11 Вполне интегрируемые системы

Пусть (M, ω, H) — гамильтонова система с n степенями свободы, т.е. $\dim(M) = 2n$. Пусть $F_1, \dots F_n \colon M \to \mathbb{R}$ — первые интегралы этой системы, причем скобка Пуассона любых двух первых интегралов равна нулю $\{F_i, F_j\} = 0$. Пусть

$$M_c = \{(p,q) \in M : F_i(p,q) = c_i, i = 1, \dots n\}$$

Теорема (Лиувилль-Арнольд). Пусть формы dF_i линейно независимы в каждой точке M_c , тогда

- 1. M_c гладкое многообразие инвариантное относительно фазового потока гамильтоновой системы
- 2. Каждая компактная компонента связности M_c диффеоморфна n-мерному тору
- 3. В некоторых угловых координатах $\varphi_1, ... \varphi_n$ уравнения Гамильтона имеют вид $\dot{\varphi} = \nu(c)$, где $\nu(c)$ постоянный вектор.

Системы, удовлетворяющие условиям этой теоремы называются вполне интегрируемыми системами (для краткости часто говорят просто «интегрируемые системы»).

Примеры интегрируемых систем. Рассмотрим движение твердого тела в поле силы тяжести. Считаем, что одна из точек твердого тела неподвижна. Пусть r_1, r_2, r_3 — координаты центра масс в главных осях инерции твердого тела (относительно неподвижной точки), а I_1, I_2, I_3 — моменты инерции относительно этих осей. Тогда при следующих значениях параметров r_1, r_2, r_3 и I_1, I_2, I_3 система будет интегрируемой

- 1. Случай Эйлера: $r_1 = r_2 = r_3 = 0$
- 2. Случай Лагранжа: $I_1 = I_2$, $r_1 = r_2 = 0$
- 3. Случай Ковалевской: $I_1=I_2=2I_3,\,r_3=0$

Далеко не все системы являются интегрируемыми. Пусть H(p,q)=T(p,q)+V(q) — гамильтониан системы с двумя степенями свободы, т.е. $H\colon T^*M\to\mathbb{R},$ где M — замкнутое ориентируемое аналитическое двумерное многообразие (сфера с \varkappa ручками). Пусть при каждом q функция T(p,q) является квадратичной формой на T_q^*M и функции T и V аналитичны на T^*M и M Теорема (В.В. Козлов) Если род \varkappa поверхности M не равен 0 или 1, то гамильтонова система не имеет на T^*M аналитического первого интеграла, который был бы независим от интеграла энергии H.

12 Переменные «действие-угол»

Во вполне интегрируемых можно ввести специальные координаты $I,\, \varphi,\,$ называемые переменными «действие-угол», обладающие следующими свойствами

- 1. $dp \wedge dq = dI \wedge d\varphi$
- 2. H = H(I)
- 3. φ угловые координаты

Опишем процесс построения переменных «действие-угол» в случае системы с одной степенью свободы. Пусть $D \subset \mathbb{R}^2$ — область, в которой определена функция $H\colon D\to \mathbb{R}$ (гамильтониан). Будем рассматривать автономную гамильтонову систему $(D,dp\wedge dq,H)$. Предположим, что уравнение H(p,q)=h задает при $h\in (a,b)$ замкнутые кривые в D, которые мы обозначим γ_h

$$\gamma_h = \{p, q \colon H(p, q) = h\}$$

Определим функцию $I\colon (a,b) \to \mathbb{R}$

$$I(h) = \frac{1}{2\pi} \int_{\gamma_h} p dq$$

По формуле Стокса получаем, что I(h) это площадь, ограниченная кривой γ_h , деленная на 2π .

Будем считать, что функция Гамильтона достаточно регулярна в точках, в которых H(p,q)=h и $h\in(a,b).$ Под этим мы будем подразумевать, что

- 1. $\frac{\partial I}{\partial h} \neq 0$ при $h \in (a,b)$
- 2. Все решения уравнения $\frac{\partial H}{\partial p} = 0$ в области a < H(p,q) < b располагаются на конечном числе непересекающихся кривых, каждая из которых пересекает γ_h ровно в одной точке при всех $h \in (a,b)$.

Итак, в области a < H(p,q) < b у нас есть координаты p,q и некоторая функция I(p,q). Найдем такую функцию $\varphi(p,q)$ в этой области, что I, φ будут каноническими координатами, т.е. $dp \wedge dq = dI \wedge d\varphi$.

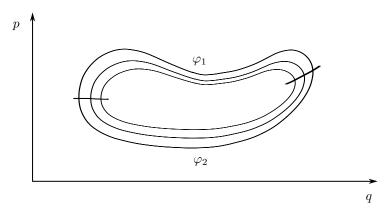


Рис. 1: Построение переменных «действие-угол» в простейшем случае.

Найдем производящую функцию S(q,I) канонической замены

$$p = \frac{\partial S}{\partial q}, \quad \varphi = \frac{\partial S}{\partial I}.$$

Поскольку I есть функция от h, и H(p,q)=h, то I — функция от p и q

$$I = I(h) = I(H(p,q))$$

Выразим из этого уравнения p через q и I. Для этого достаточно, чтобы было выполнено условие

$$\frac{\partial I}{\partial p} = \frac{\partial I}{\partial h} \cdot \frac{\partial H}{\partial p} \neq 0$$

Это условие выполнено всюду, кроме точек, в которых $\frac{\partial H}{\partial p}=0$. Рассмотрим область между двумя такими кривыми. В ней можно выразить p=p(q,I). Положим

$$S(q, I) = \int p(q, I) dq + C(I)$$

Тогда

$$\varphi(p,q) = \frac{\partial S}{\partial I}\Big|_{I=I(p,q)} + c(I)\Big|_{I=I(p,q)}, \qquad c(I) = \frac{\partial C(I)}{\partial I}$$

Покажем, что I и φ действительно являются координатами в рассматриваемой области. Для этого надо показать, что различным точкам в области соответсвуют различные I и φ . Пусть точки лежат на одной кривой γ_h , т.е. I фиксировано (если они лежат на разных кривых — нечего доказывать).

$$\varphi(p_2, q_2) - \varphi(p_1, q_1) = \frac{\partial}{\partial I} \int_{q_1}^{q_2} p(q, I) dq = \int_{q_1}^{q_2} \frac{\partial p(q, I)}{\partial I} dq \neq 0.$$

Выполнение последнего «неравенства» следует из того, что $\frac{\partial I}{\partial p}(p,q) \neq 0$ при всех $q \in (q_1,q_2)$.

Аналогичные построения можно произвести во всех областях, разделенных соответствующими кривыми. В каждой области получим

$$\varphi_j(p,q) = \frac{\partial S_j}{\partial I}\Big|_{I=I(p,q)} + c_j(I)\Big|_{I=I(p,q)}$$

где $1\leqslant j\leqslant N$ и N — число рассматриваемых областей. Положим $c_1=0$, а остальные функции c_j выберем таким образом, чтобы переход от φ_j к φ_{j+1} был непрерывным при $N-1\geqslant j\geqslant 1$. Посмотрим, какое приращение получит переменная φ при обходе кривой γ_h

$$\Delta \varphi = \int\limits_{\gamma_{b}} d\varphi = \frac{\partial}{\partial I} \int\limits_{\gamma_{b}} p dq = 2\pi$$

T.e. φ — угловая переменная с периодом 2π .

Пример. Переменные «действие-угол» для гармонического осциллятора

$$H = \frac{1}{2}(p^2 + \omega^2 q^2)$$

Можно проверить, что формулы

$$q = \sqrt{\frac{2I}{\omega}}\cos\varphi, \quad p = \sqrt{2I\omega}\sin\varphi$$

задают требуемую каноническую замену.