Предварительные сведения

Определение. Пусть $U \subset \mathbb{R}^n$ — открытое подмножество и $x \in U$. Пусть $f \colon U \to \mathbb{R}^n$. Говорят, что f дифференцируема в точке x, если существует представление

$$f(x+v) = f(x) + A \cdot v + o(\|v\|),$$
 при $\|v\| \to 0, v \in \mathbb{R}^m.$

Здесь $A \colon \mathbb{R}^m \to \mathbb{R}^n$ — линейное отображение, называемое дифференциалом (его обычно обозначают df или $\frac{\partial f}{\partial x}$).

Комментарий. Норма в определении может быть выбрана любой.

Неформальное определение. Функция называется дифференцируемой в точке, если она может быть приближена линейной функцией в малой окрестности этой точки.

Теорема. Пусть $f: U \to \mathbb{R}^n, U \subset \mathbb{R}^{m+n}$ — открытое множество. Пусть

$$f(x,y) = 0$$

для некоторой пары $x_0 \in \mathbb{R}^m$ и $y_0 \in \mathbb{R}^n$ и функция f дифференцируема в U и все ее частные производные непрерывны в U. Предположим, что

$$\det\left(\frac{\partial f}{\partial y}(x_0, y_0)\right) \neq 0.$$

Тогда существует два открытых множества $I\in\mathbb{R}^m$ и $J\in\mathbb{R}^n$ и функция g из I в J такая, что $x_0\in I$ и

$$f(x, q(x)) = 0.$$

при всех $x \in I$ и $y_0 = g(x_0)$.

Комментарий. Мы будем в основном рассматривать бесконечно дифференцируемые функции, поэтому условие на частные производные выполняется автоматически. Задача — привести пример дифференцируемой функции с разрывной производной.

Пример. Пусть $\hat{f}(x,y)=x^2+y^2-1$. Тогда всюду, кроме точек $x=\pm 1,$ y=0, можно выразить $y=\sqrt{1-x^2}$ или $y=-\sqrt{1-x^2}.$

Пример. Пусть f(x,y) = x - Ay, где A — квадратная матрица. Тогда теорема о неявной функции эквивалентна условию, что A обратима (т.е. y можно выразить через x из уравнения x = Ay).

Определение. Пусть $M \subset \mathbb{R}^n$. Говорят, что M-k-мерное многообразие, если для каждой точки $x \in M$ существует открытая окрестность $U \subset \mathbb{R}^n$ и n-k бесконечно дифференцируемых функций $f_i \colon U \to \mathbb{R}, \ i=1,...,n-k$ таких, что

$$\{x \in \mathbb{R}^n : f_1(x) = 0, \quad f_2(x) = 0 \quad \dots \quad f_{n-k}(x) = 0\} = M \cap U,$$

и векторы $\operatorname{grad} f_i$, i = 1, ..., n - k линейно независимы в точке x.

Пример. Пусть M — единичная сфера в \mathbb{R}^3 . Тогда она задается одним уравнением

$$x^2 + y^2 + z^2 - 1 = 0.$$

M — двумерное многообразие.

Комментарий. Условие линейной независимости градиентов приводит к тому, что система уравнений

$$f_1(x) = 0$$
, $f_2(x) = 0$... $f_{n-k}(x) = 0$,

может быть разрешена (по теореме о неявной функции) относительно некоторых n-k переменных $x_{i_1}\cdots x_{i_{n-k}}$. Оставшиеся k переменных являются локальными координатами на M в окрестности данной точки. При этом локальные координаты могут быть выбраны многими способами. Смысл локальных координат в том, что это некоторые числовые параметры, которые взаимнооднозначно параметризуют точки некоторой части нашего многообразия. Также полезно представлять локальные координаты как набор координатных функций, заданных в некоторой части многообразия, т.е. каждая такая функция сопоставляет точке многообразия некоторое число (его соответствующую координату).

Пример. В случае единичной сферы в \mathbb{R}^3 уравнение сферы может быть разрешено относительно одной из переменных. Например, в окрестности точки $x=1,\ y=0,\ z=0$ можно выразить x через y и z (т.е. независимых параметра два -y и z). Также в окрестности этой точки можно ввести координаты φ , θ , которые связаны с y и z следующим образом: $y=\cos\theta\sin\varphi$, $z=\sin\theta$ (если оба угла достаточно близки к 0).

Определение. Пусть M и N — два многообразия. Они называются гомеоморфными, если существует взаимнооднозначное отображение $f\colon M\to N$ такое, что f и f^{-1} — непрерывны.

Определение. Пусть M и N — два многообразия. Они называются диффеоморфными, если существует взаимнооднозначное отображение $f \colon M \to N$ такое, что f и f^{-1} — дифференцируемы.

Определение. Пусть $\mu \in M$ — точка на k-мерном многообразии M и $x\colon (-\varepsilon,\varepsilon)\to M$ — бесконечно дифференцируемое отображение и $x(0)=\mu$ (ε — произвольное положительное малое число). Отображение x называется гладкой кривой, проходящей через точку μ .

Определение. Пусть M-k-мерное многообразие и $x, \tilde{x} \colon (-\varepsilon, \varepsilon) \to M$ гладкие кривые, проходящие через точку μ . Они называются эквивалентными, если в локальных координатах в окрестности точки μ выполнены условия

$$|x_i(t) - \tilde{x}_i(t)| = o(t), \quad t \to 0, \quad 1 \leqslant i \leqslant k.$$

Комментарий. Можно показать, что если эти условия выполнены в некоторых локальных координатах, то выполнены и в любых.

Определение. Пусть M — многообразие и x — некоторая гладкая кривая, проходящая через точку μ . Тогда $\dot{x}(0)$ (касательный вектор к кривой в точке μ) называется касательным вектором к многообразию M в точке μ .

Определение. Линейное пространство касательных векторов ко всевозможным кривым, проходящим через точку $\mu \in M$ называется касательным пространством к M в μ и обозначается $T_{\mu}M$.

Комментарий. Отметим два важных свойства касательных векторов.

Первое — перенос векторов при отображениях. Пусть M и N — два многообразия (возможно, разной размерности) и $f\colon M\to N$ — гладкая функция (т.е. задается бесконечно дифференцируемыми функциями в локальных координатах) и x — кривая, проходящая через точку $\mu\in M$. Тогда, если задан вектор $v\in T_\mu M$, то $df(v)\in T_\nu N$, $\nu=f(\mu)\in N$. Второе — векторы могут рассматриваться как дифференцирования функций по направлению. Пусть $f\colon M\to \mathbb{R}$ и $v\in T_\mu M$. Тогда v(f)=df(v) (по определению).

Замечание. В процессе вычислений важно различать «два вида единичных векторов»: обычно единичным вектором в данной системе локальных координат называется тот, который имеет все координаты кроме одной равные 0 и одну координату 1. Если на многообразии задана риманова метрика, то в приложениях (в механике) называют единичным вектор, если он параллелен единичному в первом смысле и его длина в римановой метрике равна 1 (очевидно, эти векторы могут быть различны — достаточно рассмотреть случай полярных координат на плоскости).

Определение. Пусть M — многообразие, заданное n-k уравнениями в \mathbb{R}^n

$$f_1(x) = 0$$
, $f_2(x) = 0$... $f_{n-k}(x) = 0$.

Тогда TM — многообразие, заданное в \mathbb{R}^{2n} системой

$$f_1(x) = 0$$
, $f_2(x) = 0$... $f_{n-k}(x) = 0$
 $g_1(x,y) = \frac{\partial f_1}{\partial x_1} y_1 + \dots + \frac{\partial f_1}{\partial x_n} y_n$

. . .

$$g_{n-k}(x,y) = \frac{\partial f_{n-k}}{\partial x_1} y_1 + \dots + \frac{\partial f_{n-k}}{\partial x_n} y_n$$

Многообразие TM называется касательным расслоением M.

Комментарий. Такая система действительно задает многообразие (несложно показать, что соответствующие градиенты линейно независимы). Его размерность в два раза больше, чем размерность M и равна 2k. Если рассматривать TM как множество, то можно записать, что $TM = \bigcup_{M} T_{\mu}M$.

Другими словами, TM есть объединение всех касательных пространств к M.

Определение. Пусть X — множество и $d: X \times X \to \mathbb{R}$ такая, что

- 1. $d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$.

Пара (X, d) — метрическое пространство.

Определение. Метрическое пространство называется полным, если любая фундаментальная последовательность его элементов сходится к некоторому элементу этого пространства.

Определение. Пусть (X,d) — метрическое пространство. Пусть $f\colon X\to X$. Говорят, что f — сжимающее отображение, если существует $\alpha\in[0,1)$ такое, что для любых $x,y\in X$ выполнено $d(f(x),f(y))\leqslant \alpha d(x,y)$. **Теорема.** Пусть (X,d) — полное метрическое пространство и $f\colon X\to X$ — сжимающее отображение, тогда существует $x\in X$ такое, что f(x)=x (неподвижная точка).