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On sets of large trigonometric sums

I. D. Shkredov

Abstract. We prove the existence of non-trivial solutions of the equation
r1 + r2 = r3 + r4, where r1, r2, r3 and r4 belong to the set R of large
Fourier coefficients of a certain subset A of Z/NZ. This implies that R has
strong additive properties. We discuss generalizations and applications of
the results obtained.

§ 1. Introduction

Let N be a positive integer. We denote by ZN = Z/NZ the set of residues
modulo N . Let f : ZN → C be an arbitrary function. The Fourier transform of f
is given by the formula

f̂(r) =
∑

n∈ZN

f(n)e(−nr), (1)

where e(x) = e−2πix/N . The following Parseval equality holds for the Fourier
coefficients of f : ∑

r∈ZN

|f̂(r)|2 = N
∑

n∈ZN

|f(n)|2. (2)

Let δ and α be real numbers, 0 < α 6 δ 6 1, and let A be a subset of ZN of
cardinality δN . The symbol A will also stand for the characteristic function of this
set. Consider the set Rα of large trigonometric sums of A:

Rα = Rα(A) = {r ∈ ZN : |Â(r)| > αN}. (3)

For many problems of the combinatorial theory of numbers it is important to
know the structure of Rα, in other words, it is important to know its properties,
as will be indicated below. For the moment, we only mention the fact that this
problem was posed by Gowers in [1].

The elementary properties of Rα are as follows. The definition implies that
0 ∈ Rα and Rα = −Rα, which means that −r ∈ Rα if r ∈ Rα. Further, Parseval’s
equality (2) implies that |Rα| 6 δ/α2. Has Rα any other non-trivial properties?
It turns out that the answer to this question is positive.

We denote by log the logarithm to the base 2.
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In 2002, M.-C. Chang proved the following theorem [2].

Theorem 1 (M.-C. Chang). Let δ and α be real numbers, 0 < α 6 δ 6 1, let A be
an arbitrary subset of ZN of cardinality δN and let Rα be the set defined by (3).
Then there is a set Λ = {λ1, . . . , λ|Λ|} ⊆ ZN , |Λ| 6 2(δ/α)2 log(1/δ), such that
every element r of Rα can be represented in the form

r ≡
|Λ|∑
i=1

εiλi (mod N), (4)

where εi ∈ {−1, 0, 1}.

Developing the approach suggested in [3] (see also [4]), Chang applied her result
to the proof of Freiman’s theorem [5] on sets with small sum. Recall that Q ⊆ Z is
called a d-dimensional arithmetic progression if

Q = {n0 + n1λ1 + · · ·+ ndλd : 0 6 λi < mi},

where the mi are positive integers and the ni are integers.

Theorem 2 (G. A. Freiman). Let C > 0 be some number, let A⊆Z be an arbitrary
set and let |A + A| 6 C|A|. Then one can find numbers d and K depending only
on C and a d-dimensional arithmetic progression Q such that |Q|6K|A| and A⊆Q.

Another application of Theorem 1 was given by B. Green in [6] (see also the
earlier papers [7], [8] and the recent paper [9]). One of the main results of [6] can
be stated as follows.

Theorem 3 (B. Green). Let A be an arbitrary subset of ZN of cardinality δN .
Then A+A+A contains an arithmetic progression whose length is greater than or
equal to

2−24δ5
(
log(1/δ)

)−2
N δ2/(250 log(1/δ)). (5)

In another paper (see [10]), Green showed that Chang’s theorem is, in a sense,
exact. Let E = {e1, . . . , e|E|} ⊆ ZN be an arbitrary set. We denote by Span(E)
the set of all sums of the form

∑|E|
i=1 εiei, where εi ∈ {−1, 0, 1}.

Theorem 4 (B. Green). Let δ and α be real numbers, δ 6 1/8, 0 < α 6 δ/32.
Assume that (

δ

α

)2

log
1
δ

6
log N

log log N
. (6)

Then there is an A ⊆ ZN , |A| = [δN ], such that the set Rα defined by (3) is not
contained in Span(Λ) for any Λ with |Λ| 6 2−12(δ/α)2 log(1/δ).

The structure of Rα in the case when α is close to δ was studied in [11]–[13] (see
also [14]).

We see that results on the structure of Rα are of importance in the combinatorial
theory of numbers. In this paper we prove the following theorem.
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Theorem 5. Let δ and α be real numbers, 0 < α 6 δ, let A be an arbitrary subset
of ZN of cardinality δN , let k > 2 be an even number and let Rα be the set defined
by (3). Assume B ⊆ Rα \ {0} is an arbitrary set. Then the quantity

Tk(B) := |{(r1, . . . , rk, r′1, . . . , r
′
k) ∈ B2k : r1 + · · ·+ rk = r′1 + · · ·+ r′k}| (7)

is greater than or equal to
δα2k

24kδ2k
|B|2k. (8)

We claim that the assertion of Theorem 5 is non-trivial in the case when δ tends
to zero as N tends to infinity (if δ does not tend to zero as N → ∞, then the
structure of Rα can be arbitrary [15]–[17]). Consider the simplest case k = 2. Let
the order of the cardinality of Rα be equal to δ/α2. By Theorem 5, the order
of the number of solutions of the equation

r1 + r2 = r3 + r4, r1, r2, r3, r4 ∈ Rα \ {0}, (9)

is greater than or equal to δ/α4. Among these solutions there are three series of
trivial solutions. In the first series r1 = r3, r2 = r4, in the second r1 = r4, r2 = r3

and, finally, in the third r1 = −r2, r3 = −r4. Therefore, equation (9) has at
most 3|Rα|2 trivial solutions. The cardinality of Rα does not exceed δ/α2. There-
fore, 3|Rα|2 is less than 3δ2/α4. We see that this quantity is less than δ/α4 as δ
tends to zero. Thus, Theorem 5 states that equation (9) has non-trivial solutions.
Hence, Rα has some additive structure.

The proof of Theorem 5 will be given in § 2, where we begin with a detailed
consideration of the case when k = 2 and then prove it in the general situation.

In § 3 we generalize Theorem 5 to systems of linear equations. In our proof we
use properties of the Gowers norms (see [18]).

In § 4 we apply our main result to some problems in the combinatorial theory of
numbers. We show that M.-C. Chang’s theorem can be derived from Theorem 5
and Rudin’s inequality [19]. Moreover, we strengthen Theorem 1 (see Theorem 8).
We also apply Theorem 5 to Theorem 2 .

In subsequent papers on this topic, the author intends to obtain other applica-
tions of results on large trigonometric sums to problems in the combinatorial theory
of numbers.

The author is grateful to S. V. Konyagin, who suggested two ideas that enabled
the author to strengthen the statement of the main result, and to N.G. Moshchevitin
for his constant interest in this work.

§ 2. Proof of Theorem 5

We begin with some preliminary arguments. Let N be a positive integer and
let Â(r) be the Fourier transform of the characteristic function A. As mentioned
above, the following equality holds for the Fourier coefficients of A:∑

r∈ZN

|Â(r)|2 = N |A|. (10)

Are there any non-trivial relations between the Fourier coefficients Â(r) other
than (10)? It is obvious that the answer to this question is positive.
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Consider a slightly more general situation. Let f : ZN → C be an arbitrary
complex function. The following inversion formula holds for the Fourier coefficients
of f(x):

f(x) =
1
N

∑
r∈ZN

f̂(r)e(rx). (11)

The function f(x) is the characteristic function of some subset of ZN if and only if

|f(x)|2 = f(x) (12)

for all x in ZN . Substituting (11) into (12), we obtain that
1

N2

∑
r′,r′′

f̂(r′)f̂(r′′)e(r′x− r′′x) =
1
N

∑
u

f̂(u)e(ux). (13)

Hence, ∑
u

(
1
N

∑
r

f̂(r)f̂(r − u)
)

e(ux) =
∑

u

f̂(u)e(ux). (14)

Since (14) holds for all x ∈ ZN , we have

f̂(u) =
1
N

∑
r

f̂(r)f̂(r − u). (15)

Hence, f : ZN → C is a characteristic function if and only if equality (15) holds
for its Fourier coefficients. It is clear that (15) also holds for the characteristic
function A(x) of the set A. Moreover, (15) contains all the relations between the
Fourier coefficients of A: for example, Parseval’s equality (2) can be obtained by
putting u = 0.

We shall need the following generalization of (15). Let f, g : ZN → C be arbitrary
complex functions. Then

1
N

∑
r

f̂(r)ĝ(r − u) =
∑

x

f(x)g(x)e(−xu), (16)

and (15) obviously follows from (16).
Let us explain the basic idea of the proof of Theorem 5. Let A ⊆ ZN be an

arbitrary set, |A| = δN , and let Rα be the set of large trigonometric sums given
by (3). Consider a model situation. Assume that |Â(r)| = αN for all r ∈ Rα \ {0}
and let Â(r) = 0 for all r /∈ Rα, r 6= 0 (the justification of such a hypothesis will be
discussed below). Let δ 6 1/4 and let u be an arbitrary non-zero residue belonging
toRα. Then |Â(u)|=αN . Using formula (15) and the triangle inequality, we obtain
that

αN = |Â(u)| 6 1
N

∑
r

|Â(r)||Â(r − u)|

6
1
N

δN |Â(−u)|+ 1
N
|Â(u)|δN +

1
N

∑
r 6=0,u

|Â(r)||Â(r − u)|. (17)

Hence,
1
N

∑
r 6=0,u

|Â(r)||Â(r − u)| > αN

2
.

We have |Â(r)| = αNRα(r) for all r 6= 0. Therefore,∑
r 6=0,u

Rα(r)Rα(r − u) >
1
2α

. (18)
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It follows from (18) that for all u ∈ Rα \ {0} the equation r1 − r2 = u, where
r1, r2 ∈ Rα \ {0}, has at least 1/(2α) solutions. Therefore, Rα has non-trivial
additive relations.

We now proceed to the rigorous proof of Theorem 5. We shall prove it first in
the case when k = 2 and then in the general case. Let k = 2 and let B be an
arbitrary subset of Rα \ {0}. We denote by [N ] the segment {1, 2, . . . , N} of the
positive integers.

We need the following lemma.

Lemma 1. Let δ and α′ be real numbers, 0 < α′ 6 δ, and let A be an arbitrary
subset of ZN of cardinality δN . Assume also that

R′
α′ = {r ∈ ZN : α′N 6 |Â(r)| < 2α′N} (19)

and let B′ be an arbitrary subset of R′
α′ \ {0}. Then

T2(B′) >
(α′)4|B′|4

16δ3
.

Proof. Let

fB′(x) =
1
N

∑
r∈B′

Â(r)e(rx).

Generally speaking, fB′(x) is a complex function. It is obvious that f̂B′(r) =
Â(r)B′(r). Consider the sum

σ =
∑

s

∣∣∣∣∑
r

f̂B′(r)Â(r − s)
∣∣∣∣2. (20)

Using formula (16) and Parseval’s equality, we obtain that

σ = N2
∑

s

∣∣∣∣∑
x

fB′(x)A(x)e(−xs)
∣∣∣∣2 = N3

∑
x

|fB′(x)|2A2(x). (21)

We estimate
∑

x |fB′(x)|2A2(x) from below using Parseval’s equality and the defi-
nition of R′

α′ :(∑
x

fB′(x)A(x)
)2

=
(

1
N

∑
r

f̂B′(r)Â(r)
)2

=
(

1
N

∑
r

|f̂B′(r)|2
)2

>
(
N(α′)2|B′|

)2 = (α′)4|B′|2N2. (22)

On the other hand, we have(∑
x

fB′(x)A(x)
)2

6

(∑
x

|fB′(x)|2A2(x)
)(∑

x

A2(x)
)

= δN

(∑
x

|fB′(x)|2A2(x)
)

. (23)

Using inequalities (22) and (23), we obtain that

σ2 >
(α′)8

δ2
|B′|4N8. (24)



154 I. D. Shkredov

To obtain an upper bound for σ2, we note that

σ =
∑

s

∑
r,r′

f̂B′(r)f̂B′(r′) Â(r − s)Â(r′ − s)

=
∑

u

(∑
r

f̂B′(r)f̂B′(r − u)
)(∑

r

Â(r)Â(r − u)
)

, (25)

whence

σ2 6
∑

u

∣∣∣∣∑
r

f̂B′(r)f̂B′(r − u)
∣∣∣∣2∑

u

∣∣∣∣∑
r

Â(r)Â(r − u)
∣∣∣∣2 = σ1σ2. (26)

Using formula (15) and Parseval’s equality, we obtain that

σ2 = N2
∑

u

|Â(u)|2 = δN4. (27)

Since f̂B′(r) = Â(r)B′(r) and B′ ⊆ R′
α′ \ {0}, we have |f̂B′(r)| 6 2α′B′(r)N .

Hence,
σ1 6 16(α′)4T2(B′)N4. (28)

Substituting (27) and (28) into (24), we obtain that T2(B′) > (α′)4|B′|4/(16δ3).
The lemma is proved.

Let
Bi = {r ∈ B : 2i−1αN 6 |Â(r)| < 2iαN}, i > 1.

It is clear that B =
⊔

i>1 Bi. Applying Lemma 1 to every Bi, we obtain that
T2(Bi) > (2i−1α)4|Bi|4/(16δ3), i > 1. Hence,

T2(B) >
∑

i

T2(Bi) >
α4

28δ3

∑
i

24i|Bi|4. (29)

We have |B| =
∑

i |Bi|. The Cauchy–Bunyakovsky inequality implies that

|B|4 =
(∑

i

2i2−i|Bi|
)4

6

(∑
i

24i|Bi|4
)(∑

i

2−4i/3

)3

6
∑

i

24i|Bi|4. (30)

Substituting (30) into (29), we obtain the inequality

T2(B) >
α4

28δ3
|B|4. (31)

Now consider the general case when k > 2.

Proof of Theorem 5. First we prove an analogue of Lemma 1.

Lemma 2. Let δ and α′ be real numbers, 0 < α′ 6 δ, let A be an arbitrary subset
of ZN of cardinality δN and let k > 2 be an even number. Assume also that

R′
α′ = {r ∈ ZN : α′N 6 |Â(r)| < 2α′N} (32)

and let B′ be an arbitrary subset of R′
α′ \ {0}. Then

Tk(B′) >
δ(α′)2k|B′|2k

(2δ)2k
.
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Proof. Let fB′(x) be the function defined by the formula

fB′(x) =
1
N

∑
r∈B′

Â(r)e(rx).

Consider the sum

σ =
(∑

x

fB′(x)A(x)
)k

. (33)

Estimating σ from below as in Lemma 1, we obtain that

σ >
(
(α′)2|B′|N

)k
. (34)

Since k is an even number, it has the form k =2k′, k′ ∈N. Using Hölder’s inequal-
ity, we obtain that

σ =
(∑

x

fB′(x)A(x)
)2k′

6

(∑
x

|fB′(x)|2k′A2(x)
)(∑

x

A(x)
)k−1

=
(∑

x

|fB′(x)|2k′A2(x)
)

(δN)k−1. (35)

Hence,

(σ′)2 =
(∑

x

|fB′(x)|2k′A2(x)
)2

> δ2 (α′)4k

δ2k
|B′|2kN2. (36)

On the other hand, the inversion formula (11) implies that

σ′ =
∑

x

|fB′(x)|2k′A2(x)

=
1

N2k′+2

∑
x

∑
r1,...,rk′ ,r

′
1,...,r′

k′

∑
y,z

f̂B′(r1) · · · f̂B′(rk′)f̂B′(r′1) · · · f̂B′(r′k′)Â(y)Â(z)

× e
(
x(r1 + · · ·+ rk′ − r′1 − · · · − r′k′)

)
e
(
x(y − z)

)
=

1
N2k′+1

∑
u,y

∑
r1,...,rk′ ,r

′
1,...,r′

k′
r1+···+rk′=r′1+···+r′

k′−u

f̂B′(r1) · · · f̂B′(rk′)

× f̂B′(r′1) · · · f̂B′(r′k′)Â(y)Â(y − u)

=
1

N2k′+1

∑
u

(∑
y

Â(y)Â(y − u)
)

×

( ∑
r1,...,rk′ ,r

′
1,...,r′

k′
r1+···+rk′=r′1+···+r′

k′−u

f̂B′(r1) · · · f̂B′(rk′)f̂B′(r′1) · · · f̂B′(r′k′)

)
. (37)
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Hence,

(σ′)2 6
1

N4k′+2

∑
u

∣∣∣∣∑
y

Â(y)Â(y − u)
∣∣∣∣2

×
∑

u

∣∣∣∣∣ ∑
r1,...,rk′ ,r

′
1,...,r′

k′
r1+···+rk′=r′1+···+r′

k′−u

f̂B′(r1) · · · f̂B′(rk′)f̂B′(r′1) · · · f̂B′(r′k′)

∣∣∣∣∣
2

=
1

N4k′+2
σ1σ2. (38)

Using formula (15) and Parseval’s equality, we obtain that

σ1 = N2
∑

u

|Â(u)|2 = δN4. (39)

Since B′ ⊆ R′
α′ \ {0}, we have |f̂B′(r)| 6 2α′B′(r)N . Hence,

σ2 6
(
(2α′N)2k′

)2∑
u

∣∣∣∣∣ ∑
r1,...,rk′ ,r

′
1,...,r′

k′
r1+···+rk′=r′1+···+r′

k′−u

B′(r1) · · ·B′(rk′)B′(r′1) · · ·B′(r′k′)

∣∣∣∣∣
2

= (2α′N)2kTk(B′). (40)

Using equalities (38), (39) and inequalities (36), (40), we obtain that

Tk(B′) >
δ(α′)2k|B′|2k

(2δ)2k
. (41)

The lemma is proved.

Let
Bi = {r ∈ B : 2i−1αN 6 |Â(r)| < 2iαN}, i > 1.

It is clear that B =
⊔

i>1 Bi. Applying Lemma 2 to every Bi, we obtain that

Tk(Bi) > δ(2i−1α)2k|Bi|2k/(2δ)2k, i > 1. Hence,

Tk(B) >
∑

i

Tk(Bi) >
δα2k

24kδ2k

∑
i

22ki|Bi|2k. (42)

We have |B| =
∑

i |Bi|. Using Hölder’s inequality, we obtain that

|B|2k =
(∑

i

2i2−i|Bi|
)2k

6

(∑
i

22ki|Bi|2k

)(∑
i

2−2ki/(2k−1)

)2k−1

6
∑

i

22ki|Bi|2k. (43)

Substituting (43) into (42), we obtain the inequality

Tk(B) >
δα2k

24kδ2k
|B|2k. (44)

The theorem is proved.
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§ 3. Systems of linear equations with elements
in the set of large trigonometric sums

Let k be a positive integer and let d > 0 be an integer. Let A = (aij) be the
2d+1k × (d + 1) matrix whose elements aij are defined by the formula

aij =



1 if the (i− 1)st coefficient in the binary expansion of (j − 1)
is equal to 1 and 1 6 j 6 2dk,

−1 if the (i− 1)st coefficient in the binary expansion of (j − 1)
is equal to 1 and 2dk < j 6 2d+1k,

0 otherwise.

(45)

Recall that the binary expansion of a positive integer n is defined by the rule
n =

∑
nl · 2l−1, where l > 1 and nl ∈ {0, 1}.

For example, when k = 2 and d = 2 we have

A =

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
0 1 0 1 0 1 0 1 0 −1 0 −1 0 −1 0 −1
0 0 1 1 0 0 1 1 0 0 −1 −1 0 0 −1 −1

 .

In this section we prove the following theorem.

Theorem 6. Let δ and α be real numbers, 0 < α 6 δ, let A be an arbitrary subset
of ZN of cardinality δN , let k be a positive integer, let d > 0 be an integer and
let Rα be the set defined by (3). Let B ⊆ Rα \ {0} be an arbitrary set. Consider
the system of equations

2d+1k∑
j=1

aijrj = 0, i = 1, 2, . . . , d + 1, (46)

where the elements aij of the matrix A are defined by formula (45) and rj ∈ B for
all j. Then the number of solutions of the system (46) is greater than or equal to(

δα2k

24kδ2k
|B|2k

)2d

. (47)

To make it clear that Theorem 6 is a generalization of Theorem 5, it is sufficient
to put the d in Theorem 6 equal to zero.

To prove Theorem 6, we need some properties of the Gowers norms (see [18]).
Let d > 0 be an integer and let {0, 1}d = {ω = (ω1, . . . , ωd) : ωj ∈ {0, 1},

j = 1, 2, . . . , d} be the ordinary d-dimensional cube. If ω ∈ {0, 1}d, then |ω| is
defined to be ω1+ · · ·+ωd. If h = (h1, . . . , hd) ∈ Zd

N , then ω ·h := ω1h1+ · · ·+ωdhd.
Let C be the operator of complex conjugation. If n is a positive integer, then Cn

stands for the nth power of this operator. Let ‖ω‖ =
∑d

i=1 ωi · 2i−1 + 1. For
every ω ∈ {0, 1}d we define a map from Z2d

N to ZN , which we denote by the same
symbol ω, by the rule: if ~r ∈ Z2d

N , then ω(~r ) is the ‖ω‖th component of the vector ~r.

Definition 1. Let f : ZN → C be an arbitrary function. The uniform Gowers
norm (or, briefly, the Gowers norm) of f is defined to be

‖f‖Ud :=
(

1
Nd+1

∑
x∈ZN ,h∈Zd

N

∏
ω∈{0,1}d

C|ω|f(x + ω · h)
)1/2d

. (48)
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We shall need the following lemma (see [18]).

Lemma 3 (the motonicity inequality for Gowers norms). Let f : ZN → C be an
arbitrary function and let d be a positive integer. Then

‖f‖Ud 6 ‖f‖Ud+1 . (49)

Other properties of the Gowers norms can be found in [18].
Let us prove the following lemma.

Lemma 4. Let δ and α′ be real numbers, 0 < α′ 6 δ, let A be an arbitrary subset
of ZN of cardinality δN , let k be a positive integer and let d > 0 be an integer.
Assume, moreover, that

R′
α′ = {r ∈ ZN : α′N 6 |Â(r)| < 2α′N} (50)

and let B′ be an arbitrary subset of R′
α′ \ {0}. Then the number of solutions of the

system (46) with rj ∈ B′ is greater than or equal to(
δ(α′)2k

22kδ2k
|B′|2k

)2d

. (51)

Proof. Let f(x) be the function defined by the formula

f(x) =
1
N

∑
r∈B′

Â(r)e(rx).

Using Hölder’s inequality, we obtain that∣∣∣∣∑
x

f(x)A(x)
∣∣∣∣2k

6

(∑
x

|f(x)|2k

)(∑
x

A(x)
)2k−1

=
(∑

x

|f(x)|2k

)
(δN)2k−1. (52)

On the other hand, using Parseval’s equality and the definition of R′
α′ , we obtain

that ∑
x

f(x)A(x) =
1
N

∑
r

f̂(r)Â(r) =
1
N

∑
r

|f̂(r)|2 > (α′)2|B′|N. (53)

Consider the sum

σ = ‖ |f |2k ‖U0 = ‖ |f |2k ‖U1 =
1
N

∑
x

|f(x)|2k. (54)

It follows from (52) and (53) that

σ >
δ(α′)4k

δ2k
|B′|2k. (55)

Using Lemma 3, we obtain that

σ2d

6
1

Nd+1

∑
x∈ZN

∑
h∈Zd

N

∏
ω∈{0,1}d

|f(x + ω · h)|2k

=
1

Nd+1

∑
x∈ZN

∑
h∈Zd

N

∣∣∣∣ ∏
ω∈{0,1}d

f(x + ω · h)
∣∣∣∣2k

. (56)
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Using the inversion formula (11), we obtain that∏
ω∈{0,1}d

f(x + ω · h) =
1

N2d

∑
~r∈Z2d

N

∏
ω∈{0,1}d

f̂
(
ω(~r )

)
e
(
ω(~r )(x + ω · h)

)
. (57)

Hence,

σ2d

=
1

N2d+1k+d+1

∑
x∈ZN

∑
h∈Zd

N

∑
r(1),...,r(k),r(k+1),...,r(2k)∈Z2d

N

×
k∏

i=1

∏
ω(i)∈{0,1}d

f̂
(
ω(i)(r(i))

)
e
(
ω(i)(r(i))(x + ω(i) · h)

)
×

2k∏
i=k+1

∏
ω(i)∈{0,1}d

f̂
(
ω(i)(r(i))

)
e
(
−ω(i)(r(i))(x + ω(i) · h)

)
. (58)

We denote by Σ the system of equations
k∑

i=1

∑
ω(i)∈{0,1}d

ω(i)(r(i)) =
2k∑

i=k+1

∑
ω(i)∈{0,1}d

ω(i)(r(i)),

k∑
i=1

∑
ω(i)∈{0,1}d,ω

(i)
1 =1

ω(i)(r(i)) =
2k∑

i=k+1

∑
ω(i)∈{0,1}d,ω

(i)
1 =1

ω(i)(r(i)),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k∑
i=1

∑
ω(i)∈{0,1}d,ω

(i)
d =1

ω(i)(r(i)) =
2k∑

i=k+1

∑
ω(i)∈{0,1}d,ω

(i)
d =1

ω(i)(r(i)).

Then

σ2d

=
1

N2d+1k+d+1

∑
r(1),...,r(k),r(k+1),...,r(2k)∈Z2d

N

k∏
i=1

∏
ω(i)∈{0,1}d

f̂
(
ω(i)(r(i))

)

×
2k∏

i′=k+1

∏
ω(i′)∈{0,1}d

f̂
(
ω(i′)(r(i′))

)
×
∑

x∈ZN

∑
h∈Zd

N

e
(
ω(i)(r(i))(x + ω(i) · h)− ω(i′)(r(i′))(x + ω(i′) · h)

)

=
1

N2d+1k

∑
r(1),...,r(k),r(k+1),...,r(2k)∈Σ

k∏
i=1

∏
ω(i)∈{0,1}d

f̂
(
ω(i)(r(i))

)
×

2k∏
i=k+1

∏
ω(i)∈{0,1}d

f̂
(
ω(i)(r(i))

)
. (59)

The sum in (59) is taken over the r(1), . . . , r(k), r(k+1), . . . , r(2k) that satisfy Σ. It
is easy to verify that this system coincides with (46).
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Since f̂B′(r) = Â(r)B′(r) and B′ ⊆ R′
α′ \ {0}, we have |f̂B′(r)| 6 2α′B′(r)N .

Hence,
σ2d

6 (22k(α′)2k)2
d

N2d+1k. (60)

Using inequalities (55), (56) and (60), we finally obtain that∑
r(1),...,r(k),r(k+1),...,r(2k)∈Σ

1 >

(
δ(α′)4k

δ2k
|B′|2k

)2d

1
(22k(α′)2k)2d

=
(

δ(α′)2k

22kδ2k
|B′|2k

)2d

. (61)

The sum in (61) is taken over the r(i), i = 1, 2, . . . , 2k, whose components belong
to B′. In other words, the number of solutions of the system (46) with ri ∈ B′ is
greater than or equal to (

δ(α′)2k

22kδ2k
|B′|2k

)2d

.

The lemma is proved.

Proof of Theorem 6. Let

Bi = {r ∈ B : 2i−1αN 6 |Â(r)| < 2iαN}, i > 1.

It is clear that B =
⊔

i>1 Bi.
Let E be a set. We denote by Sk,d(E) the number of solutions of the system (46)

with ri ∈ E. Applying Lemma 4 to every Bi, we obtain that

Sk,d(Bi) >

(
δ(2i−1α)2k

22kδ2k
|Bi|2k

)2d

,

where i > 1. Hence,

Sk,d(B) >
∑

i

Sk,d(Bi) >

(
δα2k

24kδ2k

)2d ∑
i

(22ki|Bi|2k)2
d

. (62)

We have |B| =
∑

i |Bi|. Using Hölder’s inequality, we obtain that

|B|2
d+1k =

(∑
i

2i2−i|Bi|
)2d+1k

6

(∑
i

(22ki|Bi|2k)2
d

)(∑
i

2−(2d+1ki)/(2d+1k−1)

)2d+1k−1

6
∑

i

(22ki|Bi|2k)2
d

. (63)

Substituting (63) into (62), we obtain the desired inequality

Sk,d(B) >

(
δα2k

24kδ2k
|B|2k

)2d

. (64)

The theorem is proved.
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§ 4. Applications to problems in the combinatorial theory of numbers

In the proof of Theorem 1, Chang used Rudin’s theorem [19] (see also [20]) on the
dissociative subsets of ZN . A set D = {d1, . . . , d|D|} ⊆ ZN is said to be dissociative
if the congruence

|D|∑
i=1

εidi ≡ 0 (mod N), (65)

where εi ∈ {−1, 0, 1}, implies that all the εi are equal to zero.

Theorem 7 (W. Rudin). There is an absolute constant C > 0 such that for any
dissociative set D ⊆ ZN and any complex numbers an ∈ C the inequality

1
N

∑
x∈ZN

∣∣∣∣∑
n∈D

ane(nx)
∣∣∣∣p 6 (C

√
p)p

(∑
n∈D

|an|2
)p/2

(66)

holds for all integers p > 2.

The proofs of Theorem 7 and Chang’s theorem can also be found in [9], [21]. We
shall use Rudin’s theorem and Theorem 5 to derive an analogue of Theorem 1, which
only differs from Chang’s theorem in that it gives a somewhat weaker estimate for
the cardinality of Λ.

Proposition 1. Let δ and α be real numbers, 0 < α 6 δ 6 1, let A be an arbitrary
subset of ZN of cardinality δN and let Rα be the set defined by (3). Then there
is a set D = {d1, . . . , d|D|} ⊆ ZN , |D| 6 28C2(δ/α)2 log(1/δ), such that every
element r of Rα can be represented in the form

r ≡
|D|∑
i=1

εidi (mod N), (67)

where εi ∈ {−1, 0, 1} and C is the absolute constant occurring in Rudin’s inequal-
ity (66).

Proof. Let k = 2dlog(1/δ)e and let D ⊆ Rα be a maximal dissociative set. Since D
is dissociative, we have 0 /∈ D. Using Theorem 5, we obtain the estimate

Tk(D) >
δα2k

24kδ2k
|D|2k. (68)

On the other hand,
Tk(D) 6 C2k2kkk|D|k, (69)

where C is the absolute constant occurring in Theorem 7. Indeed, let the an in (66)
be equal to D(n) and let p = 2k. Then the left-hand side of (66) is Tk(D) while
the right-hand side is equal to C2k2kkk|D|k. We have k = 2dlog(1/δ)e. Using (68)
and (69), we obtain that |D| 6 28C2(δ/α)2 log(1/δ). Since D is a maximal dis-
sociative subset of Rα, every element r of Rα can be represented in the form
r ≡

∑|D|
i=1 εidi (mod N), where di ∈ D and εi ∈ {−1, 0, 1}. Note that it is only

the constant factors in the estimate |D| 6 28C2(δ/α)2 log(1/δ) that are different
from those in the corresponding estimate in Chang’s theorem. The proposition is
proved.
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We shall now strengthen Chang’s theorem. Our method of proof has much in
common with the methods used in [22]–[24].

Theorem 8. Let N be a positive integer, (N, 2) = 1, let δ and α be real numbers,
0 < α 6 δ 6 1/16, let A be an arbitrary subset of ZN of cardinality δN and let Rα

be the set defined by (3). Then there is a Λ∗ ⊆ ZN ,

|Λ∗| 6 max
(
212(δ/α)2 log(1/δ), 26 log2(1/δ)

)
, (70)

such that for any residue r ∈ Rα there is a set λ∗1, . . . , λ
∗
M of at most 8 log(1/δ)

elements of Λ∗ such that

r ≡
M∑
i=1

εiλ
∗
i (mod N), (71)

where εi ∈ {−1, 0, 1}.
If, moreover, N is a prime, then there is a set Λ̃ ⊆ ZN ,

|Λ̃| 6 212(δ/α)2 log(1/δ) log log(1/δ), (72)

such that for every residue r ∈ Rα there is a set λ̃1, . . . , λ̃M of at most 8 log(1/δ)
elements of Λ̃ such that

r ≡
M∑
i=1

εiλ̃i (mod N), (73)

where εi ∈ {−1, 0, 1}.

Remark 1. Unlike the residues in Theorem 1, the residues λ∗1, . . . , λ
∗
M ∈ Λ∗ in (71),

as well as the residues λ̃1, . . . , λ̃M ∈ Λ̃ in (73) (see Theorem 8), need not be distinct.

Corollary 1. Let N be a positive integer, (N, 6) = 1, let δ and α be real num-
bers, 0 < α 6 δ log1/2(1/δ), and let Rα be the set defined by (3). Then there is
a Λ∗ ⊆ ZN , |Λ∗| 6 212(δ/α)2 log(1/δ), such that for any residue r ∈ Rα there
is a set λ∗1, . . . , λ

∗
M of at most 8 log(1/δ) elements of Λ∗ such that r ≡

∑M
i=1 εiλ

∗
i

(mod N), where εi ∈ {−1, 0, 1}.

In the proof of Theorem 8 we shall use several auxiliary assertions and definitions.

Definition 2. Let k and s be positive integers. Consider a family Λ(k, s) of subsets
of ZN that has the following property. If Λ = {λ1, . . . , λ|Λ|} belongs to Λ(k, s), then
the congruence

|Λ|∑
i=1

λisi ≡ 0 (mod N), λi ∈ Λ, si ∈ Z, |si| 6 s,

|Λ|∑
i=1

|si| 6 2k, (74)

implies that all the si are equal to zero.

The definition of Λ(k, 1) can be found in [25].
Note that for every Λ ∈ Λ(k, s) we have 0 /∈ Λ and Λ ∩ (−Λ) = ∅. It is implicit

in what follows that the equality of two elements of ZN will always mean that they
are equal modulo N . For sets belonging to Λ(k, s), the following upper bound holds
for the quantities Tk.
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Assertion 1. Let k and s be positive integers, let Λ be an arbitrary set belonging
to the family Λ(k, s) and assume that |Λ| > k. Then

Tk(Λ) 6 23kkk|Λ|k max
{

1,

(
k

|Λ|

)k

|Λ|k/s

}
. (75)

Example 1. Let log |Λ| > log2 k and let Λ be an arbitrary set belonging to
the family Λ(k, 3). Using the inequality (75), we obtain that Tk(Λ) 6 220kkk|Λ|k.
It is obvious that the order of this estimate cannot be improved, which means
that Tk(Λ) >

(|Λ|
k

)
(k!)2 � e−kkk|Λ|k for every Λ and every positive integer k

such that log |Λ| > log2 k.

Proof of Assertion 1. Let x ∈ ZN be an arbitrary residue and let Nk(x) be the
number of (λ1, . . . , λk) such that the λi belong to Λ and λ1 + · · · + λk = x. Then
Tk(Λ) =

∑
x∈ZN

N2
k (x). Let s1, . . . , sl be positive integers such that s1+· · ·+sl = k.

To fix ideas, we assume that s1, . . . , sl are arranged in descending order: s1 >
s2 > · · · > sl > 1.

Let E(s1, . . . , sl)(x) = {(λ1, . . . , λk): among λ1, . . . , λk there are precisely s1

numbers equal to λ̃1, precisely s2 numbers equal to λ̃2, . . . and precisely sl numbers
equal to λ̃l, so that s1λ̃1 + · · ·+ slλ̃l = x, and the λ̃i are all distinct}. For brevity
we denote E(s1, . . . , sl)(x) by E(~s )(x). Recall that the numbers s1, . . . , sl in the
definition of E(~s )(x) = E(s1, . . . , sl)(x) are such that

∑l
i=1 si = k. Then

Nk(x) =
∑

~s

|E(~s )(x)|,

where the sum is taken over all vectors for which
∑l

i=1 si = k. Hence,

σ = Tk(Λ) =
∑

x∈ZN

(∑
~s

|E(~s )(x)|
)2

. (76)

Let ~s = (s1, . . . , sl) and G = G(~s ) = {i : si 6 s}, B = B(~s ) = {i : si > s}. Then
|G(~s )|+ |B(~s )| = l(~s ) = l. We claim that

l 6 k − s|B|. (77)

Indeed,
k =

∑
i∈G

si +
∑
i∈B

s′i > |G|+ (s + 1)|B| = l + s|B|, (78)

and (77) follows.

Lemma 5.
|E(~s )(x)| 6 k!

s1! · · · sl!
|Λ||B(~s )| (79)

for all ~s with
∑l

i=1 si = k and all x ∈ ZN .

Proof. Let (λ1, . . . , λk) be an arbitrary set belonging to E(~s )(x). Then
∑k

i=1 λi =∑l
i=1 siλ̃i = x, where the λ̃i ∈ {λ1, . . . , λk} are distinct. Consider another element

(λ′1, . . . , λ
′
k) of E(~s )(x) with

∑k
i=1 λ′i =

∑l
i=1 siλ̃

′
i = x, where the λ̃′i ∈ {λ′1, . . . , λ′k}
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are distinct. Assume that λ̃i = λ̃′i for all i ∈ B(~s ). We claim that λ̃i = λ̃′i for all
i ∈ G(~s ). We have

∑l
i=1 siλ̃i = x =

∑l
i=1 siλ̃

′
i. Hence,∑

i∈G

siλ̃i =
∑
i∈G

siλ̃
′
i.

Moreover, Λ ∩ (−Λ) = ∅. Therefore,∑
i∈G

siλ̃i −
∑
i∈G

siλ̃
′
i =

∑
i

s′iλ
0
i = 0,

where s′i ∈ Z, |s′i| 6 s,
∑

i |s′i| 6 2k and the λ0
i ∈ Λ are distinct. The definition

of Λ(k, s) implies that all the s′i are equal to zero. Hence, λ̃i = λ̃′i for all i ∈ G(~s ).
Therefore, (λ′1, . . . , λ

′
k) can be obtained from (λ1, . . . , λk) by a permutation. By the

definition of E(~s )(x), among λ1, . . . , λk there are precisely s1 equal to λ̃1, s2 equal
to λ̃2, . . . and sl equal to λ̃l, and s1λ̃1 + · · ·+slλ̃l = x, where the λ̃i are all distinct.
Therefore, the number of permutations of (λ1, . . . , λk) is equal to k!/(s1! · · · sl!).
Hence, for a fixed λ̃i, i ∈ B, the number of (λ1, . . . , λk) belonging to E(~s )(x) does
not exceed k!/(s1! · · · sl!). Therefore, the cardinality of E(~s )(x) does not exceed
|Λ||B(~s )|k!/(s1! · · · sl!). The lemma is proved.

We now return to the proof of the assertion and estimate the sum σ. Let b be
a non-negative integer and let

σb =
∑

x∈ZN

( ∑
~s : |B(~s )|=b

|E(~s )(x)|
)2

. (80)

It follows from (77) that |B(~s )| 6 [k/s] for all ~s. Combining this with the Cauchy–
Bunyakovsky inequality, we obtain that σ 6

(
[(k − 1)/s] + 1

)2∑[k/s]
b=0 σb. We now

fix a b and estimate σb as follows. We have

σb 6

( ∑
x∈ZN

∑
~s : |B(~s )|=b

|E(~s )(x)|
)(

max
x∈ZN

∑
~s : |B(~s )|=b

|E(~s )(x)|
)

. (81)

Let Pk(~s ) = k!/(s1! · · · sl!). Then

∑
~s

Pk(~s ) 6
k∑

l=1

k∑
s1,...,sl=0

s1+···+sl=k

k!
s1! · · · sl!

=
k∑

l=1

lk 6 2kk. (82)

Using Lemma 5, we obtain that |E(~s )(x)| 6 Pk(~s )|Λ||B(~s )|. Combining this with
inequality (82), we obtain that

max
x∈ZN

∑
~s : |B(~s )|=b

|E(~s )(x)| 6 2kk|Λ|b. (83)

Consider the sum ∑
x∈ZN

∑
~s : |B(~s )|=b

|E(~s )(x)|. (84)
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It follows from (77) that this sum is bounded above by the number of (λ1, . . . , λk) ∈
Λk such that at most k − sb of the numbers λ1, . . . , λk are distinct. Therefore,∑

x∈ZN

∑
~s : |B(~s )|=b

|E(~s )(x)| 6
(

|Λ|
k − sb

)
(k − sb)k

6
|Λ|k−sb

(k − sb)!
(k − sb)k 6 ekksb|Λ|k−sb. (85)

Combining this with (83), we obtain that

σb 6 2ekkk|Λ|b
(

k

|Λ|

)sb

|Λ|k. (86)

Hence,

σ 6 2
(
[(k − 1)/s] + 1

)2
ekkk|Λ|k

[(k−1)/s]∑
b=0

(
ks

|Λ|s−1

)b

= 2
(
[(k − 1)/s] + 1

)2
ekkk|Λ|kσ∗. (87)

We estimate σ∗ as follows. If ks6 |Λ|s−1, then it is obvious that σ∗6 [(k−1)/s]+1.
If ks > |Λ|s−1, then σ∗ 6

(
[(k− 1)/s] + 1

)
(k/|Λ|)k|Λ|k/s|Λ|1−1/s/k. In any case we

have σ∗ 6
(
[(k − 1)/s] + 1

)
max{1, (k/|Λ|)k|Λ|k/s|Λ|1−1/s/k}. Therefore,

σ = Tk(Λ) 6 23kkk|Λ|k max
{

1,

(
k

|Λ|

)k

|Λ|k/s

}
. (88)

The assertion is proved.

Proof of Theorem 8. Let k = 2dlog(1/δ)e, let s = 2 and let Λ = {λ1, . . . , λ|Λ|}
be a maximal subset of Rα \ {0} belonging to Λ(k, s). If Rα = {0}, then the
proof is obvious. If Rα \ {0} is non-empty, then Λ is also non-empty. Let Λ∗ =(⋃s

j=1 j−1Λ
)
∪ {0}. Then |Λ∗| 6 4|Λ| and 0 ∈ Λ∗. We claim that for any x ∈

Rα \ {0} there is a j ∈ [s] such that

xj =
|Λ|∑
i=1

λisi, si ∈ Z, |si| 6 s,

|Λ|∑
i=1

|si| 6 2k. (89)

Then since j−1λi ∈ Λ∗ for all i ∈ [|Λ|], j ∈ [s], the desired assertion will follow
from (89).

Thus, let x be an arbitrary element of Rα \ Λ, x 6= 0. Consider relations of the
form

∑|Λ|+1
i=1 λ̃isi = 0, where λ̃i ∈ Λ

⊔
{x} and si ∈ Z, |si| 6 s,

∑|Λ|+1
i=1 |si| 6 2k. If

all these relations are trivial, that is, if for each of them we have si = 0, i ∈ [|Λ|+1],
then we obtain a contradiction to the maximality of Λ. Hence, there is a non-trivial
relation of the form (89) such that j, s1, . . . , s|Λ| are not all equal to zero. We have
j ∈ [−s, . . . , s]. If j = 0, then we obtain a contradiction to the fact that Λ belongs
to Λ(k, s). Therefore, we can assume that j ∈ [s]. Since 2k 6 8 log(1/δ), we obtain
that for any x ∈ Rα there is a {λ∗1, . . . , λ∗M} ⊂ Λ∗, M 6 8 log(1/δ), such that (71)
holds.
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We claim that |Λ∗| 6 max
(
212(δ/α)2 log(1/δ), 26 log2(1/δ)

)
.

If |Λ| 6 k2, then |Λ| 6 24 log2(1/δ), whence |Λ∗| 6 26 log2(1/δ). If |Λ| > k2, then
Assertion 1 implies that Tk(Λ) 6 23kkk|Λ|k. On the other hand, using Theorem 5
we obtain that Tk(Λ) > δα2k|Λ|2k/(24kδ2k). Therefore, |Λ| 6 210(δ/α)2 log(1/δ),
whence |Λ∗| 6 212(δ/α)2 log(1/δ).

In any case we have |Λ∗| 6 max
(
212(δ/α)2 log(1/δ), 26 log2(1/δ)

)
.

We now prove the existence of Λ̃. Let s = [log log(1/δ)] and let Λ1 be a maximal
subset of Rα \ {0} belonging to Λ(k, s), k = 2dlog(1/δ)e. Let Λ̃ =

⋃s
j=1 j−1Λ1.

Then |Λ̃| 6 s|Λ1|. Arguments similar to those used above enable us to show that
for any residue r ∈ Rα there is a set {λ̃1, . . . , λ̃M} ⊂ Λ̃, M 6 8 log(1/δ), such
that (73) holds.

We prove (72) as follows. If |Λ1| 6 ks/(s−1), then |Λ1| 6 210 log(1/δ) and
|Λ̃| 6 s|Λ1| 6 212 log(1/δ) log log(1/δ). We see that in this case (72) is proved.
Now let |Λ1| > ks/(s−1). Using Assertion 1, we obtain that Tk(Λ1) 6 23kkk|Λ1|k.
On the other hand, Theorem 5 implies that Tk(Λ1) > δα2k|Λ1|2k/(24kδ2k). There-
fore, |Λ1| 6 210(δ/α)2 log(1/δ), whence |Λ̃| 6 212(δ/α)2 log(1/δ) log log(1/δ). The
theorem is proved.

We shall now apply Theorems 5 and 8 to problems in the combinatorial theory
of numbers.

Let K be an arbitrary subset of ZN and ε ∈ (0, 1) any real number. Then the
corresponding Bohr set is defined as

B(K, ε) =
{

x ∈ ZN :
∥∥∥∥rx

N

∥∥∥∥ < ε ∀ r ∈ K

}
,

where ‖ · ‖ denotes the integer part of a real number. Information on the properties
of Bohr sets can be found in [26], where, in particular, it is proved that

|B(K, ε)| > 1
2
ε|K|N. (90)

In her proof of the quantitative version of Freiman’s theorem (see [2] and [9]),
Chang used the following proposition.

Proposition 2. Let N be a positive integer, δ ∈ (0, 1) a real number and A an
arbitrary subset of ZN with |A| = δN . Then 2A− 2A contains a Bohr set B(K, ε)
with |K| 6 8δ−1 log(1/δ) and ε = δ/

(
28 log(1/δ)

)
.

We claim that Proposition 2 can be strengthened as follows.

Proposition 3. Let N be a positive integer, (N, 2) = 1, let 0 < δ 6 2−256 be a real
number and let A be an arbitrary subset of ZN with |A| = δN . Then 2A − 2A

contains a Bohr set B(K, ε) with |K| 6 215δ−1 log(1/δ) and ε = 1/
(
28 log(1/δ)

)
.

Using formula (90), we obtain that the cardinality of B(K, ε) in Proposition 2 is
greater than or equal to (1/2) · 2−8δ−1(log(1/δ))2N . The cardinality of the Bohr set
in Proposition 3 is greater than or equal to (1/2) · 2−220δ−1 log(1/δ) log log(1/δ)N .

To prove Proposition 3 we need the following definition.
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Definition 3. Let f, g : ZN → C be arbitrary functions. The convolution of f
and g is defined to be the function

(f ∗ g)(x) =
∑

y∈ZN

f(y)g(y − x). (91)

It is obvious that
(f̂ ∗ g)(r) = f̂(r)ĝ(r). (92)

Proof of Proposition 3. Let α = δ3/2/(2
√

2). Applying Corollary 1 to Rα(A), we
obtain a set Λ∗ ⊆ ZN , |Λ∗| 6 215δ−1 log(1/δ), such that for any residue r ∈ Rα

there is a set λ∗1, . . . , λ
∗
M of at most 8 log(1/δ) elements of Λ∗ such that (71) holds.

Let R∗
α = Rα \ {0}. Consider the Bohr set B1 = B(R∗

α, 1/20). For all x ∈ B1 and
all r ∈ R∗

α we have

|1− e(rx)| = 2
∣∣∣∣ sin(πrx

N

)∣∣∣∣ 6 2π

20
<

1
2
. (93)

The expression (A∗A∗A∗A)(x) is obviously equal to the number of quadruples
(a1, a2, a3, a4) ∈ A4 such that a1 + a2 − a3 − a4 = x. Hence, (A ∗A ∗A ∗A)(x) > 0
if and only if x ∈ 2A− 2A. Using formulae (11) and (92), we obtain that x belongs
to 2A− 2A if and only if

∑
r |Â(r)|4e(rx) > 0. Let x ∈ B1. Then, using Parseval’s

equality (2)), we have∑
r

|Â(r)|4e(rx) =
∑

r

|Â(r)|4 −
∑

r

|Â(r)|4
(
1− e(rx)

)
>

1
2

∑
r

|Â(r)|4 − 2
∑

r/∈R,r 6=0

|Â(r)|4 >
1
2
δ4N4 − 2 max

r/∈R,r 6=0
|Â(r)|2

∑
r

|Â(r)|2

>
1
2
δ4N4 − 2 · δ3N2

8
δN2 =

δ4N4

4
> 0. (94)

It follows from (94) that the Bohr set B1 is contained in 2A−2A. Consider another
Bohr set B2 = B(Λ∗, 1/

(
28 log(1/δ)

)
. We claim that B2 ⊆ B1. Since for any residue

r ∈ R∗
α there is a set λ∗1, . . . , λ

∗
M of at most 8 log(1/δ) elements of Λ∗ such that (71)

holds, the inequality∥∥∥∥rx

N

∥∥∥∥ 6
M∑
i=1

∥∥∥∥λ∗i x

N

∥∥∥∥ 6 8 log
(

1
δ

)
1

28 log(1/δ)
<

1
20

(95)

holds for all x ∈ B2. Hence, every x ∈ B2 belongs to B1, and we have obtained
a Bohr set B2 ⊆ 2A − 2A with the desired properties. The proposition is proved.
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