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On sets with small doubling ∗

Shkredov I.D.

Annotation.

Let G be an arbitrary Abelian group and let A be a finite subset of G. A has small additive

doubling if |A + A| ≤ K|A| for some K > 0. These sets were studied in papers of G.A. Freiman,

Y. Bilu, I. Ruzsa, M.C.–Chang, B. Green and T.Tao. In the article we prove that if we have some

minor restrictions on K then for any set with small doubling there exists a set  L,  L ≪ε K log |A|

such that |A ∩  L| ≫ |A|/K1/2+ε, where ε > 0. In contrast to the previous results our theorem is

nontrivial for large K. For example one can take K equals |A|η, where η > 0. We use an elementary

method in our proof.

1. Introduction.
Let G be an arbitrary Abelian group with additive group operation +. Suppose that A, B

are two finite subsets of G and define their sumset A + B to be the set of all pairwise sums
a + b with a ∈ A, b ∈ B. Let log stand for the logarithm to base 2.

Suppose that A is a set such that |A + A| ≤ K|A|, where K ≥ 1 is small (for example
K = log log |A| or K = 2). These sets are called sets with small doubling. The properties of
such sets were studied in papers [4, 5, 6, 7, 9, 10, 13, 14, 15, 16]. G.A. Freiman (see [4]) proved
the following wonderful result on the structure of these sets.

Recall that a set Q ⊆ G is called a d–dimensional arithmetic progression if

Q = {n0 + n1l1 + · · · + ndld : 0 ≤ li < mi} ,

where mi, ni ∈ Z and mi ≥ 0.
Let G = Z.
Theorem 1.1 (Freiman) Let K ≥ 1 be a real number, and A ⊆ Z be a finite set. Let

also |A + A| ≤ K|A|. Then there exist numbers d = d(K) and C = C(K) depend on K only
and d–dimensional arithmetic progression Q such that |Q| ≤ C|A| and A ⊆ Q.

The functions d = d(K) and C = C(K) were studied in [6, 7]. In paper [7] M.– C. Chang
proved that d = O(K2 log2 K) and C = exp(O(K2 log2 K)) (as usual we use X = O(Y ) or
X ≪ Y to denote an estimate of the form X ≤ MY for some absolute constant M).

Let n be a positive integer. Sets with small doubling in groups G = (Z/2Z)n were consid-
ered in [9, 17, 13, 14, 16]. For example we formulate a theorem from [9]. Note that (Z/2Z)n

is a vector space.

∗This work was supported by RFFI grant no. 06-01-00383, President’s of Russian Federation grant N
1726.2006.1 and INTAS (grant no. 03–51–5-70).
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Theorem 1.2 Let K ≥ 1 be a real number. Let A ⊆ (Z/2Z)n be a set such that |A + A| ≤
K|A|. Then A is contained in a subspace H with |H| ≤ K22K4

|A|.
There are another structural results on sets with small doubling. Let A be a set with small

doubling and d is a small positive integer. Is it true that A has large intersection with some
d—dimensional arithmetic progression? It is known that there is a positive answer at the
question and we give two examples of such results. In [14] the following theorem was proved.

Theorem 1.3 Let K ≥ 1 be a real number. Suppose that A ⊆ (Z/2Z)n is a set such that
|A + A| ≤ K|A|. Then there exists a subspace H such that |H| ≪ KO(1)|A| and |A ∩ H| ≫
exp(−KO(1))|A|.

Finally, in recent paper [16] B. Green and T. Tao proved the following theorem.
Theorem 1.4 Let K ≥ 1 be a real number. Let A ⊆ (Z/2Z)n be a set such that |A + A| ≤

K|A|. Then there exists a subspace H and x ∈ (Z/2Z)n such that |H| ≫ K−O(
√

K)|A| and
|A ∩ (x + H)| ≥ 1

2K
|H|.

Let us formulate our main result.
Let E = {e1, . . . , e|E|} ⊆ G be a finite set. By Span E denote the set Span E =

{
∑|E|

i=1 εiei : εi ∈ {−1, 0, 1} }.
Theorem 1.5 Let G be an Abelian group. Let K, ε be real numbers, ε ∈ (0, 1/2], A ⊆ G

be a finite set, |A| ≥ 232/ε, 1 ≤ K ≤ min{ (2−58ε−4 |A|
log |A|)

(3/2+ε)−1
, |A|ε }. Let also A contains

at least |A|3/K quadruples with a1 + a2 = a3 + a4. Then there exists a set  L such that

|Span  L ∩ A| ≥ 1
2
· |A|

K1/2+ε and | L| ≤ 230ε−2K log |A|.
It is easy to see that the number K in Theorems 1.1,1.2,1.3,1.4 cannot be too large. For

example Theorem 1.4 is trivial if K ≫
(

log |A|
log log |A|

)2

. In contrast to these results our Theorem

1.5 is nontrivial for large K (for example one can take K = |A|η, where η > 0 is a sufficiently
small number). On the other hand the cardinality of the set  L depends on |A|. This fact
differences our main result from Theorems 1.1—1.4.

This paper is organized as follows. In §2 we study so–called ”connected sets” in Abelian
groups. We prove that any such set has large intersection with Span  L for some small set
 L (in more detail see Propositions 2.7, 2.9). Besides in the section we show that any set
contains large connected subset. These two facts imply Theorem 1.5. We give its proof in §3.
In the last section we discuss some relations between our definition of connectedness and a
graph–theoretical definition of connectedness from paper [8].

The author is grateful to Professor N.G. Moshchevitin for constant attention to this work.
2. On connected sets in Abelian groups.
Let G be an arbitrary Abelian group with additive group operation +. Let A ⊆ G be a

finite set, and k ≥ 2 be a positive integer. By Tk(A) denote the following number

Tk(A) := |{a1 + · · · + ak = a′
1 + · · · + a′

k : a1, . . . , ak, a
′
1, . . . , a

′
k ∈ A}| .

Denote by the same letter A the characteristic function of A. Thus A(x) = 1 if x ∈ A and
A(x) = 0 otherwise. We shall write

∑

x instead of
∑

x∈G.
Definition 2.1 Let k ≥ 2 be a positive integer, and β ∈ [0, 1] be a real number. Suppose

that A is a finite nonempty set A ⊆ G. A is called β–connected of degree k if there is an
absolute constant C ∈ (0, 1] such that for any B ⊆ A, |B| ≥ β|A| we have

Tk(B) ≥ C2k

(

|B|

|A|

)2k

Tk(A) . (1)
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If β = 0 then A is connected of degree k.
The class of connected sets is wide enough. On the one hand very structured sets like

arithmetic progressions, multidimensional arithmetic progressions, subspaces are connected
sets (see Corollary 2.4 below). On the other hand any so–called dissociated set (see Definition
2.5) belongs to this class. Other examples of connected of degree k sets will be considered in
section 4.

Definition 2.2 Let f, g : G → R be arbitrary functions. Denote by (f ∗ g)(x) the function

(f ∗ g)(x) =
∑

s

f(s)g(x− s) . (2)

Clearly, (f ∗ g)(x) = (g ∗ f)(x), x ∈ G. By (f ◦ g)(x) denote the function

(f ◦ g)(x) =
∑

s

f(s)g(s− x) . (3)

Obviously, (f ◦ g)(x) = (g ◦ f)(−x), x ∈ G.
Suppose that A, B ⊆ G are any sets. Then (A∗B)(x) 6= 0 iff x ∈ A+B and (A◦B)(x) 6= 0

iff x ∈ A − B. Hence T2(A) =
∑

x(A ∗ A)2(x). Further denote by ∗k the composition of k
operations ∗, k ≥ 1. Then Tk(A) =

∑

x(A ∗k−1 A)2(x), k ≥ 2. Since

T2(A) := |{a1 + a2 = a′
1 + a′

2 : a1, a2, a
′
1, a

′
2 ∈ A}| = |{a1 − a′

1 = a′
2 − a2 : a1, a2, a

′
1, a

′
2 ∈ A}|

it follows that T2(A) =
∑

x(A ◦ A)2(x).
Let f : G → R be a function. By Tk(f) denote the quantity Tk(f) =

∑

x(f ∗k−1 f)2(x).
Let us prove the following simple lemma.

Lemma 2.3 Let p1,p2 be positive integers, and k1 = 2p1, k2 = 2p2. Let also
f1, . . . , fk1 , g1, . . . , gk2 : G → R be functions. Then

∣

∣

∣

∣

∣

∑

x

(f1 ∗ · · · ∗ fk1)(x) · (g1 ∗ · · · ∗ gk2)(x)

∣

∣

∣

∣

∣

≤

≤ (Tk1(f1))
1/2k1 . . . (Tk1(fk1))

1/2k1(Tk2(g1))
1/2k2 . . . (Tk2(gk2))

1/2k2 . (4)

Proof. First of all let us suppose that k1 = k2 = k = 2p, where p is a positive integer.
We prove the lemma by induction. Put σ =

∑

x(f1 ∗ · · · ∗ fk)(x) · (g1 ∗ . . . gk)(x). Using the
Cauchy–Schwartz inequality, we get

σ2 ≤
∑

x

(f1 ∗ · · · ∗ fk)2(x) ·
∑

x

(g1 ∗ · · · ∗ gk)2(x) = σ1σ2 . (5)

Consider the sum σ1. By definitions of ∗, ◦, we obtain

σ1 =
∑

x

((f1 ◦ f1) ∗ · · · ∗ (f2p−1 ◦ f2p−1))(x) · ((f2p−1+1 ◦ f2p−1+1) ∗ · · · ∗ (fk ◦ fk))(x)

By the induction hypothesis, we have

σ1 ≤ (T2p−1(f1 ◦ f1))
1/k . . . (T2p−1(fk ◦ fk))1/k . (6)

Besides, T2p−1(f1 ◦ f1) = Tk(f1). Hence

σ1 ≤ (Tk(f1))1/k . . . (Tk(fk))1/k . (7)
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In the same way
σ2 ≤ (Tk(g1))

1/k . . . (Tk(gk))1/k . (8)

Combining (7), (8) and (5), we obtain that (4) holds.
Let now k1 = 2p1, k2 = 2p2, and p1 6= p2. Put σ′ =

∑

x(f1 ∗ · · · ∗ fk1)(x) · (g1 ∗ . . . gk2)(x).
Using the Cauchy–Schwartz inequality, we get

σ′2 ≤
∑

x

(f1 ∗ · · · ∗ fk1)2(x) ·
∑

x

(g1 ∗ · · · ∗ gk2)
2(x) = σ′

1σ
′
2 . (9)

Using (4) for σ′
1, σ′

2, we have

|σ′| ≤ (Tk1(f1))1/2k1 . . . (Tk1(fk1))1/2k1(Tk2(g1))
1/2k2 . . . (Tk2(gk2))

1/2k2 . (10)

This completes the proof.
Let us derive a corollary from Lemma 2.3. Let n be positive integer, q be a prime and let

G be (Z/qZ)n. As was noted above G is a vector space.
Corollary 2.4 Let n, p be positive integers, k = 2p, q be a prime, and G = (Z/qZ)n. Let

also P be a subspace of G. Then P is a connected of degree k set and (1) is true for C = 1.
Proof. Let B ⊆ P be a set and let σ(B) :=

∑

x(B ∗ P ∗k−2 P )(x) · (P ∗k−1 P )(x). The
sum σ(B) equals the number of solutions of the equation b + p2 + · · · + pk = p′1 + · · · + p′k,
where b ∈ B and p2, . . . , pk, p

′
1, . . . , p

′
k ∈ P . Since P is a subspace of (Z/qZ)n it follows that

b + p2 + · · · + pk − p′1 − · · · − p′k ∈ P . Hence σ(B) ≥ |B||P |2k−2. In particular σ(P ) =
Tk(B) ≥ |P |2k−1. Since Tk(P ) ≤ |P |2k−1 it follows that Tk(P ) = |P |2k−1. Using Lemma 2.3
with f1 = B, f2 = · · · = fk = g1 = · · · = gk = A, we get

σ2k(B) ≤ Tk(B) · T 2k−1
k (A) . (11)

Combining the last inequality and the lower bound for σ(B), we obtain

Tk(B) ≥
σ2k(B)

T 2k−1
k (A)

≥
|B|2k|P |(2k−2)2k

|P |(2k−1)2
=

(

|B|

|P |

)2k

|P |2k−1 =

(

|B|

|P |

)2k

Tk(P ) .

This completes the proof.
Thus very structured sets like subspaces are connected sets. Consider another examples of

connected sets.
We need in the following definition (see [18] or [7]).
Definition 2.5 We say that  L = {l1, . . . , l| L|} ⊆ G is dissociated if the equality

| L|
∑

i=1

εili = 0 , (12)

where εi ∈ {−1, 0, 1} implies that all εi are equal to zero.
If  L is a dissociated set then there exists a good upper bound for Tk( L) (see [18] and also

[11, 19]).
Statement 2.6 There is an absolute constant M > 0 such that for any dissociated set

 L ⊆ G and any positive integer k ≥ 2, we have

Tk( L) ≤ Mkkk| L|k , (13)
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where M ≤ 288.
Any connected of degree k set has the following property.
Proposition 2.7 Let k ≥ 2 be a positive integer. Suppose that A ⊆ G is a connected

of degree k set and for C > 0 inequality (1) holds. Then there exists a set  L ⊆ A, | L| ≤

288C−2k |A|2

T
1/k
k (A)

such that any a ∈ A can be expressed in the form

a =

| L|
∑

i=1

εili , (14)

where εi ∈ {−1, 0, 1}.
Proof. Let  L be a maximal dissociated subset of A. Prove that any a ∈ A can be expressed
in the form

a =

| L|
∑

i=1

εili , (15)

where εi ∈ {−1, 0, 1}. If a = 0 then (15) holds. Let a be an arbitrary element of A \  L,

a 6= 0. Consider all equations
∑| L|+1

i=1 εil̃i = 0, where l̃i ∈  L
⊔

{a} and εi ∈ {−1, 0, 1},
i ∈ {1, 2, . . . , | L|+1}. If all these equations are trivial, i.e. we have εi = 0, i ∈ {1, 2, . . . , | L|+1}
then we obtain a contradiction with the maximality of  L. It follows that there exists non–

trivial equation εa +
∑| L|

i=1 εili = 0, ε, εi ∈ {−1, 0, 1} such that not all ε, εi are equal to zero.
Note that ε 6= 0. Whence any a ∈ A is involved in some equation (14).

Let us prove that | L| ≤ 288C−2k |A|2
T

1/k
k (A)

. Using Statement 2.6, we have Tk( L) ≤

(288)kkk| L|k. On the other hand, the set A is connected of degree k. Hence Tk( L) ≥

C2k(| L|/|A|)2k · Tk(A). It follows that | L| ≤ 288C−2k |A|2

T
1/k
k (A)

. This completes the proof.

We need in a more delicate definition of connectedness.
Definition 2.8 Let k ≥ 2 be a positive integer, and β1, β2 ∈ [0, 1] be real numbers, β1 ≤ β2.

Nonempty set A ⊆ G is called (β1, β2)–connected of degree k if there exists an absolute constant
C ∈ (0, 1] such that for any B ⊆ A, β1|A| ≤ |B| ≤ β2|A| we have

Tk(B) ≥ C2k

(

|B|

|A|

)2k

Tk(A) . (16)

Clearly, any β–connected of degree k set is a (β, β2)–connected of degree k, where β2 ∈ [β, 1]
is an arbitrary number. Nevertheless we have the following weak analog of Proposition 2.7 for
(β1, β2)–connected of degree k sets.

Proposition 2.9 Let k ≥ 2 be a positive integer, 0 < β1 ≤ β2 be real numbers. Let also
A ⊆ G be a (β1, β2)–connected of degree k set and for C > 0 inequality (1) holds. Suppose
that β2 ≥ β1 + 1/|A|, Tk(A) ≥ 214kC−2kkk|A|k and |A| ≥ 1/β1. Then there exists a set  L ⊆ A
such that

| L| ≤ 213C−2k
|A|2

T
1/k
k (A)

, (17)

and |Span  L ∩ A| ≥ (1 − β1)|A|.
Proof. The proof of the proposition is a sort of inductive process. Let  L1 be a dissociated
subset of A such that |Span  L1 ∩ A| ≥ (1 − β1)|A|. Clearly, there exists such set  L1, for

example one put  L1 to be a maximal dissociated subset of A. Let l = 213C−2k |A|2
T

1/k
k (A)

. If
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| L1| ≤ l then the proposition is proved. Suppose that | L1| > l. Let  L′
1 ⊆  L1 be an arbitrary

set of the cardinality l. Obviously, that  L′
1 is a dissociated set. Consider the set A1 = A \  L′

1.
If |A1| < (1 − β1)|A| then we stop our algorithm. If |A1| ≥ (1 − β1)|A| then let  L2 be a
dissociated subset of A1 such that |Span  L2 ∩ A1| ≥ (1 − β1)|A|. Suppose that | L2| ≤ l. Then
|Span  L2 ∩ A| ≥ |Span  L2 ∩ A1| ≥ (1 − β1)|A| and we are done. It follows that | L2| > l. Let
 L′

2 ⊆  L2 be an arbitrary set of the cardinality l and consider the set A2 = A1 \  L′
2. An so on.

We get the sets A0 = A, A1, A2, . . . , As and disjoint dissociated sets  L′
1, . . . ,  L′

s from A. We
have |As| < (1 − β1)|A|. Since for all l = 1, 2, . . . , s the following holds Al = A \

⊔l
i=1  L′

i it
follows that

∑s
i=1 | L

′
i| = |A| − |As| > β1|A|. Let B =

⊔s
i=1  L′

i. Then |B| > β1|A|. We can
remove some elements from  L′

s and assume that the cardinality of
⊔s

i=1  L′
i equals [β1|A|] + 1.

Denote by the same letter B our modified set. We have B ⊆ A and |B| ≥ β1|A|. Since
β2 ≥ β1 + 1/|A| it follows that |B| ≤ β2|A|. By assumption the set A is (β1, β2) connected of
degree k. Hence

Tk(B) ≥ C2kβ2k
1 Tk(A) . (18)

On the other hand

Tk(B) ≤ Tk

(

s
⊔

i=1

 L′
i

)

=

s
∑

i1,...,ik=1

s
∑

j1,...,jk=1

∑

x

( L′
i1
∗ · · · ∗  L′

ik
)(x) · ( L′

j1
∗ · · · ∗  L′

jk
)(x) . (19)

Using Lemma 2.3, Statement 2.6 and (19), we get

Tk(B) ≤ s2k max
i=1,...,s

Tk( L′
i) ≤ s2k(288)kkklk . (20)

By assumption Tk(A) ≥ 214kC−2kkk|A|k. Whence |A| ≥ 214C−2k |A|2
T

1/k
k (A)

= 2l and s ≥ 2.

Since
⊔s−1

i=1  L′
i ⊆ B and |A| ≥ 1/β1 it follows that sl/2 ≤ (s − 1)l ≤ |B| ≤ 2β1|A|. Hence

s ≤ 4β1|A|/l. Combining the last inequality and (20), we have

Tk(B) ≤ 24kβ2k
1 (288)kkk |A|2k

lk
.

This contradicts with (18) and we obtain the required result.
Let us prove now that any A ⊆ G contains some large (β1, β2)–connected of degree k set.

We begin with some notation.
Definition 2.10 Let A ⊆ G be an arbitrary finite set, |A| ≥ 2, and k ≥ 2 be a positive

integer. By ζk(A) denote the quantity

ζk = ζk(A) :=
log Tk(A)

log |A|
.

In other words Tk(A) = |A|ζk . Clearly, for any set A, we have k ≤ ζk(A) ≤ 2k − 1.
Let A ⊆ G be a finite set, |A| = m ≥ 2, p be a positive integer, and k = 2p. Write ζ for

ζk(A).
Theorem 2.11 Let β1, β2 ∈ (0, 1) be real numbers, β1 ≤ β2. Then there exists a set A′ ⊆ A

such that
1) A′ is (β1, β2)–connected of degree k set such that (16) holds for any C ≤ 1/32.

2) |A′| ≥ m · 2
log((2k−1)/ζ)

log(1+κ)
log(1−β2), where κ = log((1−β1)−1)

log m
(1 − 16C).

3) ζk(A′) ≥ ζk(A).

6



Proof. Let C ≤ 1/32 be a real number. The proof of Theorem 2.11 is a sort algorithm. If A
is (β1, β2)–connected of degree k and (16) is true with the constant C then there is nothing to
prove. Suppose that A is not (β1, β2)–connected of degree k set (with the constant C). Then
there exists a set B ⊆ A, β1|A| ≤ |B| ≤ β2|A| such that (16) does not hold. Note that |A| > 2.
Let B = A \ B. We have

Tk(A) =
∑

x

(A ∗k−1 A)2(x) =

=
∑

x

(B ∗ A ∗k−2 A)(x)(A ∗k−1 A)(x) +
∑

x

(B ∗ A ∗k−2 A)(x)(A ∗k−1 A)(x) = σ1 + σ2 . (21)

Using Lemma 2.3 with f1 = B, f2 = · · · = fk = g1 = · · · = gk = A, we obtain

σ2k
1 ≤ Tk(B) · T 2k−1

k (A) . (22)

In the same way
σ2k

2 ≤ Tk(B) · T 2k−1
k (A) . (23)

Let cB = |B|/|A|. Combining Tk(B) < C2kc2k
B Tk(A) and (22), we have σ1 < CcBTk(A). Using

the last inequality, (21) and (23), we get

Tk(B) > Tk(A)(1 − CcB)2k . (24)

Let ζ = ζk(B), b = |B| and b = |B| = m − b. Using (24), we obtain

ζ log b > ζ log m + 2k log(1 − CcB) .

Hence

ζ >
ζ log m + 2k log(1 − CcB)

log b
=

ζ log m + 2k log(1 − CcB)

log m + log(1 − b/m)
=

ζ + 2k log(1−CcB)
log m

1 + log(1−cB)
log m

≥

≥

(

ζ + 2k
log(1 − CcB)

log m

)(

1 −
log(1 − cB)

log m

)

≥ ζ + ζ
log((1 − cB)−1)

log m
(1 − 16C) ≥

≥ ζ(1 +
log((1 − β1)

−1)

log m
(1 − 16C)) = ζ(1 + κ) , (25)

where κ = log((1−β1)−1)
log m

(1 − 16C) > 0. Besides, by the definition of (β1, β2)–connectedness of
degree k, we have

|B| ≥ (1 − β2)m = (1 − β2)|A| . (26)

Thus if the set A is not (β1, β2)–connected of degree k then there is a set B ⊆ A such that
(25), (26) hold. Put A1 = B and apply the arguments above to A1. And so on. We get the
sets A0 = A, A1, A2, . . . , As. Clearly, for any Ai, we have ζ(Ai) ≤ 2k − 1. Using this and (25),

we obtain that the total number of steps of our algorithm does not exceed log((2k−1)/ζ)
log(1+κ)

. At the

last step of the algorithm, we find the set A′ = As ⊆ A such that A′ is (β1, β2)–connected of
degree k and ζk(A′) ≥ ζ = ζk(A). Thus A′ has the properties 1) and 3) of the theorem. Let
us prove 2). Using (26), we obtain

|A′| ≥ (1 − β2)
sm ≥ m · 2

log((2k−1)/ζ)
log(1+κ)

log(1−β2) .
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This completes the proof.
Corollary 2.12 Let G be an Abelian group, ε, δ be real numbers, ε ∈ (0, 1/8], δ ∈ (0, 1],

δ ≥ |G|−ε and let A ⊆ G be a set, |A| ≥ δ|G| ≥ 2. Let also p be a positive integer, k = 2p,
and β1, β2 ∈ (0, 1) be real numbers, β1 ≤ β2, β1 ≤ 1 − |A|−2ε. Then there exists a set A′ ⊆ A
such that
1) A′ is (β1, β2)–connected of degree k and (16) is true for any C ≤ 1/32.

2) |A′| ≥ |G| · δ( 2
2k−1

+32ε)· log(1−β2)
log(1−β1)

+1
.

3) ζk(A′) ≥ ζk(A).
In particular, if β2 = β1, k = 2 and ε = 1/8 then the cardinality of |A′| is at least δ6|G|.
Proof. Using Theorem 2.11 with C = 1/32, we find a set A′ ⊆ A with properties 1)—3)

guaranteed by the theorem. Let us prove that |A′| ≥ |G| · δ( 2
2k−1

+32ε)· log(1−β2)
log(1−β1)

+1
. Let N = |G|,

m = |A|, and ζ = ζk(A). Clearly, Tk(A) ≥ δ2kN2k−1. Hence

ζ ≥ 2k − 1 + (2k − 1)
log(1/δ)

log N
−

2k

1 − ε

log(1/δ)

log N
. (27)

Since δ ≥ N−ε it follows that

2k − 1 − ζ ≤
log(1/δ)

log N
(1 + 4kε) and ζ ≥ (2k − 1)(1 − 5ε) . (28)

By Theorem 2.11, we have |A′| ≥ m · 2
log((2k−1)/ζ)

log(1+κ)
log(1−β2), where κ = log((1−β1)−1)

2 log m
. Using the

last inequality, β1 ≤ 1 − |A|−2ε and (27), (28), we get

|A′| ≥ m · 2( 2
2k−1

+32ε)· log(1−β2)
log(1−β1)

· log δ
log N

log m
≥ N · δ( 2

2k−1
+32ε)· log(1−β2)

log(1−β1)
+1

.

This completes the proof.
Note 2.13 Certainly, the constant 32 at the second point of Corollary 2.12 can be decreased.

The constant 2 in the numerator of 2
2k−1

depends on an upper bound for C. If C is less than
1/32 then the number 2 is also decreases.

3. The proof of main result.
Lemma 3.1 Let A be a finite nonempty set, and k be a positive integer, k ≥ 2. Then

Tk(A) ≥ T k−1
2 (A)/|A|k−2.

Proof. The proof is trivial.
The proof of Theorem 1.5 Let m = |A|, β1 = 1/2, β2 = β1 +1/ log m, C = ε2−7, k = 2p,

p = [log ln m] + 1. Clearly, C ≤ 1/32. Using Theorem 2.11, we find A′ ⊆ A such that 1) — 3)
hold. By assumption T2(A) ≥ |A|3/K. Using Lemma 3.1, we get Tk(A) ≥ T k−1

2 (A)/|A|k−2 ≥
|A|2k−1/Kk−1. Whence

ζ = ζk(A) ≥ 2k − 1 − (k − 1)
log K

log m
. (29)

Using K ≤ mε and (29), we obtain

ζ ≥ (2k − 1)

(

1 −
k − 1

2k − 1

log K

log m

)

≥ (2k − 1)
(

1 −
ε

2

)

. (30)

By 2) of Theorem 2.11, we have

|A′| ≥ m · 2− log((2k−1)/ζ)
log(1+κ)

log((1−β2)−1) = m2−σ , (31)
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where κ = log((1−β1)−1)
log m

(1−16C). Let us obtain an upper bound on σ. Using simple inequalities

log(1 + x) ≤ x
ln 2

, log(1 + x) ≥ 1
ln 2

(x− x2/2), x ≥ 0, and inequalities m ≥ 232/ε, (29), (30), we
get

σ ≤ log

(

1 +
2k − 1 − ζ

ζ

)

ln 2

κ
(1 + κ) log((1 − β2)

−1) ≤

≤
k − 1

2k − 1
·

log K

log m
(1 + ε)

log m

1 − 16C

(

1 +
1

log m

)

log((1 − β2)
−1)

log((1 − β1)−1)
≤

≤ log K1/2 (1 + ε) (1 + 32C)

(

1 +
8

log m

)

≤ log K1/2+ε .

Hence |A′| ≥ m
K1/2+ε . Since ζk(A′) ≥ ζk(A) it follows that

Tk(A′) ≥
|A′|2k−1

Kk−1
≥

|A′|2k−1

Kk
. (32)

Using |A′| ≥ m
K1/2+ε , (32) and K ≤ (2−58ε−4 |A|

log |A|)
(3/2+ε)−1

it is easy to see that Tk(A′) ≥

214kC−2kkk|A′|k. Using Proposition 2.9, we find a set  L such that |Span  L ∩ A′| ≥ |A′|/2 and

| L| ≤ 227ε−2k
|A′|2

T
1/k
k (A′)

. (33)

We have

|Span  L ∩ A| ≥ |Span  L ∩ A′| ≥
|A′|

2
≥

1

2
·

m

K1/2+ε
. (34)

Let us prove that | L| ≤ 230ε−2K log m. Combining (33) and (32), we get

| L| ≤ 227ε−2Kk|A′|1/k ≤ 227ε−2Kkm1/k .

Recall that k = 2p, p = [log ln m] + 1, we finally obtain | L| ≤ 230ε−2K log m. This completes
the proof.

Corollary 3.2 Let G be an Abelian group . Let K, ε be real numbers, ε ∈ (0, 1/2], A ⊆ G be

an arbitrary set, |A| ≥ 232/ε, 1 ≤ K ≤ min{ (2−58ε−4 |A|
log |A|)

(3/2+ε)−1
, |A|ε }. Let also |A + A| ≤

K|A|. Then there exists a set  L such that |Span  L∩A| ≥ 1
2
· |A|

K1/2+ε and | L| ≤ 230ε−2K log |A|.
Proof. We have |A + A| ≤ K|A|. By the Cauchy–Schwartz inequality

|A|4 =

(

∑

x

(A ∗ A)(x)

)2

≤
∑

x

(A ∗ A)2(x) · |A + A| ≤ T2(A) · K|A| .

Hence T2(A) ≥ |A|3/K. Using Theorem 1.5, we obtain the required result.
4. Another definitions of connectedness.
In the section we discuss some relations between our definition of connectedness and a

graph–theoretical definition of connectedness.
Suppose that Γ = (V, f) is a graph, where V is the set of vertices of Γ and f is the

characteristic function of a symmetric subset of V × V . Let X, Y ⊆ V be arbitrary sets.
By e(X, Y ) denote the number of vertices between X and Y . In other words e(X, Y ) =
∑

x∈X

∑

y∈Y f(x, y). Recall that Γ is connected if for any vertex x, we have e(x, V \ {x}) > 0.
In [8] I. Ruzsa and G. Elekes gave the following definition.
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Definition 4.1 Let α ∈ (0, 1] be a real number. A graph Γ = (V, f) is called α–dense–
connected if for any partition of the set of vertices into two disjoint parts, say E

⊔

F = V , we
have

e(E, F ) ≥ α|E||F | .

We give an analog of the definition above for subsets of Abelian groups. Let G be an
Abelian group, and A ⊆ G be a finite set. In papers [2, 3, 7] the graph of ”popular differences”
of A was considered. This graph ΓA = (VA, fA) played a significant role in various problems
of combinatorial number theory (see articles [2, 3, 7] and book [21]). The vertex set VA of
the graph ΓA is A, and the function fA is the characteristic function of the symmetric set of
”popular differences”

f(x, y) =

{

1, if | {x− y = a1 − a2 : a1, a2 ∈ A} | ≥ h ,
0, otherwise.

Here h is a number, 0 ≤ h ≤ |A|. In many problems of combinatorial number theory h was
taken approximately T2(A)/|A|2. Thus the function f(x, y) equals 1 if (A ◦A)(x− y) ≥ h and
equals 0 otherwise. Ruzsa and Elekes applied α–dense–connected subgraphs of ΓA to prove
some results on sumsets (see details in [8]).

In the article we define a new (generalized) graph Γ′
A = (V ′

A, f ′
A), where f ′

A is a symmetric
function but not the characteristic function of some subset of V ′

A × V ′
A. Put V ′

A := A and
f ′

A(x, y) := (A ◦A)(x− y). The constructed graph Γ′
A is an ”approximation” of the graph ΓA

in the sense that the function fA is a normalized and truncated version of the function f ′
A :

fA(x, y) = θ(f ′
A(x, y)/h), where θ is a shifted Heaviside’s function : θ(x) = 1 if x ≥ 1 and

θ(x) = 0 if x < 1. Then the graph Γ′
A is (generalized) α–dense–connected if for any partition

of the set of vertices into two disjoint parts E and V , E
⊔

F = A, we have

e(E, F ) =
∑

x∈E

∑

y∈F

(A ◦ A)(x − y) =
∑

z

(E ◦ F )(z) · (A ◦ A)(z) ≥ α|E||F | . (35)

We shall call a set A is strongly connected if inequality (35) holds. As was noted above in
many problems of combinatorial number theory the order of the number h was T2(A)/|A|2.
We also put α = C · T2(A)/|A|2, where C > 0 is a constant.

Definition 4.2 Let k ≥ 2 be a positive integer. An arbitrary nonempty finite set A ⊆ G is
called strongly connected of degree k if there is an absolute constant C ∈ (0, 1] such that for
any disjoint sets E, F ⊆ A, E

⊔

F = A, we have
∑

x

(E ◦ F )(x) · ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) ≥ CcEcF Tk(A) , (36)

where cE = |E|/|A|, cF = |F |/|A|.
First of all let us show that any strongly connected set is a connected set.
Statement 4.3 Let p be a positive integer, and k = 2p. Suppose that A is a strongly

connected of degree k set such that (36) holds with some constant C. Then A is connected of
degree k and inequality (1) holds with C/8.
Proof. If the cardinality of A is less than two then there is nothing to prove. Let |A| ≥ 3, B
be an arbitrary subset of A, and B = A \ B. Let also

σ =
∑

x

(B ◦ B)(x) · ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) . (37)
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Since A is a strongly connected of degree k it follows that

σ ≥ C
|B|

|A|

|B|

|A|
· Tk(A) . (38)

We have
σ =

∑

x

(B ∗ A ∗k−2 A)(x) · (B ∗ A ∗k−2 A)(x) . (39)

Using Lemma 2.3, we get σ2k ≤ Tk(B)Tk(B)T 2k−2
k (A). Combining the last inequality and

(38), we obtain

Tk(B)Tk(B) ≥ C2k |B|2k

|A|2k
·
|B|2k

|A|2k
T 2

k (A) . (40)

If |B| ≤ |A|/2 then |B| ≥ |A|/2. Using this lower bound for |B|, we get

Tk(B) ≥

(

C

2

)2k (
|B|

|A|

)2k

Tk(A) (41)

and the statement is proved. Suppose that |B| > |A|/2. Then let B1 be an arbitrary subset
of B of the cardinality [|A|/2]. Clearly, |B| ≤ 4|B1|. By (41), we have

Tk(B) ≥ Tk(B1) ≥

(

C

2

)2k (
|B1|

|A|

)2k

Tk(A) ≥

(

C

8

)2k (
|B|

|A|

)2k

Tk(A) .

This completes the proof.
Thus any strongly connected set is connected. In particular, Proposition 2.7 is true for

an arbitrary strongly connected set and therefore any strongly connected set is contained in
Span  L for some  L with small cardinality. Apparently, it was S.V. Konyagin (see [20]) who
first proved that an arbitrary strongly connected set is economically contained in some special
subgroup (see also another variant of his statement in book [21] p. 114, ex. 2.6.10). We
formulate his result in our terms and give the proof for the sake of completeness.

Statement 4.4 Let k ≥ 2 be a positive integer. Let also A ⊆ G be a strongly connected of
degree k set such that (36) holds with some constant C. Let

S =

{

h ∈ G : ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) ≥ C
Tk(A)

|A|2

}

.

Then there is an element a ∈ G such that A ⊆ 〈S〉 + a, where 〈S〉 is the subgroup of G
generating by S.
Proof. Assume the converse. Let H = 〈S〉 and let A1, . . . , Ar ⊆ A be intersections of A with
cosets of H . If there are two nonempty intersections of cosets of H with A, say, Ai and Aj ,
i < j, i, j ∈ {1, . . . , r} then put E =

⊔i
l=1 Al and F = A \E. Clearly, E and F are nonempty

sets. Since for any e ∈ E and f ∈ F , we have e − f /∈ H , and, consequently, e − f /∈ S it
follows that

∑

x

(E ◦ F )(x) · ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) ≤

≤
∑

x/∈S

(E ◦ F )(x) · ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) < C|E||F | ·
Tk(A)

|A|2
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with contradiction. This completes the proof.
We prove an analog of Theorem 2.11 for strongly connected sets.
Let E, F ⊆ A be sets. Denote by e(E, F ) the quantity

∑

x(E ◦F )(x) · ((A∗k−2 A)◦ (A∗k−2

A))(x). Clearly, e(E1

⊔

E2, F ) = e(E1, F ) + e(E2, F ). Suppose that E ⊆ A is an arbitrary
set. By cE denote the ratio |E|/|A|.

We need in the following technical definition of strongly connected of degree k sets.
Definition 4.5 Let k ≥ 2 be a positive integer. An arbitrary nonempty finite set A ⊆ G is

called β—strongly connected of degree k if there is an absolute constant C ∈ (0, 1] and a set
B ⊆ A, |B| ≥ β|A| such that for any disjoint sets E, F ⊆ B, E

⊔

F = B, we have
∑

x

(E ◦ F )(x) · ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) ≥ CcEcF Tk(A) . (42)

Our next statement can be proved likewise Statement 4.3.
Statement 4.6 Let p be a positive integer, k = 2p, and β ∈ [0, 1] be a real number. Let

A be a strongly β—connected of degree k set and (42) is true with some C and some B ⊆ A,
|B| ≥ β|A|. Then B is connected of degree k set and inequality (1) holds with Cβ2/8.

A graph–theoretical variant of Lemma 4.7 below was proved in [8].
Lemma 4.7 Let k ≥ 2 be a positive integer, ε1 ∈ [0, 1] be a real number, and let A ⊆ G be

a finite set. Then there exists a partition of A into disjoint sets A1, . . . , Al such that
1) For all i, j ∈ {1, . . . , l}, i 6= j, we have e(Ai, Aj) ≤ ε1cAi

cAj
Tk(A).

2) For any i ∈ {1, . . . , l} the set Ai has the following property : for any disjoint sets E, F ⊆ Ai,
E
⊔

F = Ai, we have e(E, F ) ≥ ε1cEcF Tk(A).
Besides, the following inequality holds

3)
∑l

i=1 Tk(Ai) ≥ Tk(A) · (1 − (2k − 1)ε1).
Proof. Consider all partitions of A into disjoint subsets A1, . . . , As, where s is an arbitrary
positive integer. Select one for which the sum

σ(A1, . . . , As) =
∑

1≥i<j≤k

( e(Ai, Aj) − ε1cAi
cAj

Tk(A) ) (43)

is minimal. By minimality of this partition, say {A1, . . . , Al}, we have 2).
Let us prove 1). Suppose that for some i, j ∈ {1, . . . , l}, i 6= j the following

holds e(Ai, Aj) > ε1cAi
cAj

Tk(A). Constructing the new partition P of the set A, P =
{Ar}r 6=i,j

⊔

(Ai

⊔

Aj) and using the last inequality, we get

σ(P) = σ(A1, . . . , As) − (e(Ai, Aj) − ε1cAi
cAj

Tk(A)) < σ(A1, . . . , As) .

with contradiction.
Prove that 1) implies 3). Indeed,

Tk(A) =
∑

x

(A ∗k−1 A)2(x) =
l
∑

i,j=1

∑

x

(Ai ∗ A ∗k−2 A)(x) · (Aj ∗ A ∗k−2 A)(x) =

=

l
∑

i=1

∑

x

(Ai∗A∗k−2A)(x) ·(Ai∗A∗k−2A)(x)+

l
∑

i,j=1, j 6=i

∑

x

(Ai∗A∗k−2A)(x) ·(Aj ∗A∗k−2A)(x)

=

l
∑

i=1

∑

x

(Ai∗A∗k−2A)(x)·(Ai∗A∗k−2A)(x)+

l
∑

i,j=1, j 6=i

∑

x

(Ai◦Aj)(x)·((A∗k−2A)◦(A∗k−2A))(x)
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≤

l
∑

i=1

∑

x

(Ai ∗ A ∗k−2 A)(x) · (Ai ∗ A ∗k−2 A)(x) + ε1

l
∑

i,j=1

cAi
cAj

Tk(A) ≤

≤
l
∑

i=1

∑

x

(Ai ∗ A ∗k−2 A)(x) · (Ai ∗ A ∗k−2 A)(x) + ε1Tk(A) .

Hence
∑l

i=1

∑

x(Ai ∗ A ∗k−2 A)(x) · (Ai ∗ A ∗k−2 A)(x) ≥ (1 − ε1)Tk(A). Similarly,

l
∑

i=1

l
∑

j=1

∑

x

(Ai ∗ Aj ∗ A ∗k−3 A)(x) · (Ai ∗ A ∗k−2 A)(x) ≤

≤

l
∑

i=1

∑

x

(Ai ∗ Ai ∗ A ∗k−3 A)(x) · (Ai ∗ A ∗k−2 A)(x)+

+

l
∑

i=1

l
∑

j=1, j 6=i

∑

x

(A ∗ Aj ∗ A ∗k−3 A)(x) · (Ai ∗ A ∗k−2 A)(x)

≤

l
∑

i=1

∑

x

(Ai ∗ Ai ∗ A ∗k−3 A)(x) · (Ai ∗ A ∗k−2 A)(x)+

+

l
∑

i=1

l
∑

j=1, j 6=i

∑

x

(Ai ◦ Aj)(x) · ((A ∗k−2 A) ◦ (A ∗k−2 A))(x) ≤

≤

l
∑

i=1

∑

x

(Ai ∗ Ai ∗ A ∗k−3 A)(x) · (Ai ∗ A ∗k−2 A)(x) + ε1Tk(A) .

And so on. Finally, we obtain

l
∑

i=1

Tk(Ai) =
l
∑

i=1

∑

x

(Ai ∗k−1 Ai)(x) · (Ai ∗k−1 Ai)(x) ≥ (1 − (2k − 1)ε1) · Tk(A) .

This concludes the proof.
Note 4.8 It is easy to see that the third property of the constructed partition implies that

there is i0 ∈ {1, . . . , l} such that |Ai0 | ≥ (1 − (2k − 1)ε1) · m
ζk(A)−1

2k−2 ≥ (1 − (2k − 1)ε1) · m
1/2.

In fact, we have

mζk(A)(1 − (2k − 1)ε1) ≤

l
∑

i=1

Tk(Ai) ≤ ( max
i=1,...,l

|Ai|)
2k−2

l
∑

i=1

|Ai| ≤ ( max
i=1,...,l

|Ai|)
2k−2m .

This yields that if we put β = (1− (2k − 1)ε1)m
−1/2 then any set A ⊆ G, |A| = m is strongly

β—connected of degree k and inequality (42) holds with any C ≤ 1/(2k − 1). Thus to obtain
nontrivial results on the structure of A one should prove that A is strongly β—connected for
large β.

Theorem 4.9 Let A ⊆ G be a set. Let also ε, β ∈ (0, 1) be real numbers, and |A| ≥ ε/(2β2).
Then there exists a partition of A into disjoint sets A1, . . . , At, Ω such that
1) Any set Ai, i = 1, . . . , t is strongly β—connected of degree 2 and inequality (42) holds with
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any C ≤ ε log(1/β)/(3 log(2|A|/ε)).
2)
∑t

i=1 T2(Ai) ≥ (1 − ε) · T2(A).
Proof. Let m = |A|, s0 = log(2m/ε)/(2 log(1/β)) ≥ 1, and ε′ = ε/(6s0). Let C ≤ ε′ be a
real number. The proof of Theorem 4.9 is a sort algorithm. If A is strongly β—connected of
degree 2 and (42) is true with the constant C then there is nothing to prove. Suppose that
A is not strongly β—connected of degree 2 set (with the constant C). Using Lemma 4.7 with
ε1 = ε′, we get the partition P(1) of A into A1, . . . , Al satisfy properties 1) — 3) of the lemma.
Since A is not strongly β—connected of degree 2 it follows that for any l ∈ {1, . . . , l}, we have
|Ai| < β|A|. Using the third property of the partition P(1), we obtain

∑

A∈P(1)

T2(A) =

l
∑

i=1

T2(Ai) ≥ (1 − 3ε′)T2(A) .

Let B(1) = {Ai — is not strongly β − connected of degree 2}, and G(1) be the collection of all
other sets of the partition P(1). Let us construct a new partition of A. We do not change the
sets Ai from G(1). Further, for any Ai belongs to B(1), we use Lemma 4.7 with ε1 = ε′. We get
a new partition of Ai into subsets Aij , j ∈ {1, . . . , l(i)}. So we construct a new partition P(2)

of the set A. For any Ai ∈ B(1) the following holds
∑l(i)

j=1 T2(Aij) ≥ (1 − 3ε′)T2(Ai). Hence
∑

A∈P(2)

T2(A) ≥ (1 − 3ε′)2 · T2(A) . (44)

Let B(2) = {Aij — is not strongly β − connected of degree 2}. For an arbitrary Aij ∈ B(2),
we use Lemma 4.7 with ε1 = ε′. We get a new partitions of the sets Aij into disjoint subsets
Aijr. And so on. At s–th step of the algorithm, we construct the partition P(s) such that

∑

A∈P(s)

T2(A) ≥ (1 − 3ε′)s · T2(A) ≥ (1 − 3ε′s) · T2(A) . (45)

It is easy to see that if for some s ≤ s0 the following holds
∑

A∈P(s)\B(s)

T2(A) ≥ (1 − ε) · T2(A) , (46)

then we are done. Indeed, just put Ω =
⊔

A∈B(s) A. Suppose that for all s ≤ s0 inequality (46)
does not hold. Using inequality s ≤ s0 and (45), we get

∑

A∈P(s) T2(A) ≥ (1 − ε/2) · T2(A).
Hence

∑

A∈B(s)

T2(A) ≥
ε

2
· T2(A) ≥

εm2

2
. (47)

For any A ∈ B(s), we have |A| < βsm. Whence
∑

A∈B(s)

T2(A) < (βsm)2
∑

A∈P(s)

|A| = β2sm3 . (48)

If s = s0 then the last inequality contradicts (47). So for some s < s0 inequality (46) holds.
This completes the proof.

There is a difference between Theorem 2.11 and Theorem 4.9. In Theorem 4.9 we prove
that there exists a partition of A into strongly β—connected components and some exceptional
set Ω while Theorem 2.11 states that there is one connected subset of A. Besides, Theorem
4.9 implies that the remaining set Ω has small T2(Ω). Indeed, by the property 2), we have
∑t

i=1 T2(Ai) ≥ (1 − ε) · T2(A), whence T2(Ω) ≤ εT2(A).
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