integer and let δ > 0. Assume that N is a
sufficiently large integer and A ⊆ ZN is a set such that

|A| > δN. (35)

Then
1
N2

∑
x,r∈ZN

A(x)A(x+ r) · · ·A(x+ (k − 1)r) > c(k, δ) (36)

for some constant c(k, δ) > 0 depending only on k and δ. Moreover, the constant
c(k, δ) can be taken to be δ/(16Nk(δ/2)2).

Let k > 3 be an integer and let δ > 0. Also, let N be a sufficiently large
positive integer and let A ⊆ ZN be a set such that |A| > δN . The following
question arises in connection with Theorems 18 and 19: how many arithmetic
progressions of length k belong to the set A for sufficiently large N? We denote
by µk(A) the number of arithmetic progressions of length k in A, divided by N2.
Using the bound in Theorem 5 and the estimates in Theorems 18 and 19, we see
that µ3(A) > exp(Cδ−2 log(1/δ)), where C > 0 is an absolute constant. For an
arbitrary k > 4 it follows from Theorems 18 and 19 and from Theorem 9 that
µk(A) � exp(− exp(δ−ck)), where ck > 0 is the absolute constant in Theorem 9.
Using results of Behrend [45] and Rankin [49], Croot [62] obtained lower bounds
for the quantity µk(A).

Theorem 20 (Croot). Let k > 3 be an integer, let δ ∈ (0, 1), and let N be a suffi-
ciently large positive integer. Then there is a set A ⊆ ZN such that |A| > δN and A

contains at most N2 exp
(
−

( 1
2Ck

log
1
4δ

)k−1)
arithmetic progressions of length k,

where Ck is the absolute constant in Theorem 16.

In other words, Theorem 20 gives a lower bound for µk(A):

µk(A) > exp
(
−

(
1

2Ck
log

1
4δ

)k−1)
.

Proof. Let Lk(x) = exp(2Ck(log x)1/(k−1)), where Ck is the absolute constant in
Theorem 16, and take an x such that 4Lk(x)< 1/δ6 4Lk(x + 1). Let N > 4x.
We apply Theorem 16 with ε = 1. By this theorem, there is a set S ⊆ [x],
|S| 6 xLk(x)−1, containing no arithmetic progressions of length k. Let

A = {s+ 2mx : s ∈ S, : 0 6 m 6 M = [N/(4x)]}.

Then A ⊆ [N/2] ⊆ ZN . We note that

|A|
N

=
|S|(M + 1)

N
>
|S|
4x

>
1

4Lk(x)
> δ.

Thus, the density of A in ZN is not less than δ. Suppose that the numbers
a1, . . . , ak ∈ A form an arithmetic progression of length k. Since A ⊆ [N/2],
these numbers form an arithmetic progression of length k in ZN if and only if they
form an arithmetic progression of length k in [N ]. It follows from the properties
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of the set A that ai = s + 2mix, i = 1, . . . , k, where s ∈ S and the numbers
m1, . . . ,mk form an arithmetic progression in [M ]. Therefore, A contains at most
|S|M2 arithmetic progressions of length k. We have

|S|M2 6
xN2

4x2
6

N2

x+ 1
6

N2

exp
((

1
2Ck

log
1
4δ

)k−1) .

This completes the proof of Theorem 20.

§ 5. Gowers’ bounds for ak(N)

In this section we discuss upper bounds for ak(N) obtained by Gowers [22] (see
Theorem 9). The proof of Theorem 9 is very complicated, and therefore we confine
ourselves to the discussion of the main ideas used in Gowers’ method.

In his remarkable paper Gowers gave a definition of α-uniform functions of
degree d. We discuss the combinatorial meaning of α-uniform functions of degree d
somewhat later, but for now we give the rigorous definitions.

Let d > 0 be a positive integer and let {0, 1}d = {ω = (ω1, . . . , ωd) : ωj ∈ {0, 1},
j = 1, . . . , d} be the usual d-dimensional cube. For any ω ∈ {0, 1}d we let |ω| =
ω1 + · · ·+ωd. If h = (h1, . . . , hd) ∈ ZdN , then ω ·h := ω1h1 + · · ·+ωdhd. We denote
by C the operator of complex conjugation. If n is a positive integer, then C n

denotes the n-fold application of the operator of complex conjugation.

Definition 5. Let 2d complex functions (fω)ω∈{0,1}d defined on ZN be given. By
the Gowers inner product of the functions (fω)ω∈{0,1}d we mean the quantity

〈(fω)ω∈{0,1}d〉Ud :=
1

Nd+1

∑
x∈ZN , h∈Zd

N

∏
ω∈{0,1}d

C |ω|fω(x+ ω · h). (37)

We derive some properties of the Gowers inner product.
Let d > 1. Assume first that the functions (fω)ω∈{0,1}d do not depend on the last

digit ωd (in other words, fω = fω1,...,ωd−1). Then the formula (37) can be rewritten
as follows:

〈(fω)ω∈{0,1}d〉Ud =
1

Nd+1

∑
x∈ZN , h′∈Zd−1

N , hd∈ZN∏
ω′∈{0,1}d−1

C |ω′|(fω′(x+ ω′ · h′)fω′(x+ hd + ω′ · h′) ),

where ω′ = (ω1, . . . , ωd−1) and h′ = (h1, . . . , hd−1). Therefore,

〈(fω)ω∈{0,1}d〉Ud =
1

Nd+1

∑
h′∈Zd−1

N

∣∣∣∣ ∑
y∈ZN

∏
ω′∈{0,1}d−1

C |ω′|fω′(y + ω′ · h′)
∣∣∣∣2. (38)

Hence, the Gowers inner product has the following non-negativity property for
any d > 1 and any function f : ZN → C:

〈(f)ω∈{0,1}d〉Ud > 0. (39)
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The inequality (39) enables one to define the Gowers uniform norm (or simply the
Gowers norm) of any function f : ZN → C by the formula

‖f‖Ud := 〈(f)ω∈{0,1}d〉1/2
d

Ud =
(

1
Nd+1

∑
x∈ZN , h∈Zd

N

∏
ω∈{0,1}d

C |ω|fω(x+ ω · h)
)1/2d

.

(40)
We shall see below that the formula (40) defines a norm only for d > 2. The Gowers
norm for d = 1 is in fact a seminorm.

If the functions (fω)ω∈{0,1}d really depend on the last digit ωd, then the sum (37)
must be rewritten as follows:

〈(fω)ω∈{0,1}d〉Ud =
1

Nd+1

∑
h′∈Zd−1

N

( ∑
y∈ZN

∏
ω′∈{0,1}d−1

C |ω′|fω′,0(y + ω′ · h′)
)

×
( ∑
y∈ZN

∏
ω′∈{0,1}d−1

C |ω′|fω′,1(y + ω′ · h′)
)
.

Using the Cauchy–Bunyakovskii inequality and the formula (38), we obtain

|〈(fω)ω∈{0,1}d〉Ud | 6 〈(fω′,0)ω∈{0,1}d〉1/2
Ud · 〈(fω′,1)ω∈{0,1}d〉1/2

Ud .

Using the Cauchy–Bunyakovskii inequality and the formula (38) now for every digit
ω ∈ {0, 1}d, we see that

|〈(fω)ω∈{0,1}d〉Ud | 6
∏

ω∈{0,1}d

‖fω‖Ud . (41)

The inequality (41) is called the Cauchy–Bunyakovskii–Gowers inequality. By (41),
the fact that the inner product (37) is multilinear, and Newton’s binomial formula,
we easily obtain

|〈(f + g)ω∈{0,1}d〉Ud | 6 (‖f‖Ud + ‖g‖Ud)2
d

, (42)

which implies the triangle inequality for the Gowers norm:

‖f + g‖Ud 6 ‖f‖Ud + ‖g‖Ud , d > 1. (43)

As was mentioned above, the Gowers norm is not a norm for d = 1. Indeed, ‖f‖U1 =
1
N

∣∣ ∑
x∈ZN

f(x)
∣∣, and ‖f‖U1 vanishes for any function such that

∑
x∈ZN

f(x) = 0.
On the contrary, the Gowers norm is a norm for d > 2. Let us prove this.

Let f̂(r) =
∑
x∈ZN

f(x)e−2πixr/N be the rth Fourier coefficient of the function f .
Then the inversion formula f(x) = 1/N ·

∑
r∈ZN

f̂(r)e2πixr/N holds, and it implies
the equality

‖f‖U2 =
( ∑
r∈ZN

|f̂(r)|4
)1/4

. (44)

This means that ‖f‖U2 = 0 if and only if f̂ ≡ 0 or, which is the same, f ≡ 0. Thus,
we have proved that ‖f‖U2 is a norm.
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We now assert that ‖f‖Ud is a norm for any d > 2. Let νconst stand for the
function identically equal to one. We have ‖νconst‖Ud = 1. Let f : ZN → C be
a function. Consider the family of functions (fω)ω∈{0,1}d , where fω :=νconst if ωd=1
and fω := f if ωd = 0. Applying the inequality (41) to the family (fω)ω∈{0,1}d , we
obtain

‖f‖Ud−1 6 ‖f‖Ud (45)

for any d > 2. The inequality (45) is called the monotonicity inequality for the
Gowers norm. It follows from (45) that if the expression ‖f‖Ud vanishes for d > 2,
then the norm ‖f‖U2 of the function f vanishes, and hence f ≡ 0.

Other properties of the Gowers norm can be found in the recent paper [32] (see
also [63]).

Using the notion of the norm ‖ · ‖Ud , Gowers gave a definition of the α-uniform
functions of degree d.

Definition 6. Let d > 2 be an integer and let α ∈ [0, 1]. A function f : ZN → C
is said to be α-uniform of degree d if

‖f‖Ud 6 α.

In § 2 we gave another definition of α-uniform functions (see Definition 2). One
can easily show that the usual notion of α-uniformity in § 2 coincides with Defini-
tion 6 for d = 2 (see [23] and [22]). We thus see that Gowers’ approach significantly
generalizes the classical Definition 2.

Let f = A − δ be the balance function of a set A. The set A is said to be
α-uniform of degree d if the balance function of A is α-uniform of degree d.

We discuss the combinatorial meaning of the notion of α-uniform set of degree d.
Let d > 0 and let a0, a1, . . . , ad ∈ ZN be some residues. Then the corresponding

d-dimensional cube is defined to be the set of 2d points in ZN of the form a0+ε1a1+
· · · + εdad, where εi ∈ {0, 1}. Let A ⊆ ZN be a set; A contains a d-dimensional
cube if all the points of this cube belong to A. Using the Cauchy–Bunyakovskii
inequality, one can easily show that every set A ⊆ ZN of cardinality δN always
contains at least δ2

d

Nd+1 d-dimensional cubes, and the equality is attained at the
‘random subsets’ of ZN that have density δ. On the other hand, the following result
holds.

Theorem 21 (combinatorial meaning of α-uniform sets of degree d). Let d > 2
and let A ⊆ ZN , |A| = δN , be an α-uniform set of degree d. Then A contains at
most (δ + α)2

d

Nd+1 cubes.

Proof. We have A = δ + f . Applying the triangle inequality for the Gowers
norm (43), we obtain ‖A‖Ud 6 ‖δ‖Ud + ‖f‖Ud . It is clear that ‖δ‖Ud = δ and
that Nd+1‖A‖2d

Ud is the number of d-dimensional cubes in A. Since the set A is
α-uniform of degree d, it follows from the definition that ‖f‖Ud 6 α. Hence,
‖A‖Ud 6 δ + α and we obtain the desired result.

Theorem 21 shows that the number of d-dimensional cubes in α-uniform sets of
degree d for small values of the parameter α is approximately equal to the corre-
sponding number of cubes contained in random sets. In this sense the α-uniform
sets are close to random sets. Moreover, in many cases the α-uniform sets behave
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like random sets. For example, Gowers showed in the first part of his arguments that
the α-uniform sets and the random sets contain approximately the same number
of arithmetic progressions.

Theorem 22. Let k > 3 and let A ⊆ ZN , |A| = δN , be an α-uniform set of degree
k − 1. Then∑

r∈ZN

|(A+ r) ∩ (A+ 2r) ∩ · · · ∩ (A+ kr)− δkN2| 6 2kα1/2k−1
Nk.

Gowers derives the following corollary from Theorem 22.

Corollary 2. Let k > 3 and let A ⊆ ZN , |A| = δN , be an α-uniform set of degree
k− 1. Assume that α 6 (δ/2)2k and N > 32k2δ−k. Then A contains an arithmetic
progression of length k.

Corollary 2 completes the first part of Gowers’ proof. Since the subsequent
arguments are very complicated, we confine ourselves for simplicity to the case
k = 4 and follow here the simpler paper [23]. In this paper Gowers proved the
weaker estimate

a4(N) � 1/(log log logN)c, (46)

where c is a constant.
Here is a sketch of the proof. Suppose that A ⊆ ZN , |A| = δN . If A is α-uniform

with a sufficiently small α and if the number N is sufficiently large, N > 32k2δ−k,
then the set A contains a progression by Corollary 2, and we obtain the desired
result. Thus, we can assume that the original set A is not α-uniform for any
α = α0. In the second part of his paper Gowers proves that for any set which is
not α0-uniform there is an arithmetic progression P of length at least Nβ such that
|A∩P | > (δ+ ε)|P |, where β and ε depend only on δ and α0. Gowers then applies
the same arguments to the new set A′ = A∩P , whose density in P is at least δ+ε,
and so on. After several iterations either we find an α0-uniform subset of A, or the
density of A in some progression becomes sufficiently close to one. If A contains an
α0-uniform subset, then this subset (and hence the set A) contains an arithmetic
progression by Corollary 2. If the density of A in some progression exceeds 3/4,
then the existence of an arithmetic progression of length four in A becomes obvious.
Arguing as in the proof of Roth’s theorem and estimating the number of iterations
in terms of β and ε, we obtain the inequality (46).

We make a convention concerning the notation. In what follows, the symbols αi
will denote parameters depending on α0 polynomially. In [22] all the parameters αi
are expressed in terms of α0; however, for our purposes, it is more convenient not
to express these parameters explicitly.

Gowers’ proof depends heavily on a remarkable theorem of G. A. Freiman [64]
(see also [65], [66], and [67]). Let D > 1 be an integer and let E,F ⊆ ZD. The
Minkowski sum E+F of these sets is defined to be the set E+F = {e+ f : e ∈ E,
f ∈ F}. The difference between two sets is defined similarly. If the cardinality of
E + E does not exceed |E| too much (for instance, if |E + E| 6 C|E| for some
constant C > 1), then E is called a set with small sumsets. Freiman’s theorem
describes the structure of all sets of this kind. It is clear that every arithmetic
progression is a set with small sumsets. One can readily see that every set of the
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form P1 + · · · + Ps, where Pi is an arithmetic progression, is also a set with small
sumsets. Such sets are called d-dimensional arithmetic progressions. Moreover, any
large subset of P1 + · · ·+Ps is a set with small sumsets. Freiman’s theorem asserts
that there are no other examples of sets with small sumsets. We present the exact
formulation.

Theorem 23 (Freiman). Let C > 0, let D > 1, and let A ⊆ ZD be a set such that
|A+ A| 6 C|A|. Then there exist numbers d and K , depending only on C and D,
and a d-dimensional arithmetic progression Q such that |Q| 6 K|A| and A ⊆ Q.

Freiman’s theorem remains valid also for the difference A−A.
Let us return to Definition 6. As was proved in Theorem 21, a set A ⊆ ZN ,

|A| = δN , is α-uniform of degree d if and only if it contains approximately δ2
d

Nd+1

d-dimensional cubes. There is another characterization of α-uniform sets. As we
know, if d = 2, then A is α-uniform of degree two if and only if the Fourier coef-
ficients of this set are small. It turns out that A is α-uniform of degree three if
and only if ‘almost all’ sets of the form A ∩ (A + k), k ∈ ZN , have small Fourier
coefficients (in terms of α). In this survey we cannot dwell at length on a char-
acterization of α-uniform sets in terms of the Fourier coefficients of their subsets;
we note only that such a characterization exists for any degree d > 2 (see [22]).
We formulate the exact result in the case d = 2. Suppose that f : ZN → ZN is
some function and that k ∈ ZN is an arbitrary residue. The difference function
∆(f ; k) : ZN → ZN is defined to be the function ∆(f ; k)(s) = f(s)f(s− k).

Assertion 1. Let A ⊆ ZN , |A| = δN , be a set which is not α0-uniform of degree 3.
Let B be the set of integers k for which there is an r = r(k) such that |∆(f ; k)̂(r)| >
α1N . Then |B| > α2N .

It follows from the definition of the set B that the function ϕ : B → ZN such
that |∆(f ; k)̂(ϕ(k))| > α1N for any k in B is well defined on B. The following
proposition shows that ϕ has a property similar to linearity.

Proposition 3. There are at least α3N
3 quadruples (a, b, c, d) ∈ B4 such that

a+ b = c+ d and ϕ(a) + ϕ(b) = ϕ(c) + ϕ(d).

Consider the graph Γ ⊆ Z2 of the function ϕ, that is, Γ = {(b, ϕ(b)) : b ∈ B}.
By Proposition 3, the set Γ admits at least α3N

3 quadruples (x, y, z, w) ∈ Γ4 such
that x+ y = z + w. These quadruples are said to be additive. Gowers proved that
the sets having many additive quadruples have quite special properties.

Proposition 4. Let c0 > 0 and let M ⊆ ZD be a set of cardinality m having at
least c0m3 additive quadruples. Then there are constants c and C depending only
on c0 and there is a set M ′ ⊆M with |M ′| > cm such that |M ′ −M ′| 6 Cm.

Combining Proposition 4 and Freiman’s theorem, Theorem 23, Gowers obtains
the following result.

Proposition 5. Let B ⊆ ZN be a set of cardinality βN and let the graph of a
function ϕ : B → ZN have at least c′N3 additive quadruples. Then there are con-
stants γ and η depending only on β and c′, an arithmetic progression P ⊆ ZN
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with |P | > Nγ , and numbers λ and µ such that∑
k∈P

|∆(f ; k)̂(λk + µ)|2 > η|P |N2. (47)

We go through some very rough arguments to clarify the proof of Proposi-
tion 5. Let us apply Proposition 4 to the graph Γ. Then Γ has a subset Γ′ with
small difference. It follows from Freiman’s theorem that there is a not very
large d-dimensional arithmetic progression Q containing Γ′. On the other hand,
every d-dimensional arithmetic progression can be partitioned into several pro-
gressions of the form Q1 × Q2, where Q1 and Q2 are one-dimensional arithmetic
progressions in Z. Hence, there is a progression of the formQ1×Q2 that intersects Γ′

in a fairly large set. But this means that the values of the function ϕ on Q1 coincide
very often with the values of some linear function. These considerations enable
one to obtain the inequality (47). Using the Dirichlet principle, one can show
that the lengths of the progressions Q1 and Q2 are not less than |Q|1/d. This
implies the inequality |P | > Nγ .

Next, Gowers proves the following proposition.

Proposition 6. Under the assumptions of Proposition 5 there are polynomials
ψ0, ψ1, . . . , ψN−1 of degree two such that

∑
s

∣∣∣∣ ∑
x∈P+s

f(x)e2πiψs(x)/N

∣∣∣∣ >
η|P |N√

2
. (48)

Gowers then uses Weil’s estimates for trigonometric sums involving polynomials
of degree two and derives the following consequence of Proposition 6.

Proposition 7. Under the assumptions of Proposition 5 there exist a ζ > 0, an
m 6 |P |ζ , and progressions Psj with s ∈ [N ] and j ∈ [m] such that for any s ∈ [N ]
the progressions Ps1, . . . , Psm partition the progression P + s and

∑
s

m∑
j=1

∣∣∣∣ ∑
x∈Psj

f(x)
∣∣∣∣ >

η|P |N
2
√

2
. (49)

Since f is the balance function of the set A, we have
∑
s

∑m
j=1

∑
x∈Psj

f(x) = 0,
and the inequality (49) readily implies that there is a progression Psj for which

∑
x∈Psj

f(x) >
β|P |

4m
√

2
>
β|Psj |
4
√

2
.

Thus, we have found an arithmetic progression P ′ satisfying the inequality
|A ∩ P ′| > (δ + ε)|P ′|, where ε depends only on δ and α0. As was mentioned
above, we eventually find an arithmetic progression in A by repeating this proce-
dure several times.

A simple corollary to Theorem 9 is the following assertion about a colouring of
the set [N ] with two colours.
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Corollary 3. Let k and N be positive integers and let N > 2222
2k+9

. Assume that
the set [N ] is coloured with two colours. Then there is a monochromatic arithmetic
progression of length k in [N ].

Thus, as can be seen by the reader, Gowers’ proof of Theorem 9 makes essen-
tial use of Freiman’s theorem. Another application of Theorem 23 is due to
S. L.G. Choi [68]. He combined Szemerédi’s theorem with Freiman’s theorem and
obtained the following result.

Theorem 24 (Choi). Let A be an arbitrary subset of Z, let C be a positive constant,
and let k > 3 be an integer. Assume that |A+A| 6 C|A|. Then there is a constant
α = α(C, k) such that the set A contains α|A|2 arithmetic progressions of length k.

We complete the section with some remarks about the second Erdős–Turán con-
jecture, Conjecture 2.

Conjecture 3 (Erdős, Turán). Let A = {n1 < n2 < · · · } be an infinite sequence
of positive integers such that

∞∑
i=1

1
ni

= ∞. (50)

Then A contains an arithmetic progression of arbitrary length.

There is a close relationship between estimates for the quantity ak(N) and Con-
jecture 3.

Assertion 2. Conjecture 3 is valid if and only if the condition

∞∑
l=1

ak(4l) <∞ (51)

holds for any k > 3.

Proof. To prove this, we need a simple lemma about the numbers ak(N).

Lemma 2. Let k > 3 be an integer and let x and y be positive integers with x 6 y.
Then

ak(y) 6
x

y

(⌊
y

x

⌋
+ 1

)
ak(x) 6 3ak(x). (52)

Proof. Let M ⊆ [y] be a maximal set without arithmetic progressions of length k,
and consider the disjoint segments

∆1 = [1, x], ∆2 = [x+ 1, 2x], . . . , ∆s = [(s− 1)x+ 1, sx],

where s = by/xc + 1. It is clear that the segment [y] is contained in the union of
these disjoint segments. Since M contains no arithmetic progressions of length k,
it follows that |M ∩∆j | 6 xak(x) for any j = 1, . . . , s. Hence,

ak(y)y = |M | =
s∑
j=1

|M ∩∆j | 6
s∑
j=1

xak(x) = x

(⌊
y

x

⌋
+ 1

)
ak(x). (53)
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Remark 2. In Lemma 2 we have established the simplest inequality for the
functions ak(N). Further results about ak(N) can be found in the paper [7] of
Roth and in the recent paper [62] of Croot.

We now prove Assertion 2.
Sufficiency. Suppose that the series

∑∞
l=1 ak(4

l) converges for any k > 3. We
assume that the Erdős–Turán conjecture fails. In other words, for some k0 > 3 one
can find an infinite sequence A = {n1 < n2 < · · · } of positive integers that contains
no arithmetic progressions of length k0 and for which the series (50) diverges. Let
N = 16. We partition the set N of positive integers into the subsets C0 = [1, N),
C1 = [N, 4N), C2 = [4N, 42N), . . . , Cl = [4l−1N, 4lN), . . . . Since A contains no
arithmetic progressions of length k0, it follows that |A ∩ Cl| 6 4l−1N · ak0(4l−1N)
for any l = 0, 1, 2, . . . . We have

∞∑
i=1

1
ni

=
∞∑
l=0

∑
ni∈Cl

1
ni

6 4
∞∑
l=0

|A ∩ Cl|
4l−1N

6 4
∞∑
l=0

ak0(4
l+1) = 4

∞∑
l=1

ak0(4
l) <∞ .

(54)
The inequality (54) contradicts the inequality (50). This completes the proof of
sufficiency.
Necessity. Let the series

∑∞
l=1 ak0(4

l) diverge for some k0 > 3. As in the proof
of the equivalence of Conjectures 1 and 1′, we construct two sequences of positive
integers. Let N1 = 1 and b1 = 1 and let

Nl := bl−1 +Nl−1, bl := bl−1 +Nl−1 +Nl + 1, (55)

for any l > 2. We obtain an increasing sequence of positive integers 1 = N1 < N2 <
N3 < · · · . For any l = 1, 2, . . . there is a set Al ⊆ [Nl] containing no arithmetic
progressions of length k0 and such that |Al| = ak0(Nl)Nl. Let Ãl = Al + bl. It
is clear that the sets Ãl are disjoint and contain no arithmetic progressions of
length k0. Let A =

⊔
i Ãi, A = {n1 < n2 < · · · }. Using (55), we see that A also

contains no arithmetic progressions of length k0. We have bl 6 3Nl for any l > 1.
Similarly, Nl+1 6 4Nl for l > 1. Hence Nl 6 4l, l > 1. By Lemma 1,

∞∑
i=1

1
ni

=
∞∑
l=1

∑
ni∈[bl,bl+Nl]

1
ni

>
∞∑
l=1

ak0(Nl)Nl
bl +Nl

>
1
4

∞∑
l=1

ak0(Nl) >
1
12

∞∑
l=1

ak0(4
l).

(56)
It follows from (56) that the series

∑∞
i=1 1/ni diverges. Applying the Erdős–Turán

conjecture, we see that the set A contains an arithmetic progression of length k0, a
contradiction. This completes the proof of Assertion 2.

§ 6. Ergodic approach to Szemerédi’s theorem

Let X be a set equipped with a σ-algebra B of sets. Also, let T be a measur-
able self-map of X preserving the measure µ. Everywhere below we assume that
µ(X) = 1. The quadruple (X,B, µ, T ) is called a dynamical system with invari-
ant measure. The well-known Poincaré recurrence theorem [69] asserts that
for every measurable set E ⊆ X, µ(E) > 0, there is an integer n > 0 such that
µ(E ∩ T−nE) > 0.
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In [15] (see also [17] and [16]) Furstenberg generalized the Poincaré theorem to
the case of several powers of the map T .

Theorem 25 (Furstenberg). Let X be a space with a σ-algebra B of measurable
sets and let µ be a measure on X . Let T be a self-map of X preserving the measure µ
and let k > 3. Then for any measurable set E with µ(E) > 0 there is an integer
n > 0 such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.

In this section we show that Theorem 25 is equivalent to Szemerédi’s theorem.
Hence, Furstenberg obtained an alternative proof of the first Erdős–Turán con-
jecture, Conjecture 1, by ergodic theory methods. Let us formulate Szemerédi’s
theorem once again.

Theorem 26 (Szemerédi). Let A be an arbitrary subset of the set of positive inte-
gers and let D∗(A) > 0. Then A contains arithmetic progressions of length k for
any integer k > 3.

One can readily show (see [17] or [16]) that Theorem 25 follows from Theorem 26.
Indeed, let N be a sufficiently large positive integer (we shall specify this number
below). For any x ∈ X we consider the set Λ(x) = {l ∈ [N ] : T lx ∈ E}. We have∫

X

|Λ(x)| dµ = Nµ(E). (57)

Let M = {x ∈ X : |Λ(x)| > Nµ(E)/2}. It follows from the inequality (57)
that µ(M) > µ(E)/2. As was shown in the Introduction, Conjecture 1 (in other
words, Theorem 26) is equivalent to Conjecture 1′. Let N = N(k, µ(E)/2). For
any x ∈ M the set Λ(x) contains an arithmetic progression {a(x) + b(x)m}k−1

m=0 of
length k. Thus, to any point x in M we have assigned a pair of numbers (a(x), b(x)).
Since for any x ∈ X we have (a(x), b(x)) ∈ [N ]2, there is a set M ′ ⊆ M such that
µ(M ′) > µ(E)/(2N2), and to any point of this set we have assigned the same pair
(a, b). In this case, µ

(⋂k−1
m=0 T

−(a+bm)E
)

> µ(M ′) > 0. The map T preserves the
measure µ, and hence

µ

( k−1⋂
m=0

T−(a+bm)E

)
= µ

(
T−a

k−1⋂
m=0

T−(bm)E

)
= µ

( k−1⋂
m=0

T−(bm)E

)
> 0,

as was to be proved.
Thus, we have proved that Theorem 25 follows from Theorem 26. In fact, The-

orem 25 is equivalent to Theorem 26. To prove their equivalence, Furstenberg
established the following beautiful result, the so-called Furstenberg correspondence
principle (see [15]).

Theorem 27 (Furstenberg). Let A be an arbitrary subset of the set of positive
integers with D∗(A) > 0. Then there exist a dynamical system (X,B, µ, T ) with
invariant measure and a measurable set E with µ(E) = D∗(A) such that

D∗(A ∩ (A+m1) ∩ · · · ∩ (A+mk−1)) > µ(E ∩ T−m1E ∩ · · · ∩ T−mk−1E) (58)

for any integer k > 3 and any positive integers m1,m2, . . . ,mk−1.
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Theorem 27 shows the existence of a close relationship between ergodic theory
and combinatorial problems on arithmetic progressions.

Assertion 3 (Furstenberg). Theorems 25 and 27 imply Theorem 26.

Proof. Let k be a positive integer, k > 3, and let A ⊆ N be a set with no arithmetic
progressions of length k and with positive upper density. By Theorem 27, there
exist a dynamical system (X,B, µ, T ) and a measurable set E of positive measure
such that the inequality (58) holds for any positive integers m1,m2, . . . ,mk−1. On
the other hand, by Theorem 25, there is an integer n > 0 such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0. (59)

We set m1 = n, m2 = 2n, . . . , mk−1 = (k− 1)n. It follows from (58) and (59) that
D∗(A∩ (A+n)∩ · · · ∩ (A+(k− 1)n)) > 0. This contradicts the assumption that A
contains no arithmetic progressions of length k and thus proves Assertion 3.

In this survey we do not give a complete proof of Theorem 27. The interested
reader can find a detailed proof of the correspondence principle in the paper [15] or
the book [17]. Nevertheless, we shall try to schematically show how to construct a
dynamical system with the desired properties from an arbitrary subset A of positive
integers with D∗(A) > 0 in Theorem 27.

Thus, let a set A ⊆ N have positive upper Banach density. Let Ω = {0, 1}N be
the space of one-sided infinite sequences of zeros and ones. Let T be the self-map
of Ω given by the formula (Tω)i = ωi+1. Thus, T is the left shift. Also, let ω′ ∈ Ω be
the infinite sequence such that ω′i = 1 if and only if i ∈ A. We take an arbitrary
metric on the space Ω and consider the closure X of the orbit of the point ω′ under
the action of the map T . In other words, let X = {T iω′}∞i=0. It is clear that X
is T -invariant. Let C0 = {ω ∈ Ω : ω0 = 1} be an elementary cylinder and let
E = C0 ∩ X. It follows from the definition of ω′ that A contains an arithmetic
progression of length k if and only if the set

⋂k−1
m=0 T

−mnE is non-empty for some
integer n > 1 (note that the set

⋂k−1
m=0 T

−mnE is open).
We do not give a proof of the inequality (58), but only construct a T -invariant

probability measure on X such that µ(E) = D∗(A) > 0. Since D∗(A) > 0, there
is an increasing sequence of positive integers nk such that limk→∞ |A ∩ [nk]|/nk =
D∗(A). Let µk := 1/nk ·

∑nk−1
i=0 δT iω′ , where δx stands for the Dirac measure on X

with δx(M) = 1 if and only if x ∈ M . It is clear that µk is a probability measure
on X for any k. Moreover, for any set M ⊆ X we have∣∣µk(T−1M)− µk(M)

∣∣ 6
2
nk

. (60)

Let µ be the ∗-weak limit of the probability measures µk (for the definition of ∗-weak
limit, see, for instance, [70]). Then it follows from the inequality (60) that µ is a
T -invariant probability measure on X. Moreover,

µ(E) = lim
k→∞

µk(E) = lim
k→∞

|A ∩ [nk]|
nk

= D∗(A) > 0,

as was to be proved.
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Using the ergodic approach, Furstenberg, Y. Katznelson, D. Ornstein, and other
authors obtained a lot of generalizations of Szemerédi’s theorem. We cannot cover
all the results in this direction in the present survey, so we confine ourselves to only
a few of them. In [18] Furstenberg and Katznelson extended Theorem 25 to the
case of several commuting maps.

Theorem 28 (Furstenberg, Katznelson). Let X be a space with a σ-algebra B of
measurable sets and let µ be a measure on X . Let k > 2 and let T1, . . . , Tk be
commuting self-maps of X preserving the measure µ. Then for any measurable
set E with µ(E) > 0 there is an integer n > 0 such that

µ(E ∩ T−n1 E ∩ T−n2 E ∩ · · · ∩ T−nk E) > 0.

In § 7 we shall prove a quantitative version of Theorem 28 in the case of two
commuting maps. It should be remarked that Theorem 28 was recently proved
in [21] for arbitrary soluble groups.

We also note the remarkable Bergelson–Leibman theorem ([19]; see also [71],
[133]), already mentioned in the Introduction.

Theorem 29 (Bergelson, Leibman). Let X be a set, let B be a σ-algebra of mea-
surable sets on X , and let µ be a finite measure on X with µ(X) > 0. Let k > 2,
let T1, . . . , Tk be invertible commuting self-maps of X that preserve the measure µ,
and let p1(n), . . . , pk(n) be polynomials having rational coefficients, taking integral
values at all integral values of n, and satisfying pi(0) = 0, i = 1, . . . , k. Then

lim inf
N→∞

1
N

N−1∑
n=0

µ(T−p1(n)
1 E ∩ T−p2(n)

2 E ∩ · · · ∩ T−pk(n)
k E) > 0

for any measurable set E with µ(E) > 0.

A. Sárközy ([72], [73]) obtained a quantitative version of Theorem 29 in the case
when k = 2, T2 = T 2

1 , p1(n) = n, and p2(n) = n2 (see also [74] and [25]). For the
present, the best result on this topic is due to J. Pintz, W.L. Steiger, and Szemerédi
(see [75]).

Theorem 30 (Pintz, Steiger, Szemerédi). Let A be an arbitrary subset of [N ] and
let

|A| � N

(logN)c log log log logN
,

where c > 0 is an absolute constant. Then A contains two elements a and a′ such
that a′ − a is a perfect square.

Using the ergodic technique, Furstenberg and Katznelson [20] re-proved the
well-known Hales–Jewett theorem [76] generalizing van der Waerden’s theorem
(Theorem 1). To formulate the Hales–Jewett theorem, we need several definitions.

Let
Cnt := {x1x2 . . . xn : xi ∈ {0, 1, . . . , t− 1}}

be the set of all words of length n composed of the symbols 0, 1, . . . , t− 1.
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Definition 7. A combinatorial line in Cnt is a family of t words X1, . . . , Xt ∈ Cnt ,
where Xi = xi1 . . . xin, such that for some non-empty set J ⊆ {1, . . . , n} we have
xsj = s if j ∈ J , and for any j /∈ J there is a symbol cj ∈ {0, 1, . . . , t− 1} such that
x1j = · · · = xtj = cj .

Example. Let t = 3 and n = 5. Then the words 01012, 11112, 21212 form a
combinatorial line in C5

3 .

Theorem 31 (Hales, Jewett). Let t and r be positive integers. Then there is a
positive integer N = N(t, r) such that for any n > N and for any colouring of Cnt
with r colours there is a monochromatic combinatorial line.

It is clear that Theorem 31 implies van der Waerden’s theorem in the form
of Theorem 2 (and hence van der Waerden’s theorem in the form of Theorem 1).
Indeed, in the number system with base t one can interpret the set Cnt as the family
of numbers from 0 to tn − 1. In this case for any combinatorial line in Cnt there is
a corresponding arithmetic progression of length t in the set {0, 1, . . . , tn − 1}.

As already mentioned above, Theorem 25 was the origin of a new area of ergodic
theory, namely, combinatorial ergodic theory. In the present survey we cannot even
list the results obtained in this area. We can only indicate the remarkable book [17]
and the monograph [77] to the interested reader. We also note that quantitative
versions of the Poincaré theorem were obtained in the recent papers [78]–[86]
and versions of Theorem 27 can be found in [87].

As was noted above, the original proof of Szemerédi’s theorem, Furstenberg’s
proof, and Gowers’ proof are closely related. We would like to close this section
with a discussion of the main ideas at the basis of Furstenberg’s approach.

In the first (preliminary) part of his proof Furstenberg shows the validity of The-
orem 25 for two special classes of dynamical systems: weakly mixing and compact
dynamical systems. We give rigorous definitions of these classes.

A dynamical system is said to be weakly mixing if

lim
N→∞

1
N

N∑
n=1

(
µ(A ∩ T−nB)− µ(A)µ(B)

)2

= 0

for any two sets A,B ∈ B. With every dynamical system (X,B, µ, T ) one can
associate a unitary operator U acting in L2(X,B, µ) by the rule (Uf)(x) = f(Tx)
for any function f : X → C. The function identically equal to one is always an
eigenvector of this operator. A dynamical system is said to be compact if the
spectrum of U is discrete. We give another definition. A system is said to be
compact if the closure in L2(X,B, µ) of the orbit {Unf}∞n=0 is compact for any
function f ∈ L2(X,B, µ). One can show that a dynamical system cannot be
weakly mixing and compact simultaneously (for details, see [17]).

As noted above, Theorem 25 holds for the dynamical systems in these two classes.
Nevertheless, the reasons why the theorem holds for these classes are quite different.
Weakly mixing dynamical systems have strong random properties, which enables
one to prove an assertion stronger than Theorem 25 for these systems.
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Theorem 32 (Furstenberg). Let (X,B, µ, T ) be a weakly mixing dynamical system
and let A0, A1, . . . , Ak ∈ B, k > 1, be arbitrary measurable sets. Then

lim
N→∞

1
N

N∑
n=1

(
µ(A0∩T−nA1∩T−2nA2∩· · ·∩T−knAk)−µ(A0)µ(A1) . . . µ(Ak)

)2 = 0.

On the other hand, it is quite clear that Theorem 25 holds for periodic maps T ,
that is, for maps such that T p is the identity map for some p ∈ N. Compact
dynamical systems form a very broad generalization of periodic systems. Consider
the following example. Let X be the unit circle S1, let µ be the Lebesgue measure
on X, and let B be the σ-algebra of Lebesgue measurable sets. Let the map Tα
be the rotation of the circle S1 given by the formula Tαx = x+ α (mod 1), where
α is an arbitrary real number (not necessarily rational). In this case the dynamical
system (X,B, µ, Tα) is compact. It is clear that the map Tα is not periodic if the
number α is irrational; however, it is also clear that Tα is ‘almost periodic’, in
the sense that, for example, for any interval I and any ε > 0 there is a number n
such that µ(TnI4I) < ε. Using ‘almost periodic’ properties of compact dynamical
systems, Furstenberg proved that Theorem 25 holds for them. We note that the
stronger Theorem 32 fails for these systems (see [16]). The point is that compact
systems fail to have nice random properties.

At the second stage of his proof, Furstenberg gives a characterization of weakly
mixing dynamical systems by using factor systems. Let B1 ⊆ B be a sub-σ-algebra
of the σ-algebra B, and assume that the map T is measurable with respect to
this sub-σ-algebra, in other words, T−1A ∈ B1 for any A ∈ B1. Then the
dynamical system (X,B1, µ, T ) is called a factor system of the dynamical system
(X,B, µ, T ). If the system (X,B1, µ, T ) is compact, then we say that the factor
system (X,B1, µ, T ) is compact. A factor system is said to be non-trivial if it
contains sets whose measure differs both from zero and from one.

Theorem 33 (Furstenberg). A dynamical system (X,B, µ, T ) is weakly mixing if
and only if it has no non-trivial compact factor systems.

It follows from Theorem 33 that every dynamical system (X,B, µ, T ) has a
non-trivial factor system for which Theorem 25 holds. Indeed, if (X,B, µ, T ) is
a weakly mixing dynamical system, then Theorem 32 holds for it. However, if
(X,B, µ, T ) is not weakly mixing, then by Theorem 33 it admits a non-trivial
compact factor system. Since the factor system is compact, we see that Theorem 25
holds for it.

Let M be the family of non-trivial factor systems of the original dynamical
system (X,B, µ, T ) that satisfy Theorem 25 (in fact, Furstenberg considers in his
proof a somewhat different family of factor systems). As we have just proved, the
family M is non-empty. Furstenberg proved two facts about M . The first is that
M has a maximal element, and the second is that this maximal element coincides
with (X,B, µ, T ). It is clear that these two facts imply Theorem 25.

The proof of the existence of a maximal element in M is rather simple and
uses Zorn’s lemma. The proof that a maximal element of the family M coincides
with the original dynamical system is complicated and occupies almost half of the
paper [16]. We can only briefly present the corresponding ideas.
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First, Furstenberg generalizes the notions of weakly mixing and compact
dynamical systems to factor systems of (X,B, µ, T ). Let B1 ⊆ B2 be two
σ-algebras. Furstenberg gives definitions of compactness and weak mixing for the
‘larger’ factor system (X,B2, µ, T ) with respect to the ‘smaller’ factor system
(X,B1, µ, T ) and proves an assertion about a lifting, namely, if Theorem 25 holds
for the ‘smaller’ factor system, then it also holds for the ‘larger’ one. Second,
Furstenberg proves that if a factor system (X,B1, µ, T ) of the initial system
(X,B, µ, T ) is not weakly mixing, then there is a factor system (X,B′

1, µ, T ),
B1  B′

1, such that (X,B′
1, µ, T ) is compact with respect to (X,B1, µ, T ).

Suppose that a maximal factor system F0 = (X,B0, µ, T ) in the family M differs
from F = (X,B, µ, T ). If F0 is relatively weakly mixing, then F ∈ M , and we
arrive at a contradiction to the maximality of F0. However, if F0 is not relatively
weakly mixing, then there is a factor system F ′0 which is larger than F0 and compact
with respect to F0. Thus, F ′0 ∈ M , and we again arrive at a contradiction to the
maximality of F0. This argument completes Furstenberg’s proof.

It should be noted that Furstenberg’s arguments give no upper bounds for the
quantity N(k, δ). As we had seen above, Furstenberg makes essential use of Zorn’s
lemma in his proof. Nevertheless, a new proof of Szemerédi’s theorem recently
appeared (see [43]) which uses methods of ergodic theory and gives quantitative
bounds for N(k, δ) (though very weak).

§ 7. Two-dimensional generalizations of Szemerédi’s theorem

Consider the two-dimensional lattice [1, N ]2 with basis {(1, 0), (0, 1)}. Let

L(N) =
1
N2

max
{
|A| : A ⊆ [N ]2 and A contains

no triples of the form (k,m), (k + d,m), (k,m+ d), d > 0
}
. (61)

Any triple of the form given in (61) will be called a corner. M. Ajtai and Szemerédi
proved in [88] that the quantity L(N) tends to zero as N tends to infinity. More
precisely, they obtained the following result.

Theorem 34. Let S = {(0, 0), (0, 1), (1, 0), (1, 1)} be the unit square, let 0 < δ 6 1,
and let N be a positive integer. Then every set A ⊆ [N ]2 with |A| > δN2 contains
an affine image of S, that is, a set of the form aS + b, where a ∈ N and b ∈ N2.

Theorem 34 was later re-proved by Furstenberg in [17] (for details, see § 5).
It is clear that the problem about corners is a two-dimensional generalization

of the problem about sets without arithmetic progressions of length three. More
precisely, it follows from the equality limN→∞ L(N) = 0 that limN→∞ a3(N) = 0.

Indeed, suppose that limN→∞ L(N) = 0 but limN→∞ a3(N) = a > 0 (the fact
that the limit limN→∞ a3(N) exists was proved in the Introduction). The last
equality means that for any sufficiently large N there is a set AN ⊆ [N ] without
progressions of length three and whose cardinality is not less than aN/2. Consider
the square QN = {1, . . . , 2N}2 and the set ÃN =

⊔N
i=1

(
(AN + i)×{i}

)
⊆ QN . The

two-dimensional set ÃN is the union of N shifts of the set AN in the direction of the
upper right-hand corner of the square QN . One can easily see that if ÃN contains
a corner, then AN contains an arithmetic progression of length three, which is not
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the case. Moreover, the cardinality of ÃN is equal to |AN |N > aN2/2. This implies
that lim supN→∞ L(N) > 0, contradicting the equality limN→∞ L(N) = 0.

Gowers (see [22]) posed the problem of the rate of convergence of L(N) to 0.
Developing the approach in the papers [90] and [91], V. H. Vu [89] proposed the
following solution of this problem. Let log[1]N = logN and let log[l]N =
log(log[l−1]N) for l > 2. Thus, log[l]N is the result of taking the logarithm l
times of the number N . Further, let k be the largest positive integer such that
log[k]N > 2. We then set log∗N = k. Vu proved that

L(N) 6
100

(log∗N)1/4
.

The following result was obtained in [28] and [29].

Theorem 35 ([28], [29]). Let δ > 0, let N � exp exp exp(δ−C) for some effective
constant C > 0, and let A ⊆ {1, . . . , N}2 be an arbitrary subset with cardinality
at least δN2. Then A contains a triple of the form (k,m), (k + d,m), (k,m + d),
where d > 0.

This theorem was later sharpened (see [30] and [31]).

Theorem 36 ([30], [31]). Let δ > 0, let N � exp exp(δ−c), where c > 0 is an
absolute constant, and let A ⊆ {1, . . . , N}2 be an arbitrary subset with cardinality
at least δN2. Then A contains a triple of the form (k,m), (k + d,m), (k,m + d),
where d > 0.

Thus, the following upper bound for the quantity L(N) is obtained:

L(N) � 1
(log logN)C1

,

where C1 = 1/c.
The problem of upper bounds for the function L(N) in the groups Znp , where p is

a prime, was considered in [92]. In these groups a corner is defined to be a triple
of the form (k,m), (k + d,m), (k,m + d) with d 6= 0. For simplicity we restrict
ourselves to the case p = 2 in the present survey.

Theorem 37 (Green). Let δ > 0, let N and n be positive integers, let N = 2n and
N � exp exp(δ−c

′
), where c′ > 0 is an absolute constant, and let A ⊆ Zn2 × Zn2 be

an arbitrary subset with cardinality at least δN2. Then A contains a triple of the
form (k,m), (k + d,m), (k,m+ d), where d 6= 0.

The proofs of Theorems 35 and 36 are rather complicated due to the very many
technical details. In this survey we confine ourselves to a presentation of the simpler
Theorem 37. Here the main ideas of the proofs of Theorems 35 and 36 are preserved
but the technical complications are minimized.

We present the proof according to [92]. Before proving Theorem 37, we give
several definitions.

Let x, y ∈ Zn2 . The inner product is given by

x · y = x1y1 + · · ·+ xnyn.
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Let f : Zn2 → C be a function and denote by f̂(ξ) its Fourier coefficients:

f̂(ξ) =
∑
x∈Zn

2

f(x)e(−(x · ξ)),

where e(x) = e2πix.
We use several facts about the Fourier transform:∑

x∈Zn
2

|f(x)|2 =
1
N

∑
ξ∈Zn

2

|f̂(ξ)|2, (62)

∑
x∈Zn

2

f(s)g(s) =
1
N

∑
ξ∈Zn

2

f̂(ξ)ĝ(ξ), (63)

∑
x∈Zn

2

|(f ∗ g)(x)|2 :=
∑
x∈Zn

2

∣∣∣∣ ∑
y∈Zn

2

f(y)g(y − x)
∣∣∣∣2 =

1
N

∑
ξ∈Zn

2

|f̂(ξ)|2|ĝ(ξ)|2 . (64)

Definition 8. Let A ⊆ Zn2 and let α ∈ (0, 1) be a parameter. The set A is said to
be α-uniform if

max
ξ 6=0

|Â(ξ)| 6 αN. (65)

The following lemma helps to better understand the definition of α-uniform sets.

Lemma 3. Let τ, κ ∈ (0, 1) be two parameters, let S1, . . . , Sk ⊆ Zn2 , and let ε(k) =
κ2kτ−k/2. Suppose that |Si| = σiN and that every set Si is ε(k−1)-uniform. Then
there are at least (1− 2kτ)Nk vectors (x1, . . . , xk) ∈ (Zn2 )k such that∣∣∣∣ ∑

y

S1(x1 + y)S2(x2 + y) · · ·Sk(xk + y)− σ1 · · ·σkN
∣∣∣∣ 6 ε(k)N. (66)

Proof. We prove the lemma by induction. The case k = 1 is trivial. Let u =
(x1, . . . , xk−1) be a fixed vector. We write

Fu(y) = S1(x1 + y)S2(x2 + y) · · ·Sk−1(xk−1 + y).

Then∑
y

S1(x1 + y)S2(x2 + y) · · ·Sk(xk + y) = (Fu ∗ Sk)(−xk) = (Fu ∗ Sk)(xk). (67)

Using the formulae (64) and (62) and the fact that the sets Sk are ε(k−1)-uniform,
we obtain∑
xk

(
(Fu ∗ Sk)(xk)− σk

∑
y

Fu(y)
)2

= N−1
∑
ξ 6=0

|F̂u(ξ)|2|Ŝk(ξ)|2 6 ε(k − 1)2N3 .

(68)
By induction, there are at least (1− 2k−1τ)Nk−1 values of u such that∣∣∣∣ ∑

y

Fu(y)− σ1 · · ·σk−1N

∣∣∣∣ 6 ε(k − 1)τN. (69)
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By (68), for these values of u we have∑
xk

((Fu ∗ Sk)(xk)− σ1 · · ·σkN)2 6 4ε(k − 1)2N3 . (70)

By (70), for a fixed value of u the number of points xk such that the inequality

|(Fu ∗ Sk)(xk)− σ1 · · ·σkN | > ε(k)N

holds does not exceed
4ε(k − 1)2

ε(k)2
N 6 2k−1τN.

Hence, the total number of points (x1, . . . , xk) for which the inequality (66) fails is
not greater than

2k−1τN + 2k−1τN = 2kτN.

This proves Lemma 3.

Thus, if the sets Si are α-uniform for a sufficiently small number α, then ‘almost
all’ shifts of this set have intersections with cardinality the same as if the sets Si
were random.

We need a lemma about non-α-uniform sets.

Lemma 4. Let A ⊆ Zn2 and |A| = δN . Suppose that A is not an α-uniform set ;
in other words, there is a λ 6= 0 such that |Â(λ)| > αN . Let H = 〈λ〉⊥ ⊆ Zn2 be the
space perpendicular to the vector λ. Then∑

x

(A ∗H)2(x) > (δ2 + α2)|H|2N. (71)

Proof. By the inequality (64),∑
x

(A ∗H)2(x) =
1
N

∑
ξ∈Zn

2

|Â(ξ)|2|Ĥ(ξ)|2

>
1
N

(
|Â(0)|2|Ĥ(0)|2 + |Â(λ)|2|Ĥ(λ)|2

)
> (δ2 + α2)|H|2N,

which proves Lemma 4.

We need another definition of α-uniformity.

Definition 9. Let f : Zn2 × Zn2 → D be a function. We introduce the rectangular
norm ‖f‖ of f by the formula

‖f‖4 =
∑

x,x′,y,y′

f(x, y)f(x′, y)f(x, y′)f(x′, y′). (72)

It is clear that

‖f‖4 =
∑
x,x′

∣∣∣∣ ∑
y

f(x, y)f(x′, y)
∣∣∣∣2, (73)

and therefore the right-hand side of (72) is always non-negative. As was proved
in [29], the map ‖ · ‖ is indeed a norm.
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Definition 10. Let α∈(0, 1) and let E1×E2 ⊆ Zn2×Zn2 . A function f : E1×E2→D
is said to be α-uniform with respect to the rectangular norm if

‖f‖4 6 α|E1|2|E2|2. (74)

Let A ⊆ P = E1 × E2. The set A is said to be α-uniform with respect to the
rectangular norm if the function A − δP(A)P is α-uniform with respect to this
norm.

We call a quadruple of the form {(x, y), (x′, y), (x, y′), (x′, y′)} an elementary
rectangle. A set A ⊆ Zn2 × Zn2 contains an elementary rectangle if A contains the
four points of the rectangle.

Let A ⊆ P = E1×E2. It is clear that the number of elementary rectangles in A
is equal to ‖A‖4. Using the formula (73) and the Cauchy–Bunyakovskii inequality,
we obtain

‖A‖4 =
∑
x,x′

∣∣∣∣ ∑
y

A(x, y)A(x′, y)
∣∣∣∣2 >

1
|E1|2

( ∑
x,x′

∑
y

A(x, y)A(x′, y)
)2

=
1

|E1|2

( ∑
y

∣∣∣∣ ∑
x

A(x, y)
∣∣∣∣2)2

>
1

|E1|2|E2|2

( ∑
x,y

A(x, y)
)4

= δP(A)4|E1|2|E2|2.

Thus, every set A ⊆ P contains at least δP(A)4|E1|2|E2|2 elementary rectangles.
On the other hand, one can easily show that the number of elementary rect-
angles in any random subset of P is approximately equal to δP(A)4|E1|2|E2|2.

The sets which are α-uniform with respect to the rectangular norm are charac-
terized by a clear combinatorial property (see [29]).

Theorem 38. Let a set A ⊆ E1×E2 = P be α-uniform with respect to the rectan-
gular norm. Then A contains at most (δ + α1/4)4|E1|2|E2|2 elementary rectangles.

Proof. Let f = A − δP(A)P be the balance function of the set A and let δ =
δP(A). Since the set A is α-uniform, it follows that ‖f‖4 6 α|E1|2|E2|2. We have
A = f + δP. Hence,

‖A(x, y)‖4 6 (‖f‖+ ‖δP‖)4 6 (δ + α1/4)4|E1|2|E2|2. (75)

This proves Theorem 38.

Thus, the number of elementary rectangles in the set A which are α-uniform
with respect to the rectangular norm is approximately the same as that for random
subsets of P. One can say that the less the number α is, the closer A is to a
random set.

Let W be a subspace of Zn2 . It is clear that W is isomorphic to some space Zm2
with m 6 n. We also assume that E1, E2 ⊆ W , Ei = βi|W |, P = E1 × E2,
and A ⊆ P, δP(A) = δ. The first step of the proof of Theorem 37 involves the
situation in which the sets E1 and E2 are α-uniform and, moreover, the set A itself
is α′-uniform with respect to the rectangular norm. We show that if α and α′

are sufficiently small (that is, E1, E2, and A are close to being random), then A
contains sufficiently many corners. The main tool in the proof is the Cauchy–
Bunyakovskii inequality.
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Theorem 39. Suppose that the sets Ei are (2−36β12
1 β12

2 δ36)-uniform and the set A
is 2−8δ12-uniform with respect to the rectangular norm. Then A contains at least
δ3β2

1β
2
2 |W |3/2 triples of the form {(x, y), (x+ d, y), (x, y + d)}.

Proof. Let f1, f2, f3 : P → D be three arbitrary functions. Consider the functional
T (f1, f2, f3) =

∑
x,y,z f1(x, y)f2(y + z, y)f3(x, x+ z). It is clear that T is linear in

each of the arguments. Moreover, the value T (A,A,A) is equal to the number of
triples {(x, y), (x+ d, y), (x, y+ d)} in A (here we use a specific feature of Zn2 ). Let
f = A − δP and η = 2−8δ12. Then T (A,A,A) = δT (P, A,A) + T (f,A,A) and
‖f‖4 6 ηβ2

1β
2
2 |W |4.

Let g(z) =
∑
xA(x, x+z). Then T (P, A,A) =

∑
z g(z)

2. Since W is a subspace
of Zn2 , it follows that g(z) vanishes outside W . We have

∑
z g(z) = δβ1β2|W |2. By

the Cauchy–Bunyakovskii inequality,

T (A,A,A) > δ3β2
1β

2
2 |W |3 + T (f,A,A). (76)

Let us estimate the second term on the right-hand side of (76). Using once again
the Cauchy–Bunyakovskii inequality, we see that

T (f,A,A) =
∑
y,z

A(y + z, y)
∑
x

E1(y + z)f(x, y)A(x, x+ z)

6

(∑
y,z

E1(y + z)E2(y)
)1/2

×
( ∑
x,x′,y,z

E1(y + z)A(x, x+ z)A(x′, x′ + z)f(x, y)f(x′, y)
)1/2

.

(77)

We have
∑
y,z E1(y + z)E2(y) = β1β2|W |2. Further,

σ =
∑

x,x′,y,z

E1(y + z)A(x, x+ z)A(x′, x′ + z)f(x, y)f(x′, y)

=
∑
x,x′,z

A(x, x+ z)A(x′, x′ + z)
∑
y

E1(y + z)E2(x+ z)E2(x′ + z)f(x, y)f(x′, y).

Let ω(x, x′, y, y′) =
∑
z E1(y+ z)E1(y′ + z)E2(x+ z)E2(x′ + z). A third use of the

Cauchy–Bunyakovskii inequality gives us

σ 6

( ∑
x,x′,z

E1(x)E1(x′)E2(x+ z)E2(x′ + z)
)1/2

×
( ∑
x,x′,y,y′

ω(x, x′, y, y′)f(x, y)f(x′, y)f(x, y′)f(x′, y′)
)1/2

. (78)

Lemma 3 yields∑
x,x′,z

E1(x)E1(x′)E2(x+ z)E2(x′ + z) 6 2β2
1β

2
2 |W |3.
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Using the inequalities (77) and (78), we see that

T (f,A,A)4 6 2β4
1β

4
2 |W |7

∑
x,x′,y,y′

ω(x, x′, y, y′)f(x, y)f(x′, y)f(x, y′)f(x′, y′). (79)

By Lemma 3 applied to the case k = 4 and for τ = 2−4β4
1β

4
2η and κ = 2−12β12

1 β12
2 η3,

one can find at least (1− β4
1β

4
2η)|W |4 values of (x, x′, y, y′) such that

|ω(x, x′, y, y′)− β2
1β

2
2 |W | | 6 β4

1β
4
2η.

Hence,∣∣∣∣ ∑
x,x′,y,y′

(ω(x, x′, y, y′)− β2
1β

2
2 |W |)f(x, y)f(x′, y)f(x, y′)f(x′, y′)

∣∣∣∣ 6 3β4
1β

4
2η|W |5.

(80)
By assumption, the set A is η-uniform with respect to the rectangular norm. Using
the last inequality and (79), we obtain

|T (f,A,A)| 6 2β2
1β

2
2η

1/4|W |3. (81)

By (76), we eventually have

T (A,A,A) > (δ3β2
1β

2
2 − 2β2

1β
2
2η

1/4)|W |3 > δ3β2
1β

2
2 |W |3/2.

This completes the proof of Theorem 39.

Suppose that the condition of 2−8δ12-uniformity with respect to the rectangular
norm of the set A in Theorem 39 fails. In the next proposition we show that in
this case there is a sufficiently large set Q ⊆ P in which the density of A is greater
than δ by a certain positive quantity.

Proposition 8. Let P = E1 × E2 and A ⊆ P . We also assume that δP(A) = δ
and A is not η-uniform with respect to the rectangular norm with η > 0. Then there
are sets Fi ⊆ Ei, i = 1, 2, such that |Fi| > 2−8η|Ei| and δQ(A) > δ + 2−14η2 for
Q = F1 × F2.

When proving Proposition 8, the language of graph theory turns out to be useful.
This is not surprising, because there is a close relationship between the α-uniform
sets and the so-called quasi-random graphs (for details, see [93] and [94]).

Let |E1| = M1 and |E2| = M2. It can happen that E1 ∩ E2 6= ∅. We want to
avoid this situation. Let X be a bijective image of E1 and Y a bijective image of
E2, and let X ∩ Y = ∅. We introduce the bipartite graph G associated with the
set A. Let X and Y be the parts of this graph and let a vertex x ∈ X be joined to
a vertex y ∈ Y if and only if (x, y) ∈ A. It is clear that the graph G has exactly
δM1M2 vertices. We denote the set of edges outgoing from a vertex x ∈ X by N (x)
and the set of edges incoming to a vertex y ∈ Y by the same symbol N (y). We
also write d(x) = |N (x)| for x ∈ X and d(y) = |N (y)| for y ∈ Y .

To prove Proposition 8, we need several lemmas.
The first lemma asserts that ‘for almost all’ x ∈ X one can assume that d(x) is

approximately equal to δM2. By symmetry, the same holds for d(y).
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Lemma 5. Let ε1, ε2 ∈ (0, 1), and suppose that at least one of the following holds :
(a) there are at least ε1M1 vertices x ∈ X such that |d(x)− δM2| > ε2M2;
(b) there are at least ε2M2 vertices y ∈ Y such that |d(y)− δM1| > ε1M1.

Then there are sets X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| > min(ε1/2, ε2/2)M1,
|Y ′| > min(ε1/2, ε2/2)M2, and δX′×Y ′(A) > δ + ε1ε2/2.

Proof. We can assume that the first condition holds, in other words, there are at
least ε1M1 vertices x ∈ X such that |d(x)− δM2| > ε2M2.

Suppose first that there are at least ε2M1/2 vertices x ∈ X such that d(x) >
(δ+ε2)M2. Let X ′ be the set of these vertices x and let Y ′ = Y . Then δX′×Y ′(A) >
δ + ε2, which proves the lemma.

Let X0 be the set of vertices x ∈ X such that d(x) < (δ − ε2)M2. We set
X ′ = X \ X0 and Y ′ = Y . Let |X ′| = κM1. Since the number of edges in G is
δM1M2, we see that

(δ − ε2)(1− κ)M1M2 + κM1M2 > δM1M2,

and hence κ > ε2. We have |X0| > ε1M1/2. Therefore, κ 6 1− ε1/2 and

δX′×Y ′(A) >
δM1 − (δ − ε2)M1

|X ′|
= δ + ε2

(
1
κ
− 1

)
> δ +

ε1ε2
2

. (82)

This completes the proof of Lemma 5.

We see that if (a) or (b) holds, then Proposition 8 is proved (for details, see
below). We therefore assume that the quantities d(x) and d(y) are ‘almost every-
where’ equal to δM2 and δM1, respectively.

The following lemma can be regarded as a converse to Theorem 38.

Lemma 6. Let A be a non-η-uniform set with respect to the rectangular norm.
Suppose that |d(x) − δM2| 6 ηM2/56 for any x ∈ X except possibly for ηM1/56
vertices, and that |d(y)−δM1| 6 ηM1/56 for any y ∈ Y except possibly for ηM2/56
vertices. Then ‖A‖4 > (δ4 + η/2)M2

1M
2
2 .

Proof. Let f(x, y) = A(x, y)−δX(x)Y (y). Removing the parentheses in the expres-
sion for ‖A‖4 = ‖f + δ(X × Y )‖4, we obtain a sum σ with 16 terms. The leading
term in σ is equal to δ4M2

1M
2
2 and the term ‖f‖4 is not less than ηM2

1M
2
2 by

assumption. The other 14 terms in σ are of the form∑
x,x′∈X, y,y′∈Y

δ · f(x′, y)g(x, y′)h(x′, y′), (83)

where g and h are some functions with ‖g‖∞ 6 1 and ‖h‖∞ 6 1. Let us estimate
the sum (83). We have

σ′ =
∣∣∣∣δ ∑
x,x′∈X, y,y′∈Y

f(x′, y)g(x, y′)h(x′, y′)
∣∣∣∣

6
∑
x,x′,y′

∣∣∣∣ ∑
y

f(x′, y)
∣∣∣∣ =

∑
x,x′,y′

|d(x′)− δM2|. (84)
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Using the assumptions of the lemma about d(x), we obtain the inequality σ′ 6
ηM2

1M
2
2 /28. Thus,

‖A‖4 > (δ4 + η − 14η/28)M2
1M

2
2 = (δ4 + η/2)M2

1M
2
2 .

This completes the proof of Lemma 6.

Lemma 7. Let ‖A‖4 > (δ4 + η/2)M2
1M

2
2 . Suppose that |d(x) − δM2| 6 ηM2/32

for any x ∈ X except possibly for ηM1/32 vertices, and |d(y)− δM1| 6 ηM1/32 for
any y ∈ Y except possibly for ηM2/32 vertices. Then there are sets X ′ ⊆ X and
Y ′ ⊆ Y such that |X ′| > ηM1/32, |Y ′| > ηM2/32, and δX′×Y ′(A) > δ + η/8.

Proof. Let (x, y) ∈ X × Y and let e(x, y) be the number of edges between N (x)
and N (y). One can readily see that∑

(x,y)∈A

e(x, y) = ‖A‖4 > (δ4 + η/2)M2
1M

2
2 .

Let X0 be the set of vertices x ∈ X for which |d(x) − δM2| 6 ηM2/32 and let
Y0 be the set of vertices y ∈ Y such that |d(y)− δM1| 6 ηM1/32. By assumption,
|Xc

0 | = |X \X0| 6 ηM1/32 and |Y c0 | = |Y \ Y0| 6 ηM2/32. Therefore, the number
of edges beginning in Xc

0 and ending in Y c0 does not exceed ηM1M2/16. Hence,∑
(x,y)∈A, x∈X0,y∈Y0

e(x, y) > (δ4 + η/4)M2
1M

2
2 . (85)

It follows from (85) that there exist an x ∈ X0 and a y ∈ Y0 for which e(x, y) >
(δ3 + η/4δ)M1M2. We set X ′ = N (x) and Y ′ = N (y). Since x ∈ X0 and y ∈ Y0,
it follows that |X ′| 6 (δ + η/32)M1 and |Y ′| 6 (δ + η/32)M2. Therefore,

δX′×Y ′(A) >
δ3 + η/(4δ)
(δ + η/32)2

> δ + η/8.

Again using the fact that x ∈ X0 and y ∈ Y0, we see that |X ′| > δM1/2 > ηM1/32
and |Y ′| > δM2/2 > ηM2/32. This proves Lemma 7.

Proof of Proposition 8. Suppose that there are at least ηM1/56 vertices x ∈ X for
which |d(x) − δM2| > ηM2/56. Then by Lemma 5 there are two sets, F1 and F2,
such that |Fi| > 2−8ηMi, i = 1, 2, and δQ(A) > δ + 2−14η2 for Q = F1 × F2.
The proposition is proved for this case. The situation in which there are at least
ηM2/56 vertices y ∈ Y for which |d(y)− δM1| > ηM1/56 can be treated similarly.

If |d(x) − δM2| 6 ηM2/56 for any x ∈ X except possibly for ηM1/56 vertices
and a similar condition holds for d(y), then ‖A‖4 > δ4 + η/2 by Lemma 6. We now
apply Lemma 7 and find sets F1 and F2 such that |Fi| > ηMi/32 and δQ(A) =
δF1×F2(A) > δ + η/8. This completes the proof of Proposition 8.

For convenience let us combine Theorem 39 and Proposition 8.

Proposition 9 (first stage of the proof of Theorem 37). Let W be a subspace of Zn2 ,
let Ei ⊆ W , |Ei| = βi|W |, i = 1, 2, and let P = E1 × E2. Suppose that A ⊆ P ,
δP(A) = δ, and A contains no corners. Further, suppose that

|W | > 2δ−3β−2
1 β−2

2 (86)

and that Ei is a 2−36β12
1 β12

2 δ36-uniform subset of W for i = 1, 2.
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Then there are sets Fi ⊆ Ei such that |Fi| > 2−16δ12|Ei| and δF1×F2(A) >
δ + 2−30δ24.

Proof. Suppose that A is η-uniform with respect to the rectangular norm with η =
2−8δ12. By Theorem 39, the set A contains at least δ3β2

1β
2
2 |W |3 triples of the

form {(x, y), (x + d, y), (x, y + d)}. The number of triples with d = 0 does not
exceed |W |2. By (86), A contains a corner. Hence, A is not η-uniform with respect
to the rectangular norm with η = 2−8δ12. By Proposition 8, there are sets Fi ⊆ Ei
such that |Fi| > 2−16δ12|Ei| and δF1×F2(A) > δ + 2−30δ24. This completes the
proof of Proposition 9.

Proposition 10 (second stage of the proof of Theorem 37). Let δ, τ, σ ∈ (0, 1), let
W be a subspace of Zn2 , let Fi ⊆ W , |Fi| = βi|W |, i = 1, 2, and let Q = F1 × F2.
Assume that A ⊆ Q, δQ(A) = δ + τ , and

|W | > exp(16σ−2(β1β2)−1τ−1). (87)

Then there exist a subspace W ′ ⊆W with dimW ′ > dimW−16σ−2(β1β2)−1τ−1

and points t1, t2 ∈W such that the sets E′1 = (F1 − t1)∩W ′, E′2 = (F2 − t2)∩W ′,
and P ′ = E′1 × E′2, have the following properties:

(a) |P ′| > β1β2τ |W ′|2/2;
(b) E′1 and E′2 are σ-uniform subsets of W ′;
(c) δP′(A− (t1, t2)) > δ + τ/4.

Proof. The proof of the proposition is an algorithm. We sketch a description. At
the jth step of the algorithm the set W ×W is partitioned into cells

C(i) = (W (i) + t
(i)
1 )× (W (i) + t

(i)
2 ), W ×W =

⊔
i∈Ij

C(i) , (88)

where t(i)1 , t
(i)
2 ∈W , each of the sets W (i) is a subspace of W with dimension at least

dimW − j, and Ij is some set of indices. Upon passage to the (j+1)st step of the
algorithm, some cells C(i), i ∈ Ij , are unchanged. For the other indices i ∈ Ij one
chooses some subspaces H(i) ⊆W (i) of codimension 1. Since W (i) = H(i)t(H(i))⊥,
it follows that the cells C(i) are decomposed into four subcells C̃(ik), k = 1, 2, 3, 4,
where

C̃(i1) = (H(i) + t
(i)
1 )× (H(i) + t

(i)
2 ), C̃(i2) = ((H(i))⊥+ t

(i)
1 )× (H(i) + t

(i)
2 ),

C̃(i3) = (H(i) + t
(i)
1 )× ((H(i))⊥+ t

(i)
2 ), C̃(i4) = ((H(i))⊥+ t

(i)
1 )× ((H(i))⊥+ t

(i)
2 ).

We now proceed directly to the proof. Let β = β1β2. At the first step of the
algorithm we set t(1)1 = t

(1)
2 = 0, I1 = {1}, and C(1) = W × W . It is clear

that the formulae (88) hold in this case. Suppose that we have carried out j steps
of the algorithm and have constructed some cells C(i) and a set Ij that satisfy the
formulae (88). Let D(i)

1 = F1 ∩ (W (i) + t
(i)
1 ), D(i)

2 = F2 ∩ (W (i) + t
(i)
2 ), and

β
(i)
1 =

|D(i)
1 |

|W (i) + t
(i)
1 |

, β
(i)
2 =

|D(i)
2 |

|W (i) + t
(i)
2 |

. (89)
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We also assume that β(i) = β
(i)
1 β

(i)
2 . Clearly,∑

i∈Ij

|C(i)|β(i) = β|W |2. (90)

We say that a cell C(i) is meagre if β(i) < βτ/2. Let us partition all the non-meagre
cells into two classes. In the first class we put all the cells for which D(i)

1 − t(i)1 and
D

(i)
2 − t

(i)
2 are σ-uniform subsets of W (i). These cells are said to be uniform. The

remaining non-meagre cells are said to be non-uniform.
Thus, for i ∈ Ij the cell C(i) can turn out to be meagre, uniform, or non-uniform.

Let Ej , Uj , and Nj denote the corresponding subsets of Ij . If∑
i∈Nj

|C(i)| < τβ|W |2/4, (91)

then we terminate the algorithm at the jth step. Otherwise we partition the cells
for all i ∈ Nj and leave unchanged the cells for i ∈ Ej tUj . We note that for this
algorithm we have dimW (i) = n − j for any i ∈ Nj . By (91), there are at least
τ

4
22j values i ∈ Nj . Without loss of generality we can assume that there are at

least
τ

8
22j values of i such that D(i)

1 − t
(i)
1 are not σ-uniform subsets of W (i). By

Lemma 4, for any such i there is a subspace H(i) ⊆ W (i) of codimension 1 such
that

1
2
(δ2H(i)(D

(i)
1 − t

(i)
1 ) + δ2(H(i))⊥(D(i)

1 − t
(i)
1 )) > β

(i)2
1 + σ2. (92)

We decompose the cell C(i) into four subcells C(ik), k = 1, 2, 3, 4, as was done above.
Let β(ik)

1 = δC(ik)(F1) and β
(ik)
2 = δC(ik)(F2), k = 1, 2, 3, 4. It follows from (92)

that
1
4
(β(i1)2

1 + β
(i2)2
1 + β

(i3)2
1 + β

(i4)2
1 ) > β

(i)2
1 + σ2. (93)

We prove that the algorithm terminates after at most 16σ−2β−1τ−1 steps. Let

ind(Ij) :=
1

2|W |2
∑
i∈Ij

|C(i)|(β(i)2
1 + β

(i)2
2 ). (94)

Using the inequality (93) and the estimate∑
i∈Nj

|C(i)| > τβ|W |2/4, (95)

we see that ind(Ij+1) > ind(Ij) +
1
16
τβσ2. On the other hand, ind(Ij) 6 1 for

all j. Hence, the algorithm must terminate after 16σ−2β−1τ−1 steps.
Suppose that the algorithm has terminated at the Kth step, K 6 16σ−2β−1τ−1.

Since every uniform cell of the partition (88) is not meagre, the cell satisfies the
condition (a) of Proposition 10. It is also clear that every uniform cell satisfies
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the condition (b). We show that there is a uniform cell for which the property (c)
holds as well. We have ∑

i∈Nj

|C(i)| < τβ|W |2/4. (96)

Let δ(i) = |A ∩ C(i)|/|C(i) ∩ (F1 × F2)|. It is clear that δC(i)(A) = δ(i)β(i). Since
β(i) < βτ/2 for any i ∈ EK , it follows that∑

i∈EK

|C(i)|δ(i)β(i) < βτ |W |2/2. (97)

Applying (90) and the equality δQ(A) = δ + τ , we see that∑
i∈UKtNK

|C(i)|δ(i)β(i) > β(δ + τ)|W |2 − βτ |W |2/2 > β(δ + τ/2)|W |2. (98)

Suppose that δ(i) < δ + τ/4 for all i ∈ UK . By (90) and (96), we arrive at the
contradictory inequality

β(δ + τ/2)|W |2 6
∑
i∈UK

|C(i)|δ(i)β(i) +
∑
i∈NK

|C(i)|δ(i)β(i)

< (δ + τ/4)
∑
i∈IK

|C(i)|β(i) + τβ|W |2/4 = β(δ + τ/2)|W |2. (99)

Therefore, there is an i ∈ UK such that δ(i) > δ + τ/4. Let W ′ = W (i), t1 = t
(i)
1 ,

and t2 = t
(i)
2 . The subspace W ′ and the vectors t1 and t2 satisfy all the conditions

in Proposition 10. This proves Proposition 10.

Before passing to the proof of the main result of this section, we combine the
first and second stages of the proof of Theorem 37 into a single proposition.

Proposition 11. Let W be a subspace of Zn2 , let Ei ⊆ W , |Ei| = βi|W |, i = 1, 2,
let β = β1β2, and let P = E1 × E2. Assume that A ⊆ P , δQ(A) = δ, the sets E1

and E2 are 2−36β12δ36-uniform, and

|W | > exp(21681δ−1272β−25). (100)

Assume also that A contains no corners. Then there exist a subspace W ′ ⊆W and
sets E′1 and E′2 such that :

(a) the numbers β′1, β
′
2, and β′ determined by the equalities E′1 = β′1|W |, E′2 =

β′2|W |, and β′ = β′1β
′
2 satisfy the inequality β′ > 2−63δ48β;

(b) E′1 and E′2 are 2−36β′12δ36-uniform subsets of W ′;
(c) dimW ′ > dimW − 21681δ−1272β−25;
(d) δP′(A− t) > δ + 2−32δ24 for some t ∈W ×W , where P ′ = E′1 × E′2.

To prove Proposition 11, it suffices to apply Proposition 9 and then Proposi-
tion 10. Here the parameters τ and σ in Proposition 10 are equal to 2−30δ24 and
2−36(β′)12δ36, respectively.

Let us proceed directly to the proof of Theorem 37. This proof is an algorithm.
At the zeroth step of the algorithm we set P0 = Zn2 × Zn2 and assume that the set
A ⊆ P0 contains no corners.
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Suppose that i steps of the algorithm have been carried out, i > 0. Then
(i) the set Pi = E

(1)
i × E

(2)
i is contained in Wi ×Wi, where Wi is a subspace

of Zn2 of codimension di;
(ii) |Pi| = βi|Wi|2 and the sets E(1)

i and E
(2)
i are 2−36β12

i δ
36-uniform subsets

of Wi;
(iii) δPi

(A− t) > δ + 2−32δ24i for some t ∈ Zn2 × Zn2 .
If

|Wi| > exp(21681δ−1272β−25
i ), (101)

then we apply Proposition 11 and carry out the (i + 1)st step of the algorithm.
Since

di+1 6 di + 21681δ−1272β−25
i

and
βi+1 > 2−63δ48βi,

it follows that βi > (δ/2)63i and di 6 δ−C1i, where C1 is an absolute constant.
Using the condition (d) of Proposition 11, we conclude (as in the proof of Roth’s

theorem) that the number of steps of the algorithm does not exceed K = C2δ
−23,

where C2 stands for another absolute constant.
Suppose that

N � exp(δ−C3δ
−23

), (102)

where C3 stands for an absolute constant. One can easily see that the inequal-
ity (102) ensures the validity of the condition (101) at all steps of the algorithm,
and in particular at the Kth and last step. Hence, we can carry out the (K + 1)st
step of the algorithm. The contradiction obtained shows that we have the esti-
mate N � exp(δ−C3δ

−23
) (rather than the inequality (102)), which implies that

δ � (log logN)−1/24. This proves Theorem 37.
In [31] and [81] an application of Theorem 36 to the theory of dynamical systems

was obtained. Before formulating our theorem, we give several definitions.
Let X be a set equipped with a σ-algebra B of measurable sets, and let µ be a

finite measure on B. Without loss of generality, we assume that µ(X) = 1.

Definition 11 (Hausdorff measure). We consider the measure Hh( · ) on X defined
as follows:

Hh(E) = lim
δ→0

Hδ
h(E), (103)

where h(t) is a non-negative (h(0) = 0) continuous increasing function andHδ
h(E) =

inf
{∑

h(δj)
}
, where inf is taken over at most countable coverings of E by open

sets {Bj} with diam(Bj) = δj < δ.

If h(t) = tα, then we obtain the usual Hausdorff measure.
The outer measure Hh( · ) is σ-additive on the σ-algebra of Carathéodory mea-

surable sets (for more details see, for instance, [95]). As is well known, this σ-algebra
contains all Borel sets.

We say that the measures µ and Hh are compatible if any µ-measurable set is
Hh-measurable (in the sense of Carathéodory measurability).

Let S and R be two commuting maps of the spaceX that preserve the measure µ.
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Definition 12. The function

CS,R(x) = ChS,R(x) := lim inf
n→∞

{L−1(n) ·max{h(d(Snx, x)), h(d(Rnx, x))}},

where L−1(n) = 1/L(n), is called the constant of simultaneous (or multiple) recur-
rence of a point x.

Theorem 40 [31], [81]. Let X be a metric space with Hh(X) < ∞ and let S
and R be commuting self-maps of X that preserve the measure µ. Suppose that the
measures µ and Hh are compatible. Then CS,R(x) is an integrable function (with
respect to the measure µ) and∫

A

CS,R(x) dµ 6 Hh(A) (104)

for any µ-measurable set A. If Hh(A) = 0, then
∫
A
CS,R(x) dµ = 0 without the

assumption that the measures µ and Hh are compatible.

For lower bounds of the function CS,R(x), see the paper [87].

§ 8. Arithmetic progressions formed of primes

The conjecture that the set of primes contains arithmetic progressions of arbi-
trary length has a history of more than two hundred years. The first remarks con-
cerning progressions in primes can be found in the 1770 correspondence between
Lagrange and Waring (see [96]). However, the first results in this area were obtained
only in 1938, when N.G. Chudakov, using I.M. Vinogradov’s method of trigonomet-
ric sums, proved that the set of primes contains arithmetic progressions of length
three [97] (see also [98], [99]). As far as progressions of length exceeding three are
concerned, the problem remained open until very recently.

Computers were used to seek progressions in the primes. For example, using a
computer, P. A. Pritchard, A. Moran, and A. Thyssen [100] discovered the following
arithmetic progression of length 22 formed of primes:

11410337850553 + 4609098694200k,

where k = 0, 1, . . . , 21. This record remained unbroken for almost ten years. In 2004
M. Frind, P. Jobling, and P. Underwood found a progression of primes of length 23
(see [101]). This progression began with 56211383760397 and had the difference
44546738095860.

In 2004 Green and Tao proved the following result about progressions in the
primes (see [24]).

Theorem 41 (Green, Tao). The set of primes contains an arithmetic progression
of length k for any integer k > 3.

In this section we sketch the proof of the Green–Tao theorem.
As is well known, the density of the set of primes P in the segment [N ] is

π(N)/N ∼ 1/ lnN = o(1), N → ∞ (see, for instance, [35]). Therefore, we can-
not apply Szemerédi’s theorem (Theorem 6) to P. One of the main ideas of
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Green and Tao was to find a generalization of Szemerédi’s theorem to the so-called
pseudorandom sets (we give a precise definition below), which can have zero den-
sity. Generally speaking, there are many parallels between the Green–Tao approach
and the ergodic method. For example, pseudorandom sets are analogues of weakly
mixing dynamical systems. These parallels are treated in more detail in the sur-
vey [102]. In the second part of their proof Green and Tao apply recent results of
D.A. Goldston and C. Y. Yildirim (see [103]–[105]) and show that the set of primes
has the desired pseudorandom properties.

Let us begin with a more detailed discussion of the first part of the Green–Tao
proof, in which they obtain a generalization of Szemerédi’s theorem for pseudo-
random sets. Their proof makes essential use of Szemerédi’s theorem. More pre-
cisely, they show that the generalized theorem they proved is a consequence of the
usual Szemerédi theorem.

It is more convenient for our purposes to formulate Szemerédi’s theorem for the
group ZN . Let N be an arbitrary prime. We say that a quantity is of the form o(1)
if it tends to zero as N tends to infinity, and of the form O(1) if it remains bounded
as N tends to infinity. As above, we use the notation νconst : ZN → R+ for the
constant function identically equal to one, that is, νconst ≡ 1.

Theorem 42 (Szemerédi’s theorem). Let k > 3 be an integer and let δ > 0.
Assume that N is a sufficiently large prime and f : ZN → R+ is a non-negative
function such that

0 6 f(x) 6 νconst(x) for any x ∈ ZN (105)

and
1
N

∑
x∈ZN

f(x) > δ. (106)

Then
1
N2

∑
x,r∈ZN

f(x)f(x+ r) · · · f(x+ (k − 1)r) > c′(k, δ) (107)

for some constant c′(k, δ) > 0 depending only on k and δ.

There are two differences between Theorem 18 in § 4 and Theorem 42. The first
theorem involves Z, and the second involves ZN . Moreover, the formulation of the
first theorem involves functions, while that of the second involves sets. In fact,
the theorems are equivalent, and the constants c(k, δ) and c′(k, δ) can be expressed
explicitly in terms of each other. The first difference is actually inessential (see, for
instance, the proof of Theorem 20). The second difference is not important either.
Indeed, for any function f satisfying the inequalities (105) and (106) we can con-
sider the set A = {x : f(x) > δ/2}. Then |A| > δ/2 ·N . Hence, by Theorem 18, the
characteristic function of the set A satisfies the inequality (31) with the con-
stant c(k, δ/2). Then the inequality (107) holds for the function f with the constant
c′(k, δ) = (δ/2)k · c(k, δ/2).

Let us sketch the proof of Theorem 41. In their paper Green and Tao replace
the stringent condition (105) imposed on f by a weaker condition. We call a
function ν(x) a measure if 1/N ·

∑
x∈ZN

ν(x) = 1+ o(1). It is clear that νconst(x) is
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a measure. Another example of a measure is the von Mangoldt function, which
is concentrated on the powers of the primes,

Λ(x) =

{
log p if x = pm, p ∈ P, m ∈ N,
0 otherwise.

We have 1/N ·
∑
x∈ZN

Λ(x) = 1+o(1) (see, for instance, [106]), and hence Λ(x) is a
measure. It is proved in a generalization of Theorem 42 that the function νconst(x)
(identically equal to one) in the formula (105) can be replaced by some measure ν(x)
satisfying two conditions: the condition of linear forms and the correlation condi-
tion (we give precise definitions below). Here the measure ν(x) can grow as x tends
to infinity. Then the generalization of Theorem 42 is applied to a specific mea-
sure ν0(x) connected with the primes. The recent papers [103]–[105] of Goldston
and Yildirim are used in an essential way to verify that the measure ν0(x) satisfies
the condition of linear forms and the correlation condition.

Definition 13 (condition of linear forms). Let ν : ZN → R+ be a measure, and
let m0, t0, and L0 be positive integers, L0 < N . The measure ν is said to be
satisfy the (m0, t0, L0)-condition of linear forms if the following property holds.
Let m 6 m0 and t 6 t0, and let (Lij)16i6m, 16j6t be rational numbers whose
numerators and denominators do not exceed L0 in absolute value. Also, let bi ∈ ZN ,
1 6 i 6 m, and let ψi : ZtN → ZN be the linear forms ψi(x) =

∑t
j=1 Lijxj+bi, where

x = (x1, . . . , xt) ∈ ZtN and the rational numbers Lij can be interpreted as elements
of ZN in the standard way. Moreover, suppose that the rows (Lij)16j6t ∈ Qt are
non-zero for all i = 1, . . . ,m and that no row can be obtained from another row by
multiplying the latter by a rational number. Finally, let

1
N t

∑
x∈Zt

N

ν(ψ1(x)) · · · ν(ψm(x)) = 1 + oL0,m0,t0(1). (108)

Then we say that the measure ν satisfies the (m0, t0, L0)-condition of linear forms.

Definition 14 (correlation condition). Let ν : ZN → R+ be a measure, let m0 be a
positive integer, and for m = 1, . . . ,m0 suppose that there is a function τm : ZN →
R+ such that

1
N

∑
x∈ZN

τ qm(x) = Om,q(1) (109)

for any q > 1 and

1
N

∑
x∈ZN

ν(x+ h1)ν(x+ h2) · · · ν(x+ hm) 6
∑

16i<j6m

τm(hi − hj) (110)

for any h1, . . . , hm ∈ ZN . Then the measure ν is said to satisfy the m0-correlation
condition.

Definition 15 (pseudorandom measure). Let ν : ZN → R+ be a measure. The
measure ν is said to be k-pseudorandom if it satisfies the (k2k−1, 3k−4, k)-condition
of linear forms and the 2k−1-correlation condition.
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It is clear that the measure νconst(x) is k-pseudorandom for any positive integer k.
It turns out that k-pseudorandom measures are measures close to νconst(x) in the
sense of the Gowers uniform norms (see the definition in § 5).

Proposition 12. Let ν(x) be a k-pseudorandom measure. Then

‖ν − νconst‖Ud = ‖ν − 1‖ = o(1) (111)

for any 1 6 d 6 k − 1.

Proof. By the monotonicity inequality (45) for the Gowers norms, it suffices to
prove (111) for d = k − 1. In other words, it suffices to show that

σ :=
∑

x∈ZN , h∈Zk−1
N

∏
ω∈{0,1}k−1

(ν(x+ ω · h)− 1) = o(Nk). (112)

The left-hand side of (112) is equal to∑
A⊆{0,1}k−1

(−1)|A|
∑

x∈ZN , h∈Zk−1
N

∏
ω∈A

ν(x+ ω · h). (113)

For any fixed set A the expression∑
x∈ZN , h∈Zk−1

N

∏
ω∈A

ν(x+ ω · h) (114)

can be represented in the form∑
z∈Zk

N

ν(ψ1(z)) · · · ν(ψ|A|(z)), (115)

where ψ1, . . . , ψ|A| are non-zero linear forms, ψω(z) := x + ω · h, ω ∈ A, and z =
(x, h1, . . . , hk−1). It is clear that none of these forms can be obtained from another
by multiplying by a rational number. Since the measure ν is k-pseudorandom,
it satisfies the (k2k−1, 3k − 4, k)-condition of linear forms and, in particular, the
(2k−1, k, 1)-condition of linear forms. Hence, every expression of the form (114) is
equal to Nk + o(Nk). Therefore,

σ = Nk
∑

A⊆{0,1}k−1

(−1)|A|(1 + o(1)) = o(Nk),

as was to be proved.

We state the Green–Tao generalization of Szemerédi’s theorem.

Theorem 43 (Szemerédi’s theorem for pseudorandom measures). Let k be a pos-
itive integer with k > 3, let 0 < δ 6 1, let ν : ZN → R+ be a k-pseudorandom
measure, and let f : ZN → R+ be a function such that

0 6 f(x) 6 ν(x) for any x ∈ ZN (116)
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and
1
N

∑
x∈ZN

f(x) > δ. (117)

Then
1
N2

∑
x,r∈ZN

f(x)f(x+ r) · · · f(x+ (k − 1)r) > c′(k, δ) (118)

for the constant c′(k, δ) > 0 in Theorem 42.

To derive Theorem 41 from Theorem 43, one must produce a pseudorandom
measure ν(x) and a function f(x) that satisfy the conditions (116) and (117).

For the function f(x) one could try to take the von Mangoldt function Λ(x).
As was noted above, we have 1/N ·

∑
x∈ZN

Λ(x) = 1 + o(1), and hence Λ(x)
satisfies (117). One must now find a k-pseudorandom measure ν(x) such that
ν(x) > c(k)Λ(x) for some positive constant c(k). If a measure of this kind were con-
structed, then by Theorem 43 one could find an arithmetic progression of length k
in the set of numbers of the form {p, p2, p3, . . . | p ∈ P}. This does not yet prove
Theorem 41, of course, because the terms of an arithmetic progression found in
this way might not be prime numbers. In fact, one can readily show that the
higher powers of primes, p2, p3, . . . , give a contribution of the form o(1) to
the sum (118). Therefore, if a k-pseudorandom measure ν(x) were found such
that ν(x) > c(k)Λ(x), c(k) > 0, then Theorem 41 would be proved.

Unfortunately, there is no k-pseudorandom measure with the desired property.
We sketch a proof of this fact here. One can easily show that every pseudorandom
measure is uniformly distributed with respect to all q residue classes a (mod q) for
any fixed integer q > 1. Let ϕ(x) be the Euler function. As is known, the quantity
ϕ(x)/x can be made as small as desired (see, for instance, [36], Ch. II, (3) in § 4
and Question 9e), and therefore there is a q such that ϕ(q)/q < 1/c(k). On the
other hand, if (a, q) > 1 for a residue class a, then the class a contains no primes.
Since the contribution of the higher powers (p2, p3, . . . ) of the primes to the mean
value of the von Mangoldt function is equal to o(1), there is a residue class a for
which 1/N ·

∑
x∈ZN , x≡a (mod q) Λ(x) > 1/ϕ(q) + o(1). Since ϕ(q)/q < 1/c(k) and

1/N ·
∑
x∈ZN ,x≡a (mod q) ν(x) = 1/q + o(1), it follows that the inequality ν(x) >

c(k)Λ(x) cannot hold for arbitrary x.
Thus, we see that the ‘non-uniformity’ in the distribution of the primes prevents

the existence of a pseudorandom measure with the desired properties. To avoid the
above difficulties, Green and Tao proposed an approach they called the ‘W -trick’.

Let w(N) be a function slowly growing to infinity (the order of growth of w(N)
will be chosen below) and let W =

∏
p∈[w(N)] p be the product of the primes in the

segment [w(N)]. We define the modified von Mangoldt function Λ̃ : Z+ → R+ by
the formula

Λ̃(x) =


ϕ(W )
W

log(Wx+ 1) if Wx+ 1 is a prime,

0 otherwise.

If w(N) � log logN , then we get that
∑
x∈ZN

Λ̃(x) = N(1 + o(1)) by using the
Dirichlet theorem on arithmetic progressions. Thus, the inequality (117) holds
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for Λ̃(x) as well as for Λ(x). In what follows we assume that w(N) � log logN .
The main difference between the function Λ̃(x) and the von Mangoldt function
is that Λ̃(x) admits a k-pseudorandom measure ν(x) such that ν(x) > c(k)Λ(x),
c(k) > 0. More precisely, the following proposition holds.

Proposition 13. Let εk = 1/(2k(k + 4)!) and let N be a sufficiently large prime.
Then there is a k-pseudorandom measure ν : ZN → R+ with ν(x) > k−12−k−5Λ̃(x)
for all x ∈ [εkN, 2εkN ].

We derive Theorem 41 from Proposition 13. Let f : ZN → R+ be the function
with f(x) = k−12−k−5Λ̃(x) for any x ∈ [εkN, 2εkN ] and f(x) = 0 otherwise. By
the Dirichlet theorem on arithmetic progressions, we obtain

1
N

∑
x∈ZN

f(x) =
k−12−k−5

N

∑
x∈[εkN,2εkN ]

Λ̃(x) = k−12−k−5εk(1 + o(1)). (119)

Applying now Proposition 13 and Theorem 43, we see that

1
N2

∑
x,r∈ZN

f(x)f(x+ r) · · · f(x+ (k − 1)r) > c′(k, k−12−k−5) + o(1). (120)

The contribution of the terms with r = 0 to the sum (120) is O((logN)k/N) = o(1).
Hence, we can assume that the summation in (120) ranges over the indices with
r 6= 0. Since εk < 1/k, it follows that all the numbers x, x+r, . . . , x+(k−1)r belong
to [N ]. Thus, the summation in (120) ranges over the indices with x, r ∈ [N ], r 6= 0,
such that all the numbers x+ r, . . . , x+ (k − 1)r belong to [N ], and hence the set
of primes contains a non-trivial arithmetic progression of length k. This completes
the proof of Theorem 41.

Thus, to prove the Green–Tao result, it suffices to prove Proposition 13 by con-
structing a dominating k-pseudorandom measure ν(x).

We need a definition given by Goldston and Yildirim (see [103]–[105]).

Definition 16 (Goldston, Yildirim). Let N be a prime and let R be a real param-
eter depending on N . Then

ΛR(x) :=
∑

d|x,d6R

µ(d) log(R/d) =
∑
d|x

µ(d) log(R/d)+ , (121)

where µ is the Möbius function and log(x)+ = max(log x, 0).

Using Definition 16, Green and Tao construct a dominating k-pseudorandom
measure ν : ZN → R+.

Definition 17. Let R = Nk−12−k−4
and εk = 1/(2k(k + 4)!). Then we set

ν(x) :=


ϕ(W )
W

ΛR(Wn+ 1)2

logR
if x ∈ [εkN, 2εkN ],

1 if x ∈ ZN \ [εkN, 2εkN ].

We assert that ν(x) dominates Λ̃(x).
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Lemma 8. ν(x) > 0 for any x ∈ ZN . Moreover, ν(x) > k−12−k−5Λ̃(x) for any
sufficiently large N and any x ∈ [εkN, 2εkN ].

Proof. The first assertion of the lemma is trivial. If the numberWx+1 is not prime,
then the second assertion of the lemma is also trivial. Let Wx+ 1 be a prime and
let N be such that Wx + 1 > R. In this case the sum (121) contains only one

term (with d = 1). This implies that ΛR(Wx+ 1) = logR and ν(x)
ϕ(W )
W

logR >

k−12−k−5Λ̃(x) and completes the proof of Lemma 8.

It remains to prove that ν is a k-pseudorandom measure. To this end, one must
prove that ν satisfies the condition of linear forms and the correlation condition.
Developing the approach of the paper [105], Green and Tao proved two propositions
which imply the conditions (108), (109), and (110) for the measure ν. We do not
dwell on the proofs in detail but simply formulate these propositions and refer the
interested reader to the paper [24].

Proposition 14. Let m and t be positive integers, let ψi(x) :=
∑t
j=1 Lij + bj ,

i ∈ [m], be linear forms with integral coefficients Lij such that |Lij | 6√
w(N)/2, i ∈ [m], j ∈ [t], let θi = Wψi + 1, and let B =

∏t
i=1 Ii ⊆ Rt, where Ii,

i ∈ [m], are intervals with length at least R10m. Suppose that the function w(N)
grows to infinity sufficiently slowly. Then

1
|B|

∑
x∈B

ΛR(θ1(x))2 · · ·ΛR(θm(x))2 = (1 + om,t(1))
(
W logR
ϕ(W )

)m
. (122)

Proposition 15. Let m > 1 be an integer, let I be an interval with length at least
R10m, let h1, . . . , hm be distinct integers with |hi| 6 N2 for i ∈ [m], and let

∆ :=
∏

16i<j6m

|hi − hj |.

Suppose that the function w(N) grows to infinity sufficiently slowly. Then

1
|I|

∑
x∈I

ΛR(W (x+ h1) + 1)2 · · ·ΛR(W (x+ hm) + 1)2

6 (1 + om(1))
(
W logR
ϕ(W )

)m ∏
p|∆

(1 +Om(p−1/2)). (123)

§ 9. Rado’s theorem on systems of linear equations

In § 2 we proved Roth’s theorem, Theorem 3, which asserts that the order of
the cardinality of any subset of [N ] without arithmetic progressions of length three
does not exceed 1/ log logN . Roth generalized this result in the paper [38].

Let U = (uij) be an m × n matrix with all its elements integers. A set A is
called a U -set if A does not contain n distinct elements x1, . . . , xn satisfying the m
equations

n∑
j=1

uijxj = 0, i = 1, . . . ,m. (124)
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Let
aU (N) =

1
N

max{|A| : A ⊆ [N ], A ∈ U }.

Roth’s result can be reformulated in terms of the function aU (N) as follows. If U
is the 1× 3 matrix (1,−2, 1), then aU (N) � 1/ log logN . The question arises as to
what conditions on the matrix U ensure that aU (N) → 0 as N →∞.

We formulate the main result of the paper [38].

Theorem 44 (Roth). Let U be a matrix satisfying the following two conditions:
(a)

∑n
j=1 uij = 0 for any i = 1, . . . ,m;

(b) U has m linearly independent columns with the property that if any one of
them is removed, then the remaining n− 1 columns of U can be partitioned
into two sets which each contain m linearly independent columns.

Then
aU (N) � 1

(log logN)1/l2
.

We note that the condition (a) in Theorem 44 is necessary for validity of the
condition aU (N) → 0 as N →∞. Indeed, if

n∑
j=1

uqj = D

for some q ∈ [n] and some D ∈ Z, D 6= 0, then all the elements xj equal to 1
modulo |D|+1 do not satisfy the qth equation of the system (124). Hence, aU (N) >
1/(|D|+ 1) > 0.

On the contrary, the second condition of Theorem 44 is not necessary. Consider
the 2× 4 matrix

U =
(

1 −2 1 0
0 1 −2 1

)
.

Then the matrix U does not satisfy the second condition in Theorem 44, because this
condition implies that n > 2m + 1. On the other hand, we have aU (N) = a4(N),
and it follows from Szemerédi’s theorem that a4(N) → 0 as N → ∞. We shall
describe the matrices U such that limN→∞ aU (N) = 0 a little later. For now, we
state an interesting result of Rado (see [39]–[41]).

Definition 18. Let U = (uij) be an m × n matrix with all its elements integers.
The system of equations (124) is said to be regular in N if for any colouring of N
with finitely many colours there is a monochromatic solution of the system (124).

We note that the numbers x1, . . . , xn are not assumed to be distinct.

Theorem 45 (Rado). Let U = (uij) be an m × n matrix with all its elements
integers. The system of equations (124) is regular in N if and only if there are
columns C1, . . . , Cn and numbers ki with 1 6 k1 < · · · < kt = n such that the
new columns

Ai =
ki∑

j=ki−1+1

Cj
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satisfy the following conditions:
(a) A1 is the zero column;
(b) for any i = 1, . . . , t the column Ai is a linear combination of the columns

C1, . . . , Cki−1 with rational coefficients.

The matrices satisfying the conditions (a) and (b) in Theorem 45 are said to be
regular.

Rado’s theorem can be written out in an especially simple way for m = 1.

Theorem 46 (Rado). Let n be a positive integer and let c1, . . . , cn be non-zero
integers. The system of equations

c1x1 + · · ·+ cnxn = 0 (125)

is regular in N if and only if there is a non-empty set I ⊆ [n] such that the sum∑
i∈I ci vanishes.

For example, the equations x−2y+z = 0 and x+y−z = 0 are regular, whereas
the equation x + y − 5z = 0 is not. If x − 2y + z = 0, then the numbers x, y, z
form an arithmetic progression. We note that Theorem 46 holds trivially for this
equation, because one can set x = y = z = 1. Van der Waerden’s theorem lets us
assert for k = 3 that for any colouring of N with finitely many colours there are
distinct x, y, z of the same colour which satisfy the equation x − 2y + z = 0. As
for the equation x + y − z = 0, the existence of a monochromatic solution of this
equation for any finite colouring of N was proved earlier by I. Schur in [37].

We do not present here a complete proof of Theorem 46 (nor, all the more so,
of Theorem 45). Nevertheless, the proof of the necessity condition in Theorem 46
is rather simple.

Thus, let the sum
∑
i∈I ci be non-zero for any non-empty set I ⊆ [n], and con-

sider a colouring of N with finitely many colours for which there is no monochro-
matic solution of equation (125). Let p be a prime, which will be chosen below.
We colour the set Q∗ = Q \ {0} with (p − 1) colours. It is clear that this gives a
colouring of the set N as well.

An arbitrary q ∈ Q∗ can be uniquely represented in the form

q =
pja

b
, j ∈ Z, a ∈ Z, b ∈ N, p - a, p - b, (a, b) = 1. (126)

If q is represented in this form, then we colour it with the colour Sp(q), where
Sp(q) = ab−1 (mod p) ∈ Z∗p. The colouring Sp of the set Q∗ with (p − 1) colours
has the following property: if Sp(x) = Sp(y), then Sp(αx) = Sp(αy) for any α ∈ Q∗.

Since the number of subsets I ⊆ [n] is finite and for any non-empty I ⊆ [n] we
have

∑
i∈I ci 6= 0, there is a p such that

∑
i∈I ci 6= 0 (mod p) for any ∅ 6= I ⊆ [n].

Suppose that x1, . . . , xn ∈ N is a monochromatic solution of the equation (125)
for the colouring Sp. Since the family µx1, . . . , µxn is also monochromatic for any
µ ∈ Q∗, we can assume without loss of generality that the greatest common divisor
of x1, . . . , xn is equal to one. Re-indexing the numbers x1, . . . , xn if necessary, we
can find an s, 1 6 s 6 n, such that p does not divide the numbers x1, . . . , xs and
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divides the numbers xs+1, . . . , xn. We have

σ =
n∑
j=1

cjxj ≡
k∑
j=1

cjxj ≡ 0 (mod p).

Since the numbers x1, . . . , xn have the same colour, it follows that x1 ≡ · · · ≡ xn ≡ a
(mod p), where a 6= 0 (mod p). Therefore,

σ ≡ a ·
k∑
j=1

cj ≡ 0 (mod p).

Hence,
∑k
j=1 cj ≡ 0 (mod p), a contradiction.

We say a few words about results relating to Theorem 45. There is an analogue
of Rado’s theorem for arbitrary Abelian groups in the paper [107]. Furstenberg [17]
proved Rado’s theorem by ergodic theory methods. Results similar to Theorem 45
were obtained for certain non-linear equations in the papers [108]–[110]. For other
results generalizing Rado’s theorem, see [111] and [17].

We can now describe all the matrices U such that limN→∞ aU (N) = 0. It is
clear that these matrices must satisfy the conditions of Theorem 45. Moreover, the
first condition of Theorem 44 must hold for these matrices. It turns out that these
necessary conditions are also sufficient. More precisely, the following result holds
(see [42]) as a consequence of Szemerédi’s theorem.

Theorem 47 (Frankl, Graham, Rödl). Let U = (uij) be a regular m × n matrix
with all its elements integers. Suppose that the system of equations Ux = 0 has at
least one solution x′ = (x′1, . . . , x

′
n) with pairwise distinct elements x′i. In this case

the following two assertions are equivalent :
(a)

∑n
j=1 uij = 0, i = 1, . . . ,m;

(b) for any set E ⊆ N with D∗(E) > 0 the system of equations Ux = 0 has a
solution x = (x1, . . . , xn) with its elements xi in E and pairwise distinct.

Proof. (1)⇒(2) Let x′ = (x′1, . . . , x
′
n) be a solution of the system of equations

Ux′ = 0 and suppose that the elements x′i are pairwise distinct. Let N = maxx′i.
Since the set X has positive upper density, it follows from Szemerédi’s theorem that
there is an arithmetic progression of length N in X. Let c + jd be the elements
of this progression, j = 0, 1, . . . , N . We also assume that y = c · 1 + d · x′, where
1 = (1, . . . , 1). By the property (a), we see that Ay = 0. Since N = maxx′i, all the
components of the vector y belong to the set X, as was to be proved.

(2)⇒(1) Let N be a positive integer such that N >
∑
i,j |uij |, and let X =

{Ny + 1 : y ∈ N}. Then the upper density of the set X is equal to 1/N . Let
x = (x1, . . . , xn) ∈ Xn be a solution of the system of equations Ux = 0. Then for
some integers yi ∈ N we have xi = Nyi + 1 and

0 =
n∑
j=1

uijxj = N

( n∑
j=1

uijyj

)
+

n∑
j=1

uij . (127)

It follows from (127) that
∑n
j=1 uij = 0 for i = 1, . . . ,m. Indeed, if

∑n
j=1 uijyj = 0

for some i ∈ [m], then
∑n
j=1 uij = 0 as well. But

∑n
j=1 uijyj 6= 0 cannot hold, by

the choice of N . Theorem 47 is proved.
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§ 10. Other results concerning arithmetic progressions

The problems studied above can be described as follows. Let a set A be contained
in some ‘base’ set B and have a sufficiently large density with respect to B. Then the
set A contains a family of points x1, . . . , xm which has some prescribed properties.

As the set B we have taken the set of integers (Szemerédi’s theorem), a seg-
ment [N ] (Roth’s theorem), a two-dimensional lattice [N ]2 or Zn2×Zn2 (Theorems 36
and 37), the set of all primes (Theorem 10), and other sets. As the properties which
must be satisfied by a family of points x1, . . . , xm in A we have mainly considered
the property that the points form an arithmetic progression of some length,
or form a corner (Theorems 36 and 37), or satisfy a system of linear equations
(Theorems 44, 45, and 47).

In this section we consider problems on arithmetic progressions that do not fit in
the above scheme, namely, problems about critical sets, problems about arithmetic
progressions in sums, and, finally, theorems on rainbows.

In the papers [62] and [112] Croot studied the problem of the structure of critical
sets in Zp without arithmetic progressions of length three. Let ρ > 0. A set C ⊆ Zp
with cardinality at least ρp is said to be ρ-critical if C contains minimally many
arithmetic progressions of length three among all sets with cardinality at least ρp.
In [62] Croot proved that every critical set has a strong additive structure. His
theorem uses the well-known conjecture on prime numbers.

Conjecture 4. The segment [x, x + xθ] contains a prime for any θ > 0 and any
sufficiently large x.

At present, Conjecture 4 has been proved for any θ > 0.525 (see [113]).

Theorem 48 (Croot). Let ρ0 ∈ (0, 1). There exist numbers ρ ∈ (0, ρ0) and d ∈
(0, 1) and infinitely many primes p such that for any ρ-critical set C ⊆ Zp there is
a number b with 1 6 b 6 p− 1 for which

|C ∩ (C + bj)| > |C|
(

1− K

|log ρ|

)
, j = 0, 1, . . . , pd,

where K > 0 is an absolute constant.

Croot’s result can be reformulated as follows. If C is a ρ-critical set, then C ≈
A+B, where B = {0, b, 2b, . . . , [pd]b}. Here the symbol ≈means that the cardinality
of the symmetric difference C4(A+B) does not exceed O(|C| log−1(1/ρ)). Hence,
the less the number ρ is, the closer the set C is to the sum A + B. We note
that the set constructed in Theorem 20 of § 4 is of the very form A + B, where B
is an arithmetic progression.

In the paper [112] Croot obtained an unconditional result on the structure of
critical sets.

Theorem 49 (Croot). Let ρ ∈ (0, 1) and let p be a sufficiently large positive inte-
ger. Then every ρ-critical set C ⊆ Zp contains an arithmetic progression of length
at least log1/4+o(1) p.

Let us now consider problems on arithmetic progressions in sums, that is, in sets
of the form A1 + A2 + · · · + Ak. It turns out that such sets contain surprisingly
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long arithmetic progressions. Many papers on this topic have appeared recently;
for instance, see [114]–[126]. We cannot even begin to mention all the results
obtained in this direction, but we touch on just a few of them. In [114]
Bourgain obtained the following result.

Theorem 50 (Bourgain). Let A,B ⊆ [N ], |A| = γN and |B| = δN . Then there is
an absolute constant c > 0 such that the set A+B contains an arithmetic progression
with length at least exp(c(γδ logN)1/3 − log logN).

On the other hand, Ruzsa found a lower bound for the length of a maximal
arithmetic progression in a set of the form A+A (see [115]).

Theorem 51 (Ruzsa). Let ε > 0 be an arbitrary number. Then there exists a
number p0(ε) such that for any prime p with p > p0(ε) there is a set A ⊆ Zp which
is symmetric (that is, A = −A) and such that |A| > (1/2− ε)p and the sum A+A
contains no arithmetic progressions whose length exceeds exp((log p)2/3+ε).

Since for any set A ⊆ Zp with |A| > p/2 we have A + A = Zp, it follows that
the constant 1/2 in Theorem 51 is the best possible. Let us compare Theorems 50
and 51. Suppose that the parameters γ and δ in Theorem 50 do not depend on N .
According to this theorem, for any A the set A+A contains arithmetic progressions
with length at least exp(c(logN)1/3), where c is a constant. On the other hand, by
Theorem 51, there is an A such that A + A contains no progressions with length
greater than exp(c(logN)2/3). As we see, the estimates in Bourgain’s and Ruzsa’s
theorems are fairly close.

Freiman, H. Halberstam, and Ruzsa [117] considered the problem of arithmetic
progressions in sets of the form A + A + A and proved the following result (see
also [118]).

Theorem 52 (Freiman, Halberstam, Ruzsa). Let N be a positive integer, let δ > 0,
and let A ⊆ ZN be an arbitrary set of cardinality δN . Then the set A + A + A
contains an arithmetic progression with length at least cδNCδ3 , where c, C > 0 are
absolute constants.

In the same paper the three authors proved a theorem similar to Theorem 51,
namely, they constructed a set A ⊆ ZN such that the sum A+ A+ A contains no
arithmetic progressions with length greater than 2N log(1/δ).

In [116] Green improved Theorems 50 and 52.

Theorem 53 (Green). Let A,B ⊆ [N ], |A| = γN and |B| = δN . Then there is an
absolute constant C > 0 such that the set A+B contains an arithmetic progression
with length at least exp(C(γδ logN)1/2 − log logN).

Theorem 54 (Green). Let N be a positive integer, let δ > 0, and let A ⊆ ZN be
an arbitrary set of cardinality δN . Then the set A+A+A contains an arithmetic
progression with length at least 2−24δ5(log(1/δ))−2N δ2/(250 log(1/δ)).

In the last part of this section we consider problems relating to arithmetic pro-
gressions in rainbows.

Let c : N → {R,G,B} be an arbitrary colouring of the set of positive integers
with some colours R, G, and B. It follows from van der Waerden’s theorem that
for any such colouring of N there is a monochromatic arithmetic progression of
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length three. The question arises as to whether for an arbitrary colouring c one can
always find an arithmetic progression with all its elements coloured differently. Such
questions are called anti-Ramsey questions (see the first paper on this topic, [127],
and also [128]). As we shall see a little later, the answer to the question posed above
is negative. Nevertheless, the following result was obtained in the paper [129] (see
also [130] and [131]).

An arithmetic progression formed of the numbers a1, a2, a3 is called a rainbow
if c(ai) 6= c(aj) for any i 6= j. We introduce the set Rc(n) := [n] ∩ {i : c(i) = R}
and the analogous sets Gc(n) and Bc(n).

Theorem 55 [129]. Let c be an arbitrary colouring of N. Assume that

lim sup
n→∞

(min{|Rc(n)|, |Gc(n)|, |Bc(n)|} − n/6) = +∞. (128)

Then the colouring c admits a rainbow.

Instead of a colouring of the positive integers, one can consider a colouring of the
set Zn of residues. By a rainbow in Zn we mean residues a1, a2, a3 coloured with
three distinct colours and such that a1 + a2 ≡ 2a3 (mod n). Theorem 55 implies
the following corollary.

Corollary 4. Let n be a positive integer, let c be an arbitrary colouring of Zn,
and let Rc = {i : c(i) = R}, Gc = {i : c(i) = G}, and Bc = {i : c(i) = B}. If
min(|Rc|, |Gc|, |Bc|) > n/6, then the colouring c admits a rainbow.

Indeed, let c be an arbitrary colouring of Zn and consider the colouring c of N such
that c(i) := c(i (mod n)). By assumption, min(|Rc|, |Gc|, |Bc|) > n/6. Therefore,

lim sup
n→∞

(min{|Rc(n)|, |Gc(n)|, |Bc(n)|} − n/6) = +∞.

Using Theorem 55, we find a rainbow in c, which gives a rainbow in c.
The following proposition shows that the constant 1/6 in the inequality (128)

cannot be replaced by a smaller constant.

Proposition 16. There is a colouring c of N such that

min{|Rc(n)|, |Gc(n)|, |Bc(n)|} = [(n+ 2)/6]

for all n ∈ N.2

Proof. Consider the following colouring c of the set N:

c(i) =


R if i ≡ 1 (mod 6),
G if i ≡ 4 (mod 6),
B otherwise.

(129)

One can easily see that c contains no rainbows, and for any n we have

min{|Rc(n)|, |Gc(n)|, |Bc(n)|} = |Gc(n)| = [(n+ 2)/6].

2Russian Editors’ note: The author means a colouring which admits no rainbows.
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§ 11. Concluding remarks

We complete the present survey with a formulation of several unsolved problems
related to Szemerédi’s theorem and to problems on arithmetic progressions. Some
of these problems have already been formulated in the previous sections.

The most complicated unsolved problem is still the second Erdős–Turán con-
jecture, Conjecture 2. As was shown in § 5, this conjecture is closely related to
the problem of the behaviour of the function ak(N). We note that the exact
order of growth of a3(N) remains unknown so far (even in the simplest case
k = 3). Green and Tao recently announced a result on an upper bound of the
form ak(N) � 1/(logN)Ck for k > 4, where Ck > 0 is an absolute constant, and
they proved a similar result for a4(N) in the groups Znp , where p is a prime, p 6= 2, 3
(see [33]).

Another problem is to obtain a quantitative version of the Bergelson–Leibman
theorem, Theorem 8. This theorem can be reformulated in the language of number
theory as follows.

Theorem 56 (Bergelson, Leibman). Let δ > 0, and let p1, p2, . . . , pk be polynomi-
als such that pi(N) ⊆ N and pi(0) = 0, i = 1, . . . , k. Then there exists a positive
integer N(δ, p1, . . . , pk) such that for any set A ⊆ [N ] with |A| > δN there are
positive integers a and d for which all the numbers a + pi(d), i = 1, . . . , k, belong
to A.

We use the words “quantitative version of Theorem 56” to mean a result in which
an explicit upper bound for the quantity N(δ, p1, . . . , pk) is established.

If k = 2, p1(n) ≡ 0, and p2(n) = n2, then a quantitative analogue of
the Bergelson–Leibman theorem is well known (see Theorem 30). Nevertheless, the
actual order of growth of the function N(δ, p1, p2) has not been found, even in this
simple case. This leads one to formulate the following problem.

Problem. Let ε > 0 and let N > N0(ε) be a sufficiently large positive integer. Is
there a set A ⊆ [N ] with |A| > N1−ε such that the difference A − A contains no
non-zero squares?

In the paper [132] Ruzsa showed that if ε = 0.267, then there is a set A ⊆ [N ]
with |A| > N1−ε such that the difference between any two elements in A is not a
non-zero square.

In connection with Theorems 34–36, the problem arises naturally of obtaining
multidimensional quantitative analogues of the theorem on corners, and also of a
quantitative version of the Hales–Jewett theorem (Theorem 31). A very interesting
problem is to obtain an analogue of Theorem 56 when A is the set of primes.

The author expresses his deep gratitude to Doctor of the Physical and Math-
ematical Sciences N.G. Moshchevitin for his undivided attention to the present
work, and also to M.G. Ryumina for her hospitality.
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[12] I. Z. Ruzsa and E. Szemerédi, “Triple systems with no six points carrying three triangles”,
Combinatorics (Keszthely, 1976), Proceedings of the 5th Hungarian colloquium, Colloq.
Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam 1978, pp. 939–945.
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